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Abstract

Piecewise Deterministic Monte Carlo algorithms enable simulation from a posterior distribu-

tion, whilst only needing to access a sub-sample of data at each iteration. We show how they

can be implemented in settings where the parameters live on a restricted domain.

Keywords: MCMC, Bayesian statistics, piecewise deterministic Markov processes, logistic

regression

1. Introduction

Markov chain Monte Carlo (MCMC) methods have been central to the wide-spread use of

Bayesian methods. However their applicability to some modern applications has been limited

due to their high computational cost, particularly in big-data, high-dimensional settings. This

has led to interest in new MCMC methods, particularly non-reversible methods which can mix

better than standard reversible MCMC [9, 23], and variants of MCMC that require accessing

only small subsets of the data at each iteration [25].

One of the main technical challenges associated with likelihood-based inference for big data

is the fact that likelihood calculation is computationally expensive (typically O(N) for data sets

of size N). MCMC methods built from piecewise deterministic Markov processes (PDMPs) offer

considerable promise for reducing this O(N) burden, due to their ability to use sub-sampling
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techniques, whilst still being guaranteed to target the true posterior distribution [5, 7, 11, 12, 18].

Furthermore, factor graph decompositions of the target distribution can be leveraged to perform

sparse updates of the variables [7, 17, 21].

PDMPs explore the state space according to constant velocity dynamics, but where the

velocity changes at random event times. The rate of these event times, and the change in

velocity at each event, are chosen so that the position of the resulting process has the posterior

distribution as its invariant distribution. We will refer to this family of sampling methods as

Piecewise Deterministic Monte Carlo methods (PDMC).

Existing PDMC algorithms can only be used to sample from posteriors where the parameters

can take any value in Rd. In this paper (Section 2) we show how to extend PDMC methodology

to deal with constraints on the parameters. Such models are ubiquitous in machine learning

and statistics. For example, many popular models used for binary, ordinal and polychotomous

response data are multivariate real-valued latent variable models where the response is given by

a deterministic function of the latent variables [1, 10, 22]. Under the posterior distribution, the

domain of the latent variables is then constrained based on the values of the responses. Additional

examples arise in regression where prior knowledge restricts the signs of marginal effects of

explanatory variables such as in econometrics [13], image processing and spectral analysis [3], [14]

and non-negative matrix factorization [15]. A few methods for dealing with restricted domains

are available but these either target an approximation of the correct distribution [20] or are

limited in scope [19].

2. Piecewise Deterministic Monte Carlo on Restricted Domains

Here we present the general PDMC algorithm in a restricted domain. Specific implemen-

tations of PDMC algorithms can be derived as continuous-time limits of familiar discrete-time

MCMC algorithms [6, 21], and these derivations convey much of the intuition behind why the

algorithms have the correct stationary distribution. Our presentation of these methods is dif-

ferent, and more general. We first define a simple class of PDMPs and show how these can be

simulated. We then give simple recipes for how to choose the dynamics of the PDMP so that it

will have the correct stationary distribution.

Our objective is to compute expectations with respect to a probability distribution π on
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O ⊆ Rd which is assumed to have a smooth density, also denoted π(x), with respect to the

Lebesgue measure onO. With this objective in mind, we will construct a continuous-time Markov

process Zt = (Xt, Vt)t≥0 taking values in the domain E = O × V, where O and V are subsets

of Rd, such that O is open, pathwise connected and with Lipschitz boundary ∂O. In particular,

if O = Rd then ∂O = ∅. The dynamics of Zt are easy to describe if one views Xt as position

and Vt as velocity. The position process Xt moves deterministically, with constant velocity Vt

between a discrete set of switching times which are simulated according to N inhomogeneous

Poisson processes, with respective intensity functions λi(Xt, Vt), i = 1, . . . , N , depending on

the current state of the system. At each switching time the position stays the same, but the

velocity is updated according to a specified transition kernel. More specifically, suppose the

next switching event occurs from the ith Poisson process, then the velocity immediately after

the switch is sampled randomly from the probability distribution Qi(x, v, ·) given the current

position x and velocity v. The switching times are random, and designed in conjunction with

the kernels (Qi)
N
i=1 so that the invariant distribution of the process coincides with the target

distribution π.

