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Abstract
This paper presents a systematic way of understanding and modeling traveler behavior in 
response to on-demand mobility services. We explicitly consider the sequential and yet 
inter-connected decision-making stages specific to on-demand service usage. The frame-
work includes a hybrid choice model for service subscription, and three logit mixture mod-
els with inter-consumer heterogeneity for the service access, menu product choice and opt-
out choice. Different models are connected by feeding logsums. The proposed modeling 
framework is essential for accounting the impacts of real-time on-demand system’s dynam-
ics on traveler behaviors and capturing consumer heterogeneity, thus being greatly rele-
vant for integrations in multi-modal dynamic simulators. The methodology is applied to a 
case study of an innovative personalized on-demand real-time system which incentivizes 
travelers to select more sustainable travel options. The data for model estimation is col-
lected through a smartphone-based context-aware stated preference survey. Through model 
estimation, lower values of time are observed when the respondents opt to use the reward 
system. The perception of incentives and schedule delay by different population segments 
are quantified. These results are fundamental in setting the ground for different behavioral 
scenarios of such a new on-demand system. The proposed methodology is flexible to be 
applied to model other on-demand mobility services such as ride-hailing services and the 
emerging mobility as a service.

Keywords  Smart mobility · On-demand · Incentives · Travel behavior · Stated preference · 
Sustainability

Introduction

In recent years, emerging new mobility services, including ride-hailing, ride-sharing, bike-
sharing and carsharing systems have gained popularity worldwide. Uber, which operates 
in 600 cities across 78 countries, gave four billion rides worldwide in 2017 alone, while it 
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has just hit five billion total rides in May 2017 since its first appearance (Bhuiyan 2018). 
In China, DiDi Chuxing completed 7.43 billion rides for 450 million users in more than 
400 cities in the same year (Xinhua 2018). The French-born peer-to-peer carpooling digital 
platform BlaBlaCar claims to have 60 million members in 22 countries and serves over 18 
million travelers every quarter (BlaBlaCar 2019). The attempts to design, test and imple-
ment mobility as a service (MaaS) platforms which vend travel packages integrated from 
different service providers have also emerged in the last 5 years.

The success and the still growing interest in these new mobility solutions are largely due 
to the advancement of Information and Communications Technologies (ICTs) in that these 
services usually enable on-demand, efficient, convenient and personalized usage through 
mobile applications. These mobility services usually require users to (1) subscribe (regis-
ter) to a given service, (2) request a service menu with product option(s) through a mobile 
application and (3) select the preferred product. We refer to this broad group of mobility 
services as on-demand services.

When designing a new transportation service/mode, predicting its demand and its sensi-
tivity with respect to service attributes is critical. Currently, the state-of-the-art approaches 
rely on disaggregate behavioral modeling and activity-based models (ABM) (Rasouli and 
Timmermans 2014; Viegas de Lima et al. 2018). These models are commonly based on 
discrete choice methodology and random utility maximization (McFadden 1974; Ben-
Akiva and Lerman 1985). Since on-demand mobility services are often dynamically tai-
lored to different individual preferences and contexts (e.g. time-of-day, supply demand 
matching), disaggregate behavioral models are essential for the accommodation of their 
complex dynamics which enables the quantification of user benefits and overall transporta-
tion impacts (such as congestion and other externalities). Constructing and understanding 
these models are thus of great interest to researchers, practitioners and service providers.

Current research on the behavior side of on-demand mobility services mainly focuses 
on exploring the behavioral insights qualitatively based on aggregate analysis of surveys 
(for example, Rayle et al. 2016; Clewlow 2016). As indicated by Jittrapirom et al. (2017), 
models for MaaS or other on-demand mobility services have been limited so far.

To the best of our knowledge, discrete choice models for on-demand mobility service 
have been focusing only on either the subscription choice or the product choice. In both 
cases, usually the service access action (i.e., opening the app) and its impact are not con-
sidered. To name a few efforts put in these two streams, Ghose and Han (2014) investigated 
the demand (number of downloads) of apps through a 3-level nested logit with consumer 
taste heterogeneity and nests based on app attributes. Zoepf and Keith (2016) estimated a 
logit mixture with taste heterogeneity to evaluate how carsharing users value each attrib-
ute displayed in a product menu. Dias et al. (2017) used a bivariate ordered probit model 
for the use of ride-hailing and car-sharing services in terms of weekly usage frequencies. 
Matyas and Kamargianni (2018) investigated subscription preferences towards various 
product bundles in a MaaS setting by logit mixtures with taste heterogeneity. Choudhury 
et  al. (2017) used nested logit to model the mode choice between smart mobility solu-
tions and existing modes, along with other choice dimensions. While the methods in these 
papers are useful to draw behavioral insights for a specific episode of the decision process, 
they are missing the connections between the episodes. These segmented treatments could 
potentially result in inaccurate conclusions and hamper the engagement of the models in 
simulations in that assumptions on the unmodeled decision stages would have to be made 
(e.g. if one has only modeled the mode choice decision, he/she would have to assume a 
penetration rate for subscription in simulation).
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In the greater context of modeling car ownerships or service subscriptions, the inter-
connections between short-term and long-term decisions have been studied (e.g. Pinjari 
et al. 2011; Le Vine et al. 2014; Plevka et al. 2018). The uniqueness of on-demand mobil-
ity service usage arises from an additional level of decision—whether to access the ser-
vice menu. This level requires specific treatment to capture the behaviors of travelers who 
checked the service menu but opted out and who didn’t bother checking the menu because 
they expected that unattractive options would have been offered. These behaviors are espe-
cially relevant for on-demand services which generate their service menu dynamically in 
real-time.

