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Ablation Analysis for Multi-Device Deep
Learning-Based Physical Side-Channel Analysis

Lichao Wu , Yoo-Seung Won , Dirmanto Jap , Guilherme Perin , Shivam Bhasin , and Stjepan Picek

Abstract—The use of deep learning-based side-channel analysis
is an effective way of performing profiling attacks on power and
electromagnetic leakages, even against targets protected with coun-
termeasures. While many research articles have reported success-
ful results, they typically focus on profiling and attacking a single
device, assuming that leakages are similar between devices of the
same type. However, this assumption is not always realistic due to
variations in hardware and measurement setups, creating what is
known as the portability problem. Profiling multiple devices has
been proposed as a solution, but obtaining access to these devices
may pose a challenge for attackers. This article proposes a new ap-
proach to overcome the portability problem by introducing a neu-
ral network layer assessment methodology based on the ablation
paradigm. This methodology evaluates the sensitivity and resilience
of each layer, providing valuable knowledge to create a Multiple
Device Model from Single Device (MDMSD). Specifically, it in-
volves ablating a specific neural network section and performing
recovery training. As a result, the profiling model, trained initially
on a single device, can be generalized to leakage traces mea-
sured from various devices. By addressing the portability problem
through a single device, practical side-channel attacks could be
more accessible and effective for attackers.

Index Terms—Side-channel analysis, deep learning, ablation,
portability.

I. INTRODUCTION

THE demand for certified products has grown due to the
rising embedded device market and their ever-increasing

security concerns and vulnerabilities. This leads to thousands
of products undergoing strict security evaluations in evalua-
tion laboratories worldwide on a daily basis [1]. Side-channel
analysis (SCA [2]) is one such threat against which embedded
devices are regularly evaluated. While a range of attacks can
be mounted on an embedded device, profiling SCA [3] remains
highly relevant as it provides the worst-case guarantees under a
supervised learning paradigm.
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In just a few years, deep learning has emerged as the preferred
option for profiling side-channel analysis, as evidenced by nu-
merous successful results, even against targets protected with
state-of-the-art hiding and masking countermeasures [4], [5],
[6]. Recently, researchers have continued this trend by finding
smaller and shallower neural networks that perform well for
specific datasets [7], [8]. However, all of these works focus on a
single device, assuming that the leakage traces measured from
different devices are identical or follow similar distributions. We
argue that this assumption is unrealistic, as the leakage traces
can vary significantly due to factors such as hardware man-
ufacture, fabrication, and variation in the measurement setup.
This variability presents a significant challenge for side-channel
analysis, known as the “portability problem”. While the Multiple
Device Model (MDM) has been proposed as a practical solution
to this problem [9] (i.e., training and validating on multiple
copies of the training device rather than just one), the avail-
ability of multiple devices remains a significant constraint. The
availability of multiple devices is a scoring criterion in common
criteria evaluations [10]. A worst-case adversary assumes the
availability of multiple copies of the device, which makes the
MDM approach less practical in real-world scenarios.

This paper aims to address the portability issue in side-channel
analysis without relying on multiple device assumptions while
achieving comparable performance as Multiple Device Model
(MDM). We aim to perform a worst-case analysis to mitigate
potential risks. To achieve this goal, we propose a layer assess-
ment methodology that provides an in-depth understanding of
how neural networks function. Specifically, we introduce the
ablation procedure that involves disabling specific parts of a
neural network and observing the impact on its performance. By
comparing the results before and after ablation, we can identify
the sensitivity of layers where crucial side-channel analysis
information processing occurs. After that, we perform recovery
training on the ablated neural network so that the resilience of
the ablated layer can also be assessed.

Using the insight of layers-wise behavior, we propose the
Multiple Device Model from Single Device (MDMSD) approach.
First, we partially “damage” a selected layer of the model
(defined during layer assessment) trained on the original device
with ablation. This step reduces the model’s overfitting to the
original device while retaining most of its predictive capability.
We then hypothesize that portability can be seen as additive
Gaussian noise [9], and we conduct recovery training on the
ablated model with perturbed leakages (with Gaussian noise)
from the original device to simulate the portability effect. The
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resulting model can generalize to various devices without relying
on multi-device assumptions. By adopting this methodology, we
aim to eliminate the portability problem and make side-channel
analysis more accessible and effective in practical scenarios. Our
main contributions are:

1) We propose a new methodology for conducting ablation
analysis in profiling SCA that allows us to assess the
importance of each layer in the neural network.

2) We introduce two new layer assessment criteria: sensi-
tivity and resilience. Layer sensitivity measures the im-
portance of a particular layer for achieving high attack
performance. Layer resilience represents the necessity of
a specific layer for the overall neural network.

