
 
 

Delft University of Technology

Multi-zone optimisation of high-rise buildings using artificial intelligence for sustainable
metropolises. Part 2
Optimisation problems, algorithms, results, and method validation
Ekici, B.; Kazanasmaz, Tugce; Turrin, M.; Tasgetiren, Fatih; Sariyildiz, I.S.

DOI
10.1016/j.solener.2021.05.082
Publication date
2021
Document Version
Final published version
Published in
Solar Energy

Citation (APA)
Ekici, B., Kazanasmaz, T., Turrin, M., Tasgetiren, F., & Sariyildiz, I. S. (2021). Multi-zone optimisation of
high-rise buildings using artificial intelligence for sustainable metropolises. Part 2: Optimisation problems,
algorithms, results, and method validation. Solar Energy, 224, 309-326.
https://doi.org/10.1016/j.solener.2021.05.082
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.solener.2021.05.082
https://doi.org/10.1016/j.solener.2021.05.082


Solar Energy 224 (2021) 309–326

Available online 16 June 2021
0038-092X/© 2021 The Authors. Published by Elsevier Ltd on behalf of International Solar Energy Society. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Multi-zone optimisation of high-rise buildings using artificial intelligence 
for sustainable metropolises. Part 2: Optimisation problems, algorithms, 
results, and method validation 
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A B S T R A C T   

High-rise building optimisation is becoming increasingly relevant owing to global population growth and ur-
banisation trends. Previous studies have demonstrated the potential of high-rise optimisation but have been 
focused on the use of the parameters of single floors for the entire design; thus, the differences related to the 
impact of the dense surroundings are not taken into consideration. Part 1 of this study presents a multi-zone 
optimisation (MUZO) methodology and surrogate models (SMs), which provide a swift and accurate predic-
tion for the entire building design; hence, the SMs can be used for optimisation processes. Owing to the high 
number of parameters involved in the design process, the optimisation task remains challenging. This paper 
presents how MUZO can cope with an enormous number of parameters to optimise the entire design of high-rise 
buildings using three algorithms with an adaptive penalty function. Two design scenarios are considered for 
quad-grid and diagrid shading devices, glazing type, and building-shape parameters using the setup, and the SMs 
developed in part 1. The optimisation part of the MUZO methodology reported satisfactory results for spatial 
daylight autonomy and annual sunlight exposure by meeting the Leadership in Energy and Environmental Design 
standards in 19 of 20 optimisation problems. To validate the impact of the methodology, optimised designs were 
compared with 8748 and 5832 typical quad-grid and diagrid scenarios, respectively, using the same design 
parameters for all floor levels. The findings indicate that the MUZO methodology provides significant im-
provements in the optimisation of high-rise buildings in dense urban areas.   

1. Introduction 

The demand for high-rise buildings is increasing in metropolises 
owing to population growth and urbanisation trends (Ali and Al- 
Kodmany, 2012). For realising sustainable urban areas, sustainable 
high-rise buildings should be one of the topics under investigation 
because they consume a significant amount of energy owing to their 
excessively large size (Ali and Armstrong, 2008). Designing a sustain-
able high-rise building is a complex task because the process involves 
various types of design parameters that affect multiple performance 
aspects. Rafiei and Adeli (2016) presented robust optimisation algo-
rithms and neural dynamic models for investigating sustainable high- 
rise alternatives to cope with this complexity. The previous works 
mentioned in part 1 showed that optimisation algorithms and machine 

learning techniques have been widely used for designing sustainable 
high-rise buildings over the last two decades. However, in none of these 
studies, were the various floor levels considered as separate design 
problems, which is crucial for improving the overall performance of 
high-rise buildings (Wood, 2007). Using the same design parameters for 
the entire high-rise design is a limited approach because the perfor-
mance of the building varies between the ground and sky floor levels in 
dense urban areas. Optimising the design of an entire high-rise building 
is challenging as the simulations require expensive computational time, 
and the optimisation process needs to cope with an enormous number of 
design parameters. The use of multi-zone optimisation (MUZO) meth-
odology is proposed to divide high-rise buildings into subdivisions 
(zones) to be considered as separate problems using artificial intelli-
gence methods to address both aspects. Part 1 of the study is focused on 
solving computationally expensive simulations of each zone using 
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surrogate models (SMs). Part 2 deals with the optimisation challenge, 
wherein each zone is considered as a design problem using algorithms 
belonging to different optimisation domains. In parts 1 and 2 of the 
MUZO study, quad-grid and diagrid scenarios with the shading device, 
glazing type, and building-shape parameters were used to demonstrate 
the proposed methodology. 

