
 
 

Delft University of Technology

Optimal Platoon Trajectory Planning Approach at Arterials

Liu, Meiqi; Wang, Meng; Hoogendoorn, Serge

DOI
10.1177/0361198119847474
Publication date
2019
Document Version
Final published version
Published in
Transportation Research Record

Citation (APA)
Liu, M., Wang, M., & Hoogendoorn, S. (2019). Optimal Platoon Trajectory Planning Approach at Arterials.
Transportation Research Record, 2673(9), 214-226. https://doi.org/10.1177/0361198119847474

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1177/0361198119847474
https://doi.org/10.1177/0361198119847474


Research Article

Transportation Research Record
1–13
� National Academy of Sciences:
Transportation Research Board 2019

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/0361198119847474

journals.sagepub.com/home/trr

Optimal Platoon Trajectory Planning
Approach at Arterials

Meiqi Liu1, Meng Wang1, and Serge Hoogendoorn1

Abstract
Cooperative (automated) vehicles have the potential to enhance traffic efficiency and fuel economy on urban roads, especially
at signalized intersections. An optimal control approach to optimize the trajectories of cooperative vehicles at fixed-timing
signalized intersections along an arterial is presented. The proposed approach aims to optimize throughput first, and then to
maximize comfort while minimizing travel delay and fuel consumption. The proposed approach is flexible in dealing with both
quadratic and more complex cost functions. Assuming fixed timing signal control in a cycle and vehicle-to-infrastructure com-
munication, the red phase is taken into account in position constraints for vehicles that cannot pass the intersection in the
green phase. Safety is guaranteed by constraining the inter-vehicle distance larger than some desired value. The approach is
scalable and can be used for joint trajectory planning of one platoon approaching another stationary platoon. It can also be
extended to multiple intersections with fixed signal plans. To verify the performances of the controlled platoon, simulation
under three different traffic scenarios is conducted, namely: an isolated intersection with/without downstream vehicle
queues, and platoon control at multiple intersections. Three baseline scenarios without control are also designed to compare
performances in relation to both mobility and fuel consumption in each controlled scenario. The results demonstrate that
the controlled vehicles generate plausible behavior under control objectives and constraints. Moreover, the consideration of
downstream vehicle queues and the application at both an isolated signalized intersection and arterial corridors on urban
roads verify the flexible characteristics of the control framework.

From the perspective of safety, setting traffic lights on
urban roads is an important traffic control approach (1).
At signalized intersections, vehicles have to stop during
the red phase and restart when the green phase starts.
Therefore, vehicles are always accelerating and decelerat-
ing, and even stopping, in the vicinity of signalized inter-
sections, which results in traffic shock waves, and causes
travel delay as well as excessive fuel consumption and
emissions (2). With the development of cyber-physical
technologies, connected and automated vehicles (CAVs)
are able to extend the sensing and anticipation range
when approaching signalized intersections, and to coor-
dinate their decisions for a common goal (3). CAVs have
the potential to improve efficiency, safety, and sustain-
ability at signalized intersections. Thus, it is desirable to
take advantage of CAV technologies for effective traffic
operations at signalized intersections.

Significant research efforts have focused on CAV pla-
tooning on highways (4–7), however, less attention has
been devoted to the design of CAV platoons on urban
roads. Vehicle acceleration/deceleration maneuvers in the
vicinity of signalized intersections on urban roads pro-
duce high levels of emissions and fuel consumption, in

addition to travel delays (8). Thus it is valuable to opti-
mize the fuel efficiency of vehicles at signalized intersec-
tions. Many existing research efforts on optimization-
based control framework design on urban roads have
applied different microscopic fuel consumption models
(9–11) in simulations to validate their effectiveness in
reducing fuel consumption and emission and/or delay
(average stop time) (12–16). These were only simulated at
isolated intersections, however. Neither energy consump-
tion nor the combined optimization of fuel efficiency and
travel delay was designed in the objective function, which
could actually reflect the realistic performance of the con-
trolled vehicles.

The literature on trajectory control of CAV systems
can be grouped into two categories: vehicle-to-vehicle
(V2V)-based trajectory control and vehicle-to-
infrastructre (V2I)-based speed advice/control. As to
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V2V-based trajectory control, several control algorithms
have been proposed at an isolated intersection without a
traffic signal. Some researchers have argued that the
application of CAV technologies to traffic control has
the potential to remove traditional signal controllers at
isolated intersections, if reliable connectivity of V2V
information was provided (17–20). Such proposed con-
trol algorithms were designed with the aim of avoiding
collisions and improving traffic efficiency, that is, in
reduced travel time and total delay. These control algo-
rithms could not account for potential conflicts and
safety problems of pedestrian and bicyclists, however,
and they were confined to an isolated intersection. These
two features rendered these algorithms far away from
realistic traffic operations.

