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2 1. INTRODUCTION

1.1. SINGLE MOLECULE LOCALIZATION MICROSCOPY

Fluorescence microscopy is a standard and ubiquitous tool in biology to observe and
study subcellular structures. The success of this imaging technique primarily relies on
two factors: enhanced contrast enabled by the use of fluorescence and high specificity
that is brought about by molecular labeling. A drawback of conventional fluorescence
microscopes has been that the achievable resolution was fundamentally limited by the
diffraction of visible light to about 200 nm.

Ernst Abbe, in 1873, analyzed the diffraction of light in image formation by a lens
system and showed that an optical microscope cannot distinguish object features less
than d =λ/(2NA) apart. In this formula, λ is the wavelength of light (about 400-700 nm)
and NA = n sin(α) is the numerical aperture (about 1.4 for typical high NA objectives),
defined in terms of the sample refractive index n and the semi-angle α of the cone of
light captured by the objective lens. This limit was a barrier to study nanoscale cellular
structures and processes until the advent of so-called superresolution microscopy [1].

Superresolution microscopy or optical nanoscopy is the set of techniques and tools
which allow imaging well below the diffraction limit using far-field light microscopy
[2]. Among these techniques, single molecule localization microscopy (SMLM) achieves
sub-diffraction resolution by turning the emission of fluorescent molecules on and off
(blinking), such that emitting molecules that are spatially proximate are typically not
imaged at the same time [3]. This is achieved by using another dimension (time) in the
image acquisition to record the blinking events at multiple frames. In SMLM, the preci-
sion with which the location of each individual molecule can be determined depends on
the number of collected photons N and scales with (λ/NA)/

p
N .

Optical nanoscopy with SMLM is a multidisciplinary technique that starts with sam-
ple preparation, followed by data acquisition, data analysis and postprocessing. In the
following sections, we will briefly discuss the relevant parts for this thesis and refer the
interested reader to ref. [3, 4].

1.1.1. SMLM MODALITIES AND DATA ACQUISITION

EPI-FLUORESCENCE AND TIRF

Two popular microscopy setups for superresolution imaging are epi-fluorescence and
total internal reflection fluorescence (TIRF) setups (Figure 1.1a). Both techniques share
almost the same principle in which the labeled specimen is illuminated by a beam of
light, originating from a light source, reflected by a dichroic beam splitter and focused by
the objective lens. This illumination will cause the fluorescent molecules to transiently
go to the excited state and return to their initial ground state while emitting fluorescent
photons at a lower frequency (higher wavelength). The emission light from the speci-
men is captured by the objective lens, passes through the dichroic beam splitter and is
focused by the tube lens on the image sensor. The two imaging systems are, however,
different in the way that the sample volume is illuminated (Figure 1.1b). While, in the
epi-fluorescence setting, the excitation light passes through the entire sample volume,
in TIRF, only a thin layer of the entire volume, directly adjacent to the coverslip, is illumi-
nated.
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Figure 1.1: SMLM modalities and data acquisition. (a) Simplified schematic of a typical epi-fluorescence mi-
croscope showing how the excitation and emission paths are configured to be on the same side of the sample
(b) Illumination beams at the interface of the objective lens and the coverslip in epi-fluorescence and TIRF
settings. While epi-fluorescence activates more fluorophore in depth, TIRF allows for thin sectioning of the
sample close to the coverslip. (c) STORM versus PAINT. Both modalities rely on the localization of fluorescent
molecules. STORM works based on stochastic blinking of fixed fluorophores and, in PAINT, blinking occurs
through cycles of binding and unbinding of imager strands that are present in the imaging volume and docking
strands which are attached to the structure of interest in thin layer of the sample volume close to the coverslip.

PAINT AND STORM

Researchers proposed different sample preparation protocols and methods for achiev-
ing stochastic on-off switching during the past ten years, making use of a wide range of
photo-biochemical techniques, introducing a plethora of acronyms [4–7]. In this thesis,
the used data was acquired with stochastic optical reconstruction microscopy (STORM)
[6] and point accumulation for imaging of nanoscale topography (PAINT) [7], which are
two of the most common modalities for SMLM (Figure 1.1c). Blinking in STORM is in-
duced by illuminating the fluorophores that are permanently bound to the structure of
interest at high intensity. This causes the majority of the molecules to go into a dark, non-
emitting state, from which they return at a relatively low rate. The minority of molecules
in the normal, emitting state undergo many absorption-emission cycles that produce
the photons that make up the fluorescent signal. In each cycle, there is a small proba-
bility of photobleaching. The on and off switching in PAINT occurs when single strand
DNAs carrying a fluorophore (imager strand) transiently bind to their complementary
strands (docking strand) and some later detach. The binding gives a huge increase in flu-
orescence emission in the context of TIRF imaging of a relatively thin and flat structure
close to the cover slip. Typically, PAINT requires less excitation power and it accumulates
more localizations per binding site as the imager strands are constantly present in the
solution. This is at the cost of a longer acquisition time compared to STORM. Moreover,
while the distribution of localizations per site is a mixed geometric-Poisson in STORM
[8], it is Poissonian for PAINT. This is mainly due to the bleaching versus nonbleaching
nature of fluorescence emission in these two modalities.
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1.1.2. IMAGE PROCESSING
On the order of 10-100 thousands of frames are recorded in a typical SMLM experi-
ment, such that in each frame only a small subset of the fluorescent molecules is in the
on-state. Recording this huge number of frames ensures that most of the fluorescent
molecules on the labeled structure are captured at least once. In contrast to conven-
tional light microscopy images, these raw frames are not immediately interpretable, and
several image processing steps are needed in order to fully recover all single molecule
positions. This is achieved in an image processing pipeline which consists of the follow-
ing steps [9] (Figure 1.2):

tim
e

x y z x y

1
2
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n

time

x

y

c
o
u
n
t

time

tabular datalocalizationsegmentation

backgroundphotonframe connectdrift correction

superresolutionwidefield scatter plot Gaussian rendering

5 m 200 nm

x y

Figure 1.2: SMLM image processing pipeline. In a typical SMLM experiment, thousands of frames capture the
blinking events of fluorescent molecules. The position of fluorescent molecules is found from the segmented
regions of interest (blue squares) from the raw frames to form a list of coordinates. Filtering based on the
estimated background and photon count, merging of repeated localizations (so-called frame connect) and
drift correction (e.g. using fluorescent beads as in the purple squares) are the next steps in this pipeline. The
last step is to stack all the found localizations in a single reconstruction and visualize them.

SEGMENTATION

The very first step in analyzing raw frames is the identification of the pixels containing
signals from single molecules. The main challenge here is to discriminate between the
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background noise and the (probably weak) signal from the fluorescent molecules. Var-
ious methods have been proposed in order to do the segmentation of the raw frames
which are based on relatively simple user defined thresholds for separating signal from
the background [6] to sophisticated probabilistic frameworks [10].

LOCALIZATION

Segmentation provides molecule locations with regions of interest (ROIs). It is, however,
desirable to estimate the precise fluorescent molecule positions by incorporating the
image formation model. Moreover, valuable information about the fluorescent emitters
can be estimated along with its coordinates. This includes photon count, localization
uncertainties (in x, y , and z) and background. Maximum likelihood estimation (MLE)
and least squares (LS) fitting of the point spread function (PSF) model to the ROIs are the
most effective and widely used approaches for localization [11, 12].

FILTERING

Autofluorescence, out-of-focus, diffusing and overlapping emitters result in poor local-
izations. Therefore, the next step in this pipeline is to remove them from further analy-
sis. The filtering of bad localizations is mostly done based on the estimated parameters
in the localization step (e.g. low photon count and high background), their computed
Cramér-Rao lower bound and the goodness of fit to the PSF model [6]. Furthermore,
localizations of the same fluorophore are connected across sequences of frames if they
are in the neighborhood of each other (distance less than a few localization uncertain-
ties). This results in a reduced number of localizations and better localization precision
values.

DRIFT CORRECTION

Stage drift is a typical problem in SMLM experiments, and it can be severe for some
modalities like DNA-PAINT with long acquisition time (up to a few hours). Drift correc-
tion can be done by using fluorescent beads as fiducial markers, as these can be tracked
easily, or by performing 2D registration of localizations, e.g. by cross-correlation be-
tween blocks of consecutive frames that are grouped together. Recently, Dai et al. [13]
proposed drift correction using synthetic nanostructures, e.g. grid patterns, as an alter-
native to beads, and achieved ∼1 nm residual drift with this method.

RECONSTRUCTION AND VISUALIZATION

In the very last step, the list of coordinates (localizations) are accumulated to form a
single reconstruction, i.e. an SMLM image. Therefore, in contrast to conventional mi-
croscopy techniques, this reconstruction is not a pixelated image on a uniform grid but
rather a list of coordinates in 2D/3D Cartesian space. Naïvly, one can use a scatter plot
to visualize localization data. But this only works when the data is sparse. The stan-
dard ways of visualization are two-dimensional histogram binning, possibly combined
with a small amount of Gaussian blurring, and rendering of each localization using a 2D
Gaussian blob with a standard deviation that is equal to its localization uncertainty [14].
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1.1.3. POSTPROCESSING AND QUANTIFICATION

Researchers have developed a variety of methods and algorithms to analyze SMLM im-
ages and find new insights into nanoscale cellular structures and processes. Resolution
assessment [15], cluster analysis [16], structural quantification [8, 17] and particle fu-
sion [18] are among the techniques that have been developed so far in order to interpret
this data. The focus of this thesis, which falls in this stage of the SMLM pipeline, is to
propose a new approach for the alignment of a set of images of the same underlying
structure (“particle fusion”) in SMLM for increasing signal-to-noise ratio and resolution
and for averaging out stochastic variations in labeling.

1.2. DATA ALIGNMENT
Data alignment is a classical problem in signal and image processing. Here, one tries
to match and register specific features of data obtained from different measurements.
Often, the data is spatially transformed in 2/3D Cartesian space between acquisitions.
The underlying transformations between the acquired data are typically translation, ro-
tation, or scaling. The to-be aligned data exists in two categories: data on 2/3D regular
grid (pixels or voxels) or unstructured set of points in R2 or R3, so-called point clouds. In
the following, we summarize various applications of data alignment based on this clas-
sification scheme, i.e. image alignment versus point cloud registration.

1.2.1. IMAGE ALIGNMENT APPLICATIONS

Digital images can be represented as two or three-dimensional arrays of finite size. Each
element (pixel) of such an array holds an intensity value. Ideally, this intensity is propor-
tional to the number of photons that is collected from the imaged scene at the image sen-
sor. The need for alignment of multiple images, so-called image registration, can arise
from motion in the imaged scene, e.g. cell movement, or from motion in the imaging
system, e.g. stage drift. Plenty of techniques for image registration have been developed
in the past 30 years [19]. An exhaustive summary of this field is beyond the scope of this
thesis introduction. Instead, in the following we will briefly review the most important
applications of image registration which are relevant and applicable to SMLM.

AVERAGING FOR DENOISING

Signal enhancement by averaging repeated measurements is a common technique in
signal processing. For two-dimensional signals, i.e. images, this technique is mostly
used for denoising. If the noise is a truly random and independent process (from the
image) and the scene is fixed across different acquisitions, random fluctuations of the
intensity around the actual pixel value will gradually even out as more data are aver-
aged. In practice, however, these multiple noisy images are not perfectly matched, and
one needs to align them first before averaging, as averaging without alignment results in
blurring of the structures of interest. Figure 1.3a shows the result of averaging 100 syn-
thetic images (left) which are affected by a zero mean Gaussian noise with (middle) and
without alignment (right). It can be seen clearly in these figures that the noise has been
suppressed to a large extent in both images, but that the edges are blurred in the image
without alignment (right).
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Figure 1.3: Applications of image registration. (a) Averaging for denoising. Hundreds of noisy Siemens star
patterns (left) are averaged with (middle) and without (right) pre-alignment. (b) Multimodal image registration
integrated the information of the STORM (left) and scanning electron microscope (SEM) (middle) images of
nuclear pore complexes (NPCs) in a single CLEM reconstruction (right) [images adapted with permission from
[20]]. (c) Shape analysis keratocytes. Variations of the keratocytes acquired using phase-contrast imaging is
visible in differently aligned images (left). Once the images are aligned with each other, the population can be
characterized by statistical shape analysis (right) [images adapted with permission from [21]].

MULTIMODAL IMAGE REGISTRATION

In many imaging applications, a single acquisition technique is not capable of capturing
all the desired and useful information about the object of interest. Multimodal image
acquisitions can provide information about different aspects of the object with the goal
of information integration. This imaging approach is typically done sequentially. There-
fore, there is a high chance of misalignment between the images captured with different
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techniques.
For example, in medical imaging, multimodal image registration of computed to-

mography (CT), positron emission tomography (PET) and magnetic resonance imaging
(MRI) images is a topic of considerable interest. Particularly useful image registration
methods are variational approaches that optimize the mutual information between the
distributions of intensities across the pixels. This is of value as images from different
modalities can capture totally different properties of the object(s) of interest [19, 22].

Recently, correlative light-electron microscopy (CLEM), as a multi-modal imaging
method, has been proposed as a tool to acquire subcellular images at different length
scales and functionality [20]. Matching embedded physical fiducial markers which are
detectable in both fluorescence and electron microscopy images is the most often used
approach for correlating the two modalities [23]. Other approaches for this task in-
clude registration of manually spotted features (like corners) and automatic alignment
of CLEM images [24]. The latter methods are mostly inspired by medical image registra-
tion techniques as previously discussed (Figure 1.3b).

ATLAS RECONSTRUCTION

Another purpose of image alignment can be to construct an average model or shape, a
so-called template, representing the mean of a population of samples. In this context,
samples are understood as different acquisitions of the same or similar structure. Appli-
cations of this technique range from building up atlases for anatomical structures of the
body (such as the brain) in medical imaging to building dictionaries for cell structures
and their variations in different environments in cell biology [21]. The statistical varia-
tions between the samples is also a topic of interest. One of the important challenges
of this problem is how to construct the template such that it truly represents the whole
population while at the same time it is not biased toward any of the individual samples
(Figure 1.3c).

1.2.2. POINT CLOUD REGISTRATION APPLICATIONS

Point cloud data in R2 or R3 are acquired in different fields, such as remote sensing with
light detection and ranging (LIDAR), gaming in which ranging devices like Kinect are
used to scan bodies, and SMLM where fluorescent molecule positions are measured in
2D/3D space. Example applications of point cloud registration can thus be found in
scene reconstruction, image feature matching and data fusion for SMLM.

SCENE RECONSTRUCTION AND MOSAICING

Microscope setups have a limited field of view (FOV), inversely proportional to the mag-
nification of the objective lens. Especially high NA objective lenses, as used for super-
resolution applications, have typically a high magnification. In many cases, imaging an
area larger than the FOV is desired and, therefore, an image stitching or mosaicing ap-
proach is needed. This can be achieved if there is enough overlap between the tiles that
make up the whole imaged area [25] (Figure 1.4a).

FEATURE (FIDUCIAL) MATCHING

One of the great features of fluorescence microscopy is the ability to perform multicolor
imaging to study the interactions between different proteins in subcellular structures,
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Figure 1.4: Applications of point cloud registration in SMLM. (a) A large field of view (147µm ×80µm) image
of hippocampal neurons reconstructed by stitching eight overlapping smaller images. The localizations are
color-coded in z [images adapted with permission from [25]]. (b) Multicolor imaging of microtubules (green)
and mitochondrial outer membrane protein (magenta). The two colors are registered using fiducial markers
(white arrows) which are visible in both channels [images adapted with permission from [26]]. (c) Data fusion
of ∼400 NPCs acquired using STORM [images adapted with permission from [18]]

which are stained with fluorescent labels that differ in excitation and emission wave-
length. The registration of the multicolor data for this application is mostly done by
matching fiducial markers which are visible in both (or multiple) channels. If there is
only a translation and rotation mismatch from one color acquisition to another, having
only three fiducial markers would in principle suffice for a perfect alignment. In practice,
nonrigid transformations and requirements on robustness of the procedure necessitate
the use of multiple markers. The optimum transformation is usually defined with a least
squares based minimum mismatch criterion [26] (Figure 1.4b).

PARTICLE FUSION

Particle fusion, also known as particle averaging or data fusion, tries to combine the in-
formation from multiple measurements of the same or similar structures (“particles”) in



1

10 1. INTRODUCTION

a single reconstruction in order to fill-in missing information due to underlabeling and
to increase signal to noise ratio (SNR) and resolution [18] (Figure 1.4c). One important
feature of point cloud data in SMLM is that these point clouds are truly planar (in 2D)
or volumetric (in 3D) compared to typical contour-like or surface point data from other
acquisition techniques. Consequently, it is the local density of the points (localizations)
that characterizes the data rather than the individual points. This is important because
many of the point cloud processing methods from computer vision and image process-
ing are based on estimating the surface normal of point data on a 2D manifold in 3D
space, which is thus not applicable to localization data.

1.2.3. CLASSIFICATION OF POINT CLOUD REGISTRATION METHODS
Choosing the right method for point cloud registration depends very much on the type of
the data. In this section, criteria are described for choosing an algorithm for the desired
data alignment. Mathematically, a point cloud registration problem can be formulated
as follows [19]. Given N sets of point clouds (Pi )Mi×d , labeled with an index i ∈ {1, · · · , N },
where d = 2,3 is the spatial dimension and where Mi is the number of 2D or 3D points in
the point cloud Pi , find the set of transformations T (Pi ,θi ), characterized by parameters
θi , applied to the point clouds Pi , that minimizes a cost function (distance measure)
D (T (P1,θ1), · · · ,T (PN ,θN )) between the ensemble of the transformed sets:

(θ∗1 , · · · ,θ∗N ) = argmin
θi

D (T (P1,θ1), · · · ,T (PN ,θN )) . (1.1)

Application of the estimated transformations on Pi aligns the different point clouds in
a common reference frame, after which they can be averaged or fused. In SMLM, often
the individual point clouds Pi are called particles, and the averaged or fused point cloud
is referred to as the “superparticle”. In the following, we will discuss different aspects of
this formalism.