This study is focused on optimising the entire design of high-rise 
buildings for quad-grid and diagrid scenarios using the 40 SMs devel-
oped in part 1. The performance aspects of the study take into consid-
eration the two daylight metrics of Leadership in Energy and 
Environmental Design (LEED) v4.1., namely, the spatial daylight au-
tonomy (sDA) and annual sunlight exposure (ASE). The optimisation 
process uses phase 3 of the MUZO methodology for single-objective 
constrained formulation with three algorithms: self-adaptive differen-
tial evolution with an ensemble of mutation strategies (jEDE) in the 
Optimus plug-in (Cubukcuoglu et al., 2019), radial basis function opti-
misation (RbfOpt), and covariance matrix adaptation with evolution 
strategy (CMA-ES) in the Opossum plug-in (Wortmann, 2017b). In 
addition, an adaptive penalty function, called the near-feasibility 
threshold (NFT) (Coit and Smith, 1996; Smith and Coit, 1997), is used 
for each optimisation algorithm in the Grasshopper 3D algorithmic 
modelling environment (GH) (Rutten, 2015). The paper reports the 
optimisation results of 20 problems for two scenarios, which comprise 
260 and 220 design parameters, respectively, with the aforementioned 
algorithms for five replications. Part 2 of the study also validates the 
significance of the proposed methodology by presenting a comparison of 
the performances of the optimised high-rise designs and typical high-rise 
scenarios generated by the same design parameters for all the floor 
levels. The optimisation results and validation of the method show that 
the MUZO methodology can play a significant role in investigating 
sustainable high-rise alternatives in metropolises. The rest of this paper 
is structured as follows: Section 2 presents the state of the art for sDA and 
ASE optimisation, Section 3 introduces the optimisation problems and 
algorithms of this paper, Section 4 reports the optimisation results, 
Section 5 presents the validation of the MUZO methodology, Section 6 
discusses the importance and potential of MUZO with surrogate-based 
design optimisation, and Section 7 presents the conclusions of this 
paper. 

2. State of the art for sDA and ASE optimisation 

This section presents the previous optimisation studies for the sDA 
and ASE daylight metrics of LEED within the performative computa-
tional architecture (PCA) framework in two subsections: one presenting 
conventional optimisation and the other computational optimisation. 
Conventional methods comprise an analysis of the predefined design 
parameters, whereas computational methods involve the use of opti-
misation algorithms while automating the PCA framework to investigate 
the best design performance. Subsequently, the novelty of this study is 
summarised. 

2.1. Conventional optimisation 

Over the last decade, sDA and ASE metrics have been used to 
investigate daylight performance and visual comfort for various build-
ing functions. An early study was focused on a classroom case with the 
use of three optimisation approaches while using the optical properties 
and size of a south-facing window (Kazanasmaz et al., 2016). Owing to 
the classroom requirements, the authors maximised sDA500/50% to 
evaluate an illuminance level of 500 lx with respect to ASE1000,250h. In 
the case of a hospital-patient room, in two studies, the window blinds 
were optimised by shaping the slats and the configuration of external 
sun-breakers on south-oriented windows to maximise sDA300/50% sub-
ject to ASE1000,250h (Sherif et al., 2016; Wagdy et al., 2017). In the case 
of office spaces, in three studies, sDA300/50% was maximised subject to 
an ASE1000,250h less than 10% as a preferable result, and between 10% 
and 20% as an acceptable limit for various design parameters, i.e., solar 
screens, 3D tessellation, fixed/dynamic shading devices, and surface 
reflectance (Fathy et al., 2017; Giostra et al., 2019; Palarino and Piderit, 
2020). The general approach of these studies was to maximise sDA300/ 

50%, with the exception of one study, owing to the educational re-
quirements (Kazanasmaz et al., 2016). The ASE1000,250h was generally 
considered as less than 10% as a comfort limit, while two studies 
considered the results of less than 20% as acceptable solutions (Giostra 
et al., 2019; Palarino and Piderit, 2020). In addition, in the aforemen-
tioned studies, a limited number of design alternatives that might be 
related to conventional optimisation techniques were examined. 
Consequently, none of these studies were focused on optimising the 
daylight performance for the design of entire buildings, such as high-rise 
buildings. 