As to V2I-based speed advice systems, a number of
efforts have been made to investigate optimization-based
speed advice algorithms on urban arterials via V2I com-
munication. Some optimization-based velocity planning
algorithms used simplified objective functions, such as
maximizing the absolute value of accelerations or mini-
mizing the differences between actual and maximum
feasible speeds, when safety constraints were satisfied
(21–23). A green-light optimized speed advisory (GLOSA)
system was proposed to provide drivers with speed advice
on urban corridors by calculating travel time to the stop-
line (24–26) or by minimizing fuel consumption (27–29) or
delay (28). However, such speed advice systems which
were designed for signalized intersections could only con-
sider one criterion in the objective function, ignoring the
comprehensive traffic operations in reality.

A few speed advisory or optimization systems have
been designed under actuated or adaptive signal control
approaches. As to the actuated signal control approach
(without optimizing signal parameters), speed advisory
systems were designed at isolated actuated signalized
intersections (2, 30) or corridors with actuated signal
traffic lights (31). An optimization-based speed control
algorithm was proposed on arterials by combining the
control effects of isolated intersections (32). With respect
to the integrated optimization of adaptive traffic signals
and vehicle trajectories, existing research efforts mainly
focused on isolated intersections (33, 34). However, only
acceleration fluctuations of platoon leaders were opti-
mized over time as representative of energy savings and
emission reductions of the whole platoon, which could
not be extended to accurately reveal optimal eco-driving
performances of the whole platoon. In addition, actuated
or adaptive signal control approaches will add computa-
tional complexity to an optimization-based control
approach. Thus, the present study designs a control sys-
tem under a fixed-timing control approach, which only
requires fixed-timing cycles within the prediction
horizon.

From the discussion above, it may be concluded that
the existing control algorithms are not able to optimize
both fuel efficiency and travel delay for the whole pla-
toon. In addition, it is not evident that the existing algo-
rithms are scalable to multiple intersections. This paper
aims to design an optimal platoon trajectory control
method by optimizing accelerations of the controlled
CAV platoon when satisfying safe driving requirements.
The proposed control approach obtains the optimal
throughput first, and then maximizes driving comfort
(by minimizing accelerations) and simultaneously mini-
mizes average travel delay (by maximizing vehicle speeds)
and fuel consumption rates, subject to admissible con-
straints on acceleration and speed. Rear-end collisions
are avoided by constraining the inter-vehicle distance to
be greater than the (minimum) safe gap. The red phase is
formulated as a position constraint for vehicles that can-
not pass the stop-line during the green phase. The control
approach is flexible in incorporating queue discharging
features on intersection approaches, as well as the pla-
toon splitting and merging performances. Thus, the pro-
posed framework is flexible in that it could be applied at
multiple intersections with queues on signalized intersec-
tion approaches under multiple criteria in the objective
function. These criteria could be applied to any con-
trolled vehicle at any time step within the prediction hori-
zon. Finally, the performance of the proposed control
method is verified by simulation using several scenarios.

The remainder of the paper is organized as follows:
The following section introduces the control formulation
for longitudinal driving task, followed by analysis of the
simulation results. The study is summarized in the final
section.

Control Formulation

The longitudinal platoon control problem is formulated
in this section, including design assumptions, control
objectives and constraints, system dynamics, and solu-
tion approach.

Design Assumptions and Description of the Control
Problem

The basic assumptions in this optimal trajectory design
are described as follows:

1. Fixed signal timing during a cycle at signalized
intersections;

2. Signal plan communicated to CAVs via
infrastructure-to-vehicle (I2V) communication;

3. CAVs with V2V, V2I between signal controllers;
4. Acceleration of CAVs controlled;
5. Low or medium traffic demand without spillback.

2 Transportation Research Record 00(0)



An environment with 100% CAVs is considered, to
demonstrate the workings of the proposed approach.
First, let us consider the simplest scenario, that is, an
isolated intersection without a queue. The longitudinal
position of the stop-line is defined as 0. When the leader
of CAV platoon reaches L0 meters upstream of the
stop-line, the platoon trajectory optimization starts.
The prediction horizon T is regarded to start from the
time when the leader of the driving platoon arrives at a
point L0 meters away from the stop-line to the end of
this cycle, including at least one green phase and one
red phase. Assuming that the signal indication is green
when the optimization starts, the prediction horizon
could be described as T = g1+ r. g1 and r are defined
as the length of the remaining green phase and red
phase in the current cycle when control starts, respec-
tively. The control problem is to optimize acceleration
trajectories to fulfill multiple control objectives and
constraints, which will be detailed in the following
subsections.

