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ABSTRACT

With the growth of misinformation on the web, automated fact
checking has garnered immense interest for detecting growing
misinformation and disinformation. Current systems have made
significant advancements in handling synthetic claims sourced
from Wikipedia, and noteworthy progress has been achieved in
addressing real-world claims that are verified by fact-checking or-
ganizations as well. We compile and releaseQuanTemp, a diverse,
multi-domain dataset focused exclusively on numerical claims, en-
compassing comparative, statistical, interval, and temporal aspects,
with detailed metadata and an accompanying evidence collection.
This addresses the challenge of verifying real-world numerical
claims, which are complex and often lack precise information, a gap
not filled by existing works that mainly focus on synthetic claims.
We evaluate and quantify these gaps in existing solutions for the
task of verifying numerical claims. We also evaluate claim decom-
position based methods, numerical understanding based natural
language inference (NLI) models and our best baselines achieves a
macro-F1 of 58.32. This demonstrates thatQuanTemp serves as a
challenging evaluation set for numerical claim verification.
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Example: Claim from QuanTemp

Claim: Under GOP plan, U.S. families making $86k see
avg tax increase of $794.

[Evidence]: If enacted, the Republican tax reform proposal would
saddle only 8 million households that earn up to $86,100 with
an average tax increase of $794 . . . . Only a small percentage (6.5
percent) of the nearly 122 million households in the bottom three
quintiles will actually face a tax increase.

[Verdict]: False

Figure 1: Example claim from QuanTemp

1 INTRODUCTION

Online misinformation, particularly during elections, poses a sig-
nificant threat to democracy by inciting socio-political and eco-
nomic turmoil [49]. Fact-checking websites like Politifact.com,
Snopes.com, FullFact.org, and others play an indispensable
role in curbing misinformation. However, the scalability of manual
fact-checking is constrained by limited resources. This limitation
has spurred remarkable advancements in neural models for auto-
mated fact-checking in recent years [15], driven by the proliferation
of open datasets [7, 11, 30, 39, 45]. Crucially, within the area of fact-
checking, the verification of claims involving numerical quantities
and temporal expressions is of utmost importance. This is essential
for countering the ‘numeric-truth-effect’[35], where the presence
of numbers can lend a false aura of credibility to a statement. Nu-
merical claims are a significant component of political discourse.
For instance, our analysis of the ClaimBuster dataset [16] reveals
that a substantial 36% of all check-worthy claims in U.S. presiden-
tial debates involve numerical quantities. Most current datasets
inadequately address the verification of numerical claims, as our
overview in Table 1 illustrates. A notable example is the Feverous
dataset, where only a small fraction (approximately 10%) of claims
necessitate numerical reasoning, and these have proven especially
challenging for annotators to verify [2]. Our experiments further
reinforce this difficulty. We observed that models trained on a mix
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of numerical and non-numerical claims underperform compared to
those specifically fine-tuned on numerical claims.

Numerical claims verification poses a unique challenge, where
a fact-checking system must critically analyze and reason about
the numerical data presented in both the claim and its evidence.
For example, in verifying the claim shown in Figure 1 as ‘False’,
the NLI model needs to identify that the evidence only mentions 8
million households with incomes up to $86k facing tax increases,
contradicting the claim of tax increases for all families earning
$86k. The existing datasets can be categorized as synthetically gen-
erated from Wikipedia and knowledge bases or real-world claims
collected from fact-checking websites (Table 1). While, works like
ClaimDecomp [10],MultiFC [7] and AveriTec [39], collect real-
world claims, they do not particularly focus on numerical claims.
The only previous work proposing a dataset for fact-checking statis-
tical claims, by [43, 47], uses a rule-based system to create synthetic
claims from 16 simple statistical characteristics in the Freebase
knowledge base about geographical regions. There has not been a
dedicated large-scale real-world open-domain diverse dataset for
verifying numerical claims.

In this work, we collect and release a dataset of 15, 514 real-world
claims with numeric quantities and temporal expressions from
various fact-checking domains, complete with detailed metadata
and an evidence corpus sourced from the web. Numeric claims are
defined as statements needing verification of any explicit or implicit
quantitative or temporal content. The evidence collection method
is crucial in fact-checking datasets. While datasets likeMultiFC
and DeClarE use claims as queries in search engines like Google
and Bing for evidence, methods like ClaimDecomp depend on fact-
checkers’ justifications. However, this could cause ‘gold’ evidence
leakage from fact-checking sites into the training data. To avoid
this, we omit results from fact-checking websites in our evidence
corpus.

Moreover, using claims as queries in search enginesmaymiss cru-
cial but non-explicit evidence for claim verification. To overcome
this, recent works have proposed generating decomposed ques-
tions to retrieve better evidence [3, 10, 14, 26, 31]. In our approach,
we aggregate evidence using both original claims and questions
from methods like ClaimDecomp and ProgramFC. This dual strat-
egy yields a more diverse and unbiased evidence set of 423,320
snippets, enhancing which could be used for evaluating both the
retrieval and NLI steps of fact-checking systems.

Finally, we also propose a fact-checking pipeline as a baseline
that integrates claim decomposition techniques for evidence re-
trieval, along with a range of Natural Language Inference (NLI)
models, encompassing pre-trained, fine-tuned, and generative ap-
proaches, to evaluate their efficacy on our dataset. Additionally,
we conduct an error analysis, classifying the numerical claims into
distinct categories to better understand the challenges they present.