To ensure that Xt remains confined within O the velocity of the process is updated whenever

Xt hits ∂O so that the process moves back into O. We shall refer to such updates as reflections

even though they need not be specular reflections.

The resulting stochastic process is a Piecewise Deterministic Markov Process (PDMP, [8]).

For it to be useful as the basis of a Piecewise Deterministic Monte Carlo (PDMC) algorithm we

need to (i) be able to easily simulate this process; and (ii) have simple recipes for choosing the

intensities, (λi)
N
i=1, and transition kernels, (Qi)

N
i=1, such that the resulting process has π(x) as

its marginal stationary distribution. We will tackle each of these problems in turn.

2.1. Simulation

The key challenge in simulating our PDMP is simulating the event times. The intensity of

events is a function of the state of the process. But as the dynamics between event times are

deterministic, we can easily represent the intensity for the next event as a deterministic function

of time. Suppose that the PDMP is driven by a single inhomogeneous Poisson process with

intensity function

λ̃(u;Xt, Vt) = λ(Xt + uVt, Vt), u ≥ 0.

3



We can simulate the first event time directly if we have an explicit expression for the inverse

function of the monotonically increasing function

u 7→
∫ u

0

λ̃(s;Xt, Vt) ds. (1)

In this case the time until the next event is obtained by (i) simulating a realization, y say, of

an exponential random variable with rate 1; and (ii) setting the time until the next event as the

value τ that solves
∫ τ
0
λ̃(s;Xt, Vt) ds = y.

Inverting (1) is often not practical. In such cases simulation can be carried out via thinning

[16]. This requires finding a tractable upper bound on the rate, λ(u) ≥ λ̃(u;Xt, Vt) for all

u > 0. Such an upper bound will typically take the form of a piecewise linear function or a

step function. Note that the upper bound λ is only required to be valid along the trajectory

u 7→ (Xt + uVt, Vt) in O × V. Therefore the upper bound may depend on the starting point

(Xt, Vt) of the line segment we are currently simulating. We then propose potential events by

simulating events from an inhomogenous Poisson process with rate λ(u), and accept an event at

time u with probability λ̃(u;Xt, Vt)/λ(u). The time of the first accepted event will be the time

until the next event in our PDMP.

To handle boundary reflections, at every given time t, we also keep track of the next reflection

event in the absence of a switching event, i.e. we compute

τb = inf {u > 0 : Xt + uVt 6∈ O) .

If the boundary ∂O can be represented as a finite set of M hyper-planes in Rd, then the cost

of computing τb is O(Md). When generating the switching event times and positions for Zt we

determine whether a boundary reflection will occur before the next potential switching event. If

so, then we induce a switching event at time t+ τb where Xt+τb ∈ ∂O and sample a new velocity

from the transition kernel Qb, i.e. Vt+τb ∼ Qb(Xt+τb , Vt, ·).

Although theoretically we may choose a new velocity pointing outwards and have an immedi-

ate second jump, we will for algorithmic purposes assume that the probability measure Qb(x, u, ·)

for (x, u) ∈ ∂O × V is concentrated on those directions v for which (v · n(x)) ≤ 0, where n(x) is

the outward normal at x ∈ ∂O.

For a PDMP driven by N inhomogeneous Poisson processes with intensities (λi)
N
i=1 the
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previous steps lead to the following algorithm for simulating the next event of our PDMP. This

algorithm can be iterated to simulate the PDMP for a chosen number of events or a pre-specified

time-interval.

(0) Initialize: Set t to the current time and (Xt, Vt) to the current position and velocity.

(1) Determine bound: For each i ∈ 1, . . . , N , find a convenient function λi satisfying λi(u) ≥

λ̃i(u;Xt, Vt) for all u ≥ 0, depending on the initial point (Xt, Vt) from which we are

departing.

(2) Propose event: For i = 1, . . . , N simulate the first event times τ ′i of a Poisson process

with rate function λi. Compute the next boundary reflection time τb.

(3) Let imin = arg minj=1,...,N τ
′
j and τ ′ = τ ′imin

.

(4) Accept/Reject event:

(4.1) If τb < τ ′ then set τ = τb; set Xt+τ = Xt + τVt; sample a new velocity Vt+τ ∼

Qb(Xt+τ , Vt, ·).