This paper fills the aforementioned gaps by developing a framework which explic-
itly considers and integrates all the decision-making stages of on-demand service usage, 
including the real-time and dynamic aspects of such service. Inter-consumer heterogeneity 
is captured through logit mixtures with distributed taste coefficients. The modeling frame-
work could be either used as a stand-alone or embedded within common ABM frameworks.

Our methodology could be applied to a broad range of on-demand services such as ride-
hailing, carsharing and MaaS systems. The capability and flexibility of it are illustrated 
through a case study on Tripod—an innovative on-demand incentive scheme (Azevedo 
et al. 2018). Tripod doesn’t provide a mobility service per se but offers incentives for more 
energy efficient travel options through a personalized real-time travel menu.

The remainder of the paper is organized as follows. In the second section, we formulate 
our modeling framework. In the third section we present the data collection for the case 
study, followed by the model specifications and estimation shown in the fourth section. 
Finally, the conclusions are provided in the last section.

Modeling framework for on‑demand services

The decision-making process relevant to an on-demand mobility service is depicted in 
Fig. 1.

First of all, a person needs to decide whether to subscribe a given service. This choice 
is represented by the subscription model. It typically involves downloading the app (if 

Fig. 1   Conceptualized decision-making process in on-demand app usage



2020	 Transportation (2019) 46:2017–2039

1 3

app-based) and registering. With the goal to model the behavior in service usage, the sub-
scription here refers to people who actually consider to use the service on a regular basis. 
If a traveler doesn’t subscribe to the on-demand service of interest, then upon travel, he/
she makes a regular choice, i.e., the choice set excludes the options offered by this service.

For a subscriber, the first decision prior to trip-making is whether to access the ser-
vice and view the offered products, which is represented by the service access model. This 
may be conditional on the trip context (e.g., trip purpose, traveling party) or the user’s past 
experience with the service. Sometimes travelers don’t consider using a service as they 
expect that the operator would offer unattractive terms (for example travelers might expect 
higher price in rush hours) and therefore do not check the menu—while what is offered in 
the menu might actually be attractive. The explicit modeling of service access captures this 
behavior.

In Fig. 1 we represent the choice situation of the subscribers who don’t access the ser-
vice and that of the non-subscribers by the same model, however, it doesn’t mean that these 
two types of travelers should behave identically. This potential behavioral difference could 
be incorporated into the model specification by segmentation.

If the user decides to access the service, a service menu would be presented and the user 
would evaluate the products through a menu product choice model. If the user likes one of 
the products in the menu, he/she would select it and execute the trip. The user may also 
reject the entire menu (opt-out) and choose an alternative other than the on-demand service 
at stake.

For subscribers, the choice situation after opt-out (informed regular choice in Fig. 1) is 
different from the one without opening the app (regular choice in Fig. 1) in that the options 
offered by on-demand mobility services usually also provide the users with real-time infor-
mation (e.g., availability of alternatives, travel time estimates). The impact of information 
is discussed in Ben-Akiva et al. (1991) and Mahmassani and Liu (1999). For example, if a 
traveler checks a car-based ride-hailing app prior to travel during a congested period and 
opts out, she/he may be more likely to select non-road modes.

Based on the sequential nature of the above-described decision process, the higher level 
choices influence the lower level ones. However, the lower levels have significant impacts 
on the upper levels as well. When a traveler makes the subscription decision, the major 
consideration is whether the mobility service is attractive, which is reflected through the 
experience and perceived benefits of using the corresponding mobility service, including 
the app. Furthermore, whether to access the service for a given trip depends on the users’ 
perceptions of the attractiveness of the menu given the context of the trip, the attributes 
of the potential service products and the user’s sensitivities towards them. To capture this 
bottom-up dependency, a multi-level nesting structure is proposed. The logsums feedings 
between levels provide measurements of attractiveness of the lower levels, and their coef-
ficients show the corresponding sensitivities.