1.1 Research Questions

In addition to collecting and releasing the dataset, we answer the
following research questions by proposing a simple baseline system
for fact-checking.

RQ1: How hard is the task of fact-checking numerical claims?

RQ2: To what extent does claim decomposition improve the verifi-
cation of numerical claims?

RQ3: How effectively do models pre-trained for numeric under-
standing perform when fine-tuned to fact-check numerical claims?

RQ4: How does the size of large language models impact their
performance in zero-shot, few-shot, and fine-tuned scenarios for
numerical claims?

1.2 Contributions

(1) We collect and release a large, diverse multi-domain dataset
of real-world 15,514 numerical claims, the first of its
kind, along with an associated evidence corpus consisting
of 423,320 snippets.

(2) We evaluate established fact-checking pipelines and claim
decomposition methods, examining their effectiveness in
handling numerical claims. Additionally, we propose im-
proved baselines for the natural language inference (NLI)
step.

(3) Our findings reveal that NLI models pre-trained for numer-

ical understanding outperform generic models in fact-
checking numerical claims by up to 11.78%. We also show
that smaller models fine-tuned on numerical claims outper-
form larger models like GPT-3.5-Turbo under zero-shot and
few-shot scenarios.

(4) We also assess the quality of questions decomposed by
ClaimDecomp and ProgramFC for numerical claims, using
both automated metrics and manual evaluation.

We make our dataset and code available here https://github.com/
factiverse/QuanTemp.

2 RELATEDWORK

The process of automated fact-checking is typically structured as a
pipeline encompassing three key stages: claim detection, evidence
retrieval, and verdict prediction, the latter often involving stance
detection or natural language inference (NLI) tasks [8, 15, 56]. In this
work, we introduce a dataset of numerical claims that could be used
to evaluate the evidence retrieval and NLI stages of this pipeline.
This section will explore relevant datasets and methodologies in
this domain.

Most current fact-checking datasets focus on textual claims veri-
fication using structured or unstructured data [44, 56]. However,
real-world data, like political debates, frequently involve claims
requiring numerical understanding for evidence retrieval and verifi-
cation. It has also been acknowledged by annotators of datasets such
as FEVEROUS that numerical claims are hard to verify since they
require reasoning and yet only 10% of their dataset are numerical
in nature [2].

A significant portion of the existing datasets collect claims au-
thored by crowd-workers from passages in Wikipedia [2, 19, 29,
38, 40, 45]. Additionally, there are synthetic datasets that require
tabular data to verify the claims [2, 11, 24], but these claims and
tables may not contain numerical quantities. Recent efforts by [20]
aim to create more realistic claims from Wikipedia by identifying
cited statements, but these do not reflect the typical distribution of
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Table 1: Comparison of QuanTemp with other fact checking datasets.
∗
Some datasets may have some numerical claims in them,

but it is not their main focus.
†
By “Unleaked Evidence”, here we refer to gold evidence being leaked from fact-checking websites.

In the table WP refers to Wikipedia, WT refers to WikiTables, FCS referes to fact-check sites and FB referes to FreeBase

Dataset # of Claims Retrieved Numerical
†
Unleaked Evidence

claims Source Evidence Focus
∗

Evidence
†

Corpus Size

Synthetic Claims

StatProps [43] 4,225 KB (FB) KB (FB) ✓ N/A N/A
Fever [45] 185,445 WP WP ✗ N/A 5,416,568
Hover [19] 26,171 WP WP ✗ N/A 5,486,211
TabFact [11] 92,283 WP WT ✗ N/A 16,573
Feverous [2] 87,026 WP WT,WP ✗ N/A 7,221,406
SciTab ‘[24] 1,225 arXiv (CS) arXiv ✗ N/A 1,301

Fact-checker Claims

LIAR [52] 12,836 Politifact ✗ ✗ N/A N/A
ClaimDecomp [10] 1,250 Politifact ✗ ✗ ✗ 1,250
DeClarE [30] 13,525 FCS (4) Web ✗ ✓ 87,643
MultiFC [7] 36,534 FCS (26) Web ✗ ✗ 349,180
QABriefs [14] 8,784 FCS (50) Web ✗ ✗ 21,168
AVeriTeC [39] 4,568 FCS (50) Web ✗ ✗ 137,040

QuanTemp (OURS) 15,514 FCS (45) Web ✓ ✓ 423,320

claims verified by fact-checkers and the false claims they contain
are still synthetic.

More efforts have been made to collect real-world claims in
domains like politics [1, 10, 27, 52], science [48, 50, 54], health [22]
and climate [13] and other natural claims occurring in social media
posts [12, 25]. Multi-domain claim collections like MultiFC [7] have
also emerged, offering rich meta-data for real-time fact-checking.
However, none of these datasets focus on numerical claims.

Among those that focus on numerical claims, [43, 47], the authors
propose a simple distant supervision approach using freebase to
verify simple statistical claims. These claims are not only synthetic,
but they can be answered with simple KB facts such as Freebase.
Similarly, [9] explore the extraction of formulae for checking numer-
ical consistency in financial statements by also relying on Wikidata.
Further, [18] explore the identification of quantitative statements
for fact-checking trend-based claims. None of these datasets are
representative of real-world claims.