(4.2) Otherwise with probability

λ̃imin(τ ′;Xt, Vt)

λimin
(τ ′)

accept the event at time τ = τ ′.

(4.2.1) Upon acceptance: set Xt+τ = Xt + τVt; sample a new velocity Vt+τ ∼

Qimin
(Xt+τ , Vt, ·).

(4.2.2) Upon rejection: set Xt+τ = Xt + τVt and set Vt+τ = Vt.

(5) Update: Record the time t+ τ ′ and state (Xt+τ ′ , Vt+τ ′).

2.2. Output of PDMC algorithms

The output of these algorithms will be a sequence of event times t1, t2, t3, . . . , tK and as-

sociated states (X1, V1), (X2, V2), . . . , (XK , VK). To obtain the value of the process at times

t ∈ [tk, tk+1), we can linearly interpolate the continuous path of the process between event times,

i.e. Xt = Xtk + Vk(t − tk). Time integrals
∫ t
0
f(Xs) ds of a function f of the process Xt can

often be computed analytically from the output of the above algorithm. If not they can be
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approximated by numerically integrating the one dimensional integral along the piecewise linear

trajectory of the PDMP. Alternatively we can sample the PDMP at a set of evenly spaced time

points along the trajectory and use this collection as an approximate sample from our target

distribution.

Under the assumption that the resulting PDMP is ergodic (for sufficient conditions see e.g.

[5, 7]) and that the marginal density on O of the stationary distribution of (Xt, Vt) is equal to

π, we have the following version of the law of large numbers for the PDMP (Xt, Vt)t≥0: For all

f ∈ L2(π) we have that, with probability one,∫
Rd

f(x)π(x) dx = lim
T→∞

1

T

∫ T

0

f(Xs) ds.

It is this formula which allows us to use PDMPs for Monte Carlo purposes.

2.3. Choosing the intensity and transition kernels

Assume, as most existing PDMC methods do [5, 7, 21], that the target density, π(x) : O →

(0,∞) is differentiable. Under this condition we can provide criteria on the switching intensities

(λi) and transition kernels Qi and Qb which must hold for a given probability distribution to be

a stationary distribution of Zt. We shall consider stationary distributions for which x and v are

independent, i.e. distributions of the form π(x)dx ⊗ ρ(dv) on E. Furthermore we assume that

π(x) ∝ exp(−U(x)) where U is continuously differentiable.

We impose the condition that∫
v∈V

N∑
i=1

λi(x, v)Qi(x, v, du) ρ(dv) =

∫
v∈V

N∑
i=1

λi(x, v)Qi(x, u, dv) ρ(du), x ∈ O. (2)

A sufficient condition for (2) is that each Qi is reversible with respect to ρ, i.e. for every

i = 1, . . . , N and x ∈ O, we have that Qi(x, v, du)ρ(dv) = Qi(x, u, dv)ρ(du).

Moreover, we shall require the following condition which relates the probability flow with the

switching intensities λi:

N∑
i=1

∫
V
λi(x, v)Qi(x, u, dv)−

N∑
i=1

λi(x, u) = −u · ∇U(x), (x, u) ∈ O × V. (3)

Finally, the boundary transition kernel should satisfy

Qb(x, u, dv)ρ(du) = Qb(x, v, du)ρ(dv), x ∈ ∂O, (4)
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and ∫
V

(n(x) · u)Qb(x, v, du) = −v · n(x), (x, v) ∈ ∂O × V, (5)

where for x ∈ ∂O, we denote by n(x) the outward unit normal of ∂O.

Proposition 1. Consider the process Zt on O×V where O is an open, pathwise connected subset
of Rd with Lipschitz boundary ∂O. Suppose that conditions (2),(3), (4) and (5) are satisfied.
Then π(x) dx⊗ ρ(dv) is an invariant distribution for the process Zt.

The proof of this result relies on verifying that Eπ⊗ρ[Lf(X,V )] = 0 where L denotes the

generator of our PDMP and is deferred to the supplementary material, Section 1.