RIGID VERSUS NONRIGID ALIGNMENT

Determining the relevant transformation type for the point clouds to be aligned is the
first step in choosing a registration approach. In general, point clouds can undergo rigid
or nonrigid transformations. Rigid transformations consist of translations, rotations and
reflections. The common feature of these transformations is that they preserve the Eu-
clidean distance between pairs of points. In 3D, this transformation can be described by
the following matrix:

T =
[

R t
0 1

]
4×4

, (1.2)

where R is a 3×3 rotation matrix and t is a 3×1 translation vector. This matrix transforms
a point P = [x, y, z,1]T represented in homogeneous coordinates to Q using Q = T P .
Any pairwise rigid registration problem minimizes a cost function with respect to the
six degrees of freedom of the matrix T : three angles αi , βi and γi representing the 3D
rotation and three displacement components xi , yi and zi representing the translation.
Therefore, θi = (αi ,βi ,γi , xi , yi , zi ) for rigid alignment.

In contrast, nonrigid transformations generally do not have a specific definition and
any deformation that is nonisometric is considered as nonrigid. Often used simple non-
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rigid transformations are scaling and shearing transformations, which together with ro-
tations and translations form the group of affine transformations. Except for these sim-
ple cases, nonrigid transformations cannot be described by a linear operator, i.e. a ma-
trix.

PAIRWISE REGISTRATION VERSUS GROUPWISE REGISTRATION

Depending on the number of point clouds, registration algorithms fall into two classes:
pairwise (N = 2 in Equation 1.1) or groupwise registration (N > 2). In pairwise registra-
tion, typically one of the point clouds is kept fixed and the other one is transformed for
alignment. Therefore, Equation 1.1 simplifies to:

θ∗ = (α∗,β∗,γ∗, x∗, y∗, z∗) = argmin
θ

D (P1,T P1) . (1.3)

In groupwise registration, however, the final pose of the resulting superparticle depends
on the way the alignment is realized. A straightforward method of groupwise registration
is to divide the groupwise registration process into subsets of consecutive pairwise reg-
istration problems by keeping one particle fixed (pseudo-template) and then registering
the rest to that template. This, however, may result in a problem known as template bias,
which means that particular features of the point cloud that is chosen as the template are
amplified in the resulting superparticle, while these features may not be representative
for the collective of all point clouds. In order to solve this problem, reference-free align-
ment methods have been proposed in the literature which treat all point clouds equally
to avoid any bias toward a specific one [27]. Another challenge of groupwise registration
problems is the global offset problem. A global angular or translational transformation
can be applied to the absolute pose of all sets without changing the quality of the final
fused set due to the lack of a universal reference frame.

POINT CORRESPONDENCE

When two point clouds contain the same points only transformed with respect to the
other, as in the alignment of fiducial markers, one often first establishes point correspon-
dences and only then performs the alignment. Depending on the target cost function,
most of the same-size point cloud alignment problems have a closed form solution. In
contrast, finding correspondences in variable size point cloud registration problems is
typically not possible as the number of possible assignments is very large. In SMLM, this
correspondence cannot be made at all as underlabeling results in incomplete structures
which are missing labels at up to 50-70% of their binding sites. Moreover, depending on
the blinking statistics, the number of points (localizations) per binding site can be dif-
ferent within one point cloud (particle). In such problems, soft assignments where the
point to point assignment is not binary but weighted (for example according to a proba-
bility distribution) can be used [28]. Alternatively, methods have been developed which
consider the local density of the points in each cloud instead of the individual points
[29]. While these density-based registrations are superior in terms of robustness with
respect to noise and outliers, they create a new problem of density estimation.

ADDITIONAL INFORMATION AND PRIOR KNOWLEDGE

In many applications, points in Cartesian coordinate are not the only data that are ac-
quired. In SMLM for example, every localization event not only comprises the estimated
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coordinates, but usually comes with the estimates of the localization uncertainties in x,
y (and z for 3D localization point clouds), signal photon count, frame number and back-
ground photon count. Color channel information is also available in multicolor exper-
iments. Incorporating these extra information in the registration process can be useful
or even necessary. For example, one desired feature for particle fusion is the use of lo-
calization uncertainties as they give proper weight to more precisely localized molecules
compared to those with low localization precision.

In addition to the mentioned local information, there are other global features which
are also of great importance to be incorporated into the registration pipeline. By global,
we refer to the features that are built upon subsets of data points in a point cloud. This
includes information about the symmetry of the point cloud, whether the points lie on
a known manifold such as a sphere or cylinder, and any other prior knowledge which
helps the optimization algorithm to converge faster and more robustly. Utilizing such
extra information should be adapted properly to avoid any undesired bias in the result-
ing superparticle.

1.3. PARTICLE FUSION IN SMLM
SMLM data has certain features that make groupwise point cloud registration (or parti-
cle fusion in SMLM terminology) more complicated compared to point cloud data ac-
quired in other applications. A key problem in SMLM is the problem of incomplete data.
Complete labeling of the structure of interest is almost impossible due to low binding
affinity of fluorescent labels. The degree of labeling (DOL) is typically on the order of
30-50%, i.e. less than half of the potential binding sites get labeled. A second compli-
cation is that a variable number of localizations is recorded from each labeled site due
to stochastic variations of the on/off kinetics. In addition, the spread of localizations
around the labeled site is distributed depending on the actual photon count of the lo-
calizations. These stochastic variations arise from the binding and/or switching kinetics
of the fluorescent labels, and from the statistical variations in the number of recorded
photons from a single emitter. Moreover, false positive localizations, background and
residual drift can deteriorate the quality of the particles significantly. Finally, in 3D, the
anisotropy in the localization uncertainty due to the relatively poor performance of lo-
calization in the axial direction results in an elongation of the distribution of localiza-
tions in the axial direction.

The existing approaches for particle fusion of SMLM data can be broken down into
three categories: template-based approaches, methods that are borrowed from (cryo-)
electron microscopy (cryo-EM) and pyramid registration. In the following, we provide an
overview of the prior art in the scientific literature within these categories and describe
their pros and cons.

1.3.1. TEMPLATE-BASED PARTICLE FUSION

Researchers have made use of various high-resolution imaging techniques like EM over
the past few decades to study subcellular structures with resolutions down to a few
Angstroms [32]. This means that accurate models are available in advance for some
structures of interest for SMLM particle fusion. In several studies, these references are
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Figure 1.5: Example templates used in SMLM for particle fusion. (a) Simple (solid) and eight-fold symmetric
(dotted) with radius r1 and r2, respectively, as a model for fusing NPC and WGA particles [18]. (b) Monte-Carlo-
based virus (MCV) model for particle fusion of STORM viral proteins [30]. Sphere radius r and its thickness
dr are the template parameters. (c) 2D projections of the endocytic sites are fitted to an annulus with radius r
and thickness of dr to center the disc-like particles [31].

used as a template to which the acquired data are fitted.

Löschberger et al. [18], in 2012, used an eight-fold symmetric ring and a simple ring
as templates to fuse localizations of labeled gp210 proteins in the nuclear pore complex
(NPC) and the wheat germ agglutinin (WGA) in its center, respectively (Figure 1.5a). In
this study, the optimum rotation angles and translation vectors were found by minimiz-
ing the sum of the distances of localizations in each segmented particle to the model
points. Several other studies showed the power of template-based approach following
this successful work. Laine et al. [30] used a thick hollow sphere as a model to fuse
STORM localizations of the tegument proteins VP16, VP1/2 and pUL37, and envelope
protein gD particles (N = 50−100) in the study of the Herpes simplex virus type-1 (Fig-
ure 1.5b). Gray et al. [33] combined template-based fitting and image cross correlation
for visualization of viral structures. In their workflow the user needs to manually select
a subset of viral images as seeds for the alignment of the rest of the images. Recently,
Mund et al. [31] used an annulus as a geometric model to align SMLM images of endo-
cytic proteins imaged using 2D STORM (Figure 1.5c). This, however, was used only for
determining the radial distribution of localization data and no other structural informa-
tion was inferred from the data.

The advantage of template-based particle fusion is its favorable computational com-
plexity, which is linearly proportional to the number of particles. This is only possible
when an in-advance accurate and proper model exists. Template-based particle fusion
algorithms, however, are susceptible to the template bias problem described previously,
implying that features of the template are reproduced in the final superparticle even
when the model underlying the template is completely wrong. Figure 1.6 shows the fu-
sion of the NPC data as described in [18] using a correct eight-fold symmetric template
and a wrong nine-fold symmetric template, respectively. As it can be seen, the data fits
quite well to both models. This shows how imposing strong assumptions via a template
can result in a bias.
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Figure 1.6: Template-bias problem. Fusion of NPC data [18] using the correct eight-fold (a) and wrong nine-
fold (b) symmetric ring templates.

1.3.2. EM INSPIRED PARTICLE FUSION FOR SMLM
Another class of particle fusion in SMLM consists of the methods which adapt tech-
niques from single particle analysis (SPA) in EM [34]. SPA tries to classify, align and
average typically thousands of very low SNR 2D projections as the first step in the 3D
reconstruction of the structure. The acquired data in EM comes in the form of pixe-
lated images. Therefore, in order to be able to use these routines for localization data in
SMLM, one needs to first render the 2D coordinates as gray scale pixelated images. This
is mostly achieved by rendering each localization event by a 2D Gaussian function with a
width equal to the corresponding localization uncertainty and subsequently displaying
the continuous sum of Gaussians on a discrete pixel grid [14].

The earliest work on utilizing EM routines for performing SMLM particle fusion
traces is that of Szymborska et al. [35], in which the commercially available software
package iMagic [36] was used for the alignment of different subunits of the NPC, the
so-called nucleoporins (NUPs). With this approach the average radius of different
NUPs was measured, providing clues on the spatial arrangement of the different NUPs
in the NPC. However, in any of their reconstructions, the eight-fold symmetry of the
NPCs was not resolved (Figure 1.7a). In 2016, Dai et al. [13] averaged DNA-origami
nanostructures made on lattice patterns with a minimum grid size of 5 nm and imaged
using PAINT by the application of the EMAN.2 [37] software package (Figure 1.7b) which
is an open source image processing toolbox developed for SPA in cryo-EM. Two other
studies have pushed this further by generating 3D reconstructions of macromolecular
structures using 2D SMLM projections. Salas et al. [38] used again iMagic for SPA of 3D
DNA-origami rods and tetrahedrons imaged with PAINT (Figure 1.7c) and later, Sieben
et al. [39] took a similar approach for making 3D volume reconstructions of the human
centriole (Cep164, Cep57, Cep152, Cep63) and of the bacteriophage T4 using another
EM software package called Scipion (Figure 1.7d). In addition to the mentioned works
which directly used available EM software, there are also other attempts for 2D/3D
particle fusion [41–43] in which the researchers used customized EM routines for this
purpose.

The main drawback of these approaches is the central premise of cryo-EM based
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Figure 1.7: EM inspired particle fusion for SMLM. (a) Fusion of 4171 Nup133 particles using the iMagic software
package. Scale bars are 500 nm and 100 nm, respectively. [images adapted with permission from [35]] (b) Class
averages of “Wyss!” and lattice patterned DNA-Origami nanostructures produced using the EMAN.2 software
solution. [images adapted with permission from [13]]. 3D reconstructions of a rod, tetrahedron [38] (c) and
human centriole [39] (d) using SPA-based subroutines from EM32. [images adapted with permission from
[38, 40]

SPA: All particles are represented by 2D pixelated images and are first classified accord-
ing to the most likely projection of the underlying 3D structure. Then, averaging within
orientation classes is applied and a 3D reconstruction is made based on the estimated
orientation. All these key elements are not relevant or even directly applicable to SMLM
datasets. First, the data need not necessarily be described in terms of 2D pixelated im-
ages. In particular for 3D SLMLM data this ignores the volumetric information that is
already available in the individual point clouds. Second, the image data does not come
in the form of projections of a 3D structure on a 2D plane. Last but not least, these
approaches completely ignore the difference in image formation models, noise sources
and most importantly underlabeling.

1.3.3. PYRAMID PARTICLE FUSION
Different from the methods discussed so far, Broeken et al. [44] proposed a new
coordinate-based cost function for pairwise registration of SMLM particles and a
pyramid setup for template-free alignment of multiple particles. In this study, the
Bhattacharya cost function [45] from statistical pattern recognition was adapted as a
metric for optimizing the transformation parameters. This cost function minimizes the
sum of all localization-to-localization mismatches between the two particles, in such a
way that the weight of each couple of localizations in the sum decreases exponentially
with the distance after the transformation. In this way, outlier localizations are ignored
in the minimization. Another feature of this cost function is that it can properly consider
the heterogeneity and the anisotropy of 2D/3D localization uncertainties by using these
uncertainties in the exponential weighting of the localization-to-localization distances.
This cost function is defined as:

D =
Kt∑

i=1

Km∑
j=1

exp
(−(~xt ,i −M(~xm, j ))T (Σt ,i +RΣm, j RT )−1(~xt ,i −M(~xm, j ))

)
, (1.4)
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in which~xt ,~xm ∈ Rn are the localization coordinates of the two particles (t and m) with
Kt and Km localizations, Σt ,Σm ∈ Rn×n the corresponding uncertainties of the form Σ=
diag(σ2

1, · · · ,σ2
n). Here, the particle ~xm is transformed according to the function M(~x) =

R~x +~s that applies rotation (R) and translation (~s) to position~x.
Unfortunately, the double summation in this cost function makes it computationally

expensive (O(Kt Km)) for particles with large numbers of localizations. For example, in
PAINT this can be ∼3000 for a particle with several tens of binding sites as each binding
site is imaged multiple times. Moreover, this cost function is only suitable for pairwise
registration. In this work, these two problems were overcome by choosing a template as
one of the inputs to the cost function, which in this case was the eight-fold NPC structure
with only eight points. In this way, ∼8000 images of localized Nup133 proteins in the
NPC of Hela cells were fused [44]. It was further suggested (but not implemented) to
make the approach template-free by pairwise registration of all the initial particles to
form a second layer of pairwise fused particles, and subsequently repeating the process
until only a single superparticle remains (Figure 1.8a). The computational complexity
of such a pyramid registration scheme is quadratic in the number of particles, which
together with the complexity of Bhattacharya cost function is a roadblock for a practical
implementation, despite the great promise of being template-free.

a b

Figure 1.8: Schematic of pyramid registration. (a) Full pyramid as suggested in [44]. (b) Simplified pyramid.

1.3.4. ACCELERATED PYRAMID PARTICLE FUSION
Our first attempt to realize a template-free particle fusion method was built upon the
pyramid approach as suggested in [44]. The idea was to optimize the pyramid approach
together with an acceleration for the cost function optimization. First, the pyramid
structure was simplified by registering each particle to only one other particle in each
layer (Figure 1.8b). This resulted in a better scaling of the computational complexity
with the number of particles, namely as O(log(N )). Furthermore, the particles were
shuffled randomly in each layer in order to prevent biases. Then, the search space of
the Bhattacharya cost function was reduced by pairwise pre-alignment of all particles
using a fast Gaussian mixture model (GMM) registration approach [46]. In this method
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all localization data are given a constant uncertainty equal to the ensemble mean value.
Multiple initializations of this GMM approach provided several candidate rigid trans-
formation parameters out of which the best was chosen by evaluating the Bhattacharya
cost function. Figure 1.9 shows the result of fusing three experimental datasets and three
corresponding simulated datasets of DNA-origami nano-structures at different labeling
densities, forming the letters “MPI”, and “LMU” and a grid structure with 20 nm bind-
ing site spacing. The experimental datasets were measured, and the simulated datasets
were modeled, using the PAINT technique. The experimental datasets consisted of 800
particles, the simulated datasets of 256 particles.

It was found that the accelerated pyramid particle fusion resulted in a good quality
superparticle provided that the quality of the initial particles was sufficiently good (Fig-
ure 1.9a-d), i.e. for a density of labeling (DOL) of about 70% or higher. Alas, it turned out
to have shortcomings that made the method less applicable for realistic experimental
conditions, which typically entail a lower labeling density (Figure 1.9e-f). First, features
of the superparticle at the top of the pyramid can be traced back to one pair of particles
in the first layer. If this pair is of low quality, then the whole pyramid will be built upon
this poor-quality registered pair of particles. Any registration error at these lower layers
will be propagated to upper layers and since there is no feedback loop for correction, the
error can even be amplified. Second, at the first layer of this accelerated pyramid ap-
proach, we only performed N /2 pairwise registrations out of N (N −1)/2 available pairs.
This means that a large amount of information is discarded which could be very useful
for improving robustness at poor imaging conditions.

1.4. RESEARCH QUESTIONS AND THESIS OUTLINE
The goal of this thesis is to overcome the drawbacks of the existing methods for particle
fusion in SMLM. Specifically, the new method must address several key issues that are
particular to SMLM data.

• It is desirable that the new approach dedicated to SMLM properly takes into ac-
count localization data at the highest precision, i.e. as point clouds rather than
rendered images on a pixel or voxel grid.

• The fusion pipeline should also incorporate the corresponding, possibly
anisotropic, localization uncertainties.

• Ideally, it should not need any prior knowledge of the underlying structure, but
optionally be able to exploit geometrical characteristics like symmetry.

• It is essential that the algorithm can handle both 2D and 3D data.

• Considering the limited quality of typical experimental SMLM data arising from
e.g. a low labeling density, the method should exploit the maximum information
that is available from the data to compensate for the missing information.

• Each SMLM modality, like STORM and PAINT, exhibits different statistical prop-
erties in the resulting localization data. The envisioned particle fusion method
should properly handle these differences or not be sensitive to them.
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In chapter 2, we present a solution for template-free fusion of 2D SMLM particles
and evaluate its performance on simulated and experimental datasets generated and ac-
quired using STORM and PAINT techniques, respectively. Next in chapter 3, we extend
our pipeline to 3D and show how particle fusion can enable structural analysis of macro-
molecular complexes such as the NPC. Finally, we outline a summary of the conclusions
and both a short-term and long-term outlook to particle fusion in SMLM in chapter 4.

20 nm10 nm10 nm

10 nm
80% DOL 50% DOL 30% DOL

d e f

a b c

Figure 1.9: Accelerated pyramid registration of experimental (a-c) and simulated (d-f) DNA-Origami nanos-
tructures imaged using PAINT. [Data courtesy of Ralf Jungmann]
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2
TEMPLATE-FREE 2D PARTICLE

FUSION IN LOCALIZATION

MICROSCOPY

Current methods for fusing multiple localization microscopy images of a single underlying
structure can improve signal-to-noise ratio and resolution, but suffer from template bias
or sensitivity to registration errors. We present a template-free particle fusion based on an
all-to-all registration, which provides robustness against individual mis-registrations and
underlabeling. We achieve 3.3 nm FRC image resolution from fusing 383 DNA-origami
nanostructures with 80% labeling density, to 5.0 nm for 30% labelling.

