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In thiswork, we report amethod to change the surfacefinish of a standard polyester-based powder coating paint,
from gloss to matt, by depositing ultrathin films of Al2O3 on the powder coating particles. The coating experi-
mentswere performed in a fluidized bed reactor at 1 bar and 27 °C, using a gas-phase coating process of alternat-
ing exposure of the particles to the two precursors (trimethylaluminium and water), similar to atomic layer
deposition (ALD). We varied the number of coating cycles (1, 2, 3, 5, 7 and 9 cycles) to obtain film thicknesses
of the alumina shell ranging from 1 to 30 nm. The average growth per cycle of the process is 3.5 nm, significantly
larger than the one for pure self-limiting ALD. When the average alumina shell was thicker than 6 nm, the shell
prevented the flow of the core particles, even though the powder particles did soften above the glass transition
temperature.With the particlesmorphology intact, this resulted in a rough andmatte surfacefinish of the coating
after curing. The surface roughness, with a value around 9 μm determined by surface profilometry, is associated
to the alumina coated particles as observed with SEM and EDX analysis. In addition, the matte finish coating
showed mechanical resistance similar to that of uncoated powder particles.
Ommen).

. This is an open a
©2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

A powder coating is a solvent-free powder-based type of coating
used commonly to coat metals for a wide range of applications, such
as in automotive industry. The surface appearance can be generally
tuned by the addition of external additives to the powder formulation.
Powder coatings have important advantages over liquid-based paints:
being ease of application, high utilization by electrostatic spraying, envi-
ronmentally friendly since they do not contain organic solvents, and
showing excellent performance once applied. These strong points are
also known as the Four E's, standing for ecology, excellence of finish,
economy and energy [1–3]. These properties allow powder coatings to
be used in a wide variety of applications, i.e. automotive, architectural,
electronics and furniture amongst others [3]. A powder coating is com-
posed of a resin, a catalyst, a cross-linker, pigments and additives such
as flow modifiers and degassing agents, which define the properties of
the final powder coating, including the surface finish (glossy or matte).

Glossy coatings reflect all the incident light in a mirror-like fashion,
whereas a matte finish scatters part of the light, reducing the gloss
level. The difference in gloss or matte appearance relies on the surface
texture, whether it is highly smooth or it presents some roughness.
ccess article under
Certain indoor applications require glossy paints, while for industrial
and agricultural purposes, a matte paint is preferred to hide surface
irregularities and damages. The gloss level of a powder coating can be
reduced by the addition of a foreign compound, such as inorganic fillers
or rheological additives, that can have different reactivity or curing tem-
perature than the powder, by varying the size of the powder coating
particles, by varying the humidity of the environment or by tuning the
conditions during electrospraying [4–6]. Here we present a novel ap-
proach for gloss reduction that avoids the addition of foreign particles
to the powder formulation, which may induce segregation or non-
uniformities in the final product, but just relies on the surfacemodifica-
tion of the primary powder coating particles to induce a transition in the
surface appearance of the paint.

For that, we deposited ultrathin films of aluminium oxide (Al2O3) on
the primary particles of a standard powder coating paint at ambient
conditions by using gas-phase precursors. We evaluated how alumini-
um oxide films modified the flowing behaviour of the powder coating
particles above the glass transition temperature, and whether that
would induce roughness on the paint surface. The alumina films were
deposited in a fluidized bed reactor (FBR) using a sequential exposure
of precursors to the substrate, similar to the one in atomic layer deposi-
tion (ALD). A FBR allows processing large amounts of particles [7–11]
while providing good mixing between gas and solids, that translates
in the deposition of rather conformal alumina films. However, working
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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at ambient conditions resulted in the deposition of thicker alumina
films faster than in typical Al2O3 ALD processes [12,13].

ALD allows the deposition of inorganic films in a layer-by-layer
growth mechanism based on two consecutive self-terminating
reactions, with a purging step using an inert gas after each reaction
[14,15]. The self-terminating feature of the ALD reactions ensures that
the precursor molecules will only react where there is an active site
available, preventing the growth of several layers of compound in
each cycle [16–18]. Al2O3 ALD, using trimethylaluminium (TMA) and
water as precursors, is commonly carried out at a range of temperatures
between 33 and 170 °C and a few millibars of pressure, achieving a
growth per cycle (GPC) of 0.1–0.2 nm [12,19–22]. In this work, the sub-
strate used could not be heated to such temperatures, thus alumina
films were deposited at ambient conditions, i.e. 27 ± 3 °C and 1 bar.

