
 
 

Delft University of Technology

Nonlinear Modes as a Tool for Comparing the Mathematical Structure of Dynamic Models
of Soft Robots

Pustina, Pietro; Calzolari, Davide; Albu-Schaffer, Alin; Luca, Alessandro De; Santina, Cosimo Della

DOI
10.1109/RoboSoft60065.2024.10521987
Publication date
2024
Document Version
Final published version
Published in
Proceedings of the IEEE 7th International Conference on Soft Robotics, RoboSoft 2024

Citation (APA)
Pustina, P., Calzolari, D., Albu-Schaffer, A., Luca, A. D., & Santina, C. D. (2024). Nonlinear Modes as a
Tool for Comparing the Mathematical Structure of Dynamic Models of Soft Robots. In Proceedings of the
IEEE 7th International Conference on Soft Robotics, RoboSoft 2024 (pp. 779-785). IEEE.
https://doi.org/10.1109/RoboSoft60065.2024.10521987
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/RoboSoft60065.2024.10521987
https://doi.org/10.1109/RoboSoft60065.2024.10521987


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Nonlinear Modes as a Tool for Comparing the Mathematical Structure

of Dynamic Models of Soft Robots

Pietro Pustina1,4, Davide Calzolari2,3, Alin Albu-Schäffer2,3, Alessandro De Luca1, Cosimo Della Santina3,4

Abstract— Continuum soft robots are nonlinear mechanical
systems with theoretically infinite degrees of freedom (DoFs)
that exhibit complex behaviors. Achieving motor intelligence
under dynamic conditions necessitates the development of
control-oriented reduced-order models (ROMs), which employ
as few DoFs as possible while still accurately capturing the
core characteristics of the theoretically infinite-dimensional
dynamics. However, there is no quantitative way to measure
if the ROM of a soft robot has succeeded in this task. In other
fields, like structural dynamics or flexible link robotics, linear
normal modes are routinely used to this end. Yet, this theory
is not applicable to soft robots due to their nonlinearities. In
this work, we propose to use the recent nonlinear extension in
modal theory –called eigenmanifolds– as a means to evaluate
control-oriented models for soft robots and compare them. To
achieve this, we propose three similarity metrics relying on the
projection of the nonlinear modes of the system into a task space
of interest. We use this approach to compare quantitatively,
for the first time, ROMs of increasing order generated under
the piecewise constant curvature (PCC) hypothesis with a high-
dimensional finite element (FE)-like model of a soft arm. Results
show that by increasing the order of the discretization, the
eigenmanifolds of the PCC model converge to those of the FE
model.

I. INTRODUCTION

Nonlinear modal analysis is a powerful tool to characterize

the behavior of highly nonlinear mechanical systems [1],

such as aerospace structures [2], offshore towers [3] and

micro/nano-electromechanical systems [4]. Despite the fact

that its use has been historically for system analysis and

design of structures undergoing small deformations, recent

works [5]–[7] have used nonlinear modal theory in analyz-

ing robots and in generating energy-efficient motions that

asymptotically require no control effort to be sustained.

Nonlinear modal analysis has found extensive application

in flexible mechanical systems under the hypothesis of small

deformations - especially in model reduction in structural

mechanics have been studied [8]–[12]. In [10], energy-

frequency plots are used to compare ROMs of thin shells

and plates. Finally, [11], [12] use nonlinear modes to assess

ROM convergence to FE models of specific structures.
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Fig. 1: Schematic of our approach using nonlinear modal analysis
and eigenmanifold theory to compare different control-oriented
models for the same soft robot. Models differ in assumptions and
number of DoFs, making systematic comparison challenging. In the
figure, ∼ indicates a similar structure, ≁ indicates dissimilarity and
a question mark denotes incomparability.