3) We demonstrate that even smaller neural networks than
those commonly used in SCA can achieve top perfor-
mance, indicating room for further improvement in net-
work design methodologies.

4) We apply our layer assessment methodology to address
the portability problem in SCA, where the training device
and the device under attack differ. Our proposed approach,
Multiple Device Model from Single Device (MDMSD),
shows promising results in overcoming this challenge.

To demonstrate the effectiveness of our approach, we provide
extensive experimental analysis with two neural network types
and four datasets. The source code is available in Github.1

II. BACKGROUND

A. Notation

Calligraphic letters like X denote sets, and the correspond-
ing upper-case letters X denote random variables and random
vectors X over X . The corresponding lower-case letters x and
x denote realizations of X and X, respectively. k represents a
key byte candidate taking its value from the keyspaceK, and k∗

represents the correct key byte.
A dataset is a collection of traces (side-channel measure-

ments) T, where each trace ti is associated with an input
value (plaintext or ciphertext) di and a key ki. The vector of
parameters to be learned in a profiling model (e.g., the weights
in neural networks) is denoted by θ.

B. Deep Learning and Profiling SCA

Deep learning represents machine learning methods based on
artificial neural networks with representation learning. Super-
vised machine (deep) learning involves learning a function f that
maps an input to the output (f : X → Y ) based on examples of
input-output pairs. The function f is parameterized by θ ∈ R

n,
where n denotes the number of trainable parameters.

Supervised learning happens in two phases: training and
testing. This corresponds to profiling SCA, executed in profiling
and attack phases. In the rest of this paper, we use the terms
profiling/training and attack/test interchangeably.

1) The goal of the training phase is to learn the parameters
θ that minimize the empirical risk represented by a loss

1https://github.com/lichao-wu9/Ablation-Study

function on a dataset T = {(xi, yi)}Ni=1 of size N . As
common in profiling SCA, we consider the c classification
task, where c denotes the number of classes depending on
the used leakage model. Thus, the classifier f is a function
mapping input features to label space (f : X → R

c). In the
rest of this paper, the function f is a deep neural network
with the Softmax output layer.

2) In the attack phase, the goal is to make predictions about
the classes

y(x1, k
∗), . . . , y(xQ, k

∗),

where k∗ represents the secret (unknown) key on the
device under the attack. The outcome of prediction with
a model f on the attack set is a two-dimensional matrix
P with dimensions equal to Q× c. The cumulative sum
S(k) for any key byte candidatek is a common SCA distin-
guisher (tool to distinguish among different hypotheses):

S(k) =

Q∑

i=1

log(pi,y). (1)

The value pi,y denotes the probability that a predicted
input xi is represented by class y. The class y is derived
from the key k and input di through a cryptographic
function (e.g., XOR operation between k can di in the
case of the AES cipher) and a leakage model (the function
that converts hypothetical values into physical leakage of
a device).

To assess the attack performance, i.e., the number of measure-
ments required to break a target, it is common to use the guessing
entropy (GE) metric [11]. With Q traces in the attack phase,
the attack outputs a key guessing vector g = [g1, g2, . . . , g‖K‖]
in decreasing order of probability. Thus, g1 is the most likely
and g‖K‖ the least likely key candidate. Guessing entropy is the
average position of the correct key k∗ in g. In this work, we
calculate partial guessing entropy (i.e., we consider a specific
key byte) but denote it as guessing entropy for simplicity.

C. Leakage Models

In the context of deep learning-based SCA, there are two
commonly considered leakage models:

1) Hamming weight (HW): where the attacker assumes the
leakage proportional to the sensitive variable’s Hamming
weight. This leakage model results in nine classes for the
AES cipher (8-bit S-box2).

2) Identity (ID): where the attacker considers the leakage as
an intermediate value of the cipher. When considering the
AES cipher (8-bit S-box), this leakage model results in
256 classes.

D. Portability

The strength of profiling SCAs arises from their capability to
characterize the target device fully. In literature, most works con-
duct profiling and testing on the same device (“single-device”

2Or any cipher with 8-bit S-box.
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model). However, in practical scenarios, external factors, such
as process variation or different acquisition methods, may cause
the “single-device-model” attack to fail. These external factors
lead to an issue known as portability, subsuming all effects due
to different devices and secret information between profiling
device and device under attack. Though this is a critical issue
and evaluation labs face it daily, few investigations are conducted
in this direction.

One of the latest approaches to address portability was pre-
sented by Bhasin et al. [9] by considering the Multiple Device
Model (MDM). The idea is to use multiple copies of devices
similar to the targeted one for training and validation. Then, the
trained model could better generalize the leakage and minimize
the risk of overfitting to the training device. However, one possi-
ble drawback is that the evaluator needs to acquire measurements
from multiple copies of the same device, which might be either
expensive (in time or equipment) or simply unavailable.