More complex scenarios occur when downstream
vehicle queues are taken into account on urban corri-
dors. As shown in Figure 1, a driving platoon is traveling
along the corridor when downstream CAVs are queuing
before the stop-lines. The driving platoon can be treated
in the same way as in the isolated intersection scenario.
L1 denotes the lane length between the stop-lines of the
upstream and the adjacent downstream (second) intersec-
tion. The prediction horizon T is considered to start from
the time when the leader of the driving platoon arrives
L0 meters away from the stop-line in the upstream direc-
tion at the first intersection to the green phase at the sec-
ond intersection ends.

Control Objectives

Because of the red phase, the platoon may be split into
two parts in the control design. The first part of the driv-
ing platoon is required to operate with minimum travel
delay, passing the first intersection (i.e., the intersection
farthest upstream) as soon as possible. Meanwhile, the

maximum number of vehicles that could depart from the
first upstream intersection is one of the variables that
could be optimized. On the other hand, the second part
of the driving platoon consists of vehicles that will find it
impossible to leave the intersection. Thus, they are
expected to operate with minimum energy consumption
and emissions, stop in front of the stop-line during the
red phase, and restart at the beginning of the green
phase. Furthermore, driving comfort and safety require-
ments of the whole platoon are considered. All these
strategies make sure that the controlled platoon is able
to operate efficiently.

The control design is expected to fulfill the following
objectives:

1. To maximize driving comfort (by minimizing
accelerations);

2. To minimize the travel delay of passing vehicles
(by maximizing vehicle speeds);

3. To maximize the number of vehicles able to pass
the stop-lines during the (remaining) green
phases;

4. To minimize the fuel consumption of vehicles that
could not pass the stop-line during the remaining
green phase and the following red phase.

In addition, the controller should satisfy the no-
collision driving requirement.

System Dynamics Model

The control input variable u is the acceleration, ai(t), and
the maximum number of vehicles q (veh) that could pass
the stop-line; i denotes the vehicle sequence number on a
single lane, and N is the number of controlled vehicles.
State variables x are considered as the longitudinal posi-
tion, xi(t), and the speed, vi(t), of the controlled vehicle i.
xi(t)ø 0 implies vehicle i passes the stop-line at the most
upstream intersection, while xi(t)\0 means it is still on
the approach ahead of the stop-line at the most upstream
intersection.

QueueQueueDriving Platoon 

L0 L1

-L0 0 L1

Downstream 

(second)

intersection

Longitudinal position

Optimization starts Upstream 

(first)

intersection

Figure 1. Illustration of operation of the control system.
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x= x1(t), :::, xi(t), :::, xN (t), v1(t), :::, vi(t), :::, vN (t)ð ÞT

u= a1(t), :::, ai(t), :::, aN (t)ð ÞT
ð1Þ

The longitudinal dynamics model is described by the
following ordinary differential equation:

d

dt
x=

d

dt
x1(t), :::, xi(t), :::, xN (t), v1(t), :::, vi(t), :::, vN (t)ð ÞT

=f(x, u) ð2Þ

f(x, u)=Ax+Bu ð3Þ

where

A=
A0 A1

A0 A0

� �2N 3 2N

; B=
A0 0

A1 0

� �2N 3 N

;

A0 =

0 0 � � � 0

0 0 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 0

2
664

3
775

N 3 N

; A1 =

1 0 � � � 0

0 1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 1

2
664

3
775

N 3 N

Optimal Control Problem Formulation

From the above discussion, the formulation of the con-
trol problem at an isolated signalized intersection with-
out a queue could be described as:

min
u, q

J = min
u, q

ðT

0

b1

XN

i= 1

a2
i (t)� b2

Xq

i= 1

vi(t)� b3q

 

+b4

XN

i= q+ 1

fv vi(t), ai(t)ð ÞÞdt ð4Þ

Here, b1, b2, b3, and b4 are cost weights; fv is the instan-
taneous fuel consumption rate which could capture
transient changes in speed and acceleration. For typical
vehicles on a flat road, the instantaneous fuel consump-
tion rate fv (ml/s) in Equation 4 could be estimated as

fv =
b0 + b1v(t)+ b2v2(t)+ b3v3(t)+ a c0 + c1v(t)+ c2v2(t)ð Þ a.0

b0 + b1v(t)+ b2v2(t)+ b3v3(t) a ł 0

�

ð5Þ

Detailed parameter values can be found in Kamal et al.
(12). Optimizing instantaneous consumption rates may
give the trivial optimal solution of v=0 and a=0, but
this problem is overcome by maximizing speeds in the
objective function.