This chapter has been published in Nature Methods volume 15, pages 781−784 (2018) [1].
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2.1. INTRODUCTION

S INGLE molecule localization microscopy (SMLM) provides the ability to image well
below the diffraction limit [2]. The resolution in the final reconstructed image is lim-

ited by the localization uncertainty and the emitter density down to about 20 nm [3].
The fusion of multiple acquisitions into one hyper-resolved reconstruction can mitigate
these limiting factors when many identical copies of the same structure (particle) can
be imaged [4, 5]. This final reconstruction has effectively many more localizations than
each individual SMLM image, which results in a better signal-to-noise-ratio (SNR) and
hence effectively a better resolution. This approach is similar to single particle analysis
(SPA) in cryo-electron microscopy (cryo-EM) [6, 7].

A few studies have applied SPA to SMLM despite fundamental differences in image
formation [5, 8–11]. Most importantly, fluorescent labeling is often incomplete and only
30-70% density of labeling (DOL) is typically achieved [12]. Statistical variations in local-
ization uncertainty, false positive localizations [13, 14] and repeated localizations of the
same fluorophore are additional complications compared to cryo-EM.

Methods for data fusion for SMLM are known that use a template [4, 5, 9, 15] for align-
ment, which have the risk of generating a structure that is biased towards this template
[16]. A template-free pyramid registration approach for SMLM datasets [15] registers
N particles pairwise into N − 1 reconstructions, a second set of pairwise registrations
reduces this to N −2 reconstructions, etc. This method, as any iterative method of com-
bining pair-wise registrations, suffers from a large sensitivity to registration errors in the
bottom layer of the pyramid, which propagate into subsequent layers of the procedure.

Here, we present a particle fusion approach which assumes no prior knowledge of
the structure to be imaged (template-free), that works directly on the localization data
(including the uncertainties), and that is robust against registration errors and underla-
beling. The key idea is to use an all-to-all registration procedure, in which each particle
is registered to all the others, implying N (N − 1)/2 pair registrations for N given parti-
cles. This generates the maximum information that can be extracted from aligning N
particles.

Each pair registration results in an estimate of the relative orientation and position
of the two particles. What is needed, however, are the N absolute orientations and po-
sitions of all particles. For this step we utilize a technique from the field of computer
vision in which camera position and orientation are estimated from a sequence of im-
ages taken from a scene (“structure from motion”) [17]. Lie-algebraic representations
of the transformation parameters (rotations and translations) are averaged in this tech-
nique, providing robustness to outlier pair registrations (see for details subsubsection a).
In this way, we make optimal use of the very large redundancy in the N (N−1)/2 pair reg-
istration parameters, and overcome the main flaw of any iterative registration method. A
critical improvement over [17] is the use of a sparsity promoting L1 norm (see Methods
section).

The performance is further improved by making use of self-consistency. The found N
absolute transformation parameters are used to retrodict the N (N −1)/2 relative trans-
formation parameters, which can then be compared to the values found from the all-
to-all registration. Registration pairs with a deviation in these relative transformation
parameters that is too high (defined by a suitable threshold) are discarded for a second
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round of Lie-algebraic averaging. This removal of outlier registration pairs results in a
reconstruction that is used in a final step as a data-driven model to bootstrap the regis-
tration process. This last step is especially effective for low DOL.

The major drawback of all-to-all registration is the computational cost, which scales
as N 2 instead of as N for a template-based registration. Therefore, we have devised a
computationally efficient implementation of the registration algorithm. Starting point is
the Bhattacharya cost function [15]:

D =
Kt∑

i=1

Km∑
j=1

exp
(−(~xt ,i −M(~xm, j ))T (Σt ,i +RΣm, j RT )−1(~xt ,i −M(~xm, j ))

)
, (2.1)

where the two particles t and m are represented by Kt and Km localizations, with~xt ,~xm ∈
Rn the localization coordinates of the two particles (n is the number of spatial dimen-
sions), Σt ,Σm ∈ Rn×n the corresponding uncertainties of the form Σ = diag(σ2

1, · · · ,σ2
n)

and M(~x) = R~x +~s the function that applies rotation (R) and translation (~s) to position
~x. This cost function has the advantage that it works directly on localization data, elim-
inating the need for a pixelated representation of the SMLM data. Furthermore, it can
take into account (varying and anisotropic) localization uncertainties. In order to re-
duce the computational cost, we prealign the particles using a fast Gaussian mixture
model (GMM) based registration method [18] (Methods section for details). We further
speed-up the computation by implementing both the GMM and the Bhattacharya cost
function evaluation on a GPU.

2.2. RESULTS
We have tested our method on three different datasets with ∼80%, ∼50% and ∼30% DOL.
The datasets contain 2D DNA origami nanostructures with 37 designed binding sites
on a hexagonal grid with 5 nm spacing displaying the letters TUD (Figure 2.1a). These
were imaged using DNA-PAINT [10] (see Methods section) resulting in an SMLM im-
age (see Figure 2.1b-d for part of the full field of view). Manual segmentation of the
80% DOL dataset resulted in 383 instances of the imaged logos that were fed into the
all-to-all registration pipeline (Figure 2.1e). The average number of localizations per
particle is around 2060 and the mean localization uncertainty is 0.81± 0.26 nm. Fig-
ure 2.1f shows our final reconstruction, which has an excellent correspondence to the
designed origami. The image resolution, quantified with the Fourier Ring Correlation
[3] (FRC) value is 3.3 nm for the reconstruction (see Figure 2.1g), a value close to λ/175
(with λ= 580 nm the fluorescence emission wavelength). The reconstruction quality at
the outside of the origami is consistent with the low incorporation efficiency of strands
on the outside of origami’s as observed earlier [19].

The proposed particle fusion algorithm was further benchmarked with lower DOL
PAINT data. Figure 2.2 illustrates the evolution of the reconstruction through the differ-
ent steps of the fusion pipeline. These were obtained by fusing (manually segmented)
442 (Figure 2.2a-c) and 549 (Figure 2.2d-f) TUD logos for the 50% and 30% DOL datasets.
With an average number of localizations per particle of 630 and 453 for 50% and 30%
DOL, respectively, we were able to reconstruct the logo, which is unrecognizable in the
raw data (Figure 2.2c, f). The final reconstructions consist of around 280,000 and 250,000
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Figure 2.1: Template free 2D particle averaging for localization microscopy. (a) Schematic representation of
the DNA origami for a grid structure designed to carry 37 DNA-PAINT docking sites of the logo “TUD”. Strands
are color-coded to denote strand extensions. (b) Regions of interest of the reconstructed DNA-PAINT SMLM
image of many particles. (c, d) Highlighted areas in b depicting similar copies of the structure with different
orientation. (e) All-to-all registration schematic showing all N (N − 1)/2 pairwise registrations (red crosses).
The N absolute registration parameters (translation and rotation) are robustly obtained from the redundant
relative registration parameters. (f) Final reconstruction as a result of fusing 383 individual particles. (g) The
average Fourier ring correlation (FRC) curve the final reconstruction in f showing an image resolution of 3.3±
0.3 nm.

localizations, respectively. The fusion of raw particles leads to an FRC resolution of 3.5
nm and 5.0 nm for 50% and 30% DOL, respectively. We have also compared our results
with the cryo-EM software package EMAN.2 [6]. While the reconstruction for 50% DOL
is similar in visual appearance to our approach, EMAN.2 fails to produce any part of
the logo for 30% DOL (compare Figure 2.2f, l). The final reconstruction quality of our
method seems to be limited by residual drift on the order of 1-2 nm, assessed by visual
comparison with simulated data (Figure A1). This is further supported by simulation
results without drift (Figure A2). Additional simulations show that average localization
uncertainties larger than the binding site distance result in unresolvable binding sites in
the final reconstruction even with perfect registration (Figure A3).

Although our particle fusion method performs robustly even for low DOL, it cannot
neutralize the effect of false positive localizations. We use conventional single emitter
fitting, followed by localization filtering based on the local sparsity of localization events
(see Methods section for details). Alternatively, methods that better handle spatially
proximate emitters [20] or detect and remove false positives [14] can be used (Figure A4).

In addition to the above PAINT data, we applied our method to experimental and
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Figure 2.2: (a-b) Two example raw particles with 50% DOL. (c-e) The evolving super-particle for the dataset
with 50% DOL. All-to-all registration and averaging of 442 logos with 50% DOL resulted in the blurry recon-
struction shown in c. This was further improved by removing outlier registrations in d which is subsequently
used as the data-driven model in an all-to-template registration (bootstrapping). The final reconstruction in e
illustrates the superparticle with around 400,000 localizations. (f) Reconstruction using EMAN.2 software with
253 included particles and the minimum of 3 classes for the class averaging. (g-h) Two example raw particles
with 30% DOL. (i-k) The evolving superparticle for the dataset with 30% DOL. Similar to the first row, each
image depicts the output of each step of the particle fusion pipeline. The final reconstruction in k) is the re-
sult of fusing 549 logos with around 250,000 localizations. (l) Reconstruction using EMAN.2 software with 113
included particles and the minimum of 3 classes for the class averaging. EMAN.2 fails to produce any mean-
ingful reconstruction for 30% DOL. In all of the reconstructions in each row, the number of localizations is
the same except for the EMAN.2 where classification excludes 42% and 79% of the data for 50% and 30% DOL
respectively.

simulated localization data that include bleaching, and that therefore have a different
statistical distribution of localization events per fluorophore [21]. We analyzed STORM
images acquired from the integral membrane protein gp210 in the NPC (data described
previously [4]) from which we manually segmented 304 NPCs with on average 313 local-
izations. Figure 2.3a shows our reconstruction which reproduces the ring structure of
the NPC without any prior assumptions. The hotspot in Figure 2.3a-b is a reconstruc-
tion artefact caused by the nonuniform distribution of localizations over the 8 sites of
each individual NPC. This statistical variation is enhanced during the registration step
as rings are most likely registered such that the sites with more than the average number
of localizations become aligned. This artefact can be removed by taking into account the
symmetry as prior knowledge (but not any other structural information). We randomly
add multiples of 2π/8 to the obtained absolute estimated rotation angles, leading to the
uniform distribution as depicted in Figure 2.3c-d. Using EMAN.2 we obtained the aver-
ages shown in Figure 2.3e-f, exhibiting a set of 8 blobs with less visibility compared to our
method, and suffering from the same hotspot artefact. We did not succeed to include the
symmetry in EMAN.2 as there is no access to the estimated absolute angles and no way
to explicitly impose the symmetry.

We also tested the applicability of our method to simulated STORM images (see sub-
section 2.3.6). We generated TUD logos of 65% DOL with three different bleaching rates,
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Figure 2.3: (a) Fusion of 304 NPCs with our method retrieves the 8-fold symmetric ring structure without prior
knowledge. (b) Localization distribution over azimuthal angles of the reconstruction in a). (c) Reconstruc-
tion after incorporating the 8-fold symmetry in the registration, solving the hotspot artefact. (d) Localization
distribution over azimuthal angles of the reconstruction in c). (e) Reconstruction by EMAN.2 resulting in 139
included particles (minimum of three classes for class averaging). (f) Azimuthal intensity plot of e). The same
hotspot artefact appears, and the visibility of the 8 blobs is less with EMAN.2 compared to our method.

corresponding to average number of localizations per sites of ∼33, ∼13 and ∼7, respec-
tively. Our method successfully reconstructs the logo for all three cases, whereas EMAN.2
only succeeds at the lowest bleaching rate (Figure A5). We compared STORM to PAINT
data keeping labeling density and average number of localizations per particle the same
(Figure A6), indicating that STORM images require a higher labeling density for achiev-
ing a successful reconstruction (∼50% DOL compared to ∼30% for PAINT). We attribute
this to bleaching effects, which skew the distribution of localizations per binding site,
effectively lowering the fraction of sites with sufficiently high labeling density.

In summary, we have developed a template-free 2D particle fusion algorithm, which
is robust to poor experimental conditions. We benchmarked the performance on PAINT
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data, where we achieved a resolution of 3.3 nm for 80%, 3.5 nm for 50% and 5.0 nm for
around 30% DOL. We successfully reconstructed an 8-fold symmetric ring structure from
STORM data without a priori structural information. The framework can be generalized
to treat 3D data as each subcomponent of the pipeline is not restricted to 2D.

2.3. METHODS

2.3.1. MATERIALS

Unmodified, dye-labeled and biotinylated DNA oligonucleotides were purchased
from MWG Eurofins. Streptavidin was purchased from Invitrogen (catalog num-
ber: S-888). BSA-Biotin was obtained from Sigma-Aldrich (catalog number: A8549).
Coverslips were purchased from Marienfeld (Cover slips 18 18 mm, #1.5, catalog
number: 0107032). Microscopy slides were ordered from Thermo Fisher Scientific
(catalog number: 10756991). Double-sided adhesive tape was purchased from Scotch
(catalog number: 665D). Epoxy glue was ordered from Toolcraft (catalog number:
TC-EPO5-24). M13mp18 scaffold was obtained from New England BioLabs (catalog
number: N4040s). Freeze ‘N Squeeze columns were ordered from Bio-Rad (catalog
number: 7326165). Agarose was obtained from Biomol (catalog number: 01280.100).
50×TAE Buffer was ordered from Fluka Analytical (catalog number: 67996-10L-F).
SYBR safe DNA gel stain was purchased from Invitrogen (catalog number: SS33102).
DNA gel loading dye was ordered from Thermo Fisher Scientific (catalog number:
R06111). Protocatechuate 3,4-Dioxygenase pseudomonas (PCD) (catalog number:
P8279), 3,4-Dihydroxybenzoic acid (PCA) (catalog number: 37580-25G-F) and (+−)-
6-Hydroxy-2,5,7,8-tetra-methylchromane-2-carboxzlic acid (Trolox) (catalog number:
238813-5G) were obtained from Sigma. 1M Tris pH 8.0 (catalog number: AM9856), 1M
Magnesium (catalog number: AM9530G), 0.5 M EDTA pH 8.0 (catalog number AM9261)
and 5 M NaCl (catalog number: AM9759) was obtained from Ambion, H2O (catalog
number: 10977-035) was ordered from gibco. Tween 20 was ordered from Sigma-Aldrich
(catalog number: p2287).

2.3.2. MICROSCOPY SETUP

DNA-PAINT experiments were carried out on an inverted Nikon Ti-Eclipse micro-
scope (Nikon Instruments) with the Perfect Focus System. For the experiment, an
oil-immersion objective (Plan Apo 100x, numerical aperture (NA) 1.49, oil, Nikon
Instruments) was used. As excitation laser, a 561 nm (200 mW nominal, Coherent)
was used. Excitation light was filtered with a laser clean-up filter (zet561/10x, Chroma
Technology Corp). As dichroic a laser dichroic mirror was used (zt561rdc, Chroma Tech-
nology Corp). Fluorescence light was spectrally filtered with an emission filter (et575lp,
et600/50m, Chroma Technology Corp.) and imaged on a scientific complementary
metal-oxide-semiconductor (sCMOS) camera (Zyla 4.2, Andor Technologies).

2.3.3. DNA ORIGAMI SELF-ASSEMBLY

The DNA origami structures were formed in a one-pot reaction with a 50 µl total volume
containing 10 nM scaffold strand (M13mp18), 100 nM core staples, 1 µM biotinylated
staples and 1 µM of the staples extended with DNA-PAINT docking sites for the 20 nm
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grid and 10 nm grid drift markers. For the 80% DOL case of the TUD logo, a 1µM concen-
tration of staples extended for DNA-PAINT was used. In the 50% DOL case of the TUD
logo, a mixture of 0.8 µM extended staples and 0.2 µM not extended staples was used.
For the 30% DOL case of the TUD logo, a mixture of 0.6 µM extended staples with 0.4 µM
not extended staples was used. The folding buffer was 1x TE buffer with 12.5 mM MgCl2.
The structures were annealed using a thermal ramp. First, incubating for 5 min at 80 ◦C,
then going from 65 to 4 ◦C over the course of 3 hours. After self-assembly, the structures
were mixed with 1x loading dye and then purified by agarose gel electrophoresis (1.5%
agarose, 0.5x TAE, 10 mM MgCl2, 1x SYBR Safe) at 3 V/cm for 3 hours. Gel bands were
cut, crushed and filled into a Freeze ‘N Squeeze column and spun for 5 min at 1000xg
at 4 ◦C. As DNA-PAINT docking site a TT spacer followed by a 9 nucleotide 3’ extension
was used (5’-staple-TT-ATACATCTA-3’). The imager was the 9-nucleotide reverse com-
plement of the docking site with a Cy3b fluorescent molecule attached at the 3’ end (5’
TAGATGTAT-Dye-3’).

2.3.4. SUPERRESOLUTION DNA-PAINT IMAGING WITH DNA ORIGAMI

For chamber preparation, a piece of coverslip (no. 1.5, 18 x 18 mm2, ∼0.17 mm thick)
and a glass slide (3 x 1 inch2, 1 mm thick) were sandwiched together by two strips of
double-sided tape to form a flow chamber with inner volume of ∼20 µl. First, 20 µl of
biotin-labeled bovine albumin (1 mg/ml, dissolved in Buffer A (10 mM Tris-HCl pH 7.5,
100 mM NaCl, 0.05% Tween 20, pH 7.5)) was flown into the chamber and incubated for 2
min. Then the chamber was washed using 40 µl of Buffer A. Second, 20 µl of streptavidin
(0.5 mg/ml, dissolved in Buffer A) was then flown through the chamber and incubated
for 2 minutes. Next, the chamber was washed with 40 µl of Buffer A and subsequently
with 40 µl of Buffer B (5 mM Tris-HCl pH 8, 10 mM MgCl2, 1 mM EDTA, 0.05% Tween
20, pH 8). Then ∼100 pM of the TUD DNA origami structures, ∼100 pM of the 10 nm
grid DNA origami structures and ∼200 pM of the 20 nm DNA origami structures were
flown into the chamber and allowed to bind for 2 minutes. Afterwards the chamber was
washed with 40 µl of Buffer B again. Finally, the imaging buffer with Buffer B and 1x
Trolox, 1x PCA, and 1x PCD12 with the Cy3b-labeled imager strand was flown into the
chamber. The chamber was sealed with epoxy before subsequent imaging. For the 30%
and 80% DOL experiment, an imager concentration of 1 nM was used. For the 50% DOL
experiment, an imager concentration of 2 nM was used. At the end, the actual labeling
densities were determined by counting the number of occupied sites on each particle
versus the number of designed sites on the logo, i.e. 37 binding sites.