E. Neural Network Architectures

This paper considers two neural network types commonly
used in profiling SCA [5], [12]:

1) Multilayer Perceptron: The multilayer perceptron (MLP)
is a feed-forward neural network mapping sets of inputs
onto sets of appropriate outputs. MLP consists of multiple
layers (input layer, output layer, and at least one hidden
layer) of nodes in a directed graph, with each layer fully
connected to the next one.

2) Convolutional Neural Networks: Convolutional neural
networks (CNNs) commonly consist of three types of
layers: convolutional layers, pooling layers, and fully
connected layers. The convolutional layer computes the
output of neurons connected to local regions in the input,
each computing a dot product between their weights and
a small input region. Pooling decreases the number of ex-
tracted features by performing a down-sampling operation
along the spatial dimensions. The fully connected layer
computes either the hidden activations or the class scores.

F. Related Work

The domain of profiling SCA started in 2002 with the tem-
plate attack [3]. While this attack is the most powerful one
from the information-theoretic perspective, in practice, it suffers
from restrictive assumptions (unlimited number of profiling
traces, noise following Gaussian distribution) [13]. The SCA
researchers also considered simple machine learning techniques,
e.g., random forest [14], support vector machines [15], [16],
Naive Bayes [17], and multilayer perceptron [18]. Such tech-
niques commonly performed similarly or better than the tem-
plate attack.

Since 2016, the SCA community has shifted much of its
attention to deep learning techniques [4]. The two most explored
approaches were MLP (commonly, more complex architectures
than before) and CNN. Both approaches reached excellent at-
tack performance where it is possible to break implementations
protected with countermeasures [12], [19]. Only recently, the

community expanded the deep learning perspective for profil-
ing SCA, e.g., autoencoders used to pre-process the traces to
remove the influence of countermeasures [6] or conduct feature
engineering [20].

As deep learning in SCA is a relatively new research direc-
tion (compared to other domains), most works still concentrate
on improving the attack performance. Indeed, deep learning
methods developed in the early stage showed potential but not
much more than “simple” machine learning [4], [21]. Soon
after, researchers reported strong attack performance even in
the presence of countermeasures [12], [19]. More recent results
improved the performance with reduced sizes of deep learning
architectures [5], [6], [7], [22]. The latest result show how deep
learning-based SCA can be even more powerful, but considering
raw measurements instead of selected intervals of features [23],
[24].

While far from completed (as the results can be improved
even further), deep learning represents a significant step for-
ward for profiling SCA. Simultaneously, the SCA community’s
understanding of what happens during the learning process (i.e.,
interpretability and explainability) is much more limited. Sev-
eral works considered visualization techniques to find relevant
features and improve interpretability [25], [26]. Van der Valk
et al. considered the activation functions in neural networks to
explain what neural networks learn while training on different
side-channel datasets or even datasets that are not side-channel
measurements [27]. Additionally, some researchers have already
noticed the importance of ablation in the context of SCA. For
example, in the conclusion of [5], the authors stated the impor-
tance of performing an ablation study when a new technique is
proposed, which is then realized by [7] with a manual (instead of
automated) ablation study of the proposed methodology. Still,
no discussions aim at ablation as a tool for explainability in SCA.
Finally, some more recent works provided new insights into the
interpretability and explainability of neural networks in SCA.
Yap et al. used an interpretable neural network called Truth Table
Deep Convolutional Neural Network (TT-DCNN) that allows
easy transformation into SAT equations to obtain the rules and
decisions the neural networks learned when retrieving the secret
key from the cryptographic primitive [28]. Zaid et al. developed
a generative model, designed from the stochastic attacks, with
the goal of reducing the black-box property of deep learning
and easier architecture design for real-world crypto-system [29].
Perin et al. proposed a novel methodology for deep learning
explainability in SCA where the authors consider every layer
and measure the perceived information from it [30].

For portability, already early work [31] showed differences in
leakage obtained from four different Atmel XMEGA. Another
work [32] has proposed deep learning optimized for a cross-
device attack, which was trained on multiple devices running a
128-bit AES encryption module. Specifically, the author used
four devices for training a multilayer perceptron, resulting in
an average accuracy of 99.9\% with all devices. In [33], the
results for the CHES 2018 CTF dataset show that when targeting
different devices, the attack will require at least five traces, while
for the same device, it only requires one trace. Although the
performance differences are limited, it indicates the existence
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Fig. 1. A demonstration of the proposed ablation method.

of the portability challenge even in an optimal attack setting.
In [34], the authors addressed the portability issue by proposing
a similarity assessment technique for quantifying the differences
among various copies of the same device. Bhasin et al. [9]
considered the Multiple Device Model, validated by [32], [33].
On the other hand, [34] adopted an alternative approach to
measure the difference between devices and exploit that to
improve profiling SCA. Later, Zhang et al. [35] investigated
the portability issue for heterogeneous device scenarios, ana-
lyzing the effect caused by device variation. In [36], the authors
adopted meta-transfer learning to transfer and adapt trained neu-
ral networks to other devices, even using different side-channel
sources. Finally, recent work summarizes various challenges in
deep learning-based SCA [37]. We refer interested readers to it.