Continuum soft robots [13], due to their high degree of

deformability and inherent softness, are expected to exhibit

a rich spectrum of modal behaviors. However, none of these

works are directly applicable to soft robots because they

rely on nonlinear extensions of modal analysis built on

assumptions that do not extend to soft robots and other multi-

body systems. Thus, the use of nonlinear modes in continuum

soft robotics is still unexplored.
This work proposes the first application of nonlinear modal

analysis to soft robotics by employing the recently developed

concept of eigenmanifolds [14] - which, contrary to classic

theories, builds on hypotheses compatible with soft robotics.

More specifically, with this work, we tackle the challenge

of quantitatively comparing control-oriented reduced order

models (ROMs) for continuum soft robots. In this way,

it is also possible to compare control-oriented ROMs ob-

tained from different discretization hypotheses, including

those of [15]–[18]. The goal is to have a mathematical tool

that can be used to quantify if two models have a similar

mathematical structure. This is hard to do by inspection of

the models because even their configuration spaces are going
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to be incompatible. Instead, we show in this work that modal

theory can be used to this end, as illustrated in Figure 1.

We propose a two-stage strategy to achieve this objective.

First, we operate a modal characterization of all the models

to be compared. Then, we project the modes onto task

space, where we introduce similarity measures to compare

their shape and frequency content. To summarize, the main

contributions of the paper are as follows:

• eigenmanifolds are proposed as a means of comparing

control-oriented ROMs of soft robots derived from

different discretization hypotheses;

• we propose a new energy-based continuation algorithm

for eigenmanifold computation;

• a systematic procedure is proposed for comparing eigen-

manifolds of different ROMs, possibly obtained with

different discretization techniques;

• we compute for the first time nonlinear modes of

continuum soft robots.

A. Notation

Vectors and matrices are denoted in bold, while scalars

are denoted in lowercase normal font. The n × n identity

matrix is represented by In. For a symmetric matrix A =
AT with λmin(A) > 0, we write A > 0 for positive

definiteness. To simplify the notation, arguments of functions

are omitted when clear from the context. Furthermore, given

a continuously differentiable function f(x) : R
h → R,

∇xf ∈ R
h and ∇

2
x
f ∈ R

h×h denote, respectively, the

gradient and the Hessian of f . We express the soft robot’s

dynamics as1

M(q)q̈ + c(q, q̇) +∇qV (q) = 0, (1)

where q, q̇, q̈ ∈ R
n denote the configuration variables and

their time derivatives, M(q) ∈ R
n×n is the mass matrix

and c(q, q̇) ∈ R
n models Coriolis and centrifugal terms.

Furthermore, V (q) represents the potential energy, including,

e.g., the effects of gravitational and elastic forces. We also

denote the system energy as

E(q, q̇) =
1

2
q̇TM(q)q̇ + V (q), (2)

and the solution of (1) at time t from the initial condition

(q0, q̇0) as q(t, q0, q̇0).

II. BACKGROUND: NONLINEAR MODES

Nonlinear modal theory has been traditionally developed

for mechanical systems with constant inertia matrix [20],

but it has recently been extended to multi-body mechanical

systems [14]. Since continuum soft robots fall into the latter

category, in the following, we briefly summarize the main

concepts from [14], which we refer the reader to for an

exhaustive treatment of the topic.

Let qeq be a stable equilibrium configuration of (1), i.e.,

∇qV (qeq) = 0, K(qeq) = ∇
2
q
V (qeq) > 0,

which is equivalent to saying that qeq is a local minimizer of

E (for q̇ = 0). The linearization of (1) at (q, q̇) = (qeq,0)

1As discussed in [19], common and advanced modeling techniques used
in soft robotics all yield equations of this form. Actuation and dissipation
terms do not appear here because nonlinear modes are defined on the
undamped and unactuated model.

yields the second-order dynamics

∆q̈ +M−1(qeq)K(qeq)∆q = 0, (3)

where ∆q denotes a small increment of the configuration

with respect to qeq . Each eigenvector ci, i ∈ {1, · · · , n}

of M−1(qeq)K(qeq) generates a local two-dimensional

eigenspace

ESi = span

{(

ci
0

)

,

(

0

ci

)}

with the property that when (∆q,∆q̇) is initialized in ESi,

the dynamics evolves according to the harmonic oscillator

equations, namely

∆q̈ + ω2
i∆q = 0, (4)

where ω2
i is the eigenvalue associated with ci. From the

above equation, it can be shown that the solutions starting

from ESi satisfy two important properties: (i) they are

periodic with period Ti = 2π/ωi and (ii) they are invariant,

i.e., will remain in ESi at all times. These trajectories are

called linear modes (LMs).