Working at atmospheric pressure and room temperature involves
the accumulation of the unreacted precursor molecules on the surface
of the substrate if they are dosed in excess above the saturation regime,
inducing a chemical vapour deposition (CVD) type of reaction [23–25].
That would result inevitably in the deposition of multiple atomic layers
of alumina during each cycle, depending on the amount of precursor
molecules dosed to the reactor [13,26,27], producing a higher GPC
than in a typical ALD process. Nevertheless, this can be beneficial to de-
posit thicker alumina films in a shorter time period.

Alumina ALD films have been used as passivating material, and in
the production of membranes and catalysts amongst other applications
[28–35]. In this work, thin Al2O3 films acted as physical barrier to
confine the softened powder coating particles to tune the surface ap-
pearance of the cured powder coating paint. We investigated the influ-
ence of the thickness of the Al2O3 films on the flowability of the coated
particles, and how this translated into different textures of the final
paint. This experimental paper is a proof of concept for the applicability
of an emerging gas-phase coating technology, such as ALD/CVD in a flu-
idized bed reactor, to modify the surface appearance of an industrial
product, i.e. standard powder coating, while maintaining the same me-
chanical properties.

2. Experimental

2.1. Experimental setup and compounds

Al2O3 coating experimentswere performed in afluidized bed reactor
similar to the one described previously [13,36], composed by a vertical
glass column with a diameter of 26 mm and 500 mm in length which
was located in a vertical vibration table to assist the fluidization [8].
Semiconductor grade TMAwas provided by Akzo Nobel HPMO (Amers-
foort, The Netherlands) in a 600 mL WW-600 stainless steel bubbler,
which is kept at 30 °C during operation. Water, the second precursor,
is kept in a similar bubbler, while nitrogen grade 5.0 is used as carrier
and purging gas. A standard polyester powder coating paint was used
as substrate. This powder coating paint is characterized by a fast and
low-temperature cure, good flow and flexibility, and a gloss surface fin-
ish, ideal for architectural applications [37]. In each experiment, we
coated 110 g of white standard powder coating particles provided by
DSM Coating Resins (Zwolle, The Netherlands). The powder coating
particles, with a Sauter mean diameter (d3,2) of 33 μm, are composed
of five components: resin, i.e. Uralac® P 3210, crosslinker, pigment, i.e.
titanium oxide, flow control agent and degassing agent (more detail in
[37] and Supplementary information A), all of them with different mass
fraction in the final product. A flow of 0.4 L/min of nitrogen was used
to fluidize the particles, which corresponds to a superficial gas velocity
of 1.26 cm/s.

2.2. Coating experiments

The dosing times used in the coating experiments were 8–10–
4–10min for the sequence TMA–N2–H2O–N2. To estimate theminimum
dosing times, we used the maximum amount of aluminium atoms and
methyl groups that can be allocated on the surface of a powder coating
particle to obtain fully coverage. These values are 4 and 5 species per
nm2 of Al and CH3, respectively [38,39]. The total surface area inside
the columnwas 13m2 for the 110 g of powder used in each experiment,
using the Sauter mean diameter of 33 μm, a particle density of
1500 kg/m3 (Supplementary information A), and assuming that the par-
ticles are spherical and the calculated specific surface area of the powder
is 0.12 m2/g. The amount of precursor molecules dosed to the reactor
was calculated using the vapour pressure of the precursors inside the
bubblers and the ideal gas law, assuming that the TMA is a dimer at
30 °C [40,41], and that the saturation of the nitrogen bubbles inside
the TMA bubbler is about 50% [42]. The theoretical dosing times to sat-
urate the surface of the particles are respectively 0.25 and 0.24 min for
TMA and water. In order to obtain thicker alumina films, we overdosed
both precursors, fixing the dosing times in 8 and 4 min for TMA and
water. At ambient conditions, we think that the unreacted molecules
of water physisorb on the substrate surface [43–45], being involved in
the following reaction with TMA molecules, also dosed in excess. The
purging time of 10 min corresponds to approximately 13 times the res-
idence time in the reactor. Using these times, we performed six coating
experiments with different number of cycles, i.e. 1, 2, 3, 5, 7 and 9.