III. ABLATION & PROTABILITY

A. Ablation

Ablation is a process long used in neuroscience, where con-
trolled damages are introduced in neural tissue to investigate the
impact of injuries on the brain’s capabilities to perform assigned
tasks. This approach provides deep insights and explanations
about each part of the tissue’s structure and role when reacting
to external stimuli [38]. As the complexity of artificial neural
networks increases, the explainability of models has become
an open question. As a natural extension, an ablation study
removes specific components to understand their contribution
to the system [39]. Ablation requires that the system shows
slow degradation, i.e., that the system continues to work even
when specific components are missing or reduced, so that the
contribution of the removed part can be easily assessed by
comparing with the original version. A graphical depiction of
the SCA ablation process is shown in Fig. 1.

There is a connection between ablation and a technique called
pruning, corresponding to the systematic removal of parameters
from an existing system [40]. However, unlike ablation, which
removes a part of the neural network directly, pruning is com-
monly performed based on the magnitude of the weights - neu-
rons with weights under a threshold value are disabled. Besides,
the underlying idea between ablation and pruning is different.
Pruning is commonly used to speed up inference/prediction
while minimizing the impact on the network’s performance. On
the other hand, ablation reduces trainable parameters to gain
insights and explain the trained network’s inner workings. The
training speed is also increased as a consequence of a smaller

model. As we are interested in improving the portability of a pro-
filing model on different devices, it is crucial to understand how
neural networks (over)fit on datasets. We argue that ablation is a
proper technique for this objective. We emphasize that there are
no widely accepted techniques for AI explainability, but ablation
represents a viable choice [41]. Moreover, to our knowledge, no
research provides theoretical results for explainability that can
also be used in the SCA practice.

B. Layer Sensitivity Assessment

Although ablation can be performed in a neuron/convolution
filter manner, we argue that each neuron/convolution filter’s con-
tribution can fluctuate due to the random weight initialization.
As a result, it is challenging to reach a consistent conclusion
when one repeats the proposed ablation methodology with a
different pre-trained model. Therefore, we perform the ablation
study layer-wise to reach a stable performance.

Algorithm 1 represents our layer assessment methodology
and is repeated for every layer. First, the original model under
evaluation is trained with a specific dataset. We consider MLP
and CNN architectures as profiling models, but our approach
is architecture-agnostic. Once training is finished, a layer’s
neurons/convolution filters are randomly ablated with ablation
rate ρ. Next, Mρ is trained for τ epochs (Line 8). We denote
this process as the recovery training. By comparing the per-
formance before and after ablation and recovery training, we
can understand the properties of each neural network layer.
Specifically, we define two criteria to evaluate a layer: sensitivity
and resilience.
� Sensitivity: A layer is considered sensitive if the model has

a significant performance drop after ablation.
� Resilience: A layer is considered resilient if the model has

a limited performance drop with recovery training after
ablation.

The sensitivity and resilience of a layer are calculated in Line
7 and Line 10 of Algorithm 1. The ablation recovery training
process is repeated σ to cover most elements in a specific layer.
The results are averaged to generate representative results for a
specific network layer l.

Since Algorithm 1 is performed per layer, more layers lead
to higher time consumption (as we repeat the procedure layer-
wise). Fortunately, the recovery training is time-efficient due
to the small number of the required training epochs to adjust
the model. Although this is more computationally expensive
than calculating GE for the original model only, the knowledge
obtained through ablation could lead to understanding the model
and is helpful for future model adjustments.

C. Multiple Device Model From Single Device

The ablation methodology proposed in the previous section
defines the sensitivity and resilience of each layer. We now tackle
the portability problem for the profiling SCA. As mentioned, the
main challenge of the portability problem is that the side-channel
leakages from different devices could vary significantly, leading
to a low generality of using a profiling model trained on one
device to attack other devices. Let us assume two devices A
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Algorithm 1: Layer Sensitivity Assessment.
1: procedure ablate_layer model M , training set Ttrain,

test set Ttest, repeat time σ, ablation rate ρ
2: M ← train(M , Ttrain)
3: GE ← attack(M , Ttest)
4: for i = 1 to σ do
5: Mρ ← ablate(M , ρ)
6: GEρ ← attack(Mρ, Ttest)
7: Sensii =GE - GEρ �Layer sensitivity
8: M ′