In practice we only have to satisfy (4) and (5) on the exit region Γ ⊂ O × V. For example

if O = (a, b) ⊂ R1 and V = {−1,+1}, then Γ = {b,+1} ∪ {a,−1}. The specification of Qb on

(∂O×V) \Γ is irrelevant as these points are never reached by Zt. On this irrelevant set, we may

choose Qb as desired to satisfy (5).

2.4. Example: The Bouncy Particle Sampler

Current PDMC algorithms differ in terms of how the Qi and λi are chosen such that the

above equation holds for some simple distribution for the velocity. Here we discuss how the

Bouncy Particle Sampler (BPS), introduced in [21] and explored in [7], is an example of the

framework introduced here. In the supplementary material, Section 1.1, the Zig-Zag sampler is

described as a second example. In the following example δx denotes the Dirac-measure centered

in x.

The Bouncy Particle Sampler is obtained setting N = 1 and ρ = N (0, I) on Rd or ρ =

U(Sd−1), i.e. the uniform distribution on the unit sphere. The single switching rate is chosen to

be λBPS(x, v) = max(v · ∇U(x), 0), with corresponding switching kernel Q which reflects v with

respect to the orthogonal complement of ∇U with probability 1:

Q(x, v, dv′) = δ(I−2P∇U )v(dv
′),

where Py : z 7→ z·y
‖y‖2 y denotes orthogonal projection along the one dimensional subspace spanned

by y.

As noted in [7] this algorithm suffers from reducibility issues. These can be overcome by

refreshing the velocity by drawing a new velocity independently from ρ(dv). In the simplest case
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the refreshment times come from an independent Poisson process with constant rate λref. This

also fits in the framework above by choosing λ̃ = λBPS + λref and

Q(x, u, dv) =
λBPS

λBPS + λref
δ(I−2P∇U )u(dv) +

λref
λBPS + λref

ρ(dv).

As boundary transition kernel it is natural to choose

Qb(s, v, du) = δ(I−2Pn(s))v(du),

for s ∈ ∂O, so that the process Xt reflects specularly at the boundary (i.e. angle of incidence

equals angle of reflection of process with respect to the boundary normal). It is straightforward

to check that condition (2) holds at the boundary and that (5) is satisfied.

As a generalization of the BPS, one can consider a preconditioned version, which is obtained

by introducing a constant positive definite symmetric matrix M to rescale the velocity process.

The choice of M plays a very similar role to the mass matrix in HMC, and careful tuning can

give rise to dramatic increases in performance [12, 18].

3. Subsampling

When using PDMC to sample from a posterior, we can use sub-samples of data at each

iteration of the algorithm, as described in [5, 7], which reduces the computational complexity

of the algorithm from O(N) to O(1), where N is the size of the data, without affecting the

theoretical validity of the algorithm. In the following we will assume that we can write the

posterior as π(x) ∝
∏N
i=1 f(yi;x), for some function f . For example this would be the likelihood

for a single IID data point times the 1/Nth power of the prior.

The idea of using sub-sampling, within say the Bouncy Particle Sampler (BPS), is that at each

iteration of our PDMC algorithm we can replace ∇U(x) by an unbiased estimator in step (3). We

need to use the same estimate both when calculating the actual event rate in the accept/reject

step and, if we accept, when simulating the new velocity. The only further alteration we need

to the algorithm is to choose an upper bound λ that holds for all realizations of ∇̂U . A more

comprehensive explanation of this argument can be found in [5, 11] in the context of the Zig-Zag

sampler, and in [7, 12] for the bouncy particle sampler.

We first present a way for estimating ∇U unbiasedly using control variates [2, 5]. For any
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x, x̂ ∈ O we note that ∇U(x) = ∇U(x̂)+[∇U(x)−∇U(x̂)]. We can then introduce the estimator

∇̂U(x) of ∇U(x) by

∇̂U(x) = ∇U(x̂) +N [∇ log f(yI ;x)−∇ log f(yI ; x̂)] , (6)

where I is drawn uniformly from {1, . . . , N}.

It is straightforward to show that the resulting BPS algorithm uses an event rate that is

E
[
max

(
0, (∇̂U(x) · v)

)]
, and that this rate and the resulting transition probability Q at events

satisfies Proposition 1. Hence this algorithm still targets π(x), but only requires access to one

data point at each accept-reject decision.