2.3. Characterization of the coated particles and sprayed panels

The influence of the alumina film thickness on the surface finish was
first investigated on the individual powder coating particles. The film
thickness and the growth per cycle were estimated from the mass frac-
tion of aluminiumon the samplesmeasured by elemental analysis using
ICP-OES (induced couple plasma – optical emission spectroscopy) as
shown elsewhere [13]. Further, DSC (differential scanning calorimetry)
was used to study whether the alumina films influenced the thermal
properties of the coated particles, such as the glass transition tempera-
ture. The heat flow measured by the DSC device was normalized with
the amount of powder used in each measurement, which ranged be-
tween 10 and 20 mg. Each DSC measurement consisted of a multi-
step program, composed by: (i) equilibration of the sample for 5 min
at 25 °C, (ii) cooling from 25 to 0 °C, (iii) isothermal period of 5 min at
0 °C, (iv) heating from 0 to 130 °C, (v) isothermal period of 5 min at
130 °C, (vi) cooling from 130 to 0 °C, (vii) isothermal period of 5 min
at 0 °C, (viii) heating from 0 to 170 °C, (ix) isothermal period of
10 min at 170 °C, and (x) cooling from 170 to 0 °C. All the heating and
cooling steps were carried out with a rate of 10 °C/min. Steps (i),
(ii) and (iii) were carried out so all the samples have the same thermal
history. Steps (iv) to (vii) were carried out to have “enthalpic relaxa-
tion” of the powder, which typically occurs to amorphous resins during
the glass transition [46]. Finally, steps (viii) to (x) were done to
determine the glass transition temperature of the particles. With this
approach, the samples were heated above the glass transition tempera-
ture during step (iv), but below the curing temperature, to prevent in-
ducing irreversible changes on the powder coating particles. Finally,
the completeness of the alumina films and its barrier performance
were evaluated with a hot stage microscope and the pill flow test,
which compares the flowability of the different alumina-coated powder
coating particles down an inclined aluminium panel while heating the
samples in an oven from room temperature to the curing temperature.

Subsequently, we sprayed the coated powders onto aluminium
panels to study the influence of the alumina films on the appearance
of the paints by using a corona-discharge gun and curing them in an
oven at 160 °C during 10min. The coated particles showed a poor adhe-
sion to the panels during spraying, most likely produced by a reduction
of the charge acquired by the powder while sprayed by the gun. To
counteract the poor adhesion, we mixed, in a 1:1 mass ratio, the white
Al2O3-coated powder prepared using TiO2 as pigment with brown
uncoated powder, prepared using a mixture of pigments and BaSO4 as
filler, in order to improve the adhesion and the contrast to facilitate



Fig. 1. Volume of aluminium oxide deposited on the particles (primary Y axis) and the
equivalent film thickness (secondary Y axis) were calculated assuming spherical
particles, and uniform and complete alumina films. The increase of the film thickness
can be approximated with a linear trend, where the slope represents a GPC of 3.5 nm.
The error bars represent the uncertainty in the calculation of the film thickness.
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the characterization of the painted panels. The other components of
both powders, i.e., the additives, are the same.

The surface topography of the painted panels was studied by visual
observation, and a SEM (scanning electron microscope) coupled with
EDX (energy dispersive X-ray) analysis was used to have a closer look
at the surface of the panels. In addition, the roughness of the panels
was measured with surface profilometry and the gloss of the paints
with a haze-glossmeter. Finally, themechanical resistance was evaluat-
ed upon the impact of a steel ball in the reverse side of the panels. More
details of the characterization techniques are given in Supplementary in-
formation B.

3. Results and discussion

3.1. Characterization of the coated particles

We performed six coating experiments, with different number
of cycles, on white powder coating particles, and estimated the film
thickness using the fraction of aluminium obtained from elemental
analysis with ICP-OES. The uncoated white powder coating particles
contained a mass fraction of aluminium of 0.0064, coming from the
TiO2 (Supplementary information C). The volume of aluminium oxide
(VAl2O3

) is calculated from the fraction of aluminium on the coated sam-
ples, using a density of alumina of 2500 kg/m3 [21]. From this value, an
equivalent film thickness of alumina (δeq) is calculated assuming that
the particles are spherical and coated uniformly. We refer to this value
as “equivalent film thickness” since the coating process requires a cer-
tain number of cycles to form a complete alumina film [39,47], that is,
there is not yet a complete film after few coating cycles, since the pre-
cursor molecules penetrate the polymeric matrix during those cycles.
The content of aluminium on the coated samples (i.e., in the deposited
Fig. 2. (a) DSC profiles of the untreated and fluidized powder. (b) DSC profiles of the po
volume of aluminium oxide) increased with an increasing number of
cycles; see Fig. 1. The GPC is calculated from the slope of the linear fit
shown by the red-dotted line. The uncertainty in the calculation of the
film thickness is represented by the error bars in Fig. 1 (more details
can be found in Supplementary Information C). We obtained a GPC of
3.5 nm, much larger than the typically values for Al2O3 ALD, i.e. 0.1–
0.2 nm. This is explained by the accumulation of the overdosed precur-
sor molecules at ambient conditions, which would react in the subse-
quent reaction. The increase in the experimental dosing time of TMA,
8 min, compared to the theoretical one, 0.25 min, is comparable to the
values of the GPC, which increased from 0.15 nm in a standard ALD pro-
cess to 3.5 nm in our process. Obtaining such high GPC benefited our
process, since we were able to deposit thick alumina films faster, al-
though this process can no longer be referred to as atomic layer
deposition.