In Equation 4, the passing q vehicles are optimized to
depart in maximal speeds while vehicles that could not
dissipate are expected to operate with minimum fuel con-
sumption rates. In addition, driving comfort for all con-
trolled vehicles is included, as shown in the first cost term
of Equation 4. Note that q is a variable which also needs
to be optimized. An upper bound is defined for the

maximum passing vehicle number in the remaining green
time,M1.M1 could be obtained as follows

M1 =ceil
g1 � L0=vmax

tmin

� �
ð6Þ

where vmax denotes the limit speed on a single lane with
signalized intersections and tmin denotes the minimum
safe car-following time gap. All the integer values that
are not more than M1 are given to q (qłM1), thus q is a
constant in the objective function. Based on the enu-
meration of possible q, the biggest value of q is selected
in the condition that all these q vehicles could pass the
stop-line during the green phase. In this way, q is opti-
mized, and then the objective function is minimized with
this optimal q value. Although the objective function
value will decline with an increase in q value, q is limited
by the signal status. There is a position constraint for
these q vehicles when the signal status turns red, which
means that it is mandatory for them to pass the intersec-
tion during the green phase.

The aforementioned formulation can be extended to
capture features of queues and multiple intersections on
the arterial if the isolated signalized intersection is
regarded as the first upstream intersection. The joint
control of multiple intersections along a corridor is dif-
ferent from combining the control of isolated intersec-
tions because of the different objective function during
the prediction horizon, which is detailed in Equation 7.
The formulation of the control problem regarding two
intersections with queues could be described as:

min
u, q

J = min
u, q

ðT

0

b1

XN

i= 1

a2
i (t)� b2

XQ2 + q

i= 1

vi(t)� b3q

 

+b4

XN

i=Q2 + q+ 1

fv vi(t), ai(t)ð ÞÞdt

�b5

ðT

g1 + r

XN

i=Q2 + q+ 1

vi(t)

 !
dt ð7Þ

where N is the number of vehicles in the controlled pla-
toon, including the driving platoon and the vehicles
queued at intersections; q could be regarded as the maxi-
mum number of vehicles that could pass the stop-line at
the most upstream intersection; and Q2 denotes the num-
ber of vehicles in the downstream vehicle queues.
Assuming that the traffic demand on the corridor is not
very high, the Q2 and q vehicles are supposed to discharge
during the green phases along the corridor. If i denotes
the vehicle sequence number in a single lane (iø 0),
then vehicles between i = 1 and i = Q2 are regarded as
the vehicle queues on the downstream intersection
approaches, and the vehicle sequence number of the q
passing vehicles at the most upstream intersection is
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therefore described as i= Q2+ 1 to i= Q2+ q. g1 and r
are defined as the length of the remaining green phase
and the red phase in the current cycle at the most
upstream intersection when control starts. In Equation 7,
the passing q vehicles and Q2 vehicles in the downstream
queues are optimized to depart at maximal speeds within
the whole prediction horizon, while vehicles that could
not dissipate at the most upstream intersection are
expected to operate with minimum fuel consumption
rates. Driving comfort is considered in all controlled vehi-
cles. In addition, the fifth cost term shows that the vehi-
cles that could not depart at the most upstream
intersection are instructed to maximize their speeds when
the signal indication turns green in the next cycle at the
most upstream intersection. The maximum passing vehi-
cle number in the remaining green time at the most
upstream intersection considering queue, M, could be
obtained as follows

M =ceil
g1 � L0=vmax

tmin

� �
+Q1 ð8Þ

Q1 denotes the downstream vehicle queue at the most
upstream intersection. It should be noted that the opti-
mal value of q could be obtained based on M, which is
similar, as discussed in Equation 6.

Similarly, the generic control problem formulation
regarding multiple intersections with queues could be
described as:

min
u;q

J ¼ min
u;q

ðT

0

b1

XN

i¼1

a2
i ðtÞ � b2

X
PK
j¼2

Qjþq

i¼1

viðtÞ � b3qþ b4

XN

i¼
PK
j¼2

Qjþqþ1

fv viðtÞ; aiðtÞð Þ

0
BBBB@

1
CCCCAdt

�b5

ðgj
0þrj

gj
0

XN

i¼
PK
j¼2

Qjþqþ1

viðtÞ

0
BBBB@

1
CCCCAdt ð9Þ

Assuming that the most upstream intersection is the
first intersection, j (jø 2) denotes the downstream inter-
section sequence along the corridor, and K is the number
of intersections that the controlled platoon will pass
within the prediction horizon. Here, Qj means the
sequence number of vehicle queue at the jth intersection,
gj represents the moment when the signal indication
turns red at the jth intersection, and rj is the length of the
red phase at the jth intersection.

Controller Constraints

The control problem requires the control and state vari-
ables to respect some constraints:

1. Admissible acceleration is bounded between maxi-
mum acceleration, amax, and minimum accelera-
tion, amin.

amin ł ai(t)ł amax ð10Þ

2. Speed is restricted to be no larger than the limit
speed, vmax, but non-negative.

0 ł vi(t)ł vmax ð11Þ

3. No-collision requirements: space gap and time gap
is required to be greater than or equal to the mini-
mum safe gap within the prediction horizon.

xi(t)� xi+ 1(t)ø vi+ 1(t)tmin + s0 + l ð12Þ

l denotes the length of a standard vehicle and s0 is the
minimum space gap in stationary conditions.