Note that this gain in computational efficiency does not come for free, as it follows from

Jensen’s inequality that the overall rate of events will be higher. This makes mixing of the

PDMC process slower. It is also immediate that the bound, λ, we will have to use will be higher.

However [5] show that if our estimator of ∇̂U(x) has sufficiently small variance, then we can

still gain substantially in terms of efficiency. In particular they give an example where the CPU

cost effective sample size does not grow with N – by comparison all standard MCMC algorithms

would have a cost that is at least linear in N .

To obtain such a low-variance estimator requires a good choice of x̂, so that with high prob-

ability x will be closer to x̂. This involves a preprocessing step to find a value x̂ close to the

posterior mode, a preprocessing step to then calculate ∇U(x̂) is also needed.

We now illustrate how to find an upper bound on the event rate. Following [5], if we assume

L is a uniform (in space and i) upper bound on the largest eigenvalue of the Hessian of U i, and

if ‖v‖ = 1:

max
(
0,
(
∇U(x̂) +N(∇U i(Xt)−∇U i(x̂))

)
· v
)

≤ max (0,∇U(x̂) · v) +N
∥∥∇U i(x)−∇U i(x̂)∇U i(x)−∇iU(Xt)

∥∥
≤ max (0,∇U(x̂) · v) +NL ‖x− x̂‖+NLt (7)

Thus the upper bound on the intensity is of the form λ̄(τ) = a+ b · τ with a, b ≥ 0. In this case

the first arrival time can be simulated as follows

τ ′ = −a/b+

√(a
b

)2
+ 2 · R

b
with R ∼ Exp(1). (8)
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An alternative and complementary approach to improve the efficiency of this subsampling pro-

cedure is to use an estimator of the gradient (3) where I is drawn according to a distribution

dependent on the observations [7, 12].

4. Software and Numerical Experiments

A open-source Julia package PDMP.jl has been developed to provide efficient implementations

of various recently developed piecewise deterministic Monte Carlo methods for sampling in (pos-

sibly restricted) continuous spaces. A variety of algorithms are implemented including the Zig-

Zag sampler and the Bouncy Particle Sampler with full and local refreshment along with control

variate based sub-sampling for these methods. The package has been specifically designed with

extensibility in mind, permitting rapid implementation of new PDMP based methods. The li-

brary along with code and documentation is available at github.com/alan-turing-institute/

PDSampler.jl.

We use Bayesian binary logistic regression as a testbed for our newly proposed methodology

and perform a simulation study. The data yi ∈ {−1, 1} is modelled by

p(yi|ξi, x) = f(yix
T ξi) (9)

where ξ ∈ Rp×n are fixed covariates and f(z) = 1
1+exp(−z) ∈ [0, 1]. We will assume that we wish

to fit this model under some monotonicity constraints – so that the probability of y = 1 is known

to either increase or decrease with certain covariates. This is modeled through the constraint

xi > 0 and xi < 0 respectively. An example where such restrictions occur naturally is in logistic

regression for questionnaires, see [24]. In following we consider the case xj ≥ 0 for j = 1, . . . , p

along with the additional linear constraint
∑
j xj ≤ K where K = 10.

For simplicity we use a flat prior over the space of parameters values consistent with our

constraints. By Bayes’ rule the posterior π satisfies

π(x) ∝
N∏
i=1

f(yix
T ξi) for x ∈ O,

where O is the space of parameter values consistent with our constraints. We implement the

BPS with subsampling. As explained in the introduction, subsampling is a key benefit of using

piecewise deterministic sampling methods; see Section 3. We use reflection at the boundary
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i.e. Qb(s, v, du) = δ(I−2Pn(s))v(du) for s ∈ ∂O. We can bound the switching intensity by a

linear function of time, even when we use the subsampling estimator for the switching rate.

See the supplementary material, Section 2, for details on the application of subsampling in

this example. We use n = 10, 000 and p = 20 and generate artificial data based on ξ and x?

whose components are a realization i.i.d. of uniformly distributed random variables satisfying

the imposed constraints.

We compare the performance of BPS to standard MALA and HMC schemes, in terms of

effective sample size (ESS) per epoch of data evaluation. For each scheme we obtain the distri-

bution of ESS based on 10 independent realisations of each chain. In Figure 1(a) we plot for each

scheme, the distribution of ESS per epoch with respect to the function f1(x) = 1
p (x1 + . . .+ xp).