When moving to the nonlinear setting, each eigenspace

ESi bends into a two-dimensional sub-manifold of the

state space, called eigenmanifold and denoted as Mi. In

analogy with the linear case, Mi can be seen as a collection

of invariant periodic trajectories of (1), called hereinafter

nonlinear modes (NMs). However, NMs can have different

periods, while all LMs have the same period. For the purpose

of this paper, we need a further notion, namely that of

eigenmanifold generator. Given Mi, its generator is defined

as

GMi
= {(q, q̇) ∈ Mi | q̇ = 0} .

In a nutshell, GMi
is the subset of Mi containing all points

with zero velocity. Each element of GMi
is an initial rest

configuration associated with a periodic motion that remains

in Mi at all times. The elements of GMi
can be seen as the

nonlinear counterparts of the eigenvector ci. Differently from

the linear case, where we can generate ESi with only one

vector, the nonlinear case needs an entire set of points, i.e.,

GMi
, to generate Mi. An important property of GMi

is that

it can be parameterized by the energy, implying that every

NM can itself be parameterized by its energy. To simplify the

notation, we will henceforth drop the subscript i and denote

the NM at E as GM(E).

III. EIGENMANIFOLD COMPUTATION

For the computation of NMs, analytical and numerical

approaches have been proposed in the literature, see [20]

for a thorough review on possible strategies.

Remarkably, following a two-stage procedure, we can

easily extend numerical approaches used for the computation

of NMs also for that of eigenmanifolds. First, we compute

the generator of M. Then, we take each point of GM as an

initial condition to simulate the dynamics forward in time

and compute the corresponding NM, thus obtaining a slice

of M.

In this work, for the computation of GM we use a modified

version of the numerical continuation algorithm presented

in [21]. Superscripts are used to denote the iteration index.

Each generator is computed using a predictor-corrector algo-

rithm that starts from the direction given by the eigenvector
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ci of the linearized dynamics at the equilibrium. During

the first iteration only, the linearized dynamics (3) is used

to compute a point close to GM and qeq . In particular, an

initial configuration increment ∆q0 is computed such that

the linearized energy takes a small incremental step. In this

way, the trajectory of (1) from q1
0 = qeq + ∆q0 with zero

velocity stays close to ES and has approximately the same

period T 1 of that of ∆q0. Then, (T 1, q1
0,0) is refined with

a Newton-Raphson iteration scheme that seeks a solution of

the periodicity constraint

r(q0, T ) =

(

q0 − q(T, q0,0)

−q̇(T, q0,0)

)

= 0, (5)

in the unknowns (q0,0) ∈ GM and T ∈ (0,∞). At step

j ≥ 2, a prediction for the current solution (T j , qj
0,0) is

computed along the direction given by the tangent vector to

the previous solution (T j−1, qj−1
0 ,0). The prediction is then

corrected with a shooting procedure. In [21], the shooting

procedure aims at solving r(qj
0, T

j) = 0, which is an over-

constrained system of 2n equations in n+1 unknowns. Since

the predictor step requires fairly small energy increments

to guarantee convergence of the procedure, the computation

of the generator can be quite time consuming. To speed up

the evaluation, we propose to constrain the energy increment

between consecutive iterations. In particular, during the cor-

rection stage we solve the augmented system
(

r(qj
0, T

j)

E(qj
0,0)− E(qj−1

0 ,0)−∆E

)

= 0, (6)

being ∆E > 0 a desired energy step. This simple modifi-

cation has proven to significantly reduce the computation

time, without affecting stability of the procedure. Since

convergence of the scheme is guaranteed only in the vicinity

of GM, ∆E must be properly selected to prevent numerical

instability. To this end, a simple adaptive rule has been

adopted. In particular, ∆E is initialized to a reference value

∆Ē and a maximum number Nmax of iterations is defined

for the correction. If convergence is not achieved within

Nmax iterations, ∆E is halved and the correction repeated.