In conclusion, five choice models should be considered in order to model an on-demand 
mobility service: (1) a subscription model, (2) a service access model, (3) a menu product 
choice model, (4) an informed regular choice model for those who opts out, (5) a regular 
choice model for uninformed users and non-subscribers.

The logsum passing directions are illustrated in Fig. 1 with the dashed lines. By defini-
tion, logsum represents the expected maximum utility from the corresponding lower level. 
We want to stress two logsum computations that require additional attention. First, the 
logsum from the menu product choice model to service access model should depend on 
what the users expect to see, rather than what would be truly offered. An example of how 
this is handled in the context of our case study could be found in “Model formulation and 
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specification” section. Second, the long-term logsum (green dashed lines in Fig. 1) should 
be computed based on corresponding lower level models applied to multiple trip contexts 
pertinent to the traveler and weighted according to their frequency and/or importance.

To estimate the modeling framework we described, a dataset which covers the complete 
decision sequence is desired. While the menu product choice and subscription choice are 
straight-forward to elicit, the service access choice is intricate. If revealed preference (RP) 
data is used, besides the trips and the choice that are common to most RP datasets, it has to 
contain information regarding service access actions. These could be acquired by tracking 
the respondents’ smartphones or by including related questions (e.g., “did you access Uber 
App for this trip?”) in the RP survey. While the first requires additional efforts in the data 
collection, the second may cause under-reporting of the access-then-opt-out behavior. On 
the other hand, if stated preference (SP) data is used, service access process needs to be 
presented and the corresponding choice needs to be recorded. In “Case study: tripod back-
ground and data collection” and “Case study: model formulation and estimation” sections 
we describe how we addressed this by a smartphone-based SP in the context of Tripod.

Case study: tripod background and data collection

Tripod overview

Tripod is an app-based on-demand system that influences individuals’ real-time travel deci-
sions by offering them information and incentives with the objective of achieving system-
wide energy savings (Azevedo et al. 2018). The travel decisions of interest are mode, route, 
departure time, trip-making and driving style. In response to any changes in any of these 
dimensions, users receive incentives in the form of tokens that can then be redeemed in 
a market place for a variety of goods and services. Like in the above-mentioned decision 
process, a Tripod user has to subscribe to the app and decide whether to request a Tripod 
menu before each trip. The menu is presented to the user (see Fig.  2) with information 
about the recommended options and their tokens. The tokens for each alternative are calcu-
lated based on the energy savings from the expected choice without Tripod and the menu 
is personalized according to the user’s preferences, characteristic and network attributes 
(Song et al. 2018; Danaf et al. 2019). The user may select an option from the menu and use 
the Tripod app to navigate to the destination or opt out. In the first case, the app monitors 
the trip of the user and rewards her/him at the end of it if the guidance was followed.

Data collection method

In this section we describe the data collection for Tripod, which is based on the methodol-
ogy proposed by Atasoy et al. (2018).

The core data collection platform is the smartphone-based Future Mobility Sensing 
(FMS) platform (Cottrill et al. 2013; Zhao et al. 2015; Seshadri et al. 2019). It overcomes 
the main limitations associated with the traditional “paper-and-pencil” or purely web-
based questionnaires, such as under-reporting of trips, inaccurate time and location infor-
mation, high cost, and lack of detailed route information (Zhao et  al. 2015). FMS typi-
cally collects high quality RP data. In this study, a context-aware SP was integrated into 
FMS for preferences towards Tripod. Pre- and post-surveys (also integrated within the 
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app) elicit information on socio-demographics and long-term preferences and perceptions, 
respectively.

Data collection was carried out in Boston-Cambridge region and its vicinity where 1940 
observations from 202 participants were obtained, out of which 154 participants have fin-
ished the required 14 days of responses and exited the survey at the time of writing this 
paper (July 2018). Each respondent who had provided 14 days of RP data and completed 
the corresponding SP was rewarded with a 100-dollar Amazon gift card.1

Pre‑survey data

Upon downloading the app and registering, respondents were asked to fill out the pre-sur-
vey. They were asked about their socio-demographics, such as age, gender, working status, 
income, car ownership, bike ownership, and how frequently they use different transporta-
tion modes. Examples of the interface are shown in Fig. 3a, b.

Revealed preferences data

After completing the pre-survey, RP data was collected in the form of trip and activ-
ity diaries. The app collects location data (GPS, WiFi, GSM) on a continuous basis. 
The data is processed in the backend for stop detection and inference for trip mode and 
activity type. The app interface presents partially filled activity diaries and reminds 
the respondents to validate their trip and activity diaries at the end of each day. For 

Fig. 2   User interface of the Tripod app. From left to right: a filling in destination and requesting a menu 
with options b menu displayed c guidance provided and trip being monitored

1  In the same data collection effort, SP surveys were also generated for another mobility survey (Atasoy 
et al. 2018). The 14 surveys required for each respondent are a mixture of the two (randomly presented with 
a higher frequency of Tripod appearance).
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activities, the data included activity purpose, location, start and end times. For trips, 
the origin, destination, travel mode, arrival time and departure time were obtained. Fig-
ure 3c, d show an example of trip/activity diary validation. More details are available in 
Cottrill et al. (2013) and Zhao et al. (2015).