ρ ← train(Mρ, Ttrain) �Recovery training
9: GE ′ρ ← attack(M ′

ρ, Ttest)
10: Resii = GE - GE ′ρ �Layer resilience
11: end for
12: end procedure

and B, with leakage measurements TA and TB focusing on
the same cryptographic operation. Then, TB can be seen as a
skewed version of TA, modeled by a function skew:

TA = skew(TB). (2)

In practice, the skewness of the leakage traces mainly comes
from the variation of devices and measurement setups. Follow-
ing the assumption that the portability can be seen as additive
Gaussian noise [9], we rewrite (2) as:

Ta = Tb + noise, (3)

where noise represents the Gaussian noise. From the model
training perspective, the additional noise increases the difficul-
ties in breaking the target.

As mentioned, the part of the neural network sensitive to
noise could be the main obstacle to the model’s portability
capability. In other words, if a profiling model overfits training
traces, the sensitive part of the neural network could be the
main contributor. Any minor change in the input leakage traces
would significantly vary the output performance. Therefore, the
goal is to remove this part and let the remaining portion of the
network fit on new leakage traces, as we expect the new profiling
model can better fit the leakage traces than the one without
ablation. At the same time, removing these parts should not
cause irreparable damage to the model. Indeed, recall the layer
assessment criteria defined in the previous section. The layer
that is sensitive (i.e., contributes to the model overfitting) and
resilient (i.e., the damage in this layer can be recovered, thus
does not influence the model’s attack capability) is the ideal
objective for ablation.

The Multiple Device Model from Single Device (MDMSD)
method is shown in Algorithm 2. The basic procedure is similar
to Algorithm 1. First, we partially ablate the model trained on the
original device, which forces the model to less overfit the orig-
inal device measurements while keeping most of the predicting
capability. Then, the ablated model is recovery trained and tested
with perturbed leakages from the original device to simulate the
portability effect. Then, the new model can generalize to a range
of devices.

Algorithm 2: Methodology for MDMSD.
1: procedure MDMSDThe original device o with training,

test dataset To
train,T

o
test, Victim device v with test

dataset Tv
test, threshold margin m, Noise value for

training and test α, β, Ablation rate ρ
2: M ← train(M , To

train)
3: GE ← attack(M , To

test + noise(α))
4: while GE′ρ > (m ·GE) do
5: Mρ ← ablate(M , ρ)
6: M ′

ρ ← train(Mρ, To
train + noise(α))

7: GEρ ← attack(Mρ, To
test + noise(β))

8: GE′ρ ← attack(M ′
ρ, To

test + noise(β))
9: end while

10: GEv
ρ ← attack(M ′

ρ, Tv
test)

11: end procedure

Specifically, the adversary collects the traces for training and
testing based on the original device o, denoted as To

train and
To

test, respectively. The original model, M , is first trained for τo
epochs with To

train on this device. The GE for the pre-trained
model is then computed based on model M and To

test dataset
with additional noise α (representing the measurement noise).
The adversary then ablates M with a rate ρ and conducts
the recovery training for τr epochs to obtain the new ablated
modelM ′

ρ. The attack performance is assessed with the recovery
trained model M ′

ρ and dataset To
test + noise(β) (representing

the portability-induced noise). Next, the adversary defines the
threshold margin m. If the condition GE′ρ ≤ (m ·GE) is satis-
fied, we stop the Algorithm 2 and obtain the final GE from Tv

test

dataset of the victim device. Note that this condition measures
the resistance of a layer. If two layers have the same resilience,
we select the one with higher sensitivity.

Noise parameters α and β must be chosen carefully to better
represent noise from portability. If α and β take a similar value
and are too small, the resulting GE and GE ′ρ will be too similar
and will not address the portability issue; an overly large α
would fail even with ablation and recovery training. Therefore,
we use relatively small α and then conduct ablation to fight
more significant portability-induced noise noise(β). In terms
of margin m, ablation can lead to cases where GE′ρ could
be slightly higher than GE. To counter such scenarios, we
empirically set a 5% leverage to GE′ρ, thus m = 1.05.

IV. EXPERIMENTAL SETUP

A. Threat Model

We consider a common profiling side-channel setting fo-
cusing on power/EM side-channel attacks targeting secret key
recovery from cryptographic algorithms. This threat model is
standard and realistic as numerous certification laboratories
evaluate hundreds of security-critical products under this model
daily. Power/EM side-channel is often exploited for exploiting
modern communication devices [42] or even used for program
flow tracking [43].
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TABLE I
THE TARGET DATASETS FOR PORTABILITY SETTINGS

We assume an adversary with access to a clone device running
the target cryptographic algorithm, normally on an embedded
device. This clone device can be queried with known/chosen
parameters (keys, plaintext, etc.) while the corresponding leak-
age measurements, like power or electromagnetic emanation,
are recorded. A profiling model is built to map the relationship
between the leakages and the key-related intermediate data. This
constitutes the profiling phase.