For all three experiment (80%, 50% and 30% DOL) an Andor Zyla 4.2 with a readout
bandwidth of 200 MHz at 16 bit was used. A 2×2 pixel binning was applied resulting
in an effective pixel size of 130 nm (taking the 100x magnification of the microscope
into account). The recorded field of view was 512×512 pixel (66.5 µm ×66.5 µm). The
acquisition frame rate of 2.86 Hz for the 50% and 30% DOL case and 3.33 Hz for the 80%
DOL case was used over the course of 100,000 frames. The excitation intensity was ∼1.86
kW/cm2 at 561 nm at the sample plane.
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2.3.5. SINGLE AND MULTIEMITTER FITTING OF EXPERIMENTAL DATA

Single molecule reconstruction and drift correction was performed as described before
[10]. The average number of photons per localization events for 80%, 50% and 30% DOL
are 7.0 ×104, 4.9 ×104 and 5.3 ×104 while the background photon counts per frame per
pixel are 1.1 ×103 for the first two datasets and 0.9 ×103 for the last one respectively.
Average uncertainties are 0.96 nm, 1.33 nm and 1.28 nm for 80%, 50% and 30% DOL
datasets respectively. The uncertainties are estimated per localization from the data as
previously reported [22]. Data was postprocessed by omitting localizations with localiza-
tion uncertainties above 2 nm. In order to reduce the effect of false positive localization
in single emitter fitted dataset, we filtered 80% and 50% DOL datasets before fusion. In
each segmented particle, localizations are discarded if there are less than 10 localizations
in a circular neighborhood of radius r = 0.015 pixels around the localization of interest
(see Figure A7 for filtering effect on the final reconstruction). The effect of false positives
on 30% DOL data is less serious due to the fact that the probability of overlapping emis-
sion patterns is low. Therefore, for single emitter fitted 30% DOL data, we did not filter
the raw particles.

Multiemitter fitting was performed in the following way. Subregions identified as
containing TUD logos were selected from the raw data for multiemitter fitting. Each time
frame in each TUD containing subregion was analyzed independently. Multiemitter fit-
ting was performed by finding the posterior probability distribution of the parameters
θ = {x1, y1, I1, · · · , xN , yN , IN ,α,β,γ} using Markov Chain Monte Carlo (MCMC), where
xn , yn , In correspond to the location and intensity of the nth emitter and α, β, γ pa-
rameterize a titled plane background model. The mean and standard deviation of xn ,
yn were used for further analysis. The MCMC chain was initialized by first using a Re-
versible Jump MCMC [23] procedure to find the most probable number of emitters and
their locations. The point spread function (PSF) model used in the fitting was created
by localizing, shifting and averaging together more than 100 high signal, single emit-
ter events from the raw data. A 4x subsampled PSF was created by padding the Fourier
transform. The model of each single emitter was created by linear interpolation of the
subsampled PSF and scaling by I . The xn , yn were connected across time frames and
only binding events that spanned two or more frames were retained. False positive and
large uncertainty localizations were removed from the data. A large uncertainty was de-
fined as a standard deviation larger than 0.0075 pixels. False positives were removed by
keeping localizations if they had Nmi n number of localizations within a distance D . For
each data set, Nmi n and D were found by taking D as the median localization uncertainty
(before thresholding) and Nmi n as the median number of localizations within a distance
D . Using visual inspection of several origami structures, Nmi n and D were then adjusted
to minimize false localizations between docking stands while retaining as many localiza-
tions as possible. For 80%, 50%, and 30% DOL labelling, the values used for Nmi n and D
were 10, 10, and 9 localizations within 0.0075, 0.008 and 0.0095 pixels respectively (pixel
size 130 nm).

The final distribution of localizations per particle (Figure A8) agrees qualitatively
with the assessed DOL for the three datasets. The width of the distributions is an in-
dication that the overall distribution is a convolution of the Poissonian distribution of
the number of localizations per binding site and the distribution of active binding sites
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according to the average DOL.

2.3.6. SIMULATION SETUP
We assessed the performance of our method on simulated data to which end we gener-
ated sets of 256 TUD logos matching the experimental specifications of our setup with
100% (most optimal condition), 50% and 30% density of labeling (DOL). The simulation
creates a DNA origami design pattern on which docking sites are defined as in the actual
design (Figure 1a). Our model consists of 37 binding sites arranged on a 5 nm hexag-
onal grid to form the shape TUD. Based on the DOL, a fraction of these binding sites,
which is drawn from a uniform distribution, are occupied for each simulated structure.
For simulated PAINT datasets, Mi localizations are assigned to each site according to a
Poisson distribution with a mean value of Nframe/(Ton +Toff) where Nframe and Ton/Toff

are the number of recorded frames and the mean lifespan of an on/off fluorescent label,
respectively. For STORM data, Mi is computed as the minimum of Mi ;b and 1+ Mi ;g

where Mi ;b is a random variable drawn from a Binomial distribution with Nframe num-
ber of trials and a success probability of 1−e−kon (kon = 1/Ton) and Mi ;g is drawn from a
geometric distribution with probability parameter of 1−e−kb with kb as the bleach rate.
Here, we use Nframe = 100,000 and 1,000 for PAINT and STORM datasets, respectively,
and Ton = 3 and To f f = 2,000 for both techniques. In reality, finite length flexible linkers
cause fluorophores to move over the surface of a hemisphere located at each binding
site and therefore only their 2D projection is recorded. We set the linker size to 0.66 nm.
With nph = 5,000 detected signal photons, nbg = 1 background photons per pixel, back-
projected pixel size of 130 nm and σ0 = 1.066 px nominal spot width, lateral localization
uncertainties are computed using equation 6 from ref. [24]. This results in an effective
(average) localization uncertainty of ∼2.3 nm. This uncertainty is larger than the pure
experimental localization uncertainty from the photon count, but incorporated to some
degree the residual drift in the experimental data. Subsequently, these uncertainties are
used to randomly displace the previously computed localizations around each binding
site, according to a normal distribution. Finally, all the generated particles are randomly
rotated within 0 and 360 degree and translated within a range of 10 nm around the cen-
ter, according to a uniform distribution.

2.3.7. ALL-TO-ALL REGISTRATION
The developed particle fusion algorithm consists of four main building blocks: 1) com-
puting the upper triangular matrix A that contains all relative registrations (Figure 1e),
which we call the all-to-all registration matrix, 2) calculating the absolute orientations
from these relative elements, 3) registration outliers removal and 4) bootstrapping the
registrations.

RELATIVE REGISTRATIONS

Each element of the matrix A is obtained by optimizing equation 2.1 in a coarse to fine
manner. We align each pair of particles using the Gaussian mixture model (GMM) reg-
istration method [18] with multiple initial angles. This provides us with a set of trans-
formation parameters (rotation angle, translation vector) out of which we select the set
that maximizes the Bhattacharya cost function as the final value for the set of relative
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transformation parameters for that pair. The GMM registration method minimizes the
special case of the Bhattacharya cost function in which all localization uncertainties are
equal:

D =
Kt∑

i=1

Km∑
j=1

exp
(
−∥∥~xt ,i −M(~xm, j )

∥∥2 /2σ2
)

. (2.2)

For this case, there exists an analytical approximation to the problem with only linear
computational complexity [18]. Here, σ is a tuning parameter which is dataset specific
and which we set empirically to 0.01× l , where l is the camera pixel size in nm, for 80%
and 50% DOL and 0.1× l for 30% DOL experimental data. The GMM cost function is
optimized using the interior-point algorithm for multiple initial angles ranging from −π
to π evenly spaced by π/4. The Bhattacharya cost function equation 2.1 is evaluated for
each of the local optima of the GMM cost function that are found and the set of trans-
formation parameters with the optimum Bhattacharya cost function is finally selected.
This procedure results in an all-to-all registration matrix A with (N (N −1))/2 relative reg-
istration parameters. Each element ai , j , i , j ∈ {1, · · · , N }, ∀ j > i , of this matrix is the set of
estimated relative rigid transformation parameters Mi j , that aligns particle i to particle
j :

Mi j =
[

Ri j ti j

0 1

]
, (2.3)

with Ri j ∈ SO(n) and ti j ∈ R(n×1) being the relative rotation matrix and the translation
vector, respectively, in n spatial dimensions.

FROM RELATIVE TO ABSOLUTE TRANSFORMATION PARAMETERS

In order to properly align all particles without bias towards the final reconstruction, we
need to estimate the absolute transformation parameters Mi for i = 1, · · · , N . The con-
sistency equation that relates the relative parameters to absolute parameters is given by:

Mi j = M j M−1
i ,∀ j > i . (2.4)

Direct linear numerical solution of equation 2.4 is difficult as the Mi contain a rotation
matrix which is modulo 2π. To handle this problem, we use the (smooth) Lie-algebraic
representation of the transformation [17, 25] which solves the following optimization
problem instead:

argmin
M1,··· ,MN

∑
i , j

i> j

ρ
(
d(Mi j , M j M−1

i )
)

, (2.5)

with distance function d(X ,Y ) = ∥∥log(Y X −1)
∥∥

F , with F denoting the Frobenius norm
(square root of the sum of absolute squares of the elements of the matrix) and ρ(x) =
|x| the L1 loss function. The use of this norm makes the procedure robust to outliers
[26]. This is important as the registration can be trapped in a local minimum for nearly
symmetric particles at 180 degree rotations. We solve the optimization problem 2.5 using
an iterative gradient descent approach [17, 27]. For our 2D geometry, we use as input a
matrix with 4×4×N (N−1)/2 elements which holds the N (N−1)/2 stack of all the relative
matrices Mi j of size 4×4 together with the indicator matrix of size 2×N (N −1)/2 which
stores the correspondence indices of N (N −1)/2 particle pairs.
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REMOVAL OF OUTLIER REGISTRATIONS VIA SELF-CONSISTENCY

After the first round of Lie-algebraic averaging, N sets of absolute transformation param-
eters are obtained. By plugging them into equation 2.4, (N (N−1))/2 relative transforma-
tion parameters M̂i j are obtained, which can differ from the parameters Mi j estimated
from the all-to-all registration. It appears that these differences are mostly in the rota-
tion rather than the translation; hence, we only do this consistency check based on the
R̂i j (or equivalently in 2D the angle α̂i j ).

Figure A9 shows the histograms of the quantity
∣∣α̂i j −αi j

∣∣ for different DOL. Next to
the correct pair registrations (the central peak) there are clearly outliers. Furthermore,
the outlier fraction increases when the DOL decreases. Removal of these outlier registra-
tions is therefore a mandatory. We have implemented this by excluding registration pairs
with

∣∣α̂i j −αi j
∣∣> ε, with ε a threshold parameter, for a second round of Lie-algebraic av-

eraging.
Assuming that the all-to-all registration matrix A is a graph in which each matrix

element Ai j is an edge that connects node (particle) i to node j , we can perform the
optimization as long as this graph is connected, i.e. for every pair there is at least one
path connecting them. Intuitively, the outlier removal step is equivalent to optimizing
this graph for the most consistent path through all the nodes. For very low DOL, most
of these paths are inconsistent. Therefore, a smaller threshold results in a better recon-
struction as long as the number of the remaining new relative parameters is larger than
N − 1. In this work, we set the threshold parameter ε = 5 degree as it is the smallest
angle that still keeps the graph of all-to-all registration for the worst dataset (30% DOL)
connected.

This step does not remove particles from the fusion but only filters the redundant set
of registration parameters. The large fraction of outlier pair registrations is the reason
why the redundancy of the all-to-all registration is needed for achieving a robust fusion
pipeline, and why a pyramid registration would lead to an inferior reconstruction (be-
cause of the error propagation from the randomly picked wrong pair registrations at the
bottom layer of the pyramid).

It worth mentioning that this step is actually a simplified variant of the RANSAC
based motion averaging scheme as detailed in ref. [27]. We obtain, however, the ab-
solute angles in step 2 using all available relative angles instead of computing the initial
absolute angles based on the minimum number of relative angles, i.e. N−1. This is espe-
cially important for very low DOL datasets as the result of averaging only N −1 random
relative angles is too corrupted to provide a good initial start for RANSAC.

BOOTSTRAP REGISTRATIONS

The above steps already provide a good reconstruction. It is, however, beneficial to use
the outcome as a data driven model/template to realign all individual particles to this
model, i.e. bootstrapping the registrations [27]. The all-to-template registration, in this
step, is done based on registering every single particle to a resampled version of the
super-particle from step 3. The resampling is crucial as we want to do the realignment
based on the most consistent localizations in the dense areas of the previous reconstruc-
tion. We randomly draw samples from the total set of localizations with a probability
density function proportional to the density of localizations. We set the number of re-
sampled localizations to 5,000 for the experimental data as it represents about 2 particles
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for 80% DOL and 5-10 particles for 50% and 30% DOL, which already gives a good over-
all shape. This value must not be chosen too large as to avoid overfitting to noise (false
positives in the data). For the 50% DOL dataset, we obtain a better reconstruction when
the bootstrapping is repeated twice (Figure A10). It appears that after iterating twice, the
registration has converged. For 100% DOL, the reconstruction already converges at the
first iteration whereas for 30% DOL, the image gets worse due to the two very dense ar-
eas. Finally, we registered each of the raw particles to the data-generated template using
the routine as described in step 1.

We benchmarked the performance of our proposed registration method on simu-
lated 100% DOL data for which we have the groundtruth registration parameters. Fig-
ure A11 shows that the histogram of the overall error between the final estimated angles
and the ground-truth from simulation. The histogram fits a normal distribution with a
standard deviation of 0.9 degree. Considering the dimensions of the origami, this er-
ror will result in a displacement of ±0.55 nm at the edges of the logo at worst case, in-
deed smaller than the minimum binding sites distance and approximately equal to the
average localization uncertainty. The corresponding reconstruction in Figure A2g also
indicates a perfect match with the origami design.

2.3.8. COMPUTATIONAL COMPLEXITY
We achieved a complete all-to-all registration of 383 structures (resulting in ∼73,000 pair
registrations) of on average 2,060 localizations per origami (80% DOL) on four K40c Tesla
cards on a 40 core server (Xeon E5-2670v3) in 2 hours and in 40 hours on a cheap GPU
in a regular desktop PC (Quadro K620, 2 GB RAM, 8 core Xeon E5-1660v3). These run
times correspond to the most computationally expensive dataset. However, in practice
for highly labeled data, averaging a small subset of registrations can yield a fast but high
quality reconstructions. Figure A12 shows the reconstruction of 80% DOL data with only
∼2% of the registration pairs with a computational time of ∼10 minutes.

REFERENCES
[1] Hamidreza Heydarian, Florian Schueder, Maximilian T. Strauss, Ben van

Werkhoven, Mohamadreza Fazel, Keith A. Lidke, Ralf Jungmann, Sjoerd Stallinga,
and Bernd Rieger. Template-free 2d particle fusion in localization microscopy. Na-
ture Methods, 15(10), 2018.

[2] Teresa Klein, Sven Proppert, and Markus Sauer. Eight years of single-molecule lo-
calization microscopy. Histochemistry and Cell Biology, 141(6), 2014.

[3] Robert P. J. Nieuwenhuizen, Keith A. Lidke, Mark Bates, Daniela Leyton Puig, David
Grünwald, Sjoerd Stallinga, and Bernd Rieger. Measuring image resolution in opti-
cal nanoscopy. Nature methods, 10(6), 2013.

[4] Anna Löschberger, Sebastian van de Linde, Marie-Christine Dabauvalle, Bernd
Rieger, Mike Heilemann, Georg Krohne, and Markus Sauer. Super-resolution imag-
ing visualizes the eightfold symmetry of gp210 proteins around the nuclear pore
complex and resolves the central channel with nanometer resolution. Journal of
Cell Science, 125(3), 2012.



2

36 REFERENCES

[5] Anna Szymborska, Alex de Marco, Nathalie Daigle, Volker C. Cordes, John A. G.
Briggs, and Jan Ellenberg. Nuclear pore scaffold structure analyzed by super-
resolution microscopy and particle averaging. Science, 341(6146), 2013.

[6] Guang Tang, Liwei Peng, Philip R. Baldwin, Deepinder S. Mann, Wen Jiang, Ian Rees,
and Steven J. Ludtke. Eman2: An extensible image processing suite for electron
microscopy. Journal of Structural Biology, 157(1), 2007.

[7] Mikhail Kudryashev, Daniel Castaño-Díez, and Henning Stahlberg. Limiting factors
in single particle cryo electron tomography. Computational and Structural Biotech-
nology Journal, 1(2).

[8] Schuyler B. Van Engelenburg, Gleb Shtengel, Prabuddha Sengupta, Kayoko Waki,
Michal Jarnik, Sherimay D. Ablan, Eric O. Freed, Harald F. Hess, and Jennifer
Lippincott-Schwartz. Distribution of escrt machinery at hiv assembly sites reveals
virus scaffolding of escrt subunits. Science, 343(6171):653–656, 2014.

[9] Robert D. M. Gray, Corina Beerli, Pedro Matos Pereira, Kathrin Maria Scherer,
Jerzy Samolej, Christopher Karl Ernst Bleck, Jason Mercer, and Ricardo Henriques.
Virusmapper: open-source nanoscale mapping of viral architecture through super-
resolution microscopy. Scientific Reports, 6, 2016.

[10] Joerg Schnitzbauer, Maximilian T. Strauss, Thomas Schlichthaerle, Florian
Schueder, and Ralf Jungmann. Super-resolution microscopy with dna-paint. Na-
ture Protocols, 12(6), 2017.

[11] Desirée Salas, Antoine Le Gall, Jean-Bernard Fiche, Alessandro Valeri, Yonggang
Ke, Patrick Bron, Gaetan Bellot, and Marcelo Nollmann. Angular reconstitution-
based 3d reconstructions of nanomolecular structures from superresolution light-
microscopy images. Proceedings of the National Academy of Sciences, 114(35), 2017.

[12] Anne Burgert, Sebastian Letschert, Sören Doose, and Markus Sauer. Artifacts in
single-molecule localization microscopy. Histochemistry and Cell Biology, 144(2),
Aug 2015.