4. Red phase position constraint

The red phases within the prediction horizon are
regarded as position constraints, which could adapt to
deal with queues by adjusting the value of Q2 and signal
timing parameters g1 and r at the most upstream inter-
section. There are two position constraints regarding the
red phase. Taking the simple scenario of two intersec-
tions along a corridor as an example, the qth vehicle
should be restricted to pass the stop-line during the green
phase at the most upstream intersection after optimizing
the value of q, that is, the longitudinal position of the
qth vehicle should be greater than or equal to 0 at the
end of green phase at the first intersection. In addition,
the i = Q2+ q+ 1 to i = N vehicles which will encoun-
ter the red phase at the most upstream intersection
should be constrained to stop behind the stop-line during
the red phase, which means that the longitudinal posi-
tions of i = Q2+ q+ 1 to i = N vehicles should be less
than or equal to 0 during the red phase at the first inter-
section. These constraints could be expressed as follows:

xq(t= g1)ø 0

xi(g1 ł t ł g1 + r)ł 0 Q2 + q+ 1 ł i ł N
ð13Þ

The position constraints can also be applied at multi-
ple intersections along the corridor. Here, Lj is defined
as the longitudinal position of the stop-line at the jth
intersection. If qj denotes the optimal number of passing
vehicles at the jth intersection in the controlled platoon
sequence, then the longitudinal position of qj should be
greater than or equal to Lj when the signal turns red at
the jth intersection. In addition, the vehicle queue at the
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jth intersection, Qj, should be restricted to stop behind
the stop-line during the red phase at the jth intersection,
as shown in Equation 14.

xqj
(t = gj)ø Lj

xi(gj ł t ł gj + rj)ł Lj i 2 Qj�1,Qj

� � ð14Þ

Solution Approach

The continuous-time optimal control problem is trans-
formed into a nonlinear programming (NLP) problem by
discretizing the control variable of accelerations within
the prediction horizon. System dynamics are transcribed
as linear equality constraints in the NLP problem. The
linear inequality constraints on the control variable, that
is, lower and upper bounds on acceleration, are set to
limit the admissible control signals. Other linear inequal-
ity constraints regarding speed, safe gap, and longitudi-
nal position during the red phase are described in the
form of control variables using the system dynamic equa-
tion, as the solver required. Thus, every vehicle in the
controlled platoon at every moment within the prediction
horizon obeys all constraints in the controller. This opti-
mal control problem is solved with the fmincon function
in the MATLAB environment, using the SQP algorithm.
The performance of the controller is discussed in the next
section.

Simulation Results and Analysis

To verify the platoon performance under different objec-
tives and scenarios, 10 to 15 vehicles are simulated in dif-
ferent experiments.

Experiment Design

Three scenarios are designed to test the performance of
the controlled CAV platoon for different experiment

objectives. Table 1 describes the experiment design. The
parameter values in the simulation are detailed in
Table 2.

Scenario 1 represents the situation where the con-
trolled platoon splits into two at an isolated intersection
without downstream queue on the approach in the pre-
diction horizon (Q1 = Q2 = 0). The simplest Scenario 1
is simulated to verify if the optimal control framework
works when the red phase is included as a position con-
straint. In Scenario 1, the first q vehicles of the driving
platoon are expected to pass directly and the subsequent
N2q vehicles cannot depart because of the red phase.
The prediction horizon T is 60 s (T = g1+ r), including
remaining green phase and red phase at the most
upstream (first) intersection. To magnify the control
effects of all cost terms and then obtain insights into tun-
ing cost weights, the fuel consumption rates and speeds
of all these N vehicles are optimized within the prediction
horizon. The updated objective function is described in
Equation 15. Performances in Scenario 1 could help
understand how the control framework works under
multiple objectives and prove the flexibility of the con-
trol approach, because of the changeable criteria in the
objective function.

min
u, q

J = min
u, q

ðT

0

b1

XN

i= 1

a2
i (t)� b2

XN

i= 1

vi(t)� b3q+b4

XN

i= 1

fv(vi(t), ai(t))

 !
dt

ð15Þ

Scenario 2 introduces a downstream vehicle queue at
an isolated signalized intersection based on Scenario 1
(Q1 = 4, Q2 = 0), which provides insights into the effec-
tiveness of the control approach regarding the down-
stream queue. Apart from the driving platoon, Q1

vehicles are set to stop behind the stop-line waiting for
the green phase at the start of the optimization. In

Table 1. Design of the Numerical Simulation Experiments

Scenario design Settings Experiment objectives

Scenario 1 An isolated intersection without downstream
queue

N = 10 To test the validity of position constraint during
red phase and the flexibility of the control
framework under multiple objectives, and to
tune the cost weights under eco-driving
objective function

Scenario 2 An isolated intersection with downstream queue N = 15
Q1 = 4

To evaluate the effectiveness of downstream
queue constraints and the scalability of the
control system

Scenario 3 An arterial corridor with two
signalized intersections with downstream
queues

N = 10
Q1 = 2
Q2 = 2
L1 = 400 m

To examine the application of the control
framework on urban corridors and validate
possible deceleration maneuvers
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Scenario 2, not only the split of the driving platoon but
the merging of two platoons and the acceleration beha-
vior of queuing vehicles at the start of green phase can
be tested. In addition, an increase in the number of con-
trolled vehicles (N = 15) could validate the scalability of
the control system.