Next, the adversary queries the device under attack with
known plaintext to recover the secret key by querying the
characterized model with corresponding side-channel leakage
traces. This represents the attack phase.

B. General Settings

We provide results with several ablation levels to investi-
gate the behavior of neural networks for various settings (i.e.,
when we do a small change, medium change, or a significant
change to the neural network architecture). Based on our exper-
iments, the ablated model does not require significant training to
adapt to the changes (as the models are pre-trained). Therefore,
we run the recovery training for ten epochs. GE is calculated over
ten attacks with a random shuffling of the attack traces to obtain
statistically significant results. Finally, GE and weight variation
presented in the experiments are averaged over ten indepen-
dent ablation experiments for each layer. All experiments are
implemented with the TensorFlow [44] computing framework
and Keras deep learning framework [45]. The model’s training
was executed on an Nvidia GTX 1080 graphics processing unit
(GPU), managed by Slurm workload manager version 19.05.4.

C. Datasets

We first consider two popular datasets widely adopted in
SCA research: ASCAD with the fixed key (ASCAD_F) and
ASCAD with random keys (ASCAD_R).3 The measurements
are obtained from an 8-bit AVR microcontroller running an
AES-128 implementation [46]. Both datasets are protected with
a Boolean masking countermeasure.

ASCAD_F: This version of the ASCAD dataset has 50 000
traces for profiling and 10 000 traces for the attack. 5 000 traces

3https://github.com/ANSSI-FR/ASCAD

from the profiling set are used for validation. We use a pre-
selected window of 700 features for the side-channel trace, and
we attack key byte 3, the first masked key byte (as recommended
by the authors of the dataset).

ASCAD_R: The second ASCAD version has random keys,
and the dataset consists of 200 000 traces for profiling and
100 000 traces for the attack. We use 5 000 traces from the
attack set for validation. We use a pre-selected window of 1 400
features for this dataset and attack key byte 3 (the first masked
key byte).

In addition, two portability-specific datasets are considered to
demonstrate the application of the ablation in tackling portability
issues for profiling SCA. Table I summarizes the detailed setup
for these datasets.

Portability_2020: This dataset was introduced in [9]. The
dataset contains measurements from four copies of the target,
AVR Atmega328p 8-bit microcontroller, set up in parallel. It
measures 50 000 power side-channel traces corresponding to
50 000 random plaintexts. A trace comprises of 600 sample
points (features), containing only the execution of the first
SubBytes operation of an unprotected AES-128. The dataset
was then collected based on the measurements from four boards
(B1, B2, B3, B4) with three randomly chosen secret fixed keys
(K1, K2, K3).

CHESCTF_2018: This dataset refers to the CHES Capture-
the-flag (CTF) AES-128 trace set running on an STM32 micro-
controller, released in 2018 [47]. It consists of different sets of
power traces of masked AES-128, with 650 000 sample points
per trace. In this paper, we focus on a window of 600 points
representing the leakages of the target execution. The first four
sets contained 10 000 power traces. The first three sets (Set 1 to
3) were collected from three devices (denoted A, B, and C), and
each trace corresponds to encryption with a randomly chosen
key. Set 4 contains power traces from Device C with a single
fixed key (K4). Set 5 contains 1 000 power traces collected from
device C with a fixed key K5, and Set 6 contains 1 000 power
traces collected from a new device D with a fixed key K6.

D. Neural Network Architectures

In Table II, we depict the neural network hyperparameters
selected after a tuning phase. Here, modified MLP and CNN [46]
are used for evaluation. The architectures can be easily tuned
based on specific requirements. The input layer is adapted
based on the dataset tested; the output layer is adjusted based
on the used leakage model. For CNN models, the size of the
convolution filters is set to 11. An average pooling layer follows
each convolutional layer with both pooling size and stride set
to two. The experiments are conducted under the widely-used
Hamming Weight (HW) leakage model for a key byte. The ID
leakage model results are omitted due to similar observations
and conclusions.

V. EXPERIMENTAL RESULTS FOR LAYER ASSESSMENT

Recall that in Algorithm 1, a model M is pre-trained. Here,
we denote M as the original model, as the following analysis
is based on this model. To assess the sensitivity and resilience
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TABLE II
BASELINE DEEP LEARNING ARCHITECTURES

Fig. 2. Layer assessment for the ASCAD_F dataset.

of a layer, the attack performance before and after the recovery
training are considered and presented in the GE difference plots
(e.g., Fig. 2). As defined in Algorithm 1, we use the following
notations in the figure:
� Sensitivity: GEρ=0 −GEρ=ρ, denoting the GE difference

between the original and ablated model before recovery
training.