IV. METRICS

In this work, we aim at comparing how the eigenmanifolds

of a continuum soft robot change with the order and type

of the discretization adopted and thus with the number

DoFs. A direct comparison in configuration space is not

possible in general, unless the discretizations have the same

number of DoFs. Even though two models have the same

number of DoFs, their configuration spaces may not be

directly comparable. For example, consider the dynamic

model of a soft robot obtained using a piecewise constant

curvature and an affine approximation of the strain. Even if

the discretization order is chosen such that the models have

the same number of DoFs, the configuration variables will

still belong to different spaces, making a direct comparison

impossible.

We propose to overcome this issue by introducing a task

space function h(q, s) : Rn × S → T , where s ∈ S ⊆ R
q

denotes a set of hyper-parameters for T ⊆ R
m and m has

always the same dimension, independently of the dimension

n of q. Given h(q, s), any eigenmanifold can be projected

Fig. 2: Schematic representation of the eigenmanifold projection.
Given three control-oriented ROMs, their eigenmanifolds M1, M2

and M3 cannot be directly compared in configuration space. To
overcome this issue, we introduce a constant dimensional task space
h(q, s) in which M1, M2 and M3 are projected and here define
similarity measures.

into T , resulting in a collection of periodic orbits. Because

all trajectories of an eigenmanifold are periodic by definition,

their projection into T is a periodic trajectory in T with same

period. Therefore, the representation of M into T is a sub-

manifold of T with properties similar to M. The approach

is illustrated in Fig. 2.

For example, consider the direct kinematics of a slender

soft arm. Regardless of the discretization technique used, it

must always be possible to reconstruct the robot backbone

(using a single hyper-parameter s). In other words, we know

the direct kinematics mapping

h(q, s) = p(q, s) =





px(q, s)
py(q, s)
pz(q, s)



 : Rn × R → R
3, (7)

where p(q, s) is the position of the point at distance s ∈
[0, L] from the base, being L the robot length at rest.

Because all the level sets of the energy

LĒ =
{

(q, q̇) ∈ M | E(q, q̇) = Ē
}

give raise to evolutions that trace the same path in configu-

ration space and differ only in a phase shift, a single point

of LĒ should be projected. The generator points are good

candidates for this purpose because they are all characterized

by an initial zero velocity, which allows to get rid of any

phase shift due to the initialization in M.

Given the task manifold, it is now possible to define

similarity measures between two eigenmanifolds M1 and

M2. These can depend on different properties that one is

interested in comparing, such as their shape and spectral

content. A common measure to compare two curves A(t)
and B(t) belonging to a metric space S is the Fréchet

distance [22],

φ(A,B) = inf
α,β

max
u∈[0,1]

{d(A(α(u)), B(β(u)))} , (8)

where d(·, ·) is the distance function of S. In a nutshell,

the above metric looks at all possible reparameterizations of

A and B and takes the one that minimizes their maximum

distance. Given h(q, s) and (8), we can define the following

measures

f(E, s) = φ(h(GM1
(E), s),h(GM2

(E), s)), (9)
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and

F (E) =

∫

S

f(E,v)dv, (10)

where the Fréchet distance is applied componentwise to

the rows of h(q, s). In the following, we refer to f(E, s)
and F (E), respectively, as the modal Fréchet distance and

modal integral Fréchet distance. The measure f allows us

to compare two modes for a given value of E and s. On

the contrary, F averages this measure over the entire space

of hyper-parameters for h(q, s). It is also worth remarking

that other choices instead of φ could have been made, see

for example [22].