[13] Sebastian van de Linde, Steve Wolter, Mike Heilemann, and Markus Sauer. The
effect of photoswitching kinetics and labeling densities on super-resolution fluo-
rescence imaging. Journal of Biotechnology, 149(4):260 – 266, 2010. BioImaging -
Contributions from Biology, Physics and Informatics.

[14] Patrick Fox-Roberts, Richard Marsh, Karin Pfisterer, Asier Jayo, Maddy Parsons, and
Susan Cox. Local dimensionality determines imaging speed in localization mi-
croscopy. Nature communications, 8, 2017.

[15] Jordi Broeken, Hannah Johnson, Diane S. Lidke, Sheng Liu, Robert P. J. Nieuwen-
huizen, Sjoerd Stallinga, Keith A. Lidke, and Bernd Rieger. Resolution improvement
by 3d particle averaging in localization microscopy. Methods and Applications in
Fluorescence, 3(1), 2015.



REFERENCES

2

37

[16] Richard Henderson. Avoiding the pitfalls of single particle cryo-electron mi-
croscopy: Einstein from noise. Proceedings of the National Academy of Sciences,
110(45), 2013.

[17] V. Govindu. Lie-algebraic averaging for globally consistent motion estimation. In
2013 IEEE Conference on Computer Vision and Pattern Recognition, volume 1. IEEE
Computer Society, jul 2004.

[18] B. Jian and B. C. Vemuri. Robust point set registration using gaussian mixture mod-
els. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8), 2011.

[19] Maximilian T. Strauss, Florian Schueder, Daniel Haas, Philipp C. Nickels, and Ralf
Jungmann. Quantifying absolute addressability in dna origami with molecular res-
olution. Nature Communications, 9(1), 2018.

[20] Fang Huang, Samantha L. Schwartz, Jason M. Byars, and Keith A. Lidke. Simultane-
ous multiple-emitter fitting for single molecule super-resolution imaging. Biomed.
Opt. Express, 2(5), May 2011.

[21] Robert P. J. Nieuwenhuizen, Mark Bates, Anna Szymborska, Keith A. Lidke, Bernd
Rieger, and Sjoerd Stallinga. Quantitative localization microscopy: Effects of pho-
tophysics and labeling stoichiometry. PLOS ONE, 10(5), 05 2015.

[22] Carlas S Smith, Nikolai Joseph, Bernd Rieger, and Keith A Lidke. Fast, single-
molecule localization that achieves theoretically minimum uncertainty. Nature
methods, 7(5):373, 2010.

[23] Sylvia. Richardson and Peter J. Green. On bayesian analysis of mixtures with an
unknown number of components (with discussion). Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 59(4), 1997.

[24] Bernd Rieger and Sjoerd Stallinga. The lateral and axial localization uncertainty in
super-resolution light microscopy. Chemphyschem : a European journal of chemi-
cal physics and physical chemistry, 15, 03 2014.

[25] Ke Ye and Lek-Heng Lim. Cohomology of cryo-electron microscopy. SIAM Journal
on Applied Algebra and Geometry, 1(1):507–535, 2017.

[26] R. Hartley, K. Aftab, and J. Trumpf. L1 rotation averaging using the weiszfeld algo-
rithm. In CVPR 2011, June 2011.

[27] Venu Madhav Govindu. Robustness in motion averaging. In P. J. Narayanan,
Shree K. Nayar, and Heung-Yeung Shum, editors, Computer Vision – ACCV 2006,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.



2

38 REFERENCES

2.A. APPENDIX

a b

c d

10 nm

Figure A1: Comparison between simulated 50% DOL samples with different average localization uncertainties
with a sample from 50% DOL experimental dataset. (a-c) Simulated samples with mean localization uncer-
tainties of 1.2 nm, 1.8 nm and 2.3 nm respectively. (d) A sample from the experimental dataset with an average
localization uncertainty of 0.8 nm. The comparison reveals that the sample from experimental dataset (d) is
more similar to figure (c) in visual appearance with larger localization uncertainty rather than figure (a). This
difference in the computed uncertainty for the experimental data is likely due to a residual drift after drift
correction of about 1-2 nm.
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a b c

d e f

g h i

10 nm

Figure A2: Particle fusion performance on 256 simulated TUD logos with different density of labeling. The
output of the algorithm at different steps of the particle fusion for (a-c) All-to-all registration outputs. (d-f)
Outlier removal. (g-i) Bootstrapping registrations. The final reconstructions in g-i are the results of fusing 256
logos with around 470,000, 230,000 and 145,000 localizations respectively. In all the reconstructions in each
column, the number of localizations is the same. A comparison of the images (a-i) and Figure 2.2 indicates a
good match between simulation and experiment. The final results in h and i, however, have better contrast
than those from experiment. This is attributed to the effects of residual drift and of false positive localizations,
which are not taken into account in the simulations.
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a b c

d e f

g h i
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Figure A3: Particle fusion performance on 256 simulated PAINT TUD logos with different photon counts and
100% DOL. (a-c) Ground-truth reconstructions for photon counts of 1000, 500 and 200 or equivalently average
localization uncertainties of 5, 7 and 11 nm, respectively. (d-f) Our reconstructions (g-i) Reconstructions using
EMAN.2 with 115, 202 and 147 included particles and the minimum of three classes for the class averaging.
While the quality of reconstructions is close to the ground-truth both for our method and EMAN.2, the dock-
ing sites are hardly resolved as the mean localization uncertainties for all datasets is larger or equal than the
minimum binding site distance (5 nm for our datasets).
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10 nm

Figure A4: Comparison between the fusion of experimental 80% DOL particles with localizations based on
single-emitter and multiemitter fitting and with and without filtering out localizations that are too far away
from any other localization. (a) Reconstruction of single emitter fitted particles without filtering (1,017,559
localizations). (b) Reconstruction of filtered (with neighbourhood parameter r = 0.015 pixels) single emit-
ter fitted particles (788,875 localizations). (c) Reconstruction of multiemitter fitted particles without filtering
(2,591,464 localizations). (d) Reconstruction of filtered (with neighbourhood parameter r = 0.015 pixels) mul-
tiemitter fitted particles with filtering (548,091 localizations). Comparing figures b and d suggests that the
combination of multiemitter fitting and filtering can yield an improved reconstruction with better resolvabil-
ity of the binding sites, probably because of a reduction of false positive localizations.
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Figure A5: The effect of bleaching rate on particle fusion performance for 65% DOL on simulated STORM-type
datasets with a photon count of 5000 and 1000 recorded frames. (a-c) Groundtruth fusion of 256 particles
with bleaching rates corresponding to an average number of localizations per biding site equal to ∼33, ∼13
and ∼7. (d-f) Our reconstructions. (g-i) Reconstructions using EMAN.2 with 95, 51 and 53 included particles
(minimum of three classes for the class averaging). A higher bleaching rate results in a lower number of local-
izations per sites and a less uniform distribution, which degrades the particle fusion performance. Our method
outperforms EMAN.2 at higher bleaching rates.
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Figure A6: Particle fusion performance comparison of our method and EMAN.2 on simulated STORM datasets
as a function of DOL (bleaching rate corresponding to an average of ∼33 localizations per binding site and 5000
photons per localization event). (a-c) Groundtruth fusion of 256 particles (d-f) Our reconstructions. (g-i) Re-
constructions using EMAN.2 with 71, 90 and 128 included particles (minimum of three classes for the class av-
eraging). With the chosen bleaching rate, the average number of localizations per particle for the three datasets
is similar to the corresponding simulated PAINT data in Figure A2. While for 100% DOL the reconstruction of
STORM data is as good as for PAINT and close to the groundtruth, successful reconstructions require a DOL of
at least ∼50%. Our method outperforms EMAN.2 for all degrees of underlabeling.
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a b

10 nm

Figure A7: The effect of the filtering setting on localizations that are too far away from any other localization on
the final reconstruction for the experimental 80% DOL dataset. (a) The fusion of 383 TUD logos filtered with
the parameter r = 3×0.0075 pixel size resulted in 939,707 localizations. (b) The fusion with filter parameter
r = 0.0075 pixel size resulted in 151,729 localizations. The figures show that decreasing the neighbourhood
parameter (r) will identify more localizations as false positives. While in figure (a) only 10% of the localizations
are discarded, more than 75% of all localizations are identified as false positives in (b), which appears too much
to be considered as a correct assessment of false positives.
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Figure A8: Histogram of the number of localizations per particle in 80%, 50% and 30% DOL datasets with fitted
normal distributions (80% DOL: mean 2.66× 103, variance 1.94× 105; 50% DOL: mean 9.85× 102, variance
3.24× 104; 30% DOL: mean 4.53× 102, variance 7.74 × 103). The variance exceeds the mean as the overall
distribution is a convolution of the distribution of the number of localizations per binding site (which can be
assumed to be Poissonian) and the distribution of active binding sites given the average DOL.
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Figure A9: Histograms of the distribution of the inconsistency between the estimated relative angles after Lie-
algebraic averaging and the initial relative angles from the all-to-all registration for the experimental datasets.
The distribution typically is a mix of three contributions: a peak with width of a few to 20 deg around the cor-
rect angle (∼0 degree), a peak around 180 degree, due to the close-to-symmetric shape of the ‘TUD’ logo, and
a uniform background distribution. The fraction of erroneous pair registrations (the second and third compo-
nent) increases with decreasing DOL, and is a significant fraction of the total number of pair registrations. This
is the reason why the redundancy of the all-to-all registration is a necessary ingredient of the particle fusion
process.
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Figure A10: The effect of repeated bootstrapping registration step on 50% DOL simulated data. (a) The boot-
strapping output at the first iteration. (b) The output after the second iteration. Iterating the bootstrapping
step can further improve the result until convergence. For 50% DOL, the registration already converges after
the second iteration.
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Figure A11: Histogram of the overall registration error (rotation angle) for the simulated 100% DOL dataset
which includes 256 TUD logos. A normal distribution with a standard deviation of 0.9 degree (red curve) is
shown for comparison. Since the length of the bounding box of the logo is 70 nm, this amount of error will
maximally result in a displacement of ±0.55 nm at the edges of the logo. This is smaller than the distance of
the binding sites (5 nm) and very close to the mean localization uncertainty. Consequently, the impact of the
overall outlier removal is minimal on the final reconstruction as depicted in Figure A2g.
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Figure A12: The effect of averaging over a subset of pair registrations on the final reconstruction for the 80%
DOL experimental data. (a) The result of averaging over all 73153 elements of the all-to-all registration ma-
trix. (b) The result of averaging over 1200 (less than 2%) elements of the all-to-all registration matrix. Both
reconstructions have 788875 localizations as a result of fusing 383 TUD logos with 80% DOL. Below 2%, the
reconstruction is still possible for this dataset, however, the final logo then becomes blurry especially at the
edges where the effect of the registration error is severe.
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THREE DIMENSIONAL PARTICLE

AVERAGING FOR STRUCTURAL

IMAGING OF MACROMOLECULAR

COMPLEXES BY LOCALIZATION

MICROSCOPY

We present an approach for 3D particle fusion in localization microscopy which dramati-
cally increases signal-to-noise ratio and resolution in single particle analysis. Our method
does not require a structural template, and properly handles anisotropic localization un-
certainties. We demonstrate 3D particle reconstructions of the Nup107 subcomplex of the
nuclear pore complex (NPC), cross-validated using multiple localization microscopy tech-
niques, as well as two-color 3D reconstructions of the NPC, and reconstructions of DNA-
origami tetrahedrons.

This chapter is based on the paper [1]. Submitted.
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3. THREE DIMENSIONAL PARTICLE AVERAGING FOR STRUCTURAL IMAGING OF

MACROMOLECULAR COMPLEXES BY LOCALIZATION MICROSCOPY

3.1. INTRODUCTION
Single molecule localization microscopy (SMLM) is capable of resolving biological struc-
ture at the nanometer scale. However, SMLM image resolution is ultimately limited by
the density of the fluorescent labels on the structure of interest and the finite precision
of each localization [2, 3]. Recently, methods for obtaining higher precision localizations
have been reported, which work by either increasing the number of collected photons
per molecule via e.g. cryogenic imaging [4, 5], or by introducing patterned illumination
[6, 7]. The first limitation remains, however, and one approach to boosting the apparent
degree of labeling (DOL) and filling in missing labels can be applied when the sample
consists of many identical copies of the structure of interest (e.g. a protein complex).
In this case, by combining many structures into a single superparticle, the effective la-
belling density is increased, and the resulting super-particle has a high number of local-
izations leading to a significantly improved signal-to-noise ratio and resolution.

Previous approaches to this problem can be classified as either template-based or
adaptations of existing single particle analysis (SPA) algorithms originally developed for
cryo-electron microscopy (EM). Template-based methods [8, 9] are computationally ef-
ficient, however, they are susceptible to template bias artefacts. Methods derived from
SPA for cryo-EM have previously been adapted [10, 11] and employed to generate 3D vol-
umes from 2D projection data. These approaches are, however, intrinsically 2D to 3D,
as they assume that the raw data are projections. Recently, Shi et. al [12] also described
a structure-specific method for 3D fusion, although they implicitly assume cylindrical
particles and projected the volume onto top views only.

Here, we introduce a 3D particle fusion approach for SMLM which does not require,
but can incorporate, a priori knowledge of the target structure. It works directly on
3D localizations, accounts for anisotropic localization uncertainties, and can perform
cross-channel alignment of multicolor data. We demonstrate our method with 3D re-
constructions of the Nuclear Pore Complex (NPC) obtained from three different SMLM
techniques. The results exhibit a two orders of magnitude SNR amplification, and FSC-
resolution values as low as 14-16 nm, which is sufficient to enable the identification of
distinct proteins within a large macromolecular complex such as the NPC.

The processing pipeline is built upon our previous 2D method [13] with modifica-
tions to each step to handle 3D localizations (Figure 3.1a). Briefly, we first register all N
segmented particles in pairs, which provides N (N −1)/2 relative registration parameters
Mi j (3D rotation and translation from particle i to j ). To find the absolute poses Mi ,
we map the relative poses from the group of 3D rotations and translations, SE(3), to its
associated Lie-algebra and then average them (see Methods section) [14]. With the ab-
solute poses determined, we then recompute the relative transformations to perform a
consistency check. This makes use of the geodesic distance on SO(3) between the initial
relative rotations Ri j and the estimates from the Lie-algebraic averaging R̂i j :

d(Ri j , R̂i j ) = 1p
2

∥∥∥log
(
R̂−1

i j ,Ri j

)∥∥∥
F

. (3.1)

Here, log is the matrix logarithm and ‖A‖F =
√

tr
(
AAT

)
the Frobenius norm. The

geodesic distance on SO(3) ranges between 0 and π, we set an empirical threshold ε= 1
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Figure 3.1: The 3D SMLM particle fusion pipeline and results of the simulation study. (a) Pair registration of
all segmented particles results in relative transformations Mi j (translations and rotations). The redundant
information in the all-to-all registration matrix is utilized for improving the registration errors by means of
Lie-algebraic averaging, which results in Mi absolute transformations. The relative transformations are re-
computed as M j M−1

i . From them, a consistency check is applied via a threshold ε on the rotation error to
remove outlier registrations Mi j from the all-to-all matrix. After two iterations, this results in a data-driven
template. Finally, five rounds of bootstrapping are applied to improve the final reconstruction by registering
every particle to the derived template. (b) Groundtruth fusion of 100 simulated NPCs indicating the height,
radius, the angular shift between the cytoplasmic and nuclear rings in the same NPC. (c) Registration error
for simulated PAINT and STORM data for different degree of labeling (DOL), mean localization uncertainties
(σ= 4, 8 and 13 nm) and number of localizations per particle. Successful superparticle reconstruction is pos-
sible below a registration error of 25 nm. (d) Registration error of simulated PAINT data with 50% DOL and tilt
angle of 60 degrees at different number of particles per dataset. (e) Registration error of simulated PAINT data
with 75% DOL and arbitrary pose at different number of particles per dataset. Solid lines indicate the mean
and shaded area show the standard error of the mean (n=15).

radian to remove inconsistent pairwise registration entries in the all-to-all matrix. The
transformations retained after the consistency check are used to generate a data-driven
template. Each single particle is then registered to density-resampled versions of this
template for 3-5 iterations. During this process, prior knowledge of symmetry can be
incorporated. Additionally, we propose a computationally efficient means of sorting and
removing outliers (see Methods section).

3.2. RESULTS
We evaluated our algorithm using simulations of the Nup107 subcomplex of the NPC
(Figure 3.1c-e). Nup107 is a nucleoporin which is part of the Nup107-160 complex [15]
together with eight other nucleoporins. Our groundtruth model consists of 2×16 copies
of Nup107 arranged in 8 pairs on the two rings of the NPC, with a 13deg azimuthal shift
(Figure 3.1b).

The quality of registration was assessed with an error measure based on the residual
registration error of the underlying binding sites (see Methods section), which is inde-
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pendent of the localization precision. We found that for registration errors larger than
the distance between the 8-fold symmetric subunits of the NPC rings (∼25 nm) the re-
construction was so poor that we considered the alignment to be a failure (Figure 3.A1).

We simulated both PAINT and STORM imaging, to assess how the switching kinetics
of the fluorescent labels affects the particle fusion (Figure 3.A2). For PAINT, we gener-
ated particles with a DOL of 75%, 50%, and 30%, localization uncertainties of 3, 8, and
13 nm in-plane and three times worse in the axial direction, and tilt angles spanning
a range of ±36 degrees (Figure 3.A3). For STORM, we kept the DOL fixed at a realistic
value of 50% while varying the average number of localizations per particle from 20 to
150 (corresponding to different fluorophore bleaching rates), and with the same range
of localization uncertainties and tilt angles as before.

For each simulation condition, we generated 15 datasets containing 100 particles
each. We found that a registration error below 8-10 nm was required (Figure 3.A1) to fully
resolve the sixteen pairs of Nup107 sites. For PAINT, this was achieved for a minimum
DOL of 50% and a localization precision better than 8 nm (Figure 3.1c). For STORM, we
observe that for high localization precision (∼4 nm) the registration error is below 10 nm
even for a low number of localizations per particle (down to 20). For a lower average
localization precision of ∼13 nm, the registration errors of all simulated STORM datasets
were above 20 nm. This is similar to the error range of PAINT data at 30% DOL.