In this work, we collect and release a multi-domain dataset which
is primarily composed of numerical claims and temporal expres-
sions with fine-grained meta-data from fact-checkers and an ev-
idence collection. To the best of our knowledge, this is the first
natural numerical claims dataset. Another set of related work is
the area of temporal information retrieval that deals exclusively
with time [21, 41]. However, these works do not focus on temporal
reasoning and instead deal with indexing and processing temporal
queries [4–6, 17].

Early fact checking systems simply used the claim as the query to
search engine [7, 15, 30] or employ question answering systems [36].
These approaches may not work well if the claims are not already
fact-checked. In this regard, recent works have introduced claim

decomposition into questions [10, 14, 28, 39]. In this paper, we eval-
uate the effectiveness of ClaimDecomp [10] and ProgramFC [28]
methods for numerical claims.

We follow the established fact-checking pipeline using evidence
and claims as input to NLI models to predict if the claims are sup-
ported, refuted or conflicted by the evidence [15]. We use BM25 [34]
for evidence retrieval followed by re-ranking and explore various
families of NLI models.

3 DATASET CONSTRUCTION

In this section, we describe an overview of the dataset collection
process as shown in Figure 2.

3.1 Collecting Real-world Claims

We first collect real-world claims curated by professional fact-
checkers at fact-checking organizations via Google Fact Check
Tool APIs1. The full collection of fact-checks consists of 278,636
fact-checks2. After filtering non-English fact-checks, it amounts to
45 organizations worldwide with 139,926 fact-checks. Next, we iden-
tify quantitative segments (Section 3.3) from the claims and only
retain claims that satisfy these criteria, which amounts to 15,514
claims. Finally, we collect evidence for the claims (Section 3.5).

One of the challenges of collecting claims from diverse sources
is the labelling conventions. To simplify, we standardize the labels
to one of True, False or Conflicting by mapping them similar to [39].
We also ignore those claims with unclear or no labels.

3.2 Dataset Statistics

After deduplication, our dataset has 15,514 claims. The dataset is
unbalanced, favoring refuted or false claims with a distribution
1https://toolbox.google.com/factcheck/apis available under the CC-BY-4.0 license.
2As of 15th Nov 2023.
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Real-World 
Claims

Quantity 
segmenter

Filter to retain 
numerical claimsFact checking 

sites

Claim 
Decomposition 

Methods

Questions
Claims 

with 
Evidence

CD NNPS 
    Only 536 Georgians 

are signed up for 
Obamacare  

CD  
while 400,000 in the 

state lost their health 
insurance

Only 536 Georgians are 
signed up for Obamacare 
while 400,000 in the state 
lost their health insurance

Q1: Are only 536 georgians signed up 
for Obamacare ? 
Q2: Did 400,000 people in the state of 
Georgia lose their health insurance? 
Q3: Is there a significant disparity 
between the number of Georgians 
signed up for obamacare ..…? 

Evidence Snippets: 
E1: 846,000 georgians have 
signed up for heath insurance … 
E2: georgians who went through 
the medicaid unwinding process 
last month lost their coverage…. 
E3: in october, just 536 georgians 
were able to successfully sign 
up…. 

Figure 2: QuanTemp Construction Pipeline

Table 2: Top fact-checking domains

Claim Source #Occurences

Politifact 3,840
Snopes 1,648
AfP 412
Africacheck 410
Fullfact 349
Factly 330
Boomlive_in 318
Logically 276
Reuters 235
Lead Stories 223

Table 3: Top claim source countries.

Country #Occurences

USA 6,215
India 1,356
UK 596
France 503
South Africa 410
Germany 124
Philippines 103
Australia 65
Ukraine 35
Nigeria 17

Table 4: Top evidence domains.

Category #Occurences

en.wikipedia.org 28,124
nytimes.com 8,430
ncbi.nlm.nih.gov 8,417
quora.com 4,967
cdc.gov 3,987
statista.com 3,106
youtube.com 2,889
who.int 2,557
cnbc.com 2,448
investopedia.com 1977

Table 5: QuanTemp dataset distribution

Split True False Conflicting Total

Train 1,824 5,770 2,341 9,935
Dev 617 1,795 672 3,084
Test 474 1,423 598 2,495

of ‘True’, ‘False’, and ‘Conflicting’ claims at 18.79%, 57.93%, and
23.27%, respectively, reflecting the tendency of fact-checkers to
focus on false information [39]. A detailed distribution of the dataset
is shown in Table 5.

To illustrate the comprehensive nature of our dataset, we ana-
lyze on the origins of the claims it encompasses. Table 2 presents
a summary of the ten most frequently encountered fact-checking
websites within our dataset. It is noteworthy that Politifact consti-
tutes a substantial fraction of the claims. Additionally, our analysis
reveals a significant representation of claims sourced from a variety
of fact-checking platforms, extending beyond the realm of politi-
cal fact-checks. Furthermore, as illustrated in Table 3, our dataset
encompasses claims originating from a wide range of geograph-
ical locales, including, North America, Europe, Asia, and Africa,
underscoring the geographical diversity of our corpus.

3.3 Identifying Quantitative Segments

We identify quantitative segments in the claim sentence for extract-
ing numerical claims, as defined in [32], which include numbers,

Figure 3: Example of identification of quantitative segments

from the claim.NNS is nounplural form,NP-TMP is temporal

noun phrase

units, and optionally approximators (e.g.,“roughly”) or trend indica-
tors (e.g., “increases”).