Nomenclature 

Daylight metrics and material properties 
ASE Annual sunlight exposure [%] 
DGP Daylight glare probability 
g-val G value of the glazing material 
sDA Spatial daylight autonomy [%] 
U-val U value of the glazing material [W/m2 K] 
Tvis Visible transmittance of the glazing material 

Machine learning and optimisation 
CMA-ES Covariance matrix adaptation with evolution strategy 
CPU Average computation time for one replication 
EC Evolutionary computation 
FES Number of function evaluations 

FES/CPU The number of completed function evaluations in 1 s 
jEDE Self-adaptive differential evolution with an ensemble of 

mutation strategies 
maxf(x) Maximum of function x 
NFL No free lunch 
RbfOpt Radial basis function optimisation 
SM Surrogate model 
stdf(x) Standard deviation of function x 

Others 
GH Grasshopper 3D algorithmic modelling environment 
IES Illuminating Engineering Society 
LEED Leadership in Energy and Environmental Design 
MUZO Multi-zone optimisation 
PCA Performative computational architecture  
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2.2. Computational optimisation 

Optimisation algorithms have been widely used to cope with the 
complexity of the design problem while investigating desirable sDA and 
ASE results for various building functions. An early example was focused 
on an office space to maximise sDA300/50% subject to an ASE1000,250h of 
less than 10% using a genetic algorithm (GA) in the Galapagos plug-in of 
GH while considering a single-objective formulation for kaleidocycle 
typology (Wagdy et al., 2015). In addition to daylight, Vera et al. (2017) 
addressed single objective constrained optimisation to minimise the 
total energy usage subject to an sDA300/50% greater than 50% and 
ASE2000,400h less than 20% for exterior fenestration systems of office 
spaces using particle swarm optimisation with the Hooke–Jeeves algo-
rithm in GenOpt. Another example of combining performance aspects 
into one fitness function was examined by Yi et al. (2018) to maximise 
sDA300/50% and minimise ASE1000,250h and daylight glare probability 
(DGP) for auxetic structures with advanced daylight control systems in 
an office space using a GA in the Galapagos. As an alternative to single- 
objective constrained formulation, Tabadkani et al. (2018) and Man-
gkuto et al. (2018) maximised |sDA − ASE| subject to an sDA300/50% 
greater than 50% and 75%, and ASE1000,250h less than 10% for sun- 
responsive skin and light shelf design in office and hospital spaces 
using a GA in the Galapagos and Octopus plug-ins. In the case of multi- 
objective optimisation, Yi (2019) maximised the sDA300/50% and mini-
mised ASE1000,250h with an aesthetic perception objective function using 
non-dominated sorting genetic algorithm II for a hotel building. Pile-
chiha et al. (2020) also considered the quality of the view from office 
windows in the optimisation of the sDA300/50%, ASE1000,250h, and energy 

usage intensity while considering weighted summation and the HypE 
algorithm in the Octopus plug-in. As an alternative to multi-objective 
optimisation, Mangkuto et al. (2019) identified the simulation results 
for an office space with full factorial analysis of the internal shading 
devices to explore the non-dominated solutions while maximising 
sDA300/50% and minimising ASE1000,250h and DGP>0.21 subject to an sDA 
greater than 55%, ASE less than 10%, and DGP less than 50%. Five of 
these studies comprised the consideration of a single objective, whereas 
others used multi-objective and weighted summation formulations. 
Three studies utilised static penalty functions that might limit the search 
ability during the optimisation process. Finally, none of the reviewed 
studies consisted of a comparison of the results of different optimisation 
algorithms using various initial populations (replications) for the entire 
design of the building. 