We studied whether the aluminium oxide films act as an insulating
layer, changing the thermal properties of the powder, or only as a phys-
ical barrier, preventing the softened powder from flowing freely. The
glass transition temperature of the powder (Tg) was measured with
DSC, and a hot stage microscope was used to observe the particles
above the Tg. The results from both techniques were combined to iden-
tify the influence of the alumina films on the powder coating particles.

The DSC measurements in Fig. 2 show the heating phase, with posi-
tive normalized heat flows, and the cooling phase, with negative nor-
malized heat flows. During the heating, the glass transition is
observed as the step function at around 50 °C. The powder coating is
amorphous, so we refer to it as softening of the particles above the
glass transition. Fig. 2 only shows steps (viii), (ix) and (x) of the mea-
surements (see Experimental section). The full DSC profile is given in
Supplementary information D.

First, the DSC profile of a powder that was fluidized during 3 h at the
coating temperature, i.e. 27 °C, was measured and compared with the
profile of the unprocessed powder (Fig. 2a). Both uncoated and fluid-
ized samples have the same glass transition temperature and heat
flow profiles, indicating that the fluidization process did not alter the
thermal properties of the powder. Fig. 2b shows the normalized heat
flow profiles for the uncoated and coated samples. The curves of all
the samples show the step function at the same temperature, meaning
that the glass transition is not affected by the alumina films. Therefore,
it can be concluded that the alumina films did not act as thermal insula-
tor for the powder, since the glass transition of all the samples occurred
at the same temperature. Then, we investigated the effect of the alumi-
na films as a physical barrier.

A hot stage mounted on a light microscope was used to determine
the confinement efficiency of the alumina films by observing whether
the softened powder, above its glass transition temperature, would
flow freely or remain enclosed. For that, few particles were placed on
a quartz plate, which was placed on top the hot stage, and all together
on the microscope stage. The samples were heated from 25 to 70 °C
with a heating rate of 10 °C/min, similar to the one used in the DSC
measurements. Fig. 3 shows the micrographs of the uncoated, 1-cycle,
2-cycle, 3-cycle and 9-cycle samples.
wder of the untreated sample and the samples coated with 1, 2, 3, 5, 7 and 9 cycles.

Image of Fig. 2
Image of Fig. 1


Table 1
Values used in the calculation of the tensile stress σc

Al2O3.

Variable αV αL β E υ

Units [1/°C] [1/°C] 1/MPa GPa –
Value 100·10−6 5·10−6 9.2·10−4 170 0.24
Reference [52] [54] [53] [55] [55]

Fig. 3. Hot stage microscope images of the uncoated powder (a–c) and the samples coated with 1 (d–f), 2 (g–i), 3 (j–l) and 9 (m–o) cycles, at 30, 50 and 70 °C.
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The softening of the uncoated particles (Fig. 3a-c) started at about
45 °C, slightly lower than the 50 °C observed in the DSC curves. In the
hot stage microscope, there were losses of heat to the surrounding air
since the sample is in contact with the environment, while in DSC the
samples are placed inside an isothermal chamber. That could cause
the difference in the measured softening temperatures in the DSC and
the hot stage microscope. The hot stage microscope was used to com-
pare all the samples, which would experience the same heating process
using the same equipment. In order to have a better view of the
particles, the samples were illuminated with a LED light source. This
provided a 3D-like visualization of the particles if compared with the
micrographs that were taken using the built-in light of the microscope
(Supplementary information E). The bluish colour seen in Fig. 3 is pro-
duced by the LED light source.