Stated preferences data

Upon validating their diaries, respondents were presented with daily SP questions. For 
each validated day, a trip is randomly selected and the respondent is asked about his/her 
choice if the trip had to be repeated under a hypothetical scenario (Fig. 4a).

The context-aware SP we adopted is different from the conventional SP’s in that the 
context of the experiments, although being still hypothetical, is coming from the accurately 
collected RP data. Furthermore, the respondent-specific information collected in advance 
through the pre-survey, such as, vehicle ownership, usage of car/bike sharing services, etc. 

Fig. 3   Pre-survey and RP Trip/activity diary validation

Fig. 4   Tripod SP: trip context options and market place. From left to right: a recall of trip context; b an 
option in Tripod tab; c an option in Drive tab; d the market place for a respondent
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is used in the SP survey generation process as constraints. Google Maps API is used on the 
fly in order to obtain the travel times and distances associated with different modes corre-
sponding to the specific trip. As a result, we expect our SP to be closer to the true decision-
making scenarios and hence able to elicit more realistic responses compared to alternative 
state-of-the-art SP approaches (Atasoy et al. 2018).

Each SP choice task is presented through a “profile”, defined as a menu that includes all 
travel alternatives available to the respondent (along with their attributes), with the addi-
tion of a Tripod menu including options provided by Tripod (see examples in Fig. 4b, c).

The set of alternatives might include non-motorized modes (walking, biking, and bike-
sharing), private motorized modes (car and carpooling), on-demand modes (e.g. Uber/
UberPool, Lyft/Lyft Line, carsharing, and taxi), and transit (with walk, bike, or car access). 
The attributes of these alternatives are presented in Atasoy et al. (2018). Each of these sets 
is shown in a separate tab, alongside the tab for Tripod menu (Fig. 4b, c). Furthermore, 
respondents are presented with ranges that reflect the uncertainty in the attributes such as 
travel time and waiting time.

The Tripod menu presents a subset of the existing alternatives with changes across 
multiple dimensions that generate energy savings, e.g., the departure time may be delayed 
(between 15 and 90 min), a different route or driving in an eco-friendly way may be pre-
sented. Information on energy savings (relative to the RP choice) and tokens assigned to 
alternatives are also presented. Energy consumption values are obtained from TripEnergy 
(Needell et al. 2016). Only alternatives with positive energy savings could be included in 
this menu.

Upon accessing the SP for the first time, respondents are presented with a “marketplace” 
showing the items that can be purchased with tokens (Fig.  4d). The redemption value 
of tokens is fixed for each individual. The marketplace is accessible to the respondents 
throughout the SP.

SP Profiles are generated based on a random design and validated using validity checks 
that eliminate dominant and inferior alternatives or unrealistic attribute combinations. The 
profile generation algorithm was validated using Monte Carlo simulations. During each SP 
session, respondents’ actions on the app are tracked.

Post‑survey data

Upon completing 2 weeks of data collection, respondents are presented with the post-sur-
vey which collects feedback on the potential use of Tripod if it existed in real life as well as 
attitudes and perceptions towards energy consumption, environment, mobile apps and tech-
nology in general. As an example, respondents rate statements like “I would use Tripod if 
it were available today” on a 5-point Likert scale (see “Case study: model formulation and 
estimation” section for more details).

Sample characteristics

After data cleaning, sessions completed within 10 s were excluded (likely correspond to 
random selections), as well as profiles corresponding to trips with very long distances (e.g. 
flights and inter-city trips). As a result, 1155 surveys from 183 individuals are used in the 
analysis. Figure 5 shows the sample distributions of employment status, number of house-
hold vehicles, age and household income compared to the population distributions in the 
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survey region based on American Community Survey (ACS) (United States Census Bureau 
2018). For the employment status distribution in the population, we only considered popu-
lation 16 years old and over because younger population is not considered as the market 
of Tripod (limited discretion and not allowed to drive). Since the survey is smartphone-
based, the sample is biased towards young respondents as expected. In addition, household 
income group $50k to $99k (annual) are slightly oversampled.

Case study: model formulation and estimation

In this section, we apply the model structure proposed in  “Modeling framework for on-
demand services” section to the case of Tripod and we formulate and estimate each model 
component with the data described in “Case study: tripod background and data collection” 
section.