2.3. Novelty of this paper 

This study is focused on the optimisation of an entire high-rise 
building for the quad-grid and diagrid scenarios through phase 3 of 
the MUZO methodology, which is based on the use of multiple algo-
rithms with replications for each optimisation task owing to the no free 
lunch (NFL) theorem (Wolpert and Macready, 1997). Because of the 
computational burden of optimising the entire design, the high-rise 
building is divided into 10 subdivisions (zones), which correspond to 
10 design problems starting from the first zone (Z1) at the ground level 
until the tenth zone (Z10) at the sky level (Fig. 1). Forty SMs, and the 
high-rise setup, which were developed in part 1 of this study, were used 
to optimise the sDA and ASE metrics based on the simulation results 

Fig. 1. Subdivisions (zones) of high-rise scenarios and their surrogate models.  
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obtained for the second and fifth floors in each zone. The quad-grid 
scenario comprises 2.893399115e+28 design alternatives with 26 pa-
rameters, whereas this number is 3.054543465e+23 for the diagrid 
scenario with 22 parameters in one zone. For each optimisation task, 
phase 3 of the MUZO methodology is considered by employing the jEDE, 
RbfOpt, CMA-ES algorithms, and NFT adaptive penalty function with 
five replications, which suggests a decision-making process using 15 
optimisation results. Consequently, this paper reports on the optimised 
high-rise buildings after a total of 300 optimisation runs is complete, 
using 260 parameters for the quad-grid, and 220 parameters for diagrid, 
and it validates the impact of the proposed methodology by comparing 
the optimised scenarios with the typical high-rise scenarios. Thus, part 2 
of the study not only deals with the optimisation of the entire design of 
high-rise buildings for the performance metrics under study, but also 
addresses 20 complex design problems, each having an enormous 
number of design alternatives in the optimisation search space, owing to 
the involvement of multiple design parameters. 

3. Optimisation problems and algorithms 

This section explains the problem formulation and algorithms used 
in each optimisation process. The first subsection explains the single- 
objective constrained formulation, whereas the subsequent subsections 
present the RbfOpt, CMA-ES, and jEDE algorithms with applications in 
the architecture domain. Finally, the NFT describes the adaptive penalty 
function for constraint handling. 

3.1. Problem formulation 

The Illuminating Engineering Society (IES) recommends a minimum 
sDA300/50% of 55% with a maximum ASE1000,250h of 10% as desirable 
daylight with acceptable comfort (IES, 2013). However, the LEED 
standards acknowledge design proposals with two points, i.e., while the 
sDA300/50% is greater than 55% and ASE1000,250h is less than 10% for 
regularly occupied floor areas. When reaching a minimum of 75% of 
sDA300/50% with 10% of ASE1000,250h, the design is acknowledged with 
three points. Considering the formulations of previous studies and the 
recommendation of the IES and the LEED standards, in this study, a 
single-objective constrained optimisation is considered for each design 
problem as 

max : sDA300/50% X = (x1, x2, ..., xn) and X ∈ S
subject to : ASE1000/250h⩽ASEbound

(1)  

where n is the number of design parameters in each zone for both quad- 
grid and diagrid scenarios, S is the entire search space of one zone, and 
ASEbound is the maximum limit for direct sunlight. The state of the art 
shows that the ASE results can be related by more than 10% to the design 
of the shading devices. Because the sufficiency of shading devices is 
unexplored at the beginning of the optimisation processes, an adaptive 
ASE boundary is considered in each zone as 

ASEbound =

⎧
⎨

⎩

10% if sDA300/50%⩾55%
20% if sDA300/50%⩽55% and ASE1000/250h > 10%
30% if sDA300/50%⩽55% and ASE1000/250h > 20%

(2)  

where ASEbound increases by 10% when the sDA result is less than 55%. 
This approach is considered in both quad-grid and diagrid scenarios to 
optimise the sDA and ASE metrics using the SMs. The optimisation task 
starts from Z1 and ends at Z10. After the best parameter set is deter-
mined in one zone for each algorithm, the optimisation process of the 
next zone is started. The parameters presented in part 1 of the MUZO 
study are also used herein (Appendix A). The supplementary material 

presents the predictive models with learning scores of 40 SMs that were 
used during the optimisation process. 