The uncoated (Fig. 3a-c) and 1-cycle (Fig. 3d-f) powders softened
and flowed at about the same temperature. However, a fraction of the
sample coated with 2 cycles (Fig. 3g-i) remained enclosed within the
alumina film, similar to what was observed with the 3-cycle sample
(Fig. 3j-l). The particles of the sample coated with 7 and 9 cycles pre-
served their shape, indicating that the alumina coating was able to en-
close the softened powder coating paint (Fig. 3m-o and Supporting
Information E). This proves that the powder coating particles coated
with 7 or more cycles created core-shell structures. Micrographs of

Image of Fig. 3


Fig. 4. Tensile stress (σc
Al2O3) exerted on the alumina-coated samples (blue symbols) and

critical tensile stress (σcritical
Al2O3 ) of the alumina before breaking (open symbols) for the

different film thickness. The error bars represent the uncertainty in the calculation of the
tensile stresses.
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the samples using the light source in transmission mode of the micro-
scope were also taken to count the fraction of the particles that
remained contained above the glass transition temperature
(Supplementary information E). About 130 particles per samplewere ob-
served to determine the percentage of the particles that remained en-
capsulated. All the particles of the uncoated and 1-cycle samples
flowed out once softened, and eventually coalesced. About 5% for the
2-cycle sample, 41% for the 3-cycle sample, and 62% for the 5-cycle sam-
ple remained enclosed by the alumina films. For higher number of cy-
cles, that is, 7 and 9 cycles, all the particles remained completely
encapsulated, observing no deformation in any of the particles. The
combination of the results from DSC, which showed that the glass tran-
sition temperature is not altered by the alumina films, and the one from
the hot stage microscope, which showed that there is a key number of
cycles above which the particles remained encapsulated, we conclude
that the alumina films do not act as a thermal insulating layer, but as a
physical barrier.

These results suggest that there is a critical number of cycles above
which the alumina film is sufficiently thick and completely closed to
contain the softened particles (Fig. 3o). We propose two hypotheses:
(i) the alumina films are free of defects, and the stress caused inside
the shell by expansion upon softening is higher than the stress that
the deposited alumina shell can endure, resulting in the release of the
softened core; and (ii) that a certain number of coating cycles are re-
quired to form a complete alumina film, based on the nucleation of
the alumina ALD during the initial cycles when using polymeric parti-
cles as substrate [47,48].

To calculate the resistance of the alumina films upon an increase of
the internal pressure p (Eq. (1)), we modelled the core-shell particles
as a “thin-walled spherical vessel” [49]. This model can only be used
when the ratio of the film thickness to particle diameter is smaller
than 0.1, which is the case for our particles. By using this approach, we
can calculate the tensile stress on the alumina coating (σc

Al2O3) caused
by the expansion of the core (Eq. (2)), and compare it to the critical
Fig. 5.Nucleationmechanism of the deposited alumina. (a) Surface of the untreated polymer pa
represent the alumina molecules.
tensile stress before cracks appear in the alumina coating (σcritical
Al2O3 ), cal-

culated using (Eq. (3)). A detailed explanation of these calculations
can be found in Supplementary information F.

p ¼ αV−3 � αLð Þ � ΔT
3
4
� d3;2
E � δ � 1−υð Þ þ β

ð1Þ

σ Al2O3
c ¼ p � d3;2

4 � δ ð2Þ

σ Al2O3
critical ¼ E � εcritical ð3Þ

Here, d3,2 is the Sauter mean diameter of the particles, αv is the vol-
umetric coefficient of thermal expansion of the core material, α L is the
linear coefficient of thermal expansion of the alumina shell [54], ΔT is
the difference in temperature between the final Tf and initial Ti state,
i.e. 70 and 25 °C, E and υ are the Young modulus and Poisson's ratio of
pure aluminium oxide films deposited by ALD [55], β is the compress-
ibility factor of the core material (Table 1), δ is the alumina film thick-
ness and εcritical is the critical strain of alumina films deposited by ALD
under a tensile stress, which depends on the film thickness [50,51].
The values of the coefficient of thermal expansion αV and the compress-
ibility factor β were taken from literature for a similar resin [52,53],
since we could not determine these two parameters for our material
with a good accuracy. Despite that, a sensitivity analysis of these two
variables, αV and β indicated that they do not have a strong impact on
the value of σc

Al2O3. The values of the equivalent film thickness (Fig. 1)
were used to calculate both tensile stresses (σc

Al2O3 and σcritical
Al2O3 ).