Consistent with our previous work [13] therefore, we observe that STORM imaging
requires a higher DOL than PAINT to achieve a similar performance. The simulations
also indicate that a high-quality reconstruction (error <10 nm) requires at least 50-100
particles (Figure 3.1d) for PAINT data with 50% DOL. Even for unconstrained random
pose variations and 75% DOL, the required number of particles for a successful registra-
tion remains relatively constant (Figure 3.1e). We applied our algorithm to experimen-
tal SMLM data of NPCs in fixed U2OS cells (Figure 3.2). Cells expressing Nup107-SNAP
labeled with Alexa Fluor 647-benzylguanine were imaged with three different SMLM
techniques, 3D astigmatic PAINT (Figure 3.A5), 3D astigmatic STORM [16, 17] and 4Pi
STORM [18, 19]. Figure 3.2a, e and i show the results of fusing 306, 356, and 750 seg-
mented particles for the three modalities, which had an average number of localizations
per particle of 88, 70, and 58, respectively. After fusion, the FSC resolution was ∼15 nm
(isotropic, see Figure 3.A6).

We measured the distance between the cytoplasmic and nuclear rings as 60.5, 61.6
and 62.9 nm for PAINT, STORM and 4Pi STORM data, respectively (Figure 3.2b, g and l),
and we determined the average radius to be 49.1, 53.2 and 51.1 nm and 50.8, 51.8, 52.8
nm for the two rings (Figure 3.2c-d, h-i and m-n).

Finally, the phase shift differences between the two rings (for analysis see Methods
section) were found to be ∼10deg, 14deg and 14deg (Figure 3.2e, j and o, Figure 3.A7).
These measurements are in good agreement with cryo-EM based models derived from
the work of von Appen et al. [20], who found a phase shift of 14deg, height of 59 nm,
outer ring radius of 49.7 nm and inner ring radius of 46.6 nm. The experiments for NPCs
in the lower nuclear membrane indicate a narrow tilt angle distribution (∼14 degree, see
Figure 3.A4), well within the tilt tolerance limit assessed from the simulations.

In a second experiment, we used multicolor 4Pi STORM to simultaneously visualize
two components of the NPC (see Figure 3.3). U2OS cells expressing Nup107-SNAP were
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Figure 3.2: 3D Particle fusion of Nup107 acquired with different 3D localization microscopy techniques. (a)
Fusion of 306 particles acquire by 3D astigmatic PAINT. (b) Histogram of the Z coordinate of localizations in
the superparticle. (c) Histogram of the radius of cytoplasmic ring localizations, (d) nuclear ring. (e) Rose plot of
the localization distribution over azimuthal angles for the cytoplasmic (blue) and nuclear (orange) rings of the
super-particle. (f) Fusion of 356 particles acquired by 3D astigmatic STORM. (g-j) Similar to (b-e). (k) Fusion
of 750 particles acquired by 4pi STORM. (l-o) Similar to (b-e).
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a b

Figure 3.3: Fusion of 831 multi-colour 4pi STORM images of nuclear membranes stained for Nup107 and wheat
germ agglutinin (WGA). (a) Side view. (b) Top view. Applying particle fusion on Nup107 channel (red) provides
a set of absolute transformations which were subsequently used to align the corresponding WGA channel,
which stains FG-repeat nucleoporins in the central channel region of the NPC (magenta).
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stained with Cy5.5-benzylguanine, and also with Wheat Germ Agglutinin (WGA) conju-
gated to Alexa Fluor 647, which is known to bind to FG-repeat nucleoporins in the central
channel region of the NPC. First, we performed particle fusion on the Nup107 localiza-
tions. Next, we applied the transformations determined from the first step to the WGA
channel, and then superimposed the two color channels in a single volume with a com-
mon origin. The resulting multicolor superparticle shows the location and dimensions
of the central channel of the NPC with respect to the nuclear and cytoplasmic Nup107
rings. Despite the unstructured nature of the FG-repeats, by aligning with respect to
the rigid Nup107 structure, the fused WGA data maps out the spatial distribution of FG-
repeats within the channel.

In a final experiment, we fused 256 tetrahedron-shaped DNA origami nanostructures
acquired with PAINT (Figure 3.A8-10). The height of the tetrahedron was measured from
the peak-to-peak distance of the z-histogram of the superparticle to be ∼90 nm (Fig-
ure 3.A10d). This implies a side length of 104 nm which agrees well with the origami
design of 100 nm [21].

In conclusion, we have developed a general purpose, template-free 3D particle
fusion algorithm for SMLM that is robust to typical experimental conditions, and have
shown its performance using simulations, the Nup107 subcomplex of the NPC for
three different imaging setups, and DNA-origami tetrahedrons. By boosting the SNR
of the data, our particle fusion method increases the effective spatial resolution and
makes possible the reliable identification of protein locations within macromolecular
complexes, thereby adding specificity to EM-SPA methods via correlative approaches.
In addition, as few as 50 particles were required for accurate reconstructions, enabling
the exciting possibility to detect transient, infrequently populated states.

3.3. METHODS

3.3.1. SAMPLE PREPARATION

3D ASTIGMATIC PAINT
NUP107

Cell culture U2-OS cells were passaged every other day and used between passage
number 5 and 20. The cells were maintained in DMEM supplemented with 10% Fetal
Bovine Serum and 1% Penicillin/Streptomycin. Passaging was performed using 1x PBS
and Trypsin-EDTA 0.05%. 24 hours before immunostaining, cells were seeded on ibidi
8-well glass coverslips at 30,000 cells/well.

Cell fixation Prefixation was performed with prewarmed 2.4% Paraformaldehyde
(PFA) for 20 seconds followed by the permeabilization at 0.4% Trion-X 100 for 10 seconds.
Next, cells were fixed (main fixation) with 2.4% PFA for 30 minutes. After 3x rinsing with
1x PBS the cells were quenched with 50 mM Ammoniumchloride (in 1x PBS) for 4 min-
utes. Then, cells were washed 3x with 1xPBS followed by incubation in 1x PBS for 5 min-
utes twice. For SNAP-labeling, cells were incubated with 1 µM of SNAP-ligand-modified
DNA oligomer in 0.5% BSA and 1 mM DTT for 2 hours. Finally, cells were washed 3x for
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5 minutes in 1x PBS, incubated with 1:1 dilution of 90 nm gold particles in 1x PBS as drift
markers, washed 3×5 minutes and immediately imaged.

DNA origami tetrahedron

The tetrahedron DNA origami structures were formed in a one-pot reaction with a 50
µl total volume containing 10 nM scaffold strand (p8064), 100 nM core staples, 100 nM
connector staples, 100 nM vertex staples, 100 nM biotin handles, 100 nM DNA-PAINT
handles, and 1400 nM biotin anti-handles in folding buffer (1x TE (5 mM Tris, 1 mM
EDTA) buffer with 10 mM MgCl2). The solution was annealed using a thermal ramp
cooling from 80 to 4 ◦C over the course of 15 hours. After self-assembly, the structures
were mixed with 1x loading dye and then purified by agarose gel electrophoresis (1.5%
agarose, 0.5x TAE, 10 mM MgCl2, 1x SYBR Safe) at 3 V/cm for 3 hours. Gel bands were
cut, crushed and filled into a Freeze ’N Squeeze column and spun for 5 minutes at 1000xg
at 4 ◦C.

3D ASTIGMATIC STORM
Samples and data for the STORM modality were prepared and acquired according to Li
et al. [17].

4PI STORM
Cell culture The U2OS cells were seeded on 18 mm #1.5 round coverslips which

had been sterilized in 70% ethanol, dried and washed three times with 1x PBS. All cover-
slips used for 4Pi-SMLM were coated with a mirror-reflective aluminum film over one
quarter of their surface, for the purpose of alignment in the 4Pi microscope. Mirror
coating was accomplished using a thermal evaporator at the Optics Workshop of the
Max-Planck-Institute for Biophysical Chemistry, Göttingen. Seeded cells were allowed
to attach overnight at 37 ◦C and 5% CO2 in a cell culture incubator.

Cell fixation Cells were rinsed twice with PBS and pre-fixed with 2,4% paraformalde-
hyde (PFA; Electron Microscopy Sciences; cat.# 15710) in PBS (+Ca2+/Mg2+) for 30
seconds. The cells were then immediately permeabilized with 0.5% Triton X-100
(Sigma-Aldrich; cat.# T8787) in PBS (+Ca2+/Mg2+) for 10 minutes and directly fixed
afterwards with 2,4% paraformaldehyde (PFA; Electron Microscopy Sciences; cat.#
15710) in PBS (+Ca2+/Mg2+) for another 30 minutes. After fixation, the samples were
rinsed three times with PBS and quenched for remaining fixative with 50 mM NH4Cl for
5 minutes. After quenching, the sample was rinsed three times with PBS and washed
three times for 5 minutes with PBS. The fixed samples were immediately stained using
one of the protocols described below.

NPC labeling with SNAP-tag After fixation, samples were blocked with a few drops
of Image-iT FX Signal Enhancer (Thermo-Fisher; cat.# I36933) for 30 minutes. The ben-
zylguanine (BG)-conjugated AF647 (SNAP-Surface; NEB; cat.# S9136S) was diluted to 1
µM in blocking solution (0,5% (w/v) BSA, 1 mM DTT in 1x PBS) and incubated with the
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sample for 1 hour. This was followed by a final round of three rinsing and 5 minutes
washing steps.

Dual-color NPC labeling After fixation, samples were blocked with a few drops of
Image-iT FX Signal Enhancer (Thermo-Fisher; cat.# I36933) for 30 minutes. Benzylgua-
nine (BG)-conjugated Cy5.5 was synthesized and kindly provided by the Chemical Fa-
cility of the Max Plank Institute in Göttingen. The BG-Cy5.5 was diluted to 200 nM in
blocking solution (0,5% (w/v) BSA, 1 mM DTT in 1x PBS) and incubated with the sample
for 2 hours. Next, the sample was rinsed three times with PBS and washed three times for
5 minutes with PBS. Immediately prior to imaging, the samples were also stained with
Wheat Germ Agglutinin (WGA) coupled to Alexa 647 (Thermo Fisher # W32466). First,
the WGA-Alexa 647 was diluted in 1% BSA in PBS to a concentration of 0.04 µg/mL, and
the sample was incubated in this solution for 5 minutes. The sample was then washed
three times for 5 minutes with PBS.

3.3.2. SINGLE MOLECULE EXPERIMENTS

3D ASTIGMATIC PAINT
NUP107

Setup Fluorescence imaging was carried on an inverted microscope (Nikon In-
struments, Eclipse Ti2) with the Perfect Focus System, applying an objective-type TIRF
configuration with an oil-immersion objective (Nikon Instruments, Apo SR TIRF Œ100,
numerical aperture 1.49, Oil). A 561 nm (MPB Communications Inc., 2W, DPSS- sys-
tem) laser was used for excitation. The laser beam was passed through cleanup filters
(Chroma Technology, ZET561/10) and coupled into the microscope objective using a
beam splitter (Chroma Technology, ZT561rdc). Fluorescence light was spectrally filtered
with an emission filter (Chroma Technology, ET600/50 m and ET575lp) and imaged on
a sCMOS camera (Andor, Zyla 4.2 Plus) without further magnification, resulting in an
effective pixel size of 130 nm (after 2×2 binning).

Imaging Imaging was carried out using an imager strand concentration of 1 nM
(P3-Cy3B) in cell imaging buffer (buffer C) 30,000 frames were acquired at 200 ms inte-
gration time. The readout bandwidth was set to 200 MHz. Laser power (@561 nm) was
set to 130 mW (measured before the back focal plane (BFP) of the objective), correspond-
ing to 0.73 kW/cm2 at the sample plane.

Axial calibration Calibration was carried out as described earlier [15].

Tetrahedron

Setup Tetrahedron imaging experiments were carried out on an inverted Nikon
Eclipse Ti microscope (Nikon Instruments) with the Perfect Focus System, attached
to a Yokogawa spinning disk unit (CSU-W1, Yokogawa Electric). An oil-immersion
objective (Plan Apo 100x, NA 1.45, oil) was used for all experiments. The excitation
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laser (561 nm, 300 mW nominal, coherent sapphire or 532 nm, 400 mW nominal,
Cobolt Samba) was directly coupled into the Yokogawa W1 unit using a lens (focal
length f = 150 mm). The pinhole size of the disk was 50 µm. As dichroic mirror, a
Di01-T405/488/568/647-13x15x0.5 from Semrock or t540spxxr-uf1 from Chroma was
used. Fluorescence light was spectrally filtered with emission filters (607/36 nm from
Semrock or ET585/65m + ET542lp from Chroma) and imaged on an EMCCD camera
(iXon 897, Andor Technologies), resulting in a pixel size of 160 nm. The power at the
objective was measured to be ∼10% of the input power.

Imaging For the tetrahedron imaging experiment (2 nM of P1-Cy3b imager in
buffer B) the Andor iXon 897 with a readout bandwidth of 5 MHz at 16 bit and 5x
pre-amp gain was used. The EM gain was set to 100. 30,000 frames with an integration
time of 800 ms were acquired. Imaging was performed using the Yokogawa W1 spinning
disk unit with an excitation intensity of ∼226 W/cm2 at 561 nm at the sample (laser was
set to ∼38 mW). No additional magnification lens was used resulting in an effective pixel
size of 160 nm.

Calibration 3D images were acquired using a plan-convex cylindrical lens with a
focal length of f = 0.5 m, ∼2 cm away from the camera chip. The calibration was done
as in earlier studies. For the processing of the data the software package Picasso [22] was
used.

3D ASTIGMATIC STORM
Samples and data for the STORM modality were prepared and acquired according to Li
et al. [17]. In short, homozygous Nup107-SNAP U2-OS cell lines were fixed and labeled
with Alexa Fluor 647 benzylguanine and imaged on a custom-built setup that contains a
cylindrical lens in the emission path for astigmatic 3D localization. The data were fitted
using an experimental PSF model calibrated using a z-stack of beads that were immo-
bilized on the coverslip [16]. Subsequently, fitting errors induced by the refractive index
mismatch were corrected based on a calibration of beads immobilized in a gel [17].

4PI STORM
Setup The design of the 4Pi microscope was based on an earlier design published

by Aquino et al. [18], which was then extensively modified to achieve higher image qual-
ity and usability. Specifically, the design was changed to incorporate feedback systems
to maintain the sample focus position, higher NA objectives to collect more light, a com-
pletely redesigned sample stage allowing for fast and reliable sample mounting and lin-
ear translation when adjusting the sample position, a redesigned 4Pi image cavity al-
lowing for maintenance of the beam path alignment, and new acquisition and control
software to allow accurate control of the instruments involved in the system stabiliza-
tion and acquisition of the raw image data. The laser illumination sources used for
STORM imaging included a red laser for imaging (642nm CW, 2W, MPB Communica-
tions Inc.) and a UV laser for molecule re-activation (405nm CW, 100mW, Coherent).
Excitation light was controlled and modulated either directly via the laser controller or
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via an acousto-optic tunable filter (AA Opto Electronic). Variable angle TIRF or near-
TIRF illumination was achieved by coupling all light sources through an optical fiber,
whose output was positioned in an optical plane conjugate to the objective lens back
focal plane. By placing the output of the fiber on a motorized translation stage, the illu-
mination angle could be continuously varied for optimal signal to background ratio. The
4Pi microscope cavity was based on two high-NA objective lenses (Olympus, 100x, sili-
cone oil immersion, NA 1.35). One objective was fixed in position on a mounting block
while the other was adjustable in three dimensions using a 3-axis piezo stage (Physik
Instrumente, P-733.3). The adjustable objective was also adjustable in tip/tilt and XYZ
via micrometer screws for coarse positioning and alignment. Illumination and control
beams were introduced into the 4Pi cavity and brought out again via dichroic mirrors
(ZT405-488-561-640-950RPC, Chroma). The detected fluorescence from the two objec-
tives was recombined at a 50:50 beam-splitter (Halle). Prior to the beam-splitter each
detected beam passed through a quarter wave plate (Halle) and a custom Babinet-Soleil
compensator made of quartz and BK7 glass, one of which with an adjustable thickness of
quartz glass, which allowed a precise phase delay to be introduced between the P- and S-
polarized fluorescence light. The remainder of the detection path consisted of an optical
relay to crop and focus the overlaid P- and S- polarized images onto four quadrants of
an EMCCD camera (Andor Ixon DU897) as previously described. Before the camera, the
light was filtered with fluorescence emission filters (Semrock LP647RU, Semrock FF01-
770SP) and optionally a dichroic mirror (Semrock FF685-Di02) which allowed the fluo-
rescence in one polarization channel to be filtered selectively for two-color 4Pi-SMLM
imaging. Control systems included the sample focus control and the objective align-
ment control, and each of these was based on an infra-red laser beam introduced into
the 4Pi cavity. The sample focus control was based on a design similar to that used in
a standard STORM microscope: an infrared beam (830nm laser diode, Thorlabs) was
reflected from the sample-glass interface, and the position of the reflected beam was
detected on a photodetector. Fine control of the sample position was maintained with
a linear piezo stage (Physik Instrumente, P-752) mounted underneath the top section of
the three-axis linear stage used for sample positioning (Newport, M-462-XYZ-M). For the
objective alignment control, a second infra-red beam (940nm laser diode, Thorlabs) was
collimated and passed through the two objective lenses, focusing at the sample plane.
Any motion of the two objectives with respect to each other resulted in a lateral shift in
the transmitted beam, or a change in the collimation of the transmitted beam. The lat-
eral shift was continuously monitored via a quadrant photodiode, and the transmitted
beam collimation was monitored by splitting the beam and focusing it onto two pinholes
positioned on either side of the focus, with photodetectors behind each pinhole. These
signals were measured using a DAQ card (National Instruments), and a software-based
feedback loop was then used to adjust the position of the movable objective lens to keep
it aligned with the fixed objective lens. All microscope control and data acquisition were
performed using custom software written in Labview (National Instruments).

Imaging The sample was illuminated with 642 nm excitation light in order to
switch off the fluorophores and cause them to blink stochastically. The emitted light
was filtered spectrally (see above) and detected at the EMCCD camera, running at
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a frame rate of 101 Hz. Typically, 100000 image frames were acquired in a single
measurement. During the experiment, the power of the 405 nm laser was manually
adjusted to re-activate the fluorophores and keep the number of localizations per frame
constant. Optical stabilization of the z-focus (focus-lock) was engaged before starting
each recording, in order to minimize sample drift during the measurement. Prior to
each set of 4Pi measurements, images of a fluorescent bead located on the sample were
recorded as the bead was scanned in the Z-dimension, in order to create a calibration
scan which was used in post-processing analysis of the 4Pi STORM image data. For all
experiments, images of beads located at different positions in the sample plane were
recorded, in order to generate a coordinate mapping which allowed the coordinate
systems of the different image channels to be mapped onto each other.