The forthcoming Scenario 3 is designed along a corri-
dor of two signalized intersections, considering not only
platoon splitting and merging again, but also down-
stream queues on two intersection approaches. Here the
position constraints and initial information of position
and speed are different from the previous scenarios. The
remaining green phase g1 is from t = 0 s to t = 20 s, the
red phase r at the first intersection is between t = 21 s
and t = 40 s, and the green phase at the downstream
(second) intersection g2 is set from t = 41 s to t = 60 s.
Thus the prediction horizon T is 60 s, including not only
the remaining green phase and red phase at the first
intersection, but also the green phase at the second inter-
section. These controlled N (=10) vehicles include Q1

(=2) and Q2 (=2) vehicles waiting for the green phase
behind the stop-line at the first and the second intersec-
tion separately, and N2Q12Q2 (=6) vehicles driving
from L0 meters away from the stop-line in the upstream
direction at the first intersection. Given a short lane
length (L1 = 400 m) between two intersections, q passing
vehicles at the first intersection may experience decelera-
tion maneuvers between the stop-line at the first and

second intersection. These q vehicles are expected to pass
the first and second intersections as soon as possible but
decelerate to keep safe gaps between two intersections. It
should be noted that Q2 vehicles on the second intersec-
tion approach are optimized only during the green phase
at the second intersection g2 to simplify computational
complexity, which means these Q2 vehicles remain sta-
tionary behind the stop-line during t E[0, g1+ r].
Scenario 3 could help validate the flexible characteristic
of the control framework regarding the application on
an arterial corridor of multiple signalized intersections
with queues.

The three scenarios are appropriate to verify the pla-
toon trajectory control approach. Owing to the charac-
teristics of the control approach that every constraint
and every criterion in the objective function could be
exerted on any controlled vehicle over the prediction
horizon, similar settings (e.g., the number of controlled
vehicles, vehicle queues behind the stop-line at intersec-
tions, and the number of multiple intersections along a
corridor) could be implemented in the same way. In
addition, the communication ranges of V2I, I2V, and
V2V are limited to about 200 meters in reality, thus the
control approach starts from L0 (200) meters away from
the stop-line in the upstream direction at the first inter-
section. The distance between the upstream intersection
and the downstream intersection L1 is set to be 400 m to
verify the possible deceleration maneuvers.

Table 2. Parameter and Coefficient Values

Notation Parameter/coefficient Value Unit

- Time step 1 s
- Initial speed of the driving platoon 8 m/s
- Initial space gap in the driving platoon 21 m
- Initial space gap in vehicle queues 5 m
N Whole number of vehicles in the controlled platoon 10, 15 -
Q1 Vehicle queue on the first intersection approach 0, 2, 4 -
Q2 Vehicle queue on the second intersection approach 0, 2 -
g1 Remaining green phase at the first intersection 30, 20 s
r Red phase at the first intersection 30, 20 s
g2 Green phase at the second intersection 20 s
l Length of every controlled vehicle 3 m
L0 Distance from L0 meters away from the stop-line in the upstream direction

(at the first intersection) to the stop-line at the first intersection
200 m

L1 Lane length between the stop-line at the first and second intersection 400 m
tmin Minimum safe car-following time gap 2 s
s0 Minimum space gap at standstill conditions 2 m
vmax Limit speed on the urban corridor 15 m/s
amax Allowable maximum acceleration 2 m/s-2

amin Allowable minimum acceleration -5 m/s-2

b1 Cost weight 0.5 -
b2 Cost weight 0.5 -
b3 Cost weight 0.5 -
b4 Cost weight 17 -
b5 Cost weight 0.5 -
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Platoon Performance

The three scenarios described above are simulated to
evaluate control effects based on trajectory analysis, as
depicted in Figures 2 to 4. The horizontal red lines in
these figures show the red signal indication on the
approach. It seems clear that all trajectories are able to
satisfy the controller constraints, including the safe gap,
allowable acceleration, and limited speed constraints.
The remainder of this section analyzes the controlled pla-
toon performances in different scenarios. Finally, three
comparison baseline scenarios are implemented using the
intelligent driver model under the same settings as the
three scenarios. The simulation results should reveal the

differences between CAV traffic control and intelligent
driver model, and the potential of the proposed control
approach in comparison with human drivers.