Consider again the case of a slender soft arm and take

h(q, s) = p(q, s). Suppose we are interested in quantifying

how close two eigenmanifolds are. A first estimate can be

obtained by looking at the tip evolution only, i.e., f(E,L).
However, f(E,L) provides only a partial indication of their

similarity, because f(E,L) = 0 does not imply f(E, s) = 0
for any other point s ̸= L. To obtain a more complete

measure of similarity, we introduce F (E). Note that if

F (E) = 0, then f(E, s) = 0 for all s ∈ S , which implies

that the NMs produce the same motion for all the system

particles.

To compare the spectra, we can adopt a similar strategy. To

this end, we consider the minimum value of the magnitude-

squared coherence defined as follows

γ(A,B) = min
f

|gAB(f)|
2

gAA(f)gBB(f)
, (11)

where gAB is the Cross-spectral power density between A
and B, and gAA and gBB the auto power spectral density of

A and B, respectively. At a given frequency, the coherence

measures the extent to which B can be estimated from A
through a linear process. Note that unlike φ(A,B), γ(A,B)
is not a distance function, as it is not symmetric and lower

values indicate less correlation between the two signals, thus

worst similarity. By applying γ to the components of h we

define the modal coherence as

g(E, s) = γ(h(GM1
(E), s),h(GM2

(E), s)), (12)

and the modal integral coherence

G(E) =

∫

S

g(E,v)dv. (13)

Considerations analogous to those for f and F hold.

The integral measures defined above can also be integrated

over the energy domain to obtain an overall measure of the

similarity between the eigenmanifolds, i.e.,

FE =

∫ Emax

Eqeq

F (E)dE,

and

GE =

∫ Emax

Eqeq

G(E)dE,

where Emax is the maximum energy level considered during

analysis. In future works, we will explore the use of these

measure as loss terms in a learning algorithm for the com-

putation of control-oriented ROMs.

V. SIMULATION RESULTS

In this section, we apply the above metrics to compute

and compare the eigenmanifolds of a slender continuum soft

robot. The goal is to investigate the differences between

PCC ROMs obtained by increasing the resolution of the

strain and a FE rigid model having a large number of

DoFs. For the PCC models, we enhance the resolution by

increasing the number of bodies per unit of length at rest.

The robot has a cylindrical shape with radius r = 0.02 [m],
uniform mass density ρ = 1062 [kgm−3], and rest length

L = 0.4 [m]. Furthermore, we consider a linear elastic

material with Young modulus Y = 0.66 [MPa] and Poisson

ratio ν = 0.5. The arm is mounted with the base rotated

with the gravitational field so that the straight stress-free

configuration is a stable equilibrium, and motion occurs in

the (x, z) plane.

All the bodies of the PCC models share the same physical

properties, except for the rest length which is chosen as L/n,

being n the discretization order. The maximum number of

bodies we consider is nmax = 5. For each of these models,

we compute all their n ≤ nmax eigenmanifolds, using the

procedure outlined in Section III. Since the eigenmanifold

theory applies to multi-body mechanical systems, we model

the rigid robot as an assembly of ten cylindrical bodies, each

one with length L/10 and mass m = ρπr2(L/10) [kg], seri-

ally interconnected through rotational joints. Elasticity is in-

troduced by assuming a linear elastic force at the joints with

uniform stiffness coefficient k = Y πr410/(4L) [Nm rad−1].
Because the PCC models have at most five bodies, we

compute only the first five eigenmanifolds of the rigid

model, ordered in ascending order by oscillation frequency.

The eigenmanifold computation is perfomed with a desired

energy step of ∆E = 0.05 [J] until the energy reaches the

maximum value Emax = 1 [J]. In the following, we use the

direct kinematics of the backbone (7) as task space function.

The integral measures F (E) and G(E) are approximated

through a Gaussian quadrature rule with ten Gaussian points.

Figure 3 shows stroboscopic plots of the robots in the

workspace for the first three NMs at Emax. Figure 4 depicts

the energy-frequency plot. Only the first two eigenmanifolds

at lower frequency have trajectories with similar periods.