Specifically, we first obtain the claim’s constituency parse, identi-
fying nodes with the cardinal number POS tag “CD”. To avoid false
positives (for example: “The one and only”), we then parse these
nodes’ ancestors and extract noun phrases from their least common
ancestors. Using these noun phrases as root nodes, we perform a
prefix traversal of their subtrees. Figure 3 shows an example of the
extracted quantitative segments. We then refine the claim set by
filtering for those with at least one quantitative segment.

This approach is limited, as it may include claims with non-
quantitative terms like “Covid-19”. To remedy this, we require more
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than one quantitative segment, excluding any nouns like “Covid-19”
mentions, to qualify as a numerical claim. Claims not meeting this
criterion are excluded. Our self-assessment of 1000 sample claims
from the dataset indicates a 95% accuracy of our heuristic.

3.4 Claim Decomposition

We posit that the precise nature of the task of verifying numerical
information requires the retrieval of relevant evidence contain-
ing the required quantitative information. Claim decomposition
[10, 14, 26, 28] is effective in extracting important evidence contain-
ing background or implied information to verify the claim. Hence,
we evaluate several claim decomposition approaches as described
in Section 4.1 and discuss their impact on downstream veracity
prediction in Section 5.4. We also release the relevant questions
resulting from the decomposition of the claim for train, validation,
and test sets to facilitate further research on their significance for
retrieving relevant evidence.

3.5 Collecting Evidence

We collect evidence for claim verification by retrieving search re-
sults from public engines, following prior works [7, 39]. Solely
using the claim as a query, as in prior approaches [7, 8, 30], yields a
restricted set of documents, often biased towards claims that have
already been verified. To enhance the diversity of the evidence,
we include both the original claim and questions generated from
the decomposition methods, described in Section 4.1. We get inspi-
ration from recent advances in claim decomposition methods for
fact-checking that have shown promising results [14, 28, 39]. To
ensure the evidence collection is free from duplicates, we merge
the search results for the original claim and all the generated ques-
tions using a top-k document pooling method commonly used in
information retrieval (IR) [37, 42].

We first submit original claims to Google through scaleserp.com
API, collecting the top 10 results per claim. We strictly filter out
any results from over 150 fact-checking domains to prevent any
leakage from their justification, avoiding models to learn shortcuts
in verification. We improve evidence diversity by employing Large
Language Model (LLM)-based claim decomposition methods such
as Program-FC [28] and ClaimDecomp [10], generating a range
of questions for query use. For each question, we compile the top
10 search results.

After filtering out duplicates and irrelevant documents, we amass
an extensive evidence collection of 423,320 snippets. We have ev-
idence from a diverse set of domains including Wikipedia, gov-
ernment websites, etc. An overview of top evidence domains is
shown in Table 4. We ensure our collection does not have any
snippets from manual or automated fact-checkers and related web-
sites or social media handles. Also, government websites are one
of the frequently occurring domains in our evidence collection,
as our claims comprise diverse political and international events.
Not surprisingly, many evidence snippets are from statisa.com
and investopedia.com since our dataset is focused on numerical
claims. On the other hand, we have 2,889 snippets from youtube.com
which is surprising. After closer inspection, these snippets contain
transcripts from news videos and textual descriptions which that
relevant to the claim.

3.6 Qualitative Analysis of the Dataset

To ensure that the dataset we collect is of good quality, we per-
form automated and manual evaluations. Specifically, in manual
evaluation, we evaluate the usefulness and comprehensiveness of
the generated questions by various claim decomposition methods
and the usefulness of the evidence they yield towards verifying the
claim. We detail the guidelines used in the annotation process in
this section.

We rate the questions generated on 2 aspects: completeness and
usefulness (only based on the claim given and top search results).
The two annotators are trained computer scientists who are closely
associated with the task of automated fact checking and are familiar
with the domain. The following guidelines were provided to the
annotators.

Completeness: A list of questions is said to be complete if the
questions cover all aspects of the claim. The ratings were carried
out according to the Likert scale of 1-5.

Usefulness: Rating the usefulness of questions determines if the
questions would help verify the claim. The annotators were asked
to rate the usefulness of questions resulting from the decomposition
of claims. They were instructed to consider implicit aspects of the
claim when rating this, and were asked to rate according to the
Likert scale 1-5.

Some questions might be relevant, but may just retrieve back-
ground knowledge and may not be relevant to the core aspect being
fact checked. To gauge this, the annotators were also asked to look
at evidence when rating the usefulness of questions.

While evaluating the usefulness, the annotators were asked not
to make assumptions about verification method. They were in-
structed to check if the questions covered all aspects of the claim
and could retrieve relevant evidence. They were also asked to check
the coverage of the implied meaning of the claim, rather than just a
surface level analysis of the claim. For instance, the implied aspect
in the claim “The ICE spends 4 times the amount to detain a person
for a year than on a student in public school. " is that ICE detains
people for more than a year, which is not the case in reality. To
verify this core aspect of the claim, the questions must be useful
to retrieve related evidence that cites the time usually people are
detained by the ICE.