Analysis of Scenario 1. In Scenario 1, the cost terms of
minimizing the travel delay (maximizing vehicle speeds)
and minimizing fuel consumption are implemented in all
controlled vehicles within the prediction horizon, to mag-
nify the effects of all criteria in the objective function.
First, b1 = 0.5 is regarded as a baseline. The choice of b3

(= 0.5) does not influence the optimal solution because q
is a constant in the objective function. The cost weight of
speed, b2, is supposed to keep the same order as the cost

0 15 30 45 60

Time (s)

(a)

-1

-0.5

0

0.5

1

1.5

2

A
cc

el
er

at
io

n
 (

m
/s

-2
)

0 15 30 45 60

Time (s)

(b)

0

5

10

15

S
p
ee

d
 (

m
/s

)

0 15 30 45 60

Time (s)

(c)

-400

-200

0

200

400

600

L
o
n
g
it

u
d
in

al
 p

o
si

ti
o
n
 (

m
)

0 15 30 45 60

Time (s)

(d)

0

0.5

1

1.5

2

2.5

3

3.5

F
u
el

 c
o
n
su

m
p
ti

o
n
 r

at
e 

(m
L

/s
)

Vehicle 1 Vehicle 5Vehicle 2 Vehicle 3 Vehicle 4

Vehicle 6 Vehicle 10Vehicle 7 Vehicle 8 Vehicle 9

Red phase

Figure 2. Optimized trajectories in Scenario 1: (a) acceleration; (b) speed; (c) longitudinal position; and (d) fuel consumption rate.
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weight of acceleration b1, thus b2 = b1 = 0.5. As to the
fuel consumption cost weight b4, it is found that bigger
values of b4 (.17) will overweight the fuel consumption
cost term, causing lower speeds with respect to the first q
vehicles when passing through the intersection. The
objective function is to maximize the speeds of all vehi-
cles, thus an overweighted fuel consumption cost weight
b4 has a negative influence on trajectory performances,
especially speeds. To achieve the maximum speed with
respect to the first q vehicles, the cost weight should not
be overweight to be bigger than 17. Therefore, 17 is the
maximum value of b4 whereby the first q vehicles can
achieve the maximum speed and all vehicles can achieve
their optimal operations. As to Scenario 3, with two
intersections, the same value is chosen as b2 for the cost
weight b5 because of the same criteria.

Scenario 1 simulates the simplest experiment with only
one intersection approach, and it seems clear that the
control works well subject to all constraints and system
dynamics. Vehicle 1 to 10 represents vehicle sequence
number of the driving platoon on the lane, where the
value of M1 equals 9 and q is optimized to be 7. In
Figure 2, only the first q (= 7) vehicles are leaving the
intersection, while the subsequent N2q (= 3) vehicles
cannot catch the green phase. It is shown that the first q
vehicles accelerate quickly until the limit speed vmax and
then keep a constant speed. Only Vehicle 1 reaches the
maximum acceleration at the beginning, because it does
not have to satisfy the safety constraint as the followers
do. Vehicles that cannot pass the intersection decelerate
and slowly approach the stop-line, because of an explicit
optimization function of fuel consumption rate.
Performances in Scenario 1 prove the flexibility of the
control approach in that multiple criteria in the objective
function could be applied, not limited to linear and quad-
ratic objectives. In addition, criteria could be applied to
arbitrary vehicles in the controlled platoon.

Analysis of Scenario 2. In Figure 3, platoon performances
at an isolated intersection with downstream queue are
depicted. The first Q1(= 4) vehicles in the legend present
the vehicle queue Q1 on the signalized intersection
approach. The maximum number of vehicles that could
depart at the first intersection, q, is optimized to be 11. It
is shown that the last N2q (= 4) vehicles cannot catch
the green phase and stop behind the stop-line. Similar
trajectories appear as for Scenario 1 in Figure 2 in rela-
tion to the split of the driving platoon. Using a position
constraint to express the red phase, it is clear that the
implementation of the downstream queue works in the
optimal control approach.

Analysis of Scenario 3. In Scenario 3, the maximum num-
ber of vehicles passing in the remaining green time at the

first intersection M equals 6. The value of q is optimized
to be 5. It is clear that the driving platoon from L0 meters
away from the stop-line in the upstream direction at the
first intersection splits into two parts and merges with
the preceding platoon (Q1 and Q2) when the signal status
changes (t = 20 s and t = 40 s). Acceleration and decel-
eration trajectories of all controlled vehicles are operated
considerably smoothly because of the control objective
of maximizing driving comfort.