In our SP setting, we present attributes (such as travel time and cost) of all the alterna-
tives to the respondents and expect them to assume that the values are real. As a result, the 
regular choice model which should be based on expected attributes under uninformed con-
ditions cannot be estimated using the SP data. To circumvent this difficulty, we estimated 
the informed regular choice model and used it as the regular choice model in the logsum 
calculations for model estimation as an approximation. We refer to this model as the regu-
lar choice model in the rest of the paper. Due to the limited sample size, the behavioral of 
subscribers and non-subscribers are not differentiated in the regular choice model.

The models are estimated sequentially from the bottom in the following order: regular 
choice model, menu product choice, service access model and subscription model. This 
allows us to compute the logsums of the lower levels which are required for the estimations 

Fig. 5   Sample characteristics
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of higher-level models. The model specifications and results are presented in this order as 
well.

Model formulation and specification

The utility equations of each model are specified below. The notations are explained in 
Table 1. � , � , � , � , � , and ASC are the coefficients to be estimated. Selected mode in the 
corresponding RP trip is considered in the utility equations to capture inertia. Binary vari-
ables are denoted as D’s.

Regular choice model

Equation (1) shows the utility specification for an alternative in the regular choice model. 
The travel time is divided into in-vehicle travel time, out-of-vehicle travel time and non-
motorized travel time.

Menu product choice model

Equation (2) shows the utility specification for an option in the menu while Eq. (3) shows 
it for the opt-out option. To capture respondents’ perceptions of the value of the tokens, 
we include the tokens as monetary value ($) converted by the token exchange rate that had 
been randomly assigned to the respondents upon their registration of the survey (the rate is 
implicitly indicated to them by the price of goods in the marketplace, see Fig. 4d).

Service access model

Equations (4) and (5) show the utility of accessing and not accessing the mobile app in the 
service access model respectively.

As mentioned in “Modeling framework for on-demand services” section, the logsum enter-
ing Eq.  (5) should be based on what the respondents expect to see rather than what is truly 
offered. Tripod’s personalization algorithm limits the number of offered alternatives (currently 
to 5). Based on past experience, a respondent might be expecting a different set of alternatives 
from the one that is generated from the personalization algorithm for a trip. In this case, he/
she would still access the service in the first place. Thus, in our estimation we included all the 
possible alternatives (the ones with energy-savings and hence positive incentives) from Tripod 
before the personalization for logsum calculation rather than what would truly appear on the 

(1)

Uoption = −e�IVTT tIVTT − e�OVTT tOVTT − e�NMM tNMM − e�pp + �inertiaDRP +
∑
m∈M

�mDm + �

(2)
Umenuoption = −e�IVTT tIVTT − e�OVTT tOVTT − e�NMM tNMM − e�pp + �inertiaDRP

+
∑
m∈M

�mDm + e�r r − e�delay log
(
tdelay + 1

)
+ �

(3)Uout = ASCout + �IoutIRC + �

(4)Unac = ASCnac + �InacIRC + �

(5)Uac = ASCac + e�TERXTER + �IacIMC + �
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single trip-specific menu. This provides us with an optimistic approximation of the respond-
ents’ expectations. Ideally a behavioral expectation model would be necessary to couple with 
the logsum transfer. This modeling and data collection effort is however left for future work. 
The same practice should be carried out accordingly when applying the estimated model in 
simulation.

Subscription model

We formulate the subscription model as a hybrid choice model. Equations (6) and (7) show the 
structural equations for the latent variables “app-lover” and “environmentalist”. Equations (8) 
and (9) show the measurement equations of the latent variables with their corresponding ques-
tions specified in Table 1. Equation (10) shows the utility of app subscription.

The responses to the indicators of measurement equations and whether to subscribe are in 
a 5-point Likert scale ranging from “strongly disagree” to “strongly agree”. As the error terms 
in Eqs. (8), (9) and (10) follow the Gumbel distribution, the models of the responses are in 
forms of ordinal logit. Due to the limited sample size and the answers being framed as sym-
metric, we assumed the to-be-estimated threshold values to be symmetric as shown in Eq. (11) 
using the ones for the whether-to-subscribe question as an example. The thresholds for each 
question of each latent variable are estimated separately. In “Estimation results” section, the 
estimated thresholds are subscripted according to the measurement equations’ subscripts.

Estimation results

We estimated the set of models by BIOGEME (Bierlaire 2003). The models with inter-con-
sumer heterogeneity were estimated with maximum simulated likelihood. Halton draws (Hal-
ton 1960) were used and the number of draws was decided based on the stationarity of the 
parameters.

The regular choice and menu product choice models are estimated with the chosen alterna-
tives in individual SP experiments. The action of clicking on the Tripod tab in a SP is recorded 
and considered as a service access action for the estimation of the service access model. 
Finally, the subscription model is based on the degree of agreement on the post-survey state-
ment “I would use Tripod if it were available today”.