The results in Fig. 4 indicates that the aluminium oxide films depos-
ited in these coating experimentswould break under amuch larger ten-
sile stress (σcritical

Al2O3 ) than the one produced by the expansion of the
softened resin (σc

Al2O3). The model predicts that the alumina films
would resist the internal pressure in all the cases, while experimental
evidences show that the softened powder flowed out the alumina
shell for the samples with less than 7 coating cycles.We used the values
for E and υ of pure alumina films deposited by ALD, which may differ
from the ones of the alumina films deposited at ambient conditions.
However, the difference between the calculated values of the critical
and tensile strength is very large, thus, we think there is not a strong in-
fluence of these alumina properties on the calculation. Based onmodel-
ling results of Fig. 4, we conclude that the onset of flowing is not caused
by breaking of the shell. Rather, samples with a small number of cycles
start flowing because a closed film has not formed yet, allowing the
resin to escape as soon as it softens.

This analysis agrees with the nucleation theory of alumina ALD on
polymeric substrates [47,48]. During the first coating cycles, precursor
molecules penetrate through the polymer surface to deposit as alumina
nuclei (Fig. 5). This is promoted by factors such as the solubility of TMA
on hydrophobic surfaces, the rough surface of the resin particles, and
the free volume near the surface of these materials due to the lack of
lattice structure and crystallinity, which is seen as a porosity that
can be accessed by the precursors. Although the nucleation phenome-
non is qualitatively understood, there is no rule-of-thumb for the num-
ber of cycles needed to deposit fully conformal films, since this depends
on the polymer nature, preparationmethod, polymer history, etc. Based
rticle. (b) Surface of the polymer particle during the first cycles, inwhich the green spheres

Image of Fig. 5
Image of Fig. 4


Fig. 7. (a) Piece of the sprayed panels after curing at 160 °C for 10min, prepared with the
mixture of white powder coated with 0, 1, 2, 3, 5, 7 and 9 cycles, and uncoated brown
powder coating paint (from left to right). The dimensions of the panels shown are 22
× 25 mm. The same panels were illuminated with LED lights in a light environment
(b) and dark environment (c) to show the gradual decrease in the gloss level of the
panels with the number of coating cycles.

Fig. 6. Pill Flow test panel before (a) and after (b) introducing it in the oven at 160 °C for 10min,which is the curing procedure for this powder. Thepills correspond, from left to right, to the
0, 1, 3, 5, 7 and 9-cycle samples. The pills have a diameter of about 10 mm, and 5 mm height.
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on the hot stage microscopy analysis, it appears that after 7 coating cy-
cles a conformal and complete aluminium oxide film was deposited on
the particles, creating a core-shell structure (Fig. 3 and Supplementary
information E and F).

The degree of confinement of the coated particles was also studied
with the pill flow test, which analyses the flowability of a pill prepared
with the powder coated with alumina (Fig. 6a) down an inclined panel
upon heating between room temperature and the curing temperature
of the paint. Fig. 6b shows a reduction of the length of the trail even
after 1 alumina coating cycle compared to the uncoated sample. This
length kept decreasing when increasing the number of cycles. Interest-
ingly, the sample coatedwith 9 cycles showed a displacement down the
inclined panel, while it remained totally encapsulated in the hot stage
microscope (Fig. 3m-o). To prepare the pills a pressure of 5000 psi is ap-
plied to compact the powder; it is possible that part of the alumina film
broke because of the compression, creating a way out for the softened
core and letting it flow down the panel. The results from the pill flow
test are in agreement with the DSC and hot stage microscopy, which
prove that the alumina film acts as a physical barrier preventing the
softened particles from flowing freely. We further investigated the im-
pact of the alumina films on the appearance of the final product, the
powder coating paint.

3.2. Characterization of the sprayed panels

In total, seven panels were sprayedwith the 1:1mass ratiomixtures
of the uncoated brown and coated white particles, i.e., the powder with
0, 1, 2, 3, 5, 7 and 9 cycles. Visual inspection of the panels (Fig. 7a) indi-
cated a transition in the surface appearance of the panels, regarding
both colour and roughness, for the powder coated with more than
2 cycles. The panels prepared with the uncoated white powder and
the 1-cycle powder (Fig. 7a, ⓪ and ①) showed a predominant white
colour, while a brown colour dominated the panels prepared with the
2-, 3-, 5-, 7- and 9-cycle samples (Fig. 7a,②, ③, ⑤, ⑦ and⑨). The re-
duction of the gloss of the paints, caused by the surface roughness,
was visualized by illuminating the panels with LED light sources in a
dark environment (Fig. 7b and c). The surface of the panels ⓪ and
① is smooth, producing reflection of the light on the panels. Increasing
the number of cycles induced roughness of the surface, producing a dif-
fused reflection of the LED lights on the②, ③, ⑤, ⑦ and ⑨ panels.