Evidence Usefulness: The annotators were requested to rate
the individual piece of evidences for each question. The useful-
ness depends on the information contained in the evidence. The
information should be sufficient to support the whole or parts of
the claim and should be rated on the Likert scale of 1-5 based on
the degree of information. They were asked to rate the usefulness
of all evidence by aggregating the usefulness of evidence tied to
individual questions. The annotators were asked to rate individual
evidence based on relatedness to the claim and their utility in fact
checking.

4 EXPERIMENTAL SETUP

To evaluate the QuanTemp dataset, we introduce a baseline fact-
checking pipeline. We fix the retriever model (BM25 + re-ranking)
for all experiments. After extensive experiments, we choose to fine-
tune the Roberta-Large-MNLI3 model, pre-fine-tuned on the MNLI
3https://huggingface.co/roberta-large-mnli
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corpus, for the NLI task. In Section 4.4 we further explore various
NLI models’ effectiveness on numerical claims.

4.1 Claim Decomposition

We evaluate the following claim decomposition approaches.

ClaimDecomp [10]: The authors of this work provide annotated
yes/no sub-questions for the original claims. We use gpt-3.5-turbo
on training samples from theClaimDecomp dataset to create yes/no
sub-questions for our QuanTemp dataset through in-context learn-
ing, setting temperature to 0.3, frequency to 0.6 and presence penal-
ties to 0.8.

Program-FC [28]: We implement the approach proposed in this
work to decompose claims and generate programs to aid in verifi-
cation. The programs are step by step instructions resulting from
decomposition of original claim. We employ gpt-3.5-turbo for de-
composition. We use same hyperparameters as in the original paper.

Original Claim: Here we do not employ any claim decomposition,
but rather use the original claim to retrieve evidence for arriving at
the final verdict using the NLI models.

Table 6: A broad overview of different categories of claims in

QuanTemp

Category Examples #of claims

Statistical We’ve got 7.2% unemployment (in Ohio),
but when you include the folks who have
stopped looking for work, it’s actually over
10%.

7302 (47.07%)

Temporal The 1974 comedy young frankenstein di-
rectly inspired the title for rock band aero-
smiths song walk this way

4193 (27.03%)

Interval In Austin, Texas, the average homeowner
is paying about $1,300 to $1,400 just for re-
capture, meaning funds spent in non-Austin
school districts

2357 (15.19%)

Comparison A vaccine safety body has recorded 20 times
more COVID jab adverse reactions than the
government’s Therapeutic Goods Adminis-
tration.

1645 (10.60%)

4.2 Evidence retrieval and Veracity Prediction

Once we have decomposed claims, we use evidence retrieval and
re-ranking. Then we employ a classifier fine-tuned on QuanTemp
for the NLI task to verify the claim. The different settings in which
we evaluate the approaches are:

Unified Evidence: Our experiments utilize the evidence snippets
collection detailed in Section 3.5. For each question/claim, we re-
trieve the top-100 documents using BM25 and re-rank them with
paraphrase-MiniLM-L6-v2 from sentence-transformers library [33],
selecting the top 3 snippets for the NLI task. We experiment with
different values of 𝑘 ∈ [1, 3, 5, 7] for top-k snippets. We observe that
k=3 at claim level works best for our setup. Hence, for the “Original
Claim” baseline, we use the top 3 evidences using the claim, and

for other methods, we use the top-1 evidence per question, ensur-
ing three evidences per claim for fair comparison. We experiment
with different encoder models in huggingface such as Deberta-base,
Deberta-large, Roberta family of models and observe that the 6-
layer MiniLM model [51] (paraphrase-MiniLM-L6-v2) provides the
best evidence ranking for downstream fact-verification.

After retrieving evidence, we fine-tune a three-class classifier
for veracity prediction. Training and validation sets are formed
using the retrieved evidence (described above), and the classifier
is fine-tuned by concatenating the claim, questions, and evidence
with separators, targeting the claim veracity label.

Gold Evidence: Here, we directly employ the justification para-
graphs collected from fact-checking sites as evidence to check the
upper bound for performance.

Hyperparameters: All classifiers are fine-tuned till “EarlyStop-
ping” with patience of 2 and batch size of 16. AdamW optimizer is
employed with a learning rate of 2𝑒 − 5 and 𝜖 of 1𝑒 − 8 and linear
schedule with warm up. We use transformers library [53] for our
experiments.

4.3 Category Assignment

After curating the numerical claims, we categorize the numeri-
cal claims to one of these categories using a weak supervision
approach. We identify four categories: temporal (time-related), sta-
tistical (quantity or statistic-based), interval (range-specific), and
comparison (requiring quantity comparison) claims. The exam-
ples and distribution of these categories are shown in Table 6. We
perform this categorization to aid in a fine-grained analysis of
performance across different dimensions of numerical claims, as
described in Section 5.6. The categorization would help understand
the performance of existing models on different types of numerical
claims and gauge the scope for improvement.

We first manually annotate 50 claims, then used a few samples as
in-context examples for the gpt-3.5-turbo model to label hundreds
more. After initial labeling, we fine-tuned Setfit [46], a classifier
ideal for small sample sizes on the annotated samples. Then we
employed the classifier for further annotation of the entire dataset
to the defined categories. Two annotators manually reviewed 250
random claims, and 199 claims were found to be correctly catego-
rized. These annotations helped refine the classifier and category
assignment.