(6)A = ASCA + �BSXBS + �TNCXTNC + �Az

(7)E = ASCE + 𝛽VEH
(
XVEH > 1

)
+ 𝛽HIXHI + 𝜎Ez

(8)iAn = �An + �AnA + �, for n = 1, 2, 3

(9)iEn = �En + �EnE + �, for n = 1, 2, 3

(10)Usubscribe = ASCsub + �AA + �EE + �IsubIsub + �InsubInsub + �

(11)Answer =

⎧
⎪⎪⎨⎪⎪⎩

strongly disagree −∞ < U < −𝛿s,1 − 𝛿s,2
disagree −𝛿s,1 − 𝛿s,2 < U < −𝛿s,1
neither agree nor disagree if −𝛿s,1 < U < 𝛿s,1
agree 𝛿s,1 < U < 𝛿s,1 + 𝛿s,2
strongly agree 𝛿s,1 + 𝛿s,2 < U < ∞
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To clearly identify the click action on the Tripod tab, the surveys where the default tab (the 
tab shown when the respondent opened the page, randomly assigned in survey generation) is 
Tripod had to be excluded. In addition, we noticed that in 30% of the surveys the respondents 
viewed only 1 tab. To nudge the respondents to make the choice of which tab to click, we rec-
ommend that future studies which attempts to elicit this action do not provide a default tab so 
that the respondent has to make a choice of which tab to click before selecting the final option.

The estimation results are presented in Table 2 with the notations specified in “Model for-
mulation and specification” section. In the menu product choice model, due to the sample 
size, the standard deviations of the travel time coefficients’ logarithms are fixed to be the same 
across population segments. Normalized parameters are shown without standard errors. The 
normalization in the hybrid choice model is done according to Daly et al. (2012).

Discussion

All the signs and relative magnitudes of the estimated coefficients are as expected, and most of 
them are statistically significant. In this section we present and discuss the distributions of the 
monetary values of travel time, schedule delay and tokens.

Value of travel time (VOT)

Using the parameter estimates of the menu product choice model and the regular choice model 
shown in Table 2, inter-consumer distributions of the values of in-vehicle, out-of-vehicle, and 
non-motorized travel time could be obtained for both population segments (full-time workers 
and others). As such, there are twelve distributions in total.

As the cost parameter ( �p ) and the relevant time parameter (here generally denoted as �time ) 
enter utility Eqs. (1) and (2) on the exponent (for lognormal distributions), the VOT in US dol-
lars per hour could be calculated as shown in Eq. (12).

Since �p and �time are normally distributed and uncorrelated whose means and standard 
deviations are denoted by �p , �time , �p and �time correspondingly, the distribution of VOT fol-
lows the lognormal distribution shown in Eq. (13), the mean and median of which could be 
computed with Eqs. (14) and (15) respectively.

After applying this procedure for all the VOTs, the means and medians of the above-
mentioned twelve VOT distributions are summarized in Table 3.

As can be seen, full-time workers have higher VOT in both choice situations which is 
likely due to their higher income and tighter schedules. For the other segment, the VOT 
is valued in the order of NMM, OVTT and IVTT from high to low, while for full-time 

(12)VOT
[
$∕h

]
=

eβtime

eβp
∗ 60

[
min∕h

]
= e�time−�p+ln(60)

(13)VOT ∼ Lognormal
(
�time − �p + ln(60), �2

time
+ �2

p

)

(14)�VOT = e
�time−�p+ln (60)+

(
�2
time

+�2
p

)
∕2

(15)MedianVOT = e�time−�p+ln (60)
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Table 2   Estimation results

Regular choice model

Name Mean Robust SE SD Robust SE

�p full-time worker − 3.29 0.360** 0.0614 0.155
�p other − 2.27 0.339** 0.982 0.432**
�IVTT full-time worker − 3.31 0.318** 0.144 0.720
�IVTT other − 3.51 0.569** 0.206 0.286
�OVTT full-time worker − 3.41 0.361** 0.174 0.791
�OVTT other − 2.83 0.231** 0.220 0.173
�NMM full-time worker − 3.01 0.187** 0.321 0.176*
�NMM other − 2.40 0.197** 0.0215 0.182
�inertia 0.944 0.181** 0.696 0.308**
�taxi 0 0
�PT 1.59 0.298** 0.0515 0.0784
�car − 1.37 0.494** 1.72 0.299**
�bike 2.12 0.372** 0.678 0.267**
�uber 1.61 0.259** 0.0552 0.427
�bikeshare 1.46 0.376** 0.110 0.282
�walk 1.89 0.483** 1.25 0.358**
Sample size 664
Null log-likelihood − 1539.31
Final log-likelihood − 1281.74