Image reconstruction STORM image analysis and reconstruction follows a stan-
dard approach based on peak finding and localization [23]. Two color imaging via the
ratiometric method was analyzed as described previously [18, 24]. Correction of sample
drift in post-processing was done based on image correlation of the 3D STORM data with
itself over multiple time windows. STORM images were rendered as summed Gaussian
peaks with a Gaussian width approximately equal to the previously measured localiza-
tion precision (typically 3.5 nm in X, Y, and Z).

3.3.3. DATA FUSION PIPELINE
Our data fusion framework is largely the same as our earlier work [13] with 3D instead
of 2D localization data. The anisotropic localization precision in 3D is naturally incor-
porated into the pair-wise alignment procedure using the Bhattacharya distance. We
have to replace the consistency evaluation as rotations in 2D can be characterized by
one in-plane angle only and therefore a straightforward threshold can be applied to the
angle difference. In 3D, the three Eulerian angles are required to describe a rotation
which complicates matter significantly as different rotations do not commute. To this
end we used the geodesic distance equation Equation 3.1 on SO(3) as a measure for the
dissimilarity between different rotations. Next to this necessary change for applying the
framework in 3D, we have also made two other modifications to the earlier pipeline.

Incorporation of symmetry For symmetric structures and in the case of underlabel-
ing or a nonuniform distribution of localizations per binding sites (e.g. in STORM), the
hotspot problem reported earlier [13] is unavoidable. The registration always tries to
match dense regions of the structure and consequently the unbalanced occupancy of
sites is reinforced in the process. We overcome this problem by properly incorporat-
ing prior knowledge about the symmetry group of the structure. For NPC, which has an
eight-fold rotational symmetry (2D cyclic group C8) around the rotation axis through
the center of the cytoplasmic and nuclear rings, we randomly added integer multiples of
2π/8 to the alignment angles of the particles at each iteration of the bootstrapping. This
subsequently results in a uniform distribution of localizations over the binding sites. It
is worth mentioning that this approach is different than what is done in single particle
averaging in EM [25] and in the method of Sieben et al. [11] where the asymmetrical sub-
unit of the particles is replicated to generate a symmetric structure based on the given
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symmetry group. In our approach the final reconstruction is mathematically not sym-
metric, but the symmetry is used to resolve the hotspot problem. This approach can
easily be adapted to other simple point groups such as cyclic Cn and dihedral Dn groups
given the axis (or axes) of rotation(s).

Outlier particle removal In our earlier work [13], we kept all initially picked particles
for the final superparticle. We only removed many of the bad registrations from the all-
to-all matrix as long as the graph stays connected. In practice, however, it happens that
the segmented particle set contains “outliers” that are either not a particle but back-
ground or just very low-quality particles. We propose a simple and efficient method for
excluding outliers with small computational cost. After the bootstrapping step, we con-
struct an N×N matrix with elements equal to the Bhattacharya cost function for all pairs
of aligned particles (Figure 3.A11a). We sum over the columns (or rows) of this similar-
ity matrix to assign a single score to each individual particle. If all particles are of good
quality, these scores should be similar in magnitude. For outlier particles, however, we
observe that the histogram of scores has an extended tail. We identify outliers as particles
with scores are more than three scaled median absolute deviations (MAD) away from the
median (Figure 3.A11b). This outlier particle removal only works properly if most of the
segmented particles are of good quality and the particle fusion has not failed. The visual
experience of the final reconstruction is barely affected for the examples shown in Fig-
ure 3.2, however, the best and worst particles demonstrate how this approach can rank
the quality of the included particles (Figure 3.A11c-d).

3.3.4. SIMULATION SETUP
Our groundtruth model consists of 2×16 copies of NUP107 arranged in 8 pairs on the
cytoplasmic and nuclear ring of the NPC with∼13 degree of azimuthal shift (Figure 3.1b).
PAINT and STORM switching kinetics were simulated as earlier described [13]. For each
parameter setting, we generated 15 datasets containing 100 particles each.

3.3.5. REGISTRATION ERROR MEASURE IN SIMULATIONS
To assess the performance of the method on simulated data, we devised an error met-
ric which is independent of the shape of the groundtruth superparticle, does not have
a global offset problem i.e. any transformation of the whole ensemble of particles gives
the same error, can solve the symmetry ambiguity, is not impaired by underlabeling and
has the same unit as the localization data. The error is the averaged Euclidean distance
between corresponding binding sites after applying the data fusion process. This works
in simulation only as there we know the ground truth and thus, we can establish point-
corresponding between binding sites. This measures the registration error, however, if
we would do the same with the localization data, we would get a convoluted compound
of registration error and localization error and an overweighting of sites with many lo-
calizations. In Figure 3.A12 and Figure 3.A13, we illustrate the process. We find the point
correspondence by measuring the distance for all possible combinations of binding sites
and then report the minimum as the registration error between the two particles. Fig-
ure 3.A13 demonstrates such combinations for a simplified NUP structure with K = 16
designed binding sites. Mathematically, the registration error of N aligned particles is
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computed as follows:

error = 2

N (N −1)

N−1∑
m=1

N∑
n=m+1

min
i=1,··· ,K

√√√√ 1

K

K∑
j=1

∥∥xm( j )−xn(mod(i + j ,K ))
∥∥2

 (3.2)

in which xm is the localization data (3D coordinate) of the particle m from the set of
all particles and “mod” is the modulo operator. The double sum sums over all pairs
of particles and the sum over all possible correspondence of the binding sites for the
current pair of particles.

3.3.6. POSE VARIATION IN SIMULATION
In simulation we allow full orientationally freedom, which is not encountered our exper-
iment. Due to the linear approximation of the exponential mapping from SO(3) to the
Lie-algebra representation, averaging on SE(3) works only if the pose variation of par-
ticles is within a certain range. Therefore, fusion of particles with arbitrary poses can
result in clusters of particles which are aligned within clusters but not across them (Fig-
ure 3.A14a-b). We developed a work-around for this problem as follows. As for outlier
removal routine, we first compute the similarity matrix. Then, we subtract each row (or
column) from the self-similarity (the Bhattacharya distance of a particle from itself) of
the corresponding particle to convert the matrix into a dissimilarity matrix. We, then
use multidimensional scaling (MDS) [26] to translate the information about the pair-
wise distances between the N particles into a constellation of N points in Cartesian
two-dimensional space. Subsequently, we use k-means clustering to identify clusters
of particles (Figure 3.A14c). The user can easily identify the number of clusters in the
MDS plot and for the current experiments we set it empirically to 3-4. Since the parti-
cles within each cluster are already well aligned (Figure 3.A14d-f), one can do a pairwise
registration at the end to align all or some of the identified clusters.

3.3.7. ANALYSIS OF NPC STRUCTURAL PARAMETERS
NPCs are embedded in the nuclear membrane and their tilt axis aligns reasonably with
the optical axis (normal distribution with about zero mean, Figure 3.A4). Consequently,
the Lie-algebra always aligns the particles with the x-y plane for experimental data. A
moment analysis of the super-particle is used to align the average pose with the princi-
ple planes (xy,xz, yz and etc.), i.e. aligning the symmetry axis of the NPC superparticle
with the z-axis. The distance between the upper and lower rings of the NPCs is estimated
by first computing the histogram of the z coordinate of the localization data in the su-
perparticle. Then, a kernel-smoothing distribution with a bandwidth of 4 nm is fitted
to the histogram and, finally, the distance between the two peaks of the fit is computed
(Figure 3.2b, g and l). The radius of the two rings is measured by separating the local-
ization data of the superparticle in two halves using a segmentation threshold which is
computed as the local minimum of the z coordinate histogram. Then, the x and y co-
ordinates of the localization data are transformed to two-dimensional polar coordinates
(r,θ). The peak of the histogram of the r component of the localizations defines the ra-
dius of the rings (Figure 3.2c-d, h-i and m-n). The angular shift between the two rings
of the NUP107 is estimated by, first fitting the function b0 +b1sin(8θ+b2) to the angu-
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lar components of the localization data in each ring. The iterative least squares method
is used for this nonlinear regression model to find the unknown coefficients b0, b1 and
b2. Then, the difference between the fitted b2 parameters for the two rings defines the
angular phase difference (Figure 3.A7).
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Figure 3.A1: Particle fusion error for different reconstructions of a simulated STORM dataset. (a-f) Each recon-
struction is the result of fusing 100 simulated particles with an average localization uncertainty of 4 nm and
50% DOL. From top to bottom and left to right, the error is increasing which also visually matches the quality
of the reconstructions. For the error less than ∼10 nm (a-b), the double blobs are still recognizable. For larger
error as in (c-d), the double blobs merge into a single blob and for errors above ∼20 nm the reconstructions
lose the geometrical features of the groundtruth.
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Figure 3.A2: Statistics of localizations per binding sites for (a) PAINT and (b) STORM simulations. For PAINT
particles, the distribution of localizations per site follows a Gaussian distribution while for STORM it is a Pois-
son. In case of STORM data, higher bleaching rate result in fewer localization per sites and a narrower band-
width for the distribution.
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Figure 3.A3: Particle fusion error for the alignment of PAINT and STORM SMLM images of simulated NUP107
particles with different initial tilt variations. (a-b) Particle fusion error of simulated PAINT data for different
DOLs and for two range of tilt variations. (c-d) Particle fusion error of simulated STORM data for different
number of localizations per particle (proportional to bleaching rate) and for two range of tilt variations. The
particle fusion performance is getting slightly worse by increasing the tilt variations but in general it is quite
stable even at high tilt angle range of 60 degree



3

70 REFERENCES

a b

Figure 3.A4: Tilt variations of the 4Pi experimental particles. (a-b) The histograms of the Euler angles α and
β (rotation around x and y axis) expressing the tilt variations of the unaligned particles with respect to each
other. Both histograms fit a normal distribution with a standard deviation of 14 degree.
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10 m 

1 m 

Figure 3.A5: Whole field of view of SNAP-Tag labelled NUP107 proteins for DNA-PAINT imaging. The field
of view shows the nuclei of four U2OS cells. The insert in the top-right corner presents a zoom in into the
highlighted area.
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Figure 3.A6: Fourier shell correlation1 (FSC) and spectral signal-to-noise ratio (SSNR) curves for the initial
particles and the corresponding super-particles of 3D astigmatic PAINT, 3D astigmatic STORM and 4Pi STORM
data. (a-c) The FSC curves show the resolution improvement from 42.6, 40.5, and 52.2 nm to 16.6, 15.1 and
14.2 nm for the three reconstructions respectively. (d-f) The SSNR curves show about two orders of magnitude
improvement in spectral signal-to-noise ratio over . These values are in good accordance with the visual quality
of the super-particles. From these FSC values it is also clear that the dimers cannot be resolved which are at
12 nm distance according to the EM model. The FSC/SSNR curves for individual particles averages (blue)
are computed between pairs of individual particles and then averaged. SSNR is computed as follows SSNR =
FSC/(1-FSC).
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Figure 3.A7: The distribution of the localizations over azimuthal angle and the fitted sine function for the
super-particles in Figure 3.2. (a) PAINT reconstruction. (b) STORM reconstruction. (c) 4Pi reconstruction. In
order to find the phase shift between the cytoplasmic and nuclear rings, we fit a sine function to the azimuthal
angles of the localization data points in each ring. The difference in the phases of the fitted sine function for
each reconstruction defines the azimuthal phase shift of the two rings.
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Figure 3.A8: Whole field of view of three-dimensional DNA origami tetrahedron structures imaged with DNA-
PAINT on a spinning disk microscope. The side length of the symmetric tetrahedron structure is 100 nm. The
insert in the top-right corner presents a zoom in into the highlighted area.
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Figure 3.A9: Example images of tetrahedron DNA-origami nanostructures imaged with PAINT.
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Figure 3.A10: Fusion of 256 tetrahedron DNA-origami nanostructures. (a) Side view of the super-particle. (b)
Top (x-y) view of the super-particle. (c) Front (x-z) view of the super-particle. (d) Histogram of the z coordinate
of the localization data showing a distance of ∼90 nm between the two peaks. Particle fusion of the nanostruc-
tures result in an isotropic distribution of the localization over the four binding sites of the tetrahedron as seen
from the round localization distributions around the binding sites.
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Figure 3.A11: | Outlier particle removal. (a) All-to-all Bhattacharya heat map matrix for the fusion of 750 par-
ticles from the 4Pi dataset. Each value is rendered as a pixel in a 750× 750 image. (b) The histogram of the
Bhattacharya scores (cost function value) of each particle which is obtained by averaging the matrix in a along
the columns (or rows) together with the median absolute deviations (MAD) magenta line magenta and its
lower and upper bounds. Only 9 particles are recognized as outliers in this dataset with these default settings
of the MAD threshold. (c) Overlay of the localizations of the best particles (20 top scores). (d) Overlay of the lo-
calizations of the worst particles (20 lowest scores). While the (good) particles in c form a sharp super-particle,
the overlay in d is quite blurry and the localizations are more scattered around the NUP structure.
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Figure 3.A12: The principle of the proposed registration error measurement. (a) Overlay of 10 simulated parti-
cles before alignment. (b) Overlay of the binding sites of the particles in a. (c) Superparticle as a result of fusing
the particles in a. (d) The corresponding binding sites of the aligned particles in c in a perfect fusion (zero
measurement error). (e) The corresponding binding sites of the aligned particles in c with the effect of the
registration error taken into account. Ideally and in a perfect fusion, all the binding sites of the ground-truth
simulation model should co-locate. Due to the registration error they scatter around the mean shape model
of the super-particle. The corresponding registration error for a run of the particle fusion pipeline is found by
quantifying this scatter.
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Figure 3.A13: Correspondence problem in matching binding sites of two aligned particles. (a-h) Different
correspondence possibilities for computing the error between the registered particles with registration error.
In this example, each particle includes 16 binding sites. Since the binding sites are ordered, there are only 8
different combinations of the correspondences between them. The minimum Euclidean distance among these
eight candidates defines the correct correspondence and its value is the alignment error.
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Figure 3.A14: | Fusion of particles with arbitrary poses. (a-b) Two views of the initial super-particle after
the bootstrapping step for fusing 400 simulated PAINT particles. (c) K-means clustering (k = 3) on multi-
dimensional scaling of the dissimilarity matrix of the all-to-all matrix. (d-f) Three clusters of particles which
are separated using the proposed method each containing 176, 96 and 128 particles, respectively. When the
initial particles have arbitrary poses, the particle fusion results in clusters of particles which are aligned to-
gether. To separate these clusters, the all-to-all Bhattacharya score matrix can be used to map them to the
two-dimensional Cartesian space using multi-dimensional scaling (MDS). By clustering the MDS, particles
which are aligned together can be automatically separated.
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4.1. CONCLUSION

Single molecule localization microscopy (SMLM) has provided us with the ability to look
at macromolecular structures and complexes at a resolution of around 20 nm. This res-
olution is limited because practical difficulties with sample preparation stand in the way
of a complete and dense labeling of the structures of interest. Also, the number of pho-
tons that is collected per emitting fluorophore is limited, which subsequently results in
a low localization precision. Particle fusion is an attempt to mitigate in particular the
first shortcoming by aggregating the information content in SMLM images of multiple
imaged copies of the same structure [1].

Particle fusion can be considered as a variant of groupwise image or point cloud reg-
istration, which is a well-established topic in image processing and computer vision.
Despite the similarity in the problem statement, unique features of SMLM data make it
very difficult to directly utilize existing methods for SMLM particle averaging. These are,
among others, the inherent heterogeneity of the set of particles due to severe underla-
beling, different types of noise sources, different geometrical constellations of the points
(localizations) within the particles, i.e. true volumetric versus planar or surface data, and
the necessity to take into account relevant information in addition to the localization co-
ordinates such as localization uncertainties and symmetries.

This thesis proposed a new approach for particle fusion dedicated to SMLM data
which properly takes into account localizations and the corresponding uncertainties. It
does not need any prior knowledge of the underlying structure but can exploit geometri-
cal features like symmetry into the fusion pipeline. It works both for 2D (chapter 2) and
3D (chapter 3) data in their native format, i.e. points represented by Cartesian coordi-
nates without reference to a pixel or voxel grid, and finally makes use of the maximum
pairwise information available from the data, providing redundancy and robustness.

We evaluated the performance of the developed image processing pipeline on two
SMLM imaging techniques, PAINT and STORM, and characterized the needs for suc-
cessful reconstruction for both modalities on experimental data. In 2D, we achieved an
impressive FRC resolution of 3.3-5.0 nm by fusing hundreds of DNA-origami nanostruc-
tures displaying the TUD logo at different labeling densities. In 3D, we performed par-
ticle fusion on 3D Nup107 NPCs imaged using different SMLM modalities and setups to
show the potentials that our developed pipeline provides for structural biology. By an ex-
tensive simulation study, we explored different experimental conditions that touch the
envelope of the method, i.e. the boundary conditions of the experimental parameters
within which the pipeline works, and the ultimate resolution that can be achieved given
a particular set of experimental parameters. In addition, this thesis has provided the
community with an open source tool for structural analysis of biological macromolecu-
lar complexes with SMLM.

In the following sections, I will discuss ways in which the current processing pipeline
can be improved in the short-term (section 2), and subsequently, I will present avenues
for future research in a more general context of data fusion (section 3).
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HOTSPOT PROBLEM

In SMLM, the localizations are not uniformly distributed over the binding sites in par-
ticles, i.e. some sites get more localizations compared to the others. The distribution
is even different from one imaging modality to the other. While in STORM, the localiza-
tions per binding site follows a mixed geometric-Poisson distribution, due to the bleach-
ing of the fluorescent molecules [2], in PAINT, this distribution is Poissonian, as there is
no bleaching. In chapters 2 and 3, we showed that the so-called hotspot problem is in-
evitable for highly underlabeled data, because the particle fusion algorithm always tries
to match dense regions in one particle to dense regions in another particle, leading to
an accumulation of localizations in such dense regions during the entire particle fusion
process. This problem could be solved by incorporating the rotational symmetry infor-
mation in the bootstrapping stage of the pipeline. Alternatively, symmetry or any other
prior knowledge can be considered earlier, at the all-to-all registration phase. This can
be advantageous as it reduces the search space considerably even for very simple sym-
metries like the eight-fold symmetry of the NPC structure. To achieve this, one needs
to optimize the cost function on the appropriate subgroup of the full special Euclidean
group of rotations and translations SE(n), in which n = 2 or n = 3 is the dimension, which
in simple cases like the NPC is the point symmetry group [3]. This is, however, nontrivial
as these symmetry subgroups cannot be represented easily on smooth manifolds.