The trajectories of the driving platoon in Figure 4
seem reasonable. The first q (= 5) vehicles (Vehicle 3 to
7) accelerate from the start, departing the first intersec-
tion directly. The leader in the driving platoon (Vehicle
5) begins with acceleration of 1.6 m/s2, and the following
two vehicles speed up with smaller accelerations. The
first q (= 5) vehicles in the driving platoon are expected
to accelerate to the maximum speed and then keep the
limit speed vmax, but they cannot because of the short
lane length (L1 = 400 m) and constraint on safe gap.
The last three vehicles in the driving platoon (Vehicle 8
to 10) are instructed to pass the stop-line at the first
intersection by using a position constraint at the end of
the second green phase (t = 60 s). Vehicles 8 to 10
decelerate first, approaching the stop-line slowly owing
to the red phase (as a position constraint), and then
accelerate at the beginning of the next green phase (t =
40 s) at the first intersection. After passing the stop-line
at the first intersection, that is, satisfying the position
constraint at the end of the second green phase, these last
three vehicles (Vehicle 8 to 10) perform to decelerate
because of the fuel consumption criteria in the objective
function.

The trajectories of vehicle queues on the intersection
approaches are explained as follows. The vehicle queue
Q1 (Vehicle 3 and 4) starts acceleration from stationary
condition at the beginning of the green phase at the first
intersection and moves to the second intersection with
gradually increasing speeds but declining accelerations.
The vehicle queue Q2 (Vehicle 1 and 2) accelerates sud-
denly when the signal status turns green at the second
intersection (t= 40 s), but vehicles in Q1 at the first inter-
section accelerate at a smaller rate compared with Q2 at
the second intersection. This is because Q1 vehicles are
operated to maintain a safe gap with Q2 vehicles with
minimum acceleration fluctuations in the objective func-
tion. Q1 vehicles therefore approach the vehicle queue Q2

at the second intersection with a relatively slow increase
in speed.

Instantaneous fuel consumption rates are calculated
based on acceleration and speed. Speed trajectories are
developed from the optimized accelerations, thus fluctua-
tions in instantaneous fuel consumption rate are closely
related to variations in acceleration, as shown in
Figure 4d. The fuel consumption rates of vehicle queue
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Q2 (Vehicle 1 and 2) maintain 0.16 ml/s in front of the
stop-line at the second intersection when idling.

To show the behavioral differences and potential of
the controlled platoon, three comparison baseline scenar-
ios are designed with same settings as in Scenario 1, 2,
and 3 based on the intelligent driver model. The simula-
tion results are shown in Figure 5. The maximum number
of vehicles that could pass the intersection is evaluated
first when implementing the intelligent driver model on a
corridor during the green phase. Later, a virtual station-
ary vehicle is inserted at the stop-line between the last
passing vehicle and the first vehicle that has to stop at the
red phase. After adding the virtual vehicle(s), the

intelligent driver model is implemented again to simulate
the trajectories under fixed-timing signal control. The vir-
tual vehicle is removed after the green phase starts.

Figure 5 shows the results of the simulation with the
intelligent driver model. It is obvious that the optimal
throughputs in this model are worse than their counter-
parts in the control approach. In Scenario 1, seven vehi-
cles are able to leave while the control approach leads to
two more vehicles passing the intersection, and the same
finding holds for Scenario 2. In Scenario 3, one more
vehicle leaves under the control approach compared with
the intelligent driver model. In addition, the total fuel
consumption of all controlled vehicles, by integrating the
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Figure 3. Optimal trajectories in Scenario 2: (a) acceleration; (b) speed; (c) longitudinal position; and (d) fuel consumption rate.
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instantaneous fuel consumption rate in time, is also an
advantage of the control approach. For instance, the
fuel saving of the control approach in Scenario 3 is
18.4509 ml.

Conclusions and Future Work

This study proposed a flexible CAV acceleration control
approach on urban roads that optimizes traffic opera-
tions with multiple criteria of throughput, driving com-
fort, travel delay, and fuel consumption, subject to safety
and physical constraints. The control approach takes
downstream vehicle queues into account and can be

applied not only at an isolated signalized intersection but
on urban arterials as well. The proposed control
approach is applied to design the controller, the perfor-
mance of which is verified by simulation with multiple
intersections and downstream vehicle queues. In addi-
tion, changes in the criteria that constitute the objective
function can be achieved straightforwardly in this frame-
work, which also reveals the flexible characteristics of
the control approach. Simulation results show that the
proposed control system is able to achieve the control
objectives and to satisfy the constraints. Further research
is directed to the inclusion of multi-lane scenarios and
real-time signal controls based on V2I information.
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Figure 4. Optimal trajectories in Scenario 3: (a) acceleration; (b) speed; (c) longitudinal position; and (d) fuel consumption rate.
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Furthermore, research on relaxing the assumption of
100% penetration rate will be conducted in the future,
including the consideration of system errors using robust
or stochastic control, the queue estimation (of human
drivers) using CAV information, and the control design
in a mixed traffic flow of human drivers and CAVs.
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