Menu product choice model

Name Mean Robust SE SD Robust SE

�p full-time worker − 2.13 0.369** 0.825 0.245**
�p other − 2.05 0.481** 0.0917 0.514
�r full-time worker − 2.03 0.769** 0.798 0.471*
�r other − 1.94 0.900** 0.354 0.359
�IVTT full-time worker − 2.96 0.469** 0.578 0.238**
�IVTT other − 3.46 0.734** 0.578 0.238**
�OVTT full-time worker − 3.05 0.475** 0.337 0.333
�OVTT other − 2.52 0.430** 0.337 0.333
�NMM full-time worker − 2.42 0.158** 0.00734 0.236
�NMM other − 2.40 0.234** 0.00734 0.236
�delay − 1.99 1.09* 1.31 1.67
�inertia 1.14 0.250** 0.403 2.51
ASCout 0 2.29 0.523**
�bike 5.63 1.29** 2.35 0.821**
�PT 4.66 1.21** 0
�car 4.86 1.15** 1.45 0.620**
�bikeshare 4.37 1.24** 2.62 0.624**
�taxi 5.25 1.27** 1.17 1.15
�uber 6.22 1.21** 0.946 1.14
�walk 6.95 1.31** 0.147 0.669
�Iout 0.905 0.355**
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Table 2   (continued)

Menu product choice model

Name Mean Robust SE SD Robust SE

Sample size 455
Null log-likelihood − 796.831
Final log-likelihood − 601.226

Service access model

Name Mean Robust SE SD Robust SE

ASCnac 0 0.00713 0.0141
ASCac − 1 1.12 0
�TER − 1.82 1.10* 2.93 1.38**
�Inac 0.578 0.229**
�Iac 0.201 0.201
Sample size 369
Null log-likelihood − 255.771
Final log-likelihood − 219.805

Subscription model—structural equations for App lover

Name Value Robust SE Name Value Robust SE

�BS 2.65 1.89 �TNC 3.17 1.75*
ASCA 0 �A 4.72 2.11**

Subscription model—structural equations for Environmentalist

Name Value Robust SE Name Value Robust SE

�VEH 0.163 0.194 �HI − 0.535 0.241**
ASCE 0 �E 0.735 0.301**

Subscription model—utility in choice model

Name Value Robust SE Name Value Robust SE

ASCsub 0.856 0.791 �Isub 0.0946 0.101
�A 0.164 0.0827** �Insub − 0.437 0.300
�E 0.710 0.548

Thresholds for the choice model

Name Value Robust SE Name Value Robust SE

�S,1 0.970 0.129** �S,2 2.18 0.262**

Subscription model—measurement equations

Name Value Robust SE Name Value Robust SE

�E1 1.17 0.223** �A1 0.661 0.239**
�E2 2.87 0.617** �A2 2.41 0.602**
�E3 0.824 0.241** �A3 3.00 1.65*
�E1 1 �A1 0.149 0.087*
�E2 3.14 1.03** �A2 0.392 0.193**
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workers, the VOT for IVTT and OVTT are similar, possibly because full-time workers 
make longer trips, which makes them more lenient towards waiting time and access/egress 
time.

For each population segment, lower VOTs in the menu product choice model are 
observed as expected. Travelers are more likely to accept one of the Tripod options when 
they have flexible schedule and are in search for low-cost alternatives.

Value of schedule delay

In the menu product choice model, the log-transformed delay shows a better fit compared 
to the linear case. This indicates that the marginal disutility caused by schedule delay 
decreases as delay increases. This sensitivity to delay is specified to be distributed across 
consumers. From the estimation result, the monetary value of a 30-minute schedule delay 
has a median of $4.0 and a mean of $13.1 for the full-time worker segment, while it has a 
median of $3.6 and a mean of $8.6 for the other population segment. The monetary value 
of 2 h schedule delay has a median of $5.5 and a mean of $18.3 for the full-time worker 

Table 2   (continued)

Subscription model—measurement equations

Name Value Robust SE Name Value Robust SE

�E3 1.67 0.883* �A3 1

Thresholds for the measurement equations

Name Value Robust SE Name Value Robust SE

�E1,1 0.560 0.101** �E1,2 2.39 0.275**
�E2,1 0.881 0.217** �E2,2 4.59 0.882**
�E3,1 0.905 0.132** �E3,2 2.23 0.279**
�A1,1 0.362 0.0791** �A1,2 2.08 0.223**
�A2,1 0.960 0.219** �A2,2 3.77 0.538**
�A3,1 2.21 0.904** �A3,2 8.39 3.17**
Sample size 149
Final log-likelihood − 1236.33

*p value for robust t test < 0.1
**p value for robust t test < 0.05

Table 3   Value of travel time

Unit: $/h Regular choice Menu product choice

IVTT OVTT NMM IVTT OVTT NMM

Full-time worker mean 59.5 54.1 83.7 43.5 35.6 63.1
Full-time worker median 58.8 53.2 79.4 26.2 23.9 44.9
Other mean 28.7 56.9 85.3 17.4 39.9 42.5
Other median 17.4 34.3 52.7 14.6 37.5 42.3
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segment, while it has a median of $5.1 and a mean of $12.1 for the other population seg-
ment. The value of schedule delays within 2 h is visualized in Fig. 6.