4.4 Veracity Prediction Model Ablations

Prompting based Generative NLI models: We assess the stance
detection using large generativemodels like flan-t5-xl (3B params)
and gpt-3.5-turbo, providing them with training samples, ground
truth labels, and retrieved evidence as in-context examples for claim
verification. The models are also prompted to produce claim verac-
ity and justification jointly to ensure faithfulness, with a tempera-
ture setting of 0.3 to reduce randomness in outputs. The few-shot
prompt employed for veracity prediction through gpt-3.5-turbo is
shown in Table 12. We dynamically select few shot examples for ev-
ery test example. The examples shown are for a single instance and
are not indicative of the examples used for inference over all test
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Table 7: Results of different models onQuanTemp (categorical and full) with Roberta-Large-MNLI as the NLI model. M-F1 :

Macro-F1, W-F1 : Weighted-F1 and C-F1 refers to F1 score for Conflicting class.† indicates statistical significance at 0.01 level

over baseline using t-test

Method Statistical Temporal Interval Comparison Per-class F1 QuanTemp
M-F1 W-F1 M-F1 W-F1 M-F1 W-F1 M-F1 W-F1 T-F1 F-F1 C-F1 M-F1 W-F1

Unified Evidence Corpus

Original Claim (baseline) 49.55 52.48 60.29 74.29 48.84 57.93 40.72 39.66 51.59 70.60 35.27 52.48 58.52
Program-FC 52.24 57.83 56.75 75.46 47.09 61.88 49.02 48.07 47.42 79.46 33.40 53.43 62.34
ClaimDecomp 53.34 58.79 61.46 78.02 56.02 66.97 53.59 53.44 51.82 79.82 39.72 57.12 † 64.89†
Fine-tuned

w/ Gold Evidence

QuanTemp only 60.87 65.44 66.63 81.11 58.35 69.56 60.74 60.36 56.86 82.92 48.79 62.85 69.79

QuanTemp + non-num 56.76 61.98 64.04 80.35 56.56 67.13 52.03 50.59 59.87 83.13 33.78 58.66 66.73

Naive (Majority class) 22.46 34.25 28.35 62.95 25.86 49.19 16.51 16.32 0.00 72.64 0.00 24.21 41.42

examples. We also show the results for zero-shot veracity prediction
using generative models.

4.4.1 Fine-tuned models. We fine-tune T5-small (60 M params),
bart-large-mnli and Roberta-large (355 M params) to study the
impact of scaling on verifying numerical claims. We also employ
models pre-trained on number understanding tasks such as FinQA-
Roberta-Large [57], NumT5-small [55]. We fine-tuned these mod-
els on our dataset for the NLI task to test the hypothesis if models
trained to understand numbers better aid in verifying numerical
claims. All models are fine-tuned with hyperparameters described
in Section 4.2.

5 RESULTS

5.1 Automated Analysis of Quality of

decomposition

Examining questions generated by ClaimDecomp and Program-
FC, we prioritize their relevance to the original claim and diversity
in covering different claim aspects. BERTScore [58] is employed
to assess relevance, i.e., measuring how well the questions align
with the claims. For diversity, which ensures non-redundancy and
coverage of various claim facets, we utilize the sum of (1-BLEU) and
Word PositionDeviation [23]. The results are shown in Table 10. Our
findings indicate that ClaimDecomp excels in generating questions
that are not only more relevant but also more diverse compared
to Program-FC, addressing multiple facets of the claim. We also
perform manual analysis by sampling 20 claims sampled from test
set along with decomposed questions and retrieved evidence for
Program-FC and ClaimDecomp approaches.

5.2 Manual Evaluation Results

We perform a manual evaluation of questions from decomposed
claims and retrieved evidence in QuanTemp as described in Sec-
tion 3.6. We ask two computer scientists familiar with the field to
annotate them on measures of completeness (if questions cover all
aspects of the claim), question usefulness and evidence usefulness,
where usefulness is measured by information they provide to verify
the claim. The results are shown in Table 9. We also report the

Cohen’s kappa scores, indicating the level of agreement among the
annotators in the table. We observe that questions generated by
ClaimDecomp are better than Program-FC as measured by their
usefulness and quality of evidence retrieved. We also observe that
the decompositions yielded by both the approaches cover all aspects
of the claim, as observed by the completeness score. We also release
the questions from claim decomposition for train, validation, and
test sets of QuanTemp.

5.3 Hardness of Numerical Claim Verification

To address RQ1, we experiment with various claim verification
approaches on the QuanTemp dataset, considering both unified ev-
idence and gold evidence. The performance of different approaches
is presented in Table 7. Fine-tune using Gold Evidence: shows per-
formance of NLI models fine-tuned onQuanTemp (numerical only)
andQuanTemp+non-num (numerical and non-numerical claims)
using gold evidence snippet. Both numerical claims and non-numerical
claims are from the same fact-checkers.

It is evident that QuanTemp poses a considerable challenge for
fact-checking numerical claims, with the best approach achieving
a weighted-F1 of 64.89 for unified evidence and 69.79 for gold evi-
dence. The difficulty is further underscored by the performance of
the naive baseline, which simply predicts the majority class. A simi-
lar trend is observed at the categorical level. Except for the temporal
category, where it outperforms other categories, the improvements
from the baseline is relatively modest.