Themeasurements of the surface roughness (Fig. 8a) and the gloss of
the coatings (Fig. 8b) indicated that the rougher the surface is, themore
light it scatters, resulting in a less glossy paint. The surface roughness
increased with the number of cycles, reaching a constant value of
about 9 μm after 7 cycles, which corresponds to 1/3 of the particle
size. A similar trendwas observed for the values of the gloss, which sig-
nificantly dropped for 2 or more cycles, in agreement with the observa-
tion of the surface roughness. A gloss level above 60 gloss units (GU)
correspond to a glossy surface, while below 35 GU the surface is consid-
ered to have a matte finish, according to the internal standards of DSM
Powder Coating Resins. During the curing step, the brown powder
softened above the glass transition temperature forming a continuous
layer, while the alumina coated white powder, which flowed out of
the alumina shell (depending on the number of coating cycles), would
be suspended on the brown softened layer, inducing the roughness.
Both surface roughness and gloss measurements agree with other re-
sults inwhich the aluminafilm after 2 cycles altered already the flowing
behaviour of the single particles.

An optical microscope (Fig. 9) and a SEM equipped with EDX detec-
tor (Figs. 10 and 11) were used to take a closer look at the surface of the
panels and study the transition in the surface appearance, i.e., the colour
and roughness. The optical microscope showed different distributions
of the curedwhite and brown powder coated paint for the samples pre-
pared with 1 and 3 alumina-coated particles. The panels sprayed with
uncoated (Fig. 9a) and 1-cycle (Fig. 9b) white powder coating particles
exhibited anhomogeneous distribution of the brown andwhite colours,
explained by the good flow of both white and brown particles (Fig. 3c
and f). The panel prepared with the 3-cycle sample (Fig. 9c) showed a
less uniform distribution of the colours, caused by the partial

Image of Fig. 7
Image of Fig. 6


Fig. 9. Images from the optical microscope. Panels sprayed with (a) uncoated powder, (b) 1-cycle coated powder, and (c) 3-cycle coated powder.

Fig. 8. (a) Measurement of the roughness of the panels sprayed with a 1:1 mixture of white alumina-coated and brown uncoated powder coating. The roughness was measured with a
surface profilometer. Error bars represent the standard deviation of the measurements. (b) Glossiness of the panels was measured with a gloss meter at 20° and 60°.

407D. Valdesueiro et al. / Powder Technology 318 (2017) 401–410
confinement of the white powder and the consequent decrease of the
mixing between the white and brown powders after softening. To eval-
uate this panel (Fig. 9c), the incident angle and intensity of the light
source was modified to overcome the reflection on the panel caused
by the roughness, creating a yellowish colour. In Fig. 9a and b, both
white and brown particles softened, flowed andmixed homogeneously,
creating a uniform pattern. Fig. 9c suggests that while the brown pow-
der softened, the white powder only did to a lesser extent, creating a
kind of suspension of white grains in a brown uniform matrix.

The roughness formation on the panels was investigatedwith a SEM
microscope (Fig. 10) equipped with EDX detector (Fig. 11). Two
different SEM modes were used to look at the surface: Back-scattering
Topology BET, (Fig. 10a, c and e), and Back-scattering Composition
BEC, (Fig. 10b, d and f). The panels sprayed with the uncoated particles
(Fig. 10a) did not show roughness in the topology mode, in agreement
Fig. 10. SEM pictures using topologymode (BET) (a, c, e) and compositionmode (BEC) (b, d, f) o
9-cycle particles (e) and (f). The duplet of pictures for each sample represent the same area of
with the visual observation (Fig. 7). Nevertheless, the composition-
mode picture revealed darker and brighter areas (Fig. 10b). As we ex-
pected, BET-mode images of the 3-cycle (Fig. 10c) and the 9-cycle
(Fig. 10e) panels confirmed the presence of surface roughness, which
corresponded to the darker areas observed in the analogous BEC-
mode pictures (Fig. 10d and f). The composition of the darker and
brighter areas in the BEC-mode images and its relation with the rough-
ness in the BET-mode images was examined with EDX.

Full area EDX and spot EDX analysis were performed on both
brighter (①) and darker (②) areas of the samples (Fig. 11). The brighter
areas (white bars in Fig. 11) were composed of higher concentrations of
Barium (Ba) and Sulphur (S), while the darker areas (black bars
in Fig. 11) had a dominant concentration of Titanium (Ti). This
corresponds to the presence of BaSO4, which is the filler used in
brown powder coatings, and TiO2 used as pigment in the preparation
f the panels preparedwith uncoated particles (a) and (b), 3-cycle particles (c) and (d), and
the panel.