The Bhattacharya cost function is based on the one-to-one localization distances
and their uncertainties. Another way of preventing the hotspot problem is to modify the
cost function in such a way that it penalizes the local density of the localizations. In this
way, we can down-weight the localizations in very dense regions to avoid accumulation
of localizations. Ideas from previous studies in point set registration [4] and in clustering
of unbalanced data [5] could provide directions to address the problem in this way.

GPU ACCELERATION

In our particle fusion pipeline, there are two levels of parallelism which can improve
the computational time of the algorithm to a large extent. At the lowest level, the Bhat-
tacharya cost function can be evaluated in a highly parallel manner as it requires the
calculation of the exponential distance of each single localization in one particle to all
localization in the other particle. In the current version of our code, this computation
is already implemented both on CPU and GPU. At a higher level, we have the computa-
tion of the all-to-all registration matrix. Given N particles, there are N(N-1)/2 indepen-
dent pair-wise registrations that can in principle be done simultaneously. This, however,
is not a trivial task as solving each pair-wise registration is a constrained optimization
problem, which is difficult to implement on a GPU core as its stepping algorithm is se-
quential. Currently, we make use of different CPU cores to accelerate the computation
of these parallel problems, which is limited to tens of cores on typical hardware setups
in labs. Implementing this constrained optimization on a GPU can considerably speed
up the pipeline, as each individual problem is not computationally very expensive.
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OPTIMIZATION ON A MANIFOLD

The particle fusion pipeline, at its core, optimizes a cost function for 2D/3D registration
parameters for each pair of particles. The rigid registration parameters that parameter-
ize the special Euclidean group SE(n) include rotation angle(s) and translation vector
components. In our 3D optimization of the cost function we have used the quaternion
representation of rotations. Generally, groups can be parameterized in different ways.
Exploration of these ways, so-called optimization on the manifold [6], could enable a re-
duction in the search space during the optimization, reducing computation times and
increase robustness. In addition, it could make it possible to better take into account
group properties such as symmetries.

INCREMENTAL FUSION

Ideally, N-1 pair-wise registrations are enough for the alignment of N given particles.
In practice, however, this minimum number is not enough, due to registration errors
and low-quality particles. For that reason, we have made use of the maximum available
information in our data by averaging all N (N − 1)/2 registrations. In the outlier regis-
tration removal phase of the developed pipeline we have observed that much of this
redundant information can be ignored without affecting the quality of the final recon-
struction. Therefore, it seems reasonable to investigate the possibility of incremental
fusion of the particles. In this setting, one can start with the minimum spanning tree of
the connecting graph of all particles (see Chapter 2) and then gradually add more pair
registrations until the superparticle reaches a certain quality criterion. The big challenge
to implement this idea is to modify the Lie-algebraic averaging such that the result of av-
eraging a subset of registrations (elements in SE(3)) in the all-to-all matrix can be used
for averaging a larger subset up to the maximum number of entries N (N −1)/2.

BOOTSTRAPPING STOPPING CRITERION

It turned out that bootstrapping improves the quality of the superparticle to a satisfac-
tory state in just a few iterations. We have not, however, investigated an automatic way
of stopping the iterations. A possible suitable stopping criterion is to look at the Bhat-
tacharya cost function value between each single particle and the superparticle at each
iteration of the bootstrapping and find the point where this value converges or does not
change significantly anymore.

SOFTWARE DISTRIBUTION

The developed pipeline is open source and publicly available for users to download and
run [7]. However, the main core of the software is written in MATLAB [8] which is a com-
mercial software package. In the 3D study, we have already provided a wrapper which
made the software accessible for users without a MATLAB license. Unfortunately, a po-
tential user still needs to install the MATLAB runtime library, which may be impractical
for users without administrative rights on their machines. Considering the potential of
other programming languages and the simplicity of the developed pipeline, a good ex-
tension to this work could be to port the software to completely open source platforms
like Python, C or C++.
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4.3. LONG-TERM OUTLOOK
Future advances in SMLM will continue to enhance the achievable resolution in light
microscopy and improve our understanding of the nanoworld. There are many possi-
bilities for developing computational routines to gain as much information out of the
acquired data as possible, next to opportunities in sample preparation, labeling strate-
gies and microscopy setups. In the following, I briefly sketch directions of research in
particle averaging for localization microscopy:

PARTICLE PICKING
So far, we assumed that the relevant particles are properly segmented from the whole
field of view. For the experimental datasets in chapter 2-3 of this thesis, this was done by
two-dimensional rendering of the big SMLM images using Picasso [9] and then manually
picking the relevant particles. In 2D, software packages from EM [10, 11] are available
that can perform automatic particle picking by training neural network on hand-picked
particles from the data. In our very basic investigations, we observed that direct use
of these software packages on SMLM data is only useful when the quality of the data,
especially the labeling density, is high and the particles are well separated over the field of
view. This could be primarily due to the fact that the architecture of these networks is not
suitable for the SMLM modality, which is very different from EM. Therefore, designing
new neural network architectures can be helpful for automatic particle picking. In 3D,
one can first project the data along one axis, if the underlying structure lies on a 2D plane
like NPCs in the cell membrane, and then uses 2D routines as before. However, in many
situations, this is not the case and the particles can have an arbitrary orientation in 3D.
Therefore, one needs to invent new approaches for automatic particle picking in 3D.
Deep learning approaches from the computer vision community can be inspiring in this
regard [12–14].

PARTICLE HETEROGENEITY
SMLM data acquired for particle fusion can consist of multiple structures in one field
of view [15] and it is then necessary to make an initial separation of the subclasses be-
fore the start of the fusion. Even within one class of particles structural variations are
expected for many biological structures. These variations can arise from biological dy-
namics, deformation of the cellular structure, or phenotypical variations, e.g. sometimes
the NPC can be nine-fold symmetric [16]. Although there are many approaches in the
field of image processing and computer vision for multiclass object detection in natural
images (see for example [17, 18]), they are not readily useful choices for SMLM particle
discrimination. This is primarily due to the inherent source of heterogeneity in SMLM
dataset as a result of underlabeling. SMLM particles, even in one class, exhibit too much
shape variations that make inter-class differentiation very hard. If different classes are
known in advance, then the fusion of particles of good quality (hand-selected and within
each class) and resampling them to regenerate synthetic datasets to produce various ex-
amples in the population can be an option for developing learning methods to separate
different classes. If, however, the number of unalike particles is low compared to the
whole set one can use a distance measure, like Bhattacharya cost function, to rank simi-
larities of the particles after fusion (see Chapter 3).
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INPAINTING OF INITIAL PARTICLES
Alternatively to all the approaches proposed in the previous section to avoid hotspot
problem in the implemented pipeline, one can inpaint the initial particles using struc-
tural prior knowledge. As an example, for NPC data, it is possible to replicate each in-
dividual particle eight times around its symmetry axis on multiples of 2π/8 to have a
uniform distribution of localizations over the binding sites and then start the particle
fusion. Once all particles are aligned, the spurious localizations can be removed easily
from the superparticle afterward. This is very similar to 3D single particle reconstruction
in cryo-EM where the asymmetric unit is replicated according to the symmetry class of
the particle [10]. The big problem to be solved, here, is to find the axis(es) of symmetry
in the initial particles which can be challenging if the pose variation within the set of
particles is high.

HOW MANY PARTICLES DO WE NEED?
Acquiring SMLM data can be very challenging and time consuming especially for new
modalities like expansion microscopy [19]. Therefore, it is always good to know in ad-
vance how many particles one needs to acquire in order to achieve a certain resolution or
quality. We empirically found that 50-100 particles are enough to achieve a registration
error of about 8 nm according to the metric we proposed for fusion of 3D NPCs [20]. A
theoretical framework needs to be established to generalize this for arbitrary structures
and modalities.

MULTICHANNEL PARTICLE FUSION
Multicolor SMLM enables researchers to colocalize different molecular structures such
as proteins at nanometer resolution. Our particle fusion pipeline, however, is only ca-
pable of single-channel fusion. In chapter 3 of this thesis, we showed the possibility of
multicolor alignment of 3D data by applying the estimated transformations from one
channel to the other. In that experiment, the secondary channel data was an unstruc-
tured complex. If the particles in different channels do not conform to each other ge-
ometrically, e.g. have different rotational symmetry groups, the approach that we took
does not work anymore. Even without enforcing symmetry at the bootstrapping phase,
the pairwise registration in the beginning of the pipeline is subject to nonunique solu-
tions due to the symmetry in one channel that is not necessarily compatible with the
symmetry in the other channel. New cost functions need to be devised which can per-
form joint alignment of multichannel data.

INCORPORATION OF ADDITIONAL INFORMATION
The estimated fluorescent molecule locations (2/3D coordinates) are not the only mea-
sured parameters that are obtained in an SMLM experiment. Localization uncertainties,
photon count per molecule, frame number, background and even sometimes dipole ori-
entation are other sources of information that may be available in SMLM data. Despite
this rich content, scientists usually look at the localization data and use summary statis-
tics for the other data. This is mostly due to the fact that the inference of the other in-
formation is not straightforward. In our particle fusion pipeline, we incorporated the lo-
calization uncertainties along with the localizations. However, there are still possibilities



4.3. LONG-TERM OUTLOOK

4

87

to include the other mentioned information sources in the fusion pipeline. This would
need new cost functions that can properly integrate different sources of information for
particle alignment.

REGISTRATION ERROR MEASUREMENT

Quantitative assessment of the superparticle resulting from the fusion of many particles
is an essential step in developing better particle fusion algorithms and also to find the
requirements for a successful fusion. Visual inspection, measures like Fourier Ring Cor-
relation (FRC) [21] and decorrelation analysis [22], and finally prior knowledge-based
approaches like what we presented in chapter 3 of this thesis are the available tools for
quality assessment of a superparticle. FRC does not necessarily correspond to the reg-
istration error as a superparticle can have a very low registration error according to the
method we developed but still have a large FRC (low resolution) at the same time (see
chapter 2, Supplementary Figure 3). The error measure that we proposed in chapter 3
does properly measure registration errors of simulated data but is structure dependent
and needs to be reparametrized for other structures. Considering these limitations, it
seems necessary to develop new approaches that can quantify registration error without
having an established ground-truth model for the structure at hand.

ADVANCED ANALYSIS TOOLS

Particle fusion shows promise for new inroads to structural analysis of subcellular com-
plexes. This is, however, dependent on the availability of statistical routines for the anal-
ysis of 2/3D point patterns. In chapter 3 of this thesis, we used basic tools such as his-
togram (radial and circular) fitting to characterize the geometry of Nup107, e.g. for find-
ing the azimuthal phase shift of the two Nup107 rings. Advanced tools can be adapted
from the field of spatial statistics [23, 24], which deals with statistical analysis of spatial
data, applied mostly in remote sensing. Cluster analysis, quantitative assessment of la-
beling density, drift, molecular photophysical properties and pose variation of cellular
structures are among the range of interesting topics that can be explored in this regard.

As an example, we used the result of fusing the highly underlabeled TUD dataset
(30% density of labeling (DOL)) for investigating if the hotspot problem in the recon-
structed superparticle is real or an artefact caused by the fusion algorithm. We clustered
each aligned particle using the Gaussian Mixture (GM) approach, as described in [25],
with an estimated number of components of 20 (more than what is expected for 30%
labeled data). Then, we filtered the least significant Gaussian components using the
saliency scores that the algorithm provides. Finally, the localizations of each component
are assigned to the nearest binding sites in the origami design.

Figure 4.1 demonstrates our final analysis on the underlabeled superparticle. Each
ellipse in this figure represents one standard deviation of the aggregated Gaussians for
each binding sites. The black crosses show the estimated center of these clusters which
are quite often away from their actual positions in the origami design (center of the red
circles). Furthermore, the number of times each binding site is activated is color-coded
to show how often each site is activated. The visualization clearly shows that site acti-
vation is not uniform. Some sites are activated more often than the others (3 times in
the worst case), the edges are among those sites with low chance of activation, in accor-
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dance with [26], and the hotspot problem is indeed real in the acquired data and it is not
a particle fusion artefact.

a b

10 nm

Figure 4.1: Analysis of the superparticle for the 30% DOL experimental dataset of chapter 2. (a) Superparticle.
(b) Cluster analysis and number of localizations per binding site. The analysis shows non-uniform activation
of the binding sites in addition to deviations of the cluster centers (red circles) from the ground-truth binding
sites (black crosses).
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SUMMARY

Single molecule localization microscopy (SMLM) shows promise for quantitative
structural analysis of subcellular complexes and organelles with a resolution well
below the diffraction limit. This superresolution microscopy technique relies on the
blinking events of fluorescent molecules that labeled the structure of interest and are
spatiotemporally spread over the entire field of view and time. Once hundred thousands
frames of these sparse events are recorded, single molecule positions are localized with
nanometer precision to form a 2D/3D point set of coordinates. Therefore, SMLM images
are not conventional pixelated images but rather spatial point patterns.

Photon scarcity and incomplete labeling of the imaged structure, however, limit the
resolution that can possibly be achieved by means of SMLM. Moreover, due to exper-
imental limitations the axial resolution is typically ∼2-3 times worse than the lateral
resolution in conventional setups. Inspired by single particle analysis (SPA) in cryo-
electron microscopy (cryo-EM), proper alignment of repeated structures ("particle fu-
sion") in a 2D/3D SMLM measurement can overcome these limiting factors and so push
for isotropic resolution. The existing approaches for particle fusion in SMLM can be
classified into customized routines that are borrowed from SPA in EM or methods that
use strong prior knowledge about the structure to be reconstructed. While the first ap-
proaches are completely ignoring the differences in image formation model between EM
and SMLM, the second ones are highly prone to the template-bias problem.

In this thesis, a dedicated particle fusion pipeline for 2D/3D SMLM data is proposed.
The approach properly considers the pointillistic nature of the SMLM modality and takes
into account the localization uncertainties. Furthermore, while it does not require any
prior knowledge about the underlying structure of the particles, it can incorporate cer-
tain features such as symmetry into the fusion process. Owing to the novel all-to-all
registration scheme, the application of the devised pipeline on experimental data with
very poor labeling density has been successfully demonstrated. The requirements for
successful particle fusion for different SMLM modalities, namely PAINT and STORM,
have been characterized through extensive study on 2D and 3D experimental and sim-
ulation data. In 2D, an FRC resolution of 3.3 nm on DNA-origami nanostructures has
been achieved, and, in 3D, it was demonstrated how the combination of SMLM as a light
microscopy technique and a computational approach enables structural analysis of the
Nuclear Pore Complex.

Future advances of SMLM rely highly on computational routines after data acquisi-
tion. Advanced data analysis techniques such as particle fusion can help pushing the
boundaries of structural biology using light microscopy.
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SAMENVATTING

Enkel-molecuul lokalisatiemicroscopie (SMLM) heeft veel potentie voor kwantitatieve
structurele analyse van sub-cellulaire complexen en organellen met een resolutie signi-
ficant onder de diffractie limiet. Deze superresolutie microscopie techniek is afhankelijk
van het knipperen van fluorescente moleculen die structuren onder studie gelabeld heb-
ben en tijdruimtelijk verdeeld zijn over het hele gezichtsveld en tijd. Als honderdduizen-
den plaatjes van deze verspreide gebeurtenissen opgenomen zijn, kunnen individuele
molecuul posities worden geschat met nanometer precisie om een 2D/3D punt set van
coördinaten te creëren. Daardoor zijn SMLM plaatjes geen conventionele gepixeleerde
plaatjes maar spatiele punt-patronen.

Een beperkt aantal fotonen en incomplete etikettering van de afgebeelde structuur,
begrenzen de resolutie die behaald kan worden met SMLM. Bovendien is de axiale re-
solutie door experimentele beperkingen typisch ∼2-3 keer slechter dan de laterale re-
solutie in conventionele opstellingen. Geïnspireerd door enkele deeltjes analyse (SPA)
in cryo-elektronenmicroscopie (cryo-EM), kunnen we door goede registratie van her-
haalde structuren (deeltjesfusie) in 2D/3D SMLM metingen deze limiterende factoren
overwinnen en richting een isotrope resolutie werken. De bestaande methoden voor
deeltjesfusie in SMLM kunnen geclassificeerd worden als aangepaste algoritmes die hun
oorsprong vinden in het veld van SPA in EM, of als methodes die gebruik maken van
voorkennis over de structuur die gereconstrueerd wordt. De eerste aanpak negeert de
verschillen in de beeldvormingsmodellen tussen EM en SMLM, de tweede is zeer vat-
baar voor het probleem dat het gebruik van een sjabloon vooringenomenheid met zich
meedraagt.

Dit proefschrift beschrijft een specifieke deeltjes fusie pijplijn voor 2D/3D SMLM
data. Deze methode neemt de pointillistische aard van de SMLM beeldvorming in acht
en neemt de lokalisatie onzekerheden ook mee. Daarbovenop heeft de methode geen
voorkennis nodig heeft over de structuur van de deeltjes, en kunnen er wel extra kenmer-
ken zoals symmetrie meegenomen worden in het fusieproces. Dankzij het voorgestelde
allen-naar-allen registratie stelsel, kan de pijplijn succesvol gebruikt worden voor expe-
rimentele data met een zeer lage etiket-dichtheid. Verder worden de eisen voor succes-
volle deeltjesfusie voor verschillende SMLM modaliteiten, namelijk PAINT en STORM,
gekarakteriseerd door een grondig onderzoek met 2D en 3D experimentele en gesimu-
leerde data. In 2D wordt een FRC resolutie van 3.3 nm voor DNA-origami structuren be-
haald, en in 3D wordt aangetoond hoe een combinatie van SMLM als lichtmicroscopie-
techniek en een rekenkundige aanpak de structurele analyse van kernporiecomplexen
mogelijk maakt.

Toekomstige stappen in SMLM berusten voor een groot gedeelte op algoritmes toe-
gepast op de vastgelegde data. Geavanceerde data-analysetechnieken zoals deeltjesfusie
kunnen helpen om grenzen te verleggen in structurele biologie gebaseerd op lichtmicro-
scopie.
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