Similarly, In Figure 1(b) we plot the ESS per epoch for each chain with respect to the function

f2(x) = log π(x). The performance of MALA and HMC appears commensurate and the BPS

demonstrates a clear advantage over both in terms of ESS per epoch.

The HMC and MALA schemes were tuned by minimising the ESS with respect to the step-

size, calculated from exploratory runs. For HMC we use 5 leap-frog steps. We find that we must

tune both HMC and MALA to have a small step size due to proposals being rejected at the

boundary. The ESS is estimated based on asymptotic variance using the batch means method;

see [4, 5] for details.

For specific types of constraints more efficient implementations of HMC and MALA are

possible, either by introducing an appropriate transformation of the restricted state space, or

by reflecting the posterior distribution along the constraint boundaries. Moreover, we note that

there exists a version of HMC which can sample from truncated Gaussian distributions [19].

However, to our knowledge there is no efficient HMC or MALA scheme able to handle generally

restricted domains.

The Bouncy Particle Sampler for this model was implemented using PDSampler.jl while the

corresponding HMC and MALA samplers implemented with Klara.jl. The code for this numeri-

cal experiment along with results are carefully presented in github.com/tlienart/ConstrainedPDMP/.
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(a) ESS per epoch with respect to f1(x) (b) ESS per epoch with respect to f2(x)

Figure 1: Average ESS per epochs of data evaluation for MALA, HMC and PDMP (BPS) applied to logistic
regression with p = 20 and n = 10000 and parameter x constrained to be nonnegative and satisfy

∑
j xj ≤ 10.

The graphic is based on 10 independent runs for each HMC, MALA and BPS for each choice of number of epochs.

5. Discussion

This work provides a framework for describing a general class of PDMC methods which are

ergodic with respect to a given target probability distribution. Open questions remain on how

the choice of intensity function, velocity transition kernel as well as other parameters of the

system influence the overall performance of the scheme. The problem of understanding the true

computational cost of such PDMC schemes is more subtle than for classical discrete time MCMC

schemes: often one needs to find a balance between fast mixing of the continuous time Markov

process and having a switching rate that is relatively cheap to simulate. For example, when

using subsampling the mixing of the Markov process is slower than without subsampling, but

the computational cost per simulated switch is significantly smaller. Further investigation is

required to understand this delicate balance.
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In the supplementary material we provide a theoretical background for the framework for
restricted domain PDMC (Section 1, which includes the Zig-Zag sampler as further example).
The detailed application of subsampling to the logistic regression example may be found in
Section 2.

1 Stationary distribution for PDMPs on restricted domains

From [2, Section 5] the process Zt will have infinitesimal generator given by the closure of the
operator

Lf(x, v) = v · ∇xf(x, v) +

N∑
i=1

λi(x, v)

∫
V

(f(x, u)− f(x, v))Qi(x, v, du), (x, v) ∈ E, (1)

where D(L) is the set of functions which are continuously differentiable with respect to x on O,
which is decaying to infinity as ‖x‖ → ∞ and such that

f(x, v) =

∫
V
f(x, u)Qb(x, v, du), (2)

for all (x, v) ∈ ∂O × V. Based on this identification of the infinitesimal generator we can now
provide a formal proof that the conditions of Proposition 1 of the paper are sufficient to ensure
invariance of π ⊗ ρ.

Sketch Proof of Proposition 1. Without loss of generality we take π(x) = exp(−U(x)), i.e. the
proportionality factor in π(x) ∝ exp(−U(x)) is assumed to be 1. We shall only provide a formal
proof of this result, by demonstrating that∫

O×V
Lf(x, v)π(x) dx ρ(dv) = 0, for all f ∈ D(L),

so that L is infinitesimally invariant. A rigorous proof would require establishing that D(L) as
defined above is a core for the extended generator. This is a technical result which we defer for
future work.