Additionally, training specifically on QuanTemp’s numerical
claim distribution improves performance by 7.14% in macro F1
compared to a mixed distribution of numerical and non-numerical
claim set. These results underscore the complexity of verifying
numerical claims.

5.4 Effect of Claim Decomposition on Claim

Verification

The RQ2 is answered by Table 7 which indicates that claim decom-
position enhances claim verification, particularly for the ’Conflict-
ing’ category, where ClaimDecomp outperforms original claim-
based verification significantly. In the ’unified evidence’ setting,
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Table 8: Ablation results employing different NLI models for ClaimDecomp on QuanTemp. The best results are in bold.†
indicates statistical significance at 0.01 level over Roberta-large using t-test

Method Statistical Temporal Interval Comparison Per-class F1 QuanTemp
M-F1 W-F1 M-F1 W-F1 M-F1 W-F1 M-F1 W-F1 T-F1 F-F1 C-F1 M-F1 W-F1

Unified Evidence Corpus

bart-large-mnli 52.89 58.43 62.01 78.07 54.52 65.85 53.63 53.49 51.23 79.56 39.37 56.71 64.54
Roberta-large 53.56 58.24 59.31 75.67 51.64 62.38 43.91 42.39 50.58 77.23 35.50 54.43 62.16
T5-small 43.52 51.37 32.08 64.65 43.64 60.38 48.41 48.88 19.65 77.22 38.02 44.96 56.89
NumT5-small 50.36 56.58 41.35 68.59 47.96 61.35 49.14 48.90 36.56 78.45 35.76 50.26 60.26
FinQA-Roberta-Large 56.97 61.36 60.29 75.55 56.53 66.52 52.53 52.34 49.72 77.91 47.33 58.32† 65.23†
FlanT5 (zero-shot) 32.11 36.43 26.51 42.64 32.36 44.03 27.48 24.95 36.35 52.56 3.15 30.68 37.64
FlanT5 (few-shot) 37.31 41.24 32.70 46.83 37.61 47.52 35.20 34.47 33.90 54.73 20.92 36.52 42.67
gpt-3.5-turbo (zero-shot) 34.51 33.78 28.04 29.12 35.34 36.98 40.31 40.45 37.81 32.57 31.25 33.87 33.25
gpt-4 (few-shot) 37.04 41.24 31.90 46.29 37.52 47.88 37.16 39.41 14.38 52.82 42.31 36.50 42.99
gpt-3.5-turbo (few-shot) 48.26 51.93 42.90 57.67 43.41 54.10 45.84 45.29 44.41 64.26 32.35 47.00 50.98

Gold Evidence

gpt-3.5-turbo (few-shot) 53.40 57.51 50.88 69.15 50.97 62.10 51.05 49.56 56.77 75.35 28.00 53.37 60.47

Table 9:Manual evaluation of decomposed questions. C: Com-

pleteness, QU :Question usefulness, EU : EvidenceUsefulness.

We use the Likert scale of 1-5 and report Cohen’s kappa (𝜅)

for inter-annotator agreement.

Method C (𝜅) QU (𝜅) EU (𝜅)

Program-FC 4.6 ±0.77 (0.65) 3.4 ±1.15 (0.53) 2.9 ±1.74 (0.66)
ClaimDecomp 4.5 ±0.86 (0.70) 3.7 ±0.92 (0.59) 3.2 ±1.41 (0.69)

Table 10: Automated evaluation of decomposed questions.

Method Relevance Diversity

Program-FC 0.782 0.430
ClaimDecomp 0.831 0.490

ClaimDecomp sees gains of 8.84% inmacro-F1 and 10.9% inweighted-
F1. This improvement is attributed to more effective evidence re-
trieval for partially correct claims, as supported by categorical
performance. Using original claims sometimes leads to incomplete
or null evidence sets. Numerical claim verification requires multiple
reasoning steps, as seen in Example 1 from Table 11. Claim decom-
position creates a stepwise reasoning path by generating questions
on various aspects of the claim, thereby providing necessary infor-
mation for verification.

5.5 Effect of Different NLI models

To assess the impact of different NLI models, we utilize ClaimDe-
comp, the top-performing claim decomposition method from Table
7. Table 8 addresses RQ3, showing that models trained on numeri-
cal understanding, like NumT5-small and FinQA-Roberta-Large,
surpass those trained only on general language tasks. Specifically,
NumT5-small beats T5-small by 11.8% in macro F1, and FinQA-
Roberta-Large, a number-focused Roberta-Large model, exceeds

the standard Roberta-Large model by the same margin. The highest
performance is achieved by FinQA-Roberta-Large, which also
outperforms Roberta-large-MNLI.

Finally, we address RQ4 by studying the model scale’s impact on
claim verification reveals that larger models improve performance
when fine-tuned, but not necessarily in few-shot or zero-shot set-
tings. For example, gpt-3.5-turbo under-performs in few-shot and
zero-shot scenarios compared to smaller fine-tuned models (355𝑀
or 60𝑀 parameters). This under-performance, observed in flan-t5-
xl, gpt-4 and gpt-3.5-turbo is often due to hallucination, where
models incorrectly interpret evidence or reach wrong conclusions
about claim veracity despite parsing accurate information.