� Resilience: GEρ=0 −GE ′ρ=ρ, denoting the GE difference
between the original and ablated models after recovery
training.

When the GE difference is below zero, the ablation (or
ablation with recovery training) of the neural network intro-
duces negative effects when compared to the performance of
the original model M . When positive, the new model after
ablation/recovery training performs better than the original one.

A. Results for the ASCAD With the Fixed Key Dataset

Fig. 2 presents the sensitivity and resistance of each neural
network layer. Note that both models (MLP and CNN) break the
target with a given number of attack traces. When ablating layers
for MLP architectures, more significant changes are caused in
the first layers. This tendency becomes more evident when the
ablation percentage ρ becomes larger. Note that while it seems
there are significant GE changes in the beginning layers for
ρ = 10%, the scale is different, so the changes are limited. Thus,
a designer who wants to optimize these MLP architectures (i.e.,
reduce their size) should start by tuning the neurons in the final

layers of MLP (as they are less sensitive). Meanwhile, increasing
the capacity of shallower layers (by adding more neurons/layers)
would increase the robustness of the model. For CNN, when
increasing the ablation rate, similar to MLP models, deeper
layers are less sensitive to the ablation on average; both layers
are resilient to ablation after the recovery training. Indeed, due
to the high complexity of the model, the side effect of ρ = 90%
ablation in one layer can be easily compensated by recovery
training. Interestingly, as shown in Fig. 2(d), GE can be slightly
better (0.01) when ablating the deeper layers. This is because
models with extra capacity would learn from the noise easily,
finally causing overfitting. The ablation and recovery training
helps the network to “lose weights”, providing a regularization
effect and, thus, increasing the attack performance. For instance,
when looking at the model from [46], it is rather large compared
with the state-of-the-art and performs less stable when training
multiple times with random weight initialization. By reducing
the model’s size carefully, the model can indeed achieve more
reliable performance [7].

B. Results for the ASCAD With Random Keys Dataset

Fig. 3 presents the layer’s sensitivity and resilience. Again,
the used MLP and CNN break the target with a given num-
ber of attack traces. Regarding layer sensitivity (blue bars),
shallower MLP layers are more sensitive to ablation than the
deeper layers. Indeed, even 90% of the ablation could result in
limited performance degradation in the last layers (Fig. 3(c)),
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Fig. 3. Layer assessment for the ASCAD_R dataset.

Fig. 4. Results of averaged GE for (B1_K1)—(B2_K2) and (B1_K1)—
(B4_K3).

Fig. 5. Layer assessment for the Portability_2020 dataset.

Fig. 6. Results for the Portability_2020 dataset.

confirming the extra capacity in these layers. In contrast, for
CNN, deeper layers (L5/L6/L7) are more sensitive to ablation,
as they introduce more GE variation before recovery training.
(Fig. 3(f)). This observation indicates that the deeper layers are
more critical in the classification process for ASCAD_R. This
observation is well-aligned with established CNN designs such
as VGG16 [48]: the number of convolution filters increases when
adding more convolutional layers. At the same time, the dense
layer also has many neurons.

The layer resilience, represented by the GE difference after the
recovery training, can validate the above conclusions. Although
the model can adapt to the ablation effect in most cases, its
recovery capability varies when ablating different layers. For
MLP, ablating the shallower layers with a greater ablation rate, as
shown in Fig. 3(c), results in the performance degradation. Still,
when controlling the ablation rate in the reasonable range, the
attack performance can be improved (Fig. 3(a)), indicating a re-
markable resilience of these layers. For CNN, the ablation effect
can be minimal for almost all layers. The evaluator/designer can
simplify the network without harming the attack performance.

VI. EXPERIMENTAL RESULTS ON MULTIPLE DEVICE MODEL

FROM SINGLE DEVICE

The previous results show that our layer assessment method
can accurately reflect the layer’s sensitivity and resistance. In
this section, we use the knowledge obtained from this method
to deal with the portability problem.

Aligned with Algorithm 1, we test three different ablation
rates (10%, 50%, and 99%) for the Portability_2020 dataset.
99% ablation gave the best result, about 6× better than other
ablation rates (see Fig. 4). By 99% ablation, we consider ablating
the whole layer except for a single neuron (to maintain the
connectivity between layers), which is equivalent to creating
a bottleneck layer. We hypothesize that portability can easily
cause overfitting, affecting the whole layer. Thus, ablating the
full layer (99%) could resolve the issues. Consequently, we use
this configuration in the following experiments.
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Fig. 7. Layer assessment for the CHESCTF_2018 dataset.