Schedule delays cause less disutility than travel times, possibly because travelers may 
spend the delay time on other tasks. The diminishing marginal disutility of schedule delay 
also makes sense to the authors since larger periods of such time might be easier to utilize.

Value of incentives (tokens)

The probability density function of the value of tokens is shown in Fig. 7, segmented by full-
time worker and other population segments. The value of token represents how much the 
respondents value the amount of tokens that has the purchasing power of 1 dollar.

Fig. 6   Value of schedule delay

Fig. 7   Distributions of value of 
token
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Since the tokens could only be used in the Tripod marketplace to exchange for gift cards 
and merchandise, we expected that the token is valued less than the equivalent amount of real 
money. However, contrary results were observed. The lognormally distributed value of token 
for full-time workers has a median of 1.1 and a mean of 2.1, while the median and mean for 
other populations are both around 1.2. A bit surprisingly, half of the respondents value the dol-
lars in equivalent tokens more than the real money.

We think there are three potential causes for this. First, the process of token redemption is 
not included in the SP. Consequently, the potential inconvenience of it might be unrealized by 
some of the respondents. This effect would no longer be relevant when the RP data regarding 
Tripod becomes available. Second, since the token value in Tripod is generated based on the 
energy savings, the valuation of energy savings is partially incorporated through the valuation 
of tokens. Since Tripod promotes environmentally friendly travel options, we expect a group 
of environmentalists to appear, in addition to the ones purely motivated by incentives.

Third, since the tokens are perceived as rewards while travel costs are perceived as out-of-
pocket expenses, they could be perceived very differently. In the case of Tripod, since energy-
efficient and hence highly rewarded options are usually associated with low costs, the situa-
tions where the decision maker needs to evaluate a trade-off between token and real money 
seldom happens. In addition, the marginal utility and disutility of gain and loss (cost) are 
expected to decrease as gain and loss (cost) increase respectively (Kahneman and Tversky 
1984). Under this hypothesis, with the simplification of utility being linear in token and cost 
might cause the current observation in cases shown in Fig. 8. To confirm this, it would be 
interesting to conduct a comparable experiment with rewards being offered in terms of real 
money. If our hypothesis is true, we expect the respondents to value the monetary rewards 
even higher compared to the token rewards.

Conclusion

In this paper, we presented a general framework for modeling the behavior of on-demand 
mobility services. The framework uses a nested structure to explicitly account for the sub-
scription, service access, menu product and opt-out choices and their connections. The 
inclusion of the complete service usage decision process differentiates our work from pre-
vious research on the choice modeling of on-demand mobility services.

The framework is applied to model the demand of Tripod, which influences individuals’ 
real-time travel decisions by offering information and incentives for system-wide energy 
efficiency. Context-aware SP data was collected by a smartphone-based data collection 

Fig. 8   Hypothesis explaining the 
higher perception of tokens
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platform for the model estimation. Inter-consumer heterogeneity was captured in the model 
specification. Through estimation and sensitivity analysis, we found that the rewards asso-
ciated with energy-savings are valued higher than cost savings in real money. As expected, 
the VOTs in the Tripod menu product choice model is much smaller than the VOTs in the 
regular choice model (cases where the traveler is not subscribing Tripod, not accessing Tri-
pod or selecting opt-out), which indicates that Tripod’s acceptance would be higher in the 
lower income population segments and its usage would be likely associated with trips that 
have less time constraints.

One main difficulty we faced in the present work is the actual data collection process. Com-
pared to traditional one-time “paper-and-pencil” SP surveys, the higher quality of the data col-
lected by longitudinal RP-SP data collection process is at the cost of longer efforts from the 
respondents, especially in our case study where the respondents need to first understand what 
Tripod is.

As suggested by the reviewers, it would be interesting to investigate how the service access 
action is influenced by other factors such as the ease of access to information. We think these fac-
tors are of great relevance and should be included in future related studies. Several other future 
research directions could be developed based on this paper. The first is to collect RP data for 
mobility services which meets the data requirements of our framework as mentioned in “Case 
study: tripod background and data collection” section (or acquire such data from the service oper-
ator). Second, the behavior framework could be extended to incorporate a revision process where 
the en-route opt-out behavior would be handled. The necessity of this additional complexity from 
a modeling point of view also requires further investigations. Finally, further work needs to be 
done to fully integrate the models into an ABM simulator and use it for system-wide optimization. 
This process is essential to on-demand incentivization systems such as the Tripod system.
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