5.6 Performance across different categories of

numerical claims

We assessed our fact-checking pipeline’s limitations by evaluat-
ing baselines in the four categories detailed in Section 4.3. Table 7
shows that methods like ClaimDecomp, which use claim decompo-
sition, outperform original claim-based verification in all categories.
Specifically, for comparison based claims ClaimDecomp sees gains
of 34.7% in weighted F1 and 31.6% in macro F1 over original claim
verification. This is particularly effective for comparison and inter-
val claims, where decomposition aids in handling claims requiring
quantity comparisons or reasoning over value ranges, resulting in
better evidence retrieval.

In our analysis of different NLI models, fine-tuned models show
better performance across all four categories with increased scale.
Notably, models with a focus on number understanding, likeNumT5-
small and FinQA-Roberta-Large, outperform those trained only
on language tasks. This is especially relevant for statistical claims
that often require step-by-step lookup and numerical reasoning,
where FinQA-Roberta-Large achieves a weighted F-1 of 61.36.
Although decomposition approaches and number understanding
NLI models enhance performance, explicit numerical reasoning
is key for further improvements, a topic for future exploration. A
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Table 11: Qualitative analysis of results from different claim decomposition approaches

Method Decomposition and Verdict

Claim Discretionary spending has increased over 20-some percent in two years if you don’t include the stimulus.

If you put in the stimulus, it’s over 80 percent

Original Claim [Verdict]: True

ClaimDecomp [Decomposition]: [Q1]:Has discretionary spending increased in the past two years?,[Q2]:Does the increase in
discretionary spending exclude the stimulus? [Q3]: Is there evidence to support the claim that . . . [Verdict]: Conflicting

Program-FC [Decomposition]: fact_1 = Verify(Discretionary spending has increased over 20-some. . . ), fact_2 = Verify(“If you
don’t include . . . , discretionary spending has increased. . . "), fact_3 = Verify(“If you put in the stimulus, discretionary
spending. . . "), [Verdict]: True

Claim Under GOP plan, U.S. families making $86k see avg tax increase of $794.

Original Claim [Verdict]: Conflicting

ClaimDecomp [Decomposition]: [Q1]:is the tax increase under the gop plan in the range of $794 . . .making about $86,000?,[Q2]:does
the gop plan result in an average tax increase. . . $86,000?[Q3]:is there evidence that. . . ? [Verdict]: False

Program-FC [Decomposition]: fact_1 = Verify(“Under GOP plan, U.S. families making $86k. . . ") [Verdict]: Conflicting

Table 12: Example of In-context learning sample for gpt-3.5-turbo few shot for claim verification

Prompts for few-shot fact verification with gpt-3.5-turbo. Note , the ICL samples are selected dynamically for each test sample:

System prompt: Following given examples, For the given claim and evidence fact-check the claim using the evidence , generate justification and
output the label in the end. Classify the claim by predicting the Label: in the end as one of: SUPPORTS, REFUTES or CONFLICTING.
User Prompt:
[Claim]:"A family of four can make up to $88,000 a year and still get a subsidy for health insurance" under the new federal health care law.
[Questions]:is there a subsidy for health insurance under the new federal health care law? can a family of four with an income of $88,000 a year
qualify for a subsidy for health insurance? does the new federal health care law provide subsidies for families with an income of $88,000 a year?
[Evidences]:by the way, before this law, before obamacare, . . .make for example, a family of four earning $80,000 per year ...
Label:SUPPORTS
. . . Following given examples, for the given claim, given questions and evidence use information from them to fact-check the claim and also additionally
paying attention to highlighted numerical spans in claim and evidence. Input [. . . ]

detailed ablation study with macro and weighted F1 scores for all
categories of numerical claims for different NLI models is shown in
Table 8.

5.7 Error Analysis

We conduct an analysis of claims in the test set and their correspond-
ing predictions, offering insights into the considered fact-checking
pipeline. Examining results in Table 7 and Table 8, we note the
challenge in verifying claims categorized as "conflicting." These
claims pose difficulty as they are partially incorrect, requiring the
retrieval of contrasting evidence for different aspects of the original
claim. We also observe that NLI models with numerical understand-
ing, coupled with claim decomposition, yield better performance.
However, there is room for further improvement, as the highest
score for this class is only 47.33.

Among other categories, we observe comparison based numer-
ical claims to be the hard as they are mostly compositional and
require decomposition around quantities of the claim followed by
reasoning over the different quantities. While claim decomposi-
tion helps advance the performance by a significant margin of
31.6% (macro F-1) (Table 7), there are few errors in the decom-
position pipeline for approaches like Program-FC. For instance,
claim decomposition may result in over-specification where the

claim is decomposed to minute granularity or under-specification
where the claim is not decomposed sufficiently. An example of
over-specification is shown in the first example for Program-FC
in Table 11 where the claim is over decomposed leading to an er-
roneous prediction. The second example demonstrates a case of
under-specification where the claim is not decomposed, leading to
limited information and erroneous verdict.

6 CONCLUSIONS

We introduceQuanTemp, the largest real-world fact-checking dataset
to date, featuring numerical data from global fact-checking sites.
Our baseline system for numerical fact-checking, informed by infor-
mation retrieval and fact-checking best practices, reveals that claim
decomposition, models pre fine-tuned using MNLI data, and models
specialized in numerical understanding enhance performance for
numerical claims. We show thatQuanTemp is a challenging dataset
for a variety of existing fine-tuned and prompting-based baselines.
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