Image of Fig. 10
Image of Fig. 9
Image of Fig. 8


Fig. 11. SEM images using the topology mode (BET) for the samples sprayed with 0 cycles (a), 1 cycles (d) and 3 cycles (g), and the composition mode (BEC) mode for the samples with
0 cycles (b), 1 cycles (e) and 3 cycles (h). Pictures (c), (f) and (i) show the EDX analysis of the full image (grey bars), spot 1 (white bars) and spot 2 (black bars).
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of the white powder. Higher concentrations of aluminium were found
in the darker areas, which correspond to the Al2O3-coated white pow-
der coating. Other compounds identified by EDX analysis, such as C, O
and N, are not included in Fig. 11 since they were detected in all the
panels. The combination of the SEM (Fig. 10), which related the pres-
ence of darker and brighter areas with the roughness of the surface,
and the EDX analysis (Fig. 11), which pointed out the presence of
Fig. 12. Reverse Impact test, performed over the painted panelswith 0, 1, 3, 5, 7 and 9 cycles. The
the pictures were modified for a better visualization of the cracks.
white pigment and aluminium in the darker areas, prove that the in-
creased roughness and consequent reduction in the gloss level of the
paints were caused by the Al2O3-coated particles.

To conclude, the mechanical resistance of the sprayed paints was
evaluated with the reverse impact test (Supplementary information G).
This test studies the formation of cracks on the panels as the result of
the impact of a steel ball released from a certain height. In this work,
thickness of the paint was around 50 μm in all the samples. The contrast and brightness of

Image of Fig. 12
Image of Fig. 11
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weused a stereomicroscope to observe the footprint of the impact of the
ball on the surface of the panel (Fig. 12). The contrast and brightness of
the pictures in Fig. 12were tuned to improve the visualization of impact
on the panels. The impact of the ball deformed the panels, as seen in the
centre of the images, in which the cracks would appear. We found that
all the panels showed good impact resistance.

From the results obtained, we conclude that powder coating parti-
cles coated with only 2 cycles of alumina induced a granular textured
paint, characterized by a rough and matte surface finish with good im-
pact resistance. Nevertheless, this process can be further optimized. For
instance, the dosing and purging times, in combination with the num-
ber of cycles, would lead to a more time-efficient coating process. Like-
wise, variables such as the particle size and the ratio of the coated-to-
uncoated powder mixtures influence the appearance, i.e. roughness,
gloss and colour, and the mechanical resistance of the paint. This work
did not aim at obtaining an industrial solution for the production of a
matte powder coating paint, but at proving the applicability of gas-
phase coating techniques on particles, such as ALD or CVD, to modify
and improve the properties of industrial products. In this work, rough-
ness was induced while maintaining good mechanical properties on a
glossy DSM Powder Coating Resin containing standard powder coating
paint.

4. Conclusions

We showed that a thin aluminium oxide film deposited on particles
of a standard dry powder coating paint delayed or even completely sup-
pressed the fluid-like behaviour above the glass transition temperature.
As a result, the appearance of the final paint could be tuned between a
gloss finish and a matte one, depending on the number of alumina
coating cycles on the paint particles. The coating process was carried
out in a fluidized bed reactor operated at 27 °C and 1 bar, using
trimethylaluminium and water as precursors. The precursors were fed
in subsequent steps, similarly to ALD. However, operating at ambient
conditions combinedwith a dosing of both precursors in excess resulted
in a growth of about 3.5 nm of Al2O3 per cycle, much higher than in typ-
ical ALD processes. We found that after 2 coating cycles, the alumina de-
posited was sufficient to alter the flow of the particles and the
appearance of the paint. More cycles resulted in thicker alumina coatings
that further modified the paint appearance, whereas more than 5 cycles
had little additional effect. The suppression offlowwas not caused by de-
layed softening due to thermal insulation by the alumina films, as deter-
mined by differential scanning calorimetry. Rather, the films acted as a
hard physical shell that prevents material release from the core that
softens irrespective of the coating around it. The thickness of the film is
not important as long as it covers the entire particle. We calculated
that the thinnest shell is strong enough to contain the core, even when
the core softens and expands due to heating, using an order-of-
magnitude analysis in a thin-wall spherical-vessel model. We found,
after interpretation of the results fromSEMand EDX, that Al2O3 can read-
ily alter the flowing behaviour and induce roughness in paints, while
keeping the mechanical resistance comparable to the reference paints.
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