We use an MLP architecture with four hidden layers where
each layer has 500 neurons, the ReLU activation function, the
batch size is 256, the number of epochs is 50, the loss function is
categorical cross-entropy, and the optimizer is RMSprop with
a learning rate of 0.001, as proposed in [9]. This architecture
is selected as the best-performing one since it has sufficient
capacity to model the data and yet does not overfit as easily as the
previously investigated CNNs. For the test settings, to simulate
noise behavior for portability issues, we generate 20× α for the
β value (α = 5 · 10−4). This is based on the assumption that
the additional noise due to portability will be larger than the
measurement noise. We use 50 epoch for training (and recovery
training) as in [9].

A. Results for the Portability_2020 Dataset

We train MLP for the dataset (Line 2 of Algorithm 2), with the
(train) - (test) datasets as follows: (B1_K1) - (B1_K1), (B2_K2)
- (B2_K2), (B3_K1) - (B3_K1), (B4_K3) - (B4_K3).

The layer performance for each dataset is shown in Fig. 5. The
second layer (L2) is the best candidate for ablation due to its high
sensitivity and strong resilience (it achieves the best performance
as GEr is less than 1.05×GEo for all experiments). Therefore,
we utilize the recovery-trained architecture (MLρ

r) by ablating
the layer L2. We benchmark the original results [9] with our
method, shown in Fig. 6(a) and (b). MDMSD outperforms the
original work in almost all cases except for (B4_K3)—(B2_K2).
Moreover, it mostly only requires 10-20 traces to recover the
correct key.

B. Results for the CHESCTF_2018 Dataset

For this dataset, we focus on the KeySchedule leakage rather
than S-box operation as reported in [49]. Specifically, we aim
to recover the first byte of the round key in the KeySchedule
operation. As the leakage happens in the HW leakage model,
the range for GE is between 0 and 8.

In Fig. 7, since L4 is the best candidate for ablation as it is both
sensitive and resilient (it satisfies GEr ≤ 1.05×GEo), the cor-
responding recovery-trained model is used to perform attacks.
We first perform the cross-device attack on the CHESCTF_2018
dataset. Notice that we cannot recover the key when the model
is trained with the B_RN dataset (Fig. 8(a)) as the guessing
entropy never converges. In contrast, our method recovers all
secret information using less than 50 traces (see Fig. 8(b)).
More precisely, except for (B_RN)—(D_K6), only ten traces are
needed to recover the round key (about 5 on average, considering
all experiments).

Fig. 8. Results for the CHESCTF_2018 dataset.

Fig. 9. Results for the two datasets considering portability.

We also compute the averaged GE for all cases for both
datasets to represent the results more clearly. The averaged
results are shown in Fig. 9. For the Portability_2020 dataset,
MDMSD requires half the traces (about 30) compared to the
original results (about 60 traces) to break the target. For the
CHESCTF_2018 dataset, MDMSD breaks the target easily
while its counterpart hardly converges. Following these results,
we confirm the effectiveness of our method in dealing with
the portability problem. One may argue that pruning can be an
alternative to ablation. However, it is impossible to know which
neuron/convolution filter contributes to the device overfitting
by only seeing the weights. Compared with the conventional
approach that always uses the same model, ablation prevents
the model from overfitting on a specific device, thus allowing
more accessible adaptation to other devices. Since most weight
info is kept after ablation, a reduced effort is required to rebuild
the link between the leakages and labels.

VII. CONCLUSIONS AND FUTURE WORK

Portability represents a real challenge in profiling SCA. While
there is one approach (MDM) devised to resolve the problem,
it can be difficult to use it in practice due to the requirement to
have multiple open copies of the device to be attacked. This paper
introduces a layer assessment methodology for deep learning-
based SCA. Our methodology helps researchers understand
which layers are sensitive to ablation and which are resilient
after recovery training. With this knowledge, we can bridge the
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gap between the single-device model (the commonly used one)
and MDM when multiple devices are unavailable, significantly
improving the model’s ability to generalize to different devices.
By applying our layer assessment methodology, we achieve
better results than the current state-of-the-art without overfitting
to a single device.

In future work, we plan to optimize neural network models
or design more resilient countermeasures with the insight of
the model from our method. Besides, we only considered
ablation performed in a layer-wise manner. While we are
confident that such an approach gives the most explainable
results, future works could examine ablating multiple layers
simultaneously. This is especially interesting for CNNs, where
we can ablate convolutional and fully connected layers. As
the current deep learning-based SCA trend uses relatively
small neural networks, we consider our work perfectly aligned
with the state-of-the-art. Still, it would be interesting to
investigate ablation on larger neural network architectures, as
such architectures will become increasingly important with the
improvements in the countermeasures and larger corresponding
datasets (more features and more profiling traces, which could
require larger neural network models).
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