These differences are reasonably expected to show up also in

the task space, at least for the coherence. Figure 5 reports the

energy evolution of the modal Fréchet distance at the end-

effector. All the PCC models achieve a good match with the

FE model. Note indeed that the Fréchet distance is always

less than 0.06 [m]. Furthermore, the accuracy improves

significantly as more bodies are considered. For the x compo-

nent, the distance between the PCC and FE models decreases

with the order of discretization, as expected. However, the

fifth order PCC model does not always show the best match

with the rigid robot along the z direction. Nevertheless, the

modal integral Fréchet distance in Fig. 6 shows that the

five DoFs PCC model better fits the rigid motion overall.

These results demonstrate that energy-frequency relation is

not an exhaustive similarity measure in general. Moving to

the coherence, see Fig. 7, the five DoFs model has good

performance only for the first mode. The same conclusions

can be drawn also for the modal integral coherence in Fig. 8.

Based on the overall performance, we conclude that the PCC

robot with four DoFs has modal evolutions that overlap

with those of the rigid arm at the tip more closely. Thus,
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(a)

(a) Mode 1; t = 0T1 (b) t = 0.2T1 (c) t = 0.3T1 (d) t = 0.5T1 (e) t = 0.7T1 (f) t = 0.8T1 (g) t = 0.9T1

(h) Mode 2; t = 0T2 (i) t = 0.2T2 (j) t = 0.3T2 (k) t = 0.5T2 (l) t = 0.7T2 (m) t = 0.8T2 (n) t = 0.9T2

(o) Mode 3; t = 0T3 (p) t = 0.2T3 (q) t = 0.3T3 (r) t = 0.5T3 (s) t = 0.7T3 (t) t = 0.8T3 (u) t = 0.9T3

Fig. 3: Stroboscopic plots of the robots in the workspace for the first (a)–(g), second (h)–(n) and third (o)–(u) NMs at Emax = 1 [J] and
normalized time instants with respect to the mode period. Each color corresponds to a different model.
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Fig. 4: Energy-frequency relationships for the PCC (a)–(e) and FE (f) discretization, respectively. The models show a similar behavior
only for the first two eigenmanifolds, i.e., those characterized by a smaller oscillation frequency.

this discretization is the best approximating the FE model

considering the comparison metrics introduced in this work.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents the first investigation of eigenmani-

folds for control-oriented reduced-order modeling of contin-
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Fig. 5: Energy evolution of the modal Fréchet distance f(E,L) for the x (a)–(e) and z (f)–(j) tip position. Smaller values in the metric
correspond to greater similarity in the modal evolutions. In line with expectations, using finer discretizations in PCC models results in
eigenmanifolds that more closely resemble those of the FE model.
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Fig. 6: Energy evolution of the modal integral Fréchet distance F (E) for the x (a)–(e) and z (f)–(j) backbone position. Smaller values
in the metric correspond to greater similarity in the modal evolutions.
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Fig. 7: Energy evolution of the modal coherence g(E,L) for the x (a)–(e) and z (f)–(j) tip position. Higher values in the metric correspond
to greater similarity in the modal evolutions.

uum soft robots. To improve computational efficiency, we

present a new continuation algorithm for mode computa-

tion with an energy-based term. We propose a systematic

approach to compare the eigenmanifolds of dynamic models

resulting from different discretization hypotheses and number

of degrees of freedom (DoFs). To this end, we project the

eigenmanifolds onto a task space of fixed dimension and

introduce therein different similarity measures. The proposed
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Fig. 8: Energy evolution of the modal integral coherence G(E) for the x (a)–(e) and z (f)–(j) backbone position. Higher values in the
metric correspond to greater similarity in the modal evolutions.

method is used to compare piecewise constant curvature

(PCC) models of increasingly finer discretization with a finite

element (FE) model. The results show that the task space

modal evolutions of the PCC and FE models become similar

when the order of the PCC discretization increases.

Future work will explore the use of the proposed similarity

measures to obtain novel control-oriented models with a

reduced number of DoFs.
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