1



For f ∈ D(L),∫
O

∫
V

∫
V

N∑
i=1

λi(x, v) [f(x, u)− f(x, v)] Qi(x, v, du)π(x) dx ρ(dv)

=

∫
O

∫
V

N∑
i=1

f(x, u)

[∫
V
λi(x, v)Qi(x, u, dv)− λi(x, u)

]
ρ(du)π(x) dx

= −
∫
Rd

∫
V
f(x, u)u · ∇U(x) ρ(du)e−U(x) dx

=

∫
O

∫
V
f(x, u)u · ∇e−U(x) ρ(du) dx

= −
∫
O

∫
V
u · ∇xf(x, u)e−U(x) ρ(du) dx+

∫
∂O

∫
V
f(σ, u)(u · n(σ))e−U(σ)ρ(du) dσ,

where the boundary term arises from integration by parts with respect to x. Considering the
boundary integral, by applying (4) (in the paper) which is assumed to hold on ∂O and (2) (above)
we obtain ∫

∂O

∫
V
f(σ, u)(u · n(σ))e−U(σ)ρ(du) dσ

=

∫
∂O

∫
V

∫
V
f(σ, v)Qb(σ, u, dv)(u · n(σ))e−U(σ)ρ(du) dσ

=

∫
∂O

∫
V

∫
V
f(σ, v)Qb(σ, v, du)(u · n(σ))e−U(σ)ρ(dv) dσ

= −
∫
∂O

∫
V
f(σ, v)(v · n(σ))e−U(σ)ρ(dv) dσ,

so that the boundary term evaluates to zero.
It follows that∫
O

∫
V
Lf(x, v)π(x) dxρ(dv) =

∫
O

∫
V

(u · ∇xf(x, u)− u · ∇xf(x, u))π(x) dxρ(dv) = 0,

so that π(x) dx⊗ ρ(dv) is infinitesimally invariant with respect to Zt.

Another possible behaviour at the boundary is to generate the new reflected direction inde-
pendently of the angle of incidence. This will also preserve the invariant distribution provided
that ρ is isotropic.

Proposition 1. Consider the process Zt as in the previous proposition, such that conditions (2)
and (3) (of the paper) hold and the distribution ρ has mean zero. Then π(x) dx ⊗ ρ(dv) will be
an invariant distribution for the process Zt if Qb(x, v, du) is independent of v for all x ∈ ∂O.

Sketch Proof of Proposition 1. Let f ∈ D(L), so that f satisfies (2). By the assumptions on Qb
in Proposition 1 (of the paper), this implies that f(x, v) = f(x) for all x ∈ ∂O. Following the
proof of Proposition 1 above, the boundary integral term becomes∫

∂O

∫
V
f(s, u)(u · n(s))e−U(s)ρ(du) ds =

∫
∂O

f(s)e−U(s)n(s) ds ·
∫
V
uρ(du),

which is zero if ρ has mean zero, as required.
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1.1 The Zig-Zag sampler

The Zig-Zag sampler [1] can be recovered by choosing N = d and picking as velocity space
V = {−1,+1}d equipped with discrete uniform distribution ρ, defining switching rates λi(x, v) =
max(vi∂xi

U(x), 0). The corresponding switching kernels over new directions are given by

Qi(x, v, dv
′) = δFiv(dv

′),

where Fi : V → V denotes the operation of flipping the i-th component, i.e. (Fiv)(i) = −v(i),
and (Fiv)(j) = v(j) for j 6= i.

2 Derivation of dominating intensity for logistic regression
example

A valid choice of L can be derived as follows: Notice that (log f(z))
′

= f(−z) and f
′
(z) =

f(z) (1− f(z)) so that we obtain

∂

∂x
log f(yi|x) = f

(
−yix>ξi

)
yiξi

∂

∂2x
log f(yi|x) = −f

(
−yix>ξi

) (
1− f

(
−yix>ξi

))
ξiξ

τ
i

Using p(1− p) ≤ 1
4 for p ∈ [0, 1]

sup
‖w‖≤1

∣∣∣∣wt ∂

∂2x
log f(yi|x)wt

∣∣∣∣ ≤ 1

4
‖ξi‖2

So Equation (7) (of the paper) holds with

L :=
1

4
max

i=1,...,n
‖ξi‖

as defined above.
This is a linear upper bound on the intensity which can be used to sample according to (8)

(of the paper) and then used for thinning as introduced in Section 1 of the paper.
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