3.2. Radial basis function optimisation 

RbfOpt is a model-based algorithm used for solving computationally 
expensive problems and was recently presented by Costa and Nannicini 
(2018). For the unknown cost function, the algorithm constructs and 
iteratively refines an approximation model with sampled points. 
Compared to the existing open-source model-based algorithms avail-
able, RbfOpt provides two main contributions: an efficient method for 
automatic model selection using a cross-validation scheme, and an 
approach to exploit noisy but faster function evaluations. Opossum 
provides the RbfOpt algorithm to be used in architectural design opti-
misation as an open-source plug-in developed for GH (Wortmann, 
2017b). RbfOpt in Opossum has been widely used for various design 
problems, i.e., daylight and glare problems (Wortmann, 2017a), optimal 
viewing angle in stadium design (Zargar and Alaghmandan, 2019), 
structural optimisation (Ilunga and Leitão, 2018), urban design (Wort-
mann and Natanian, 2020), and optimisation problems focused on 
building energy (Waibel et al., 2019). In this study, the optimisation 
process uses the default RbfOpt parameters while running the algorithm 
through Opossum v2.0.0. 

3.3. Covariance matrix adaptation with evolution strategy 

CMA-ES is a well-known optimisation algorithm in the evolutionary 
computation (EC) domain proposed by (Hansen, 2006; Hansen et al., 
2003; Hansen and Ostermeier, 2001). One of its most powerful features 
is that the search space can be increased or decreased in the next iter-
ation based on the results of every solution. The algorithm uses this 
procedure for the multivariate normal distribution parameters (mean 
and sigma) and for the entire covariance matrix that belongs to the 
decision variable space. Opossum v1.7.0 provides a CMA-ES algorithm 
for design optimisation in the architecture domain as an open-source 
plug-in for GH. Recently, this algorithm has been used for various 
design problems, e.g., Waibel et al. (2019) optimised building energy 
problems while reporting promising results with a large evaluation 
budget, Zhang et al. (2020) focused on aerodynamic shape optimisation 
problems, and Fortich Mora (2020) used CMA-ES for the design problem 
of sustainable high-rise buildings. The optimisation process in this study 
comprises the use of Opossum v2.0.0, while considering the default 
features of the CMA-ES algorithm. 

3.4. Self-adaptive differential evolution with ensemble of mutation 
strategies 

jEDE is a hybrid algorithm that belongs to the EC domain using 
differential evolution (Storn and Price, 1997), self-adaptive strategy 
(Brest et al., 2006), and an ensemble of mutation strategies (Mallipeddi 
et al., 2011). The purpose of the algorithm is to cope with high- 
dimensional problems in the domain of architectural design optimisa-
tion. The algorithm comprises a self-adaptive approach that converges 
to different directions with various rates of mutation and crossover 
operators. Moreover, with the ensemble idea, jEDE also selects the best 
mutation strategy for every dimension among predefined operators 
during the optimisation process. Therefore, the algorithm can adapt its 
search behaviour to different problems. The first application of jEDE, 
which is provided by Optimus v1.0.0 as an open-source plug-in for GH, 
was used for 30D CEC 2005 benchmark problems and a 70D structural 
design problem (Cubukcuoglu et al., 2019). The algorithm presented 
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promising results as compared with particle swarm optimisation, ge-
netic algorithm, and RbfOpt. In addition, recent publications have 
demonstrated the potential of jEDE in solving a 20D problem of daylight 
(Ekici et al., 2019b) and the optimisation of sustainable high-rise 
building design focused on daylight, comfort, and energy use intensity 
aspects with SMs (Fortich Mora, 2020). The optimisation process in this 
study comprises the use of the default parameters of Optimus v1.0.2 for 
the jEDE algorithm. 

3.5. Near feasibility threshold constraint handling 

In previous studies mentioned in Section 2, single-objective con-
strained optimisation is considered as a problem formulation for the ASE 
and sDA metrics according to the LEED and IES standards. The general 
approach of these studies was to consider the ASE as a constant penalty 
function to be embedded in the sDA fitness function. In this method, the 
result of the fitness function (sDA) is multiplied with a constant value if 
the solution of the constraint function (ASE) is in the infeasible region. 
Previous studies have also discussed that the ASE results could be related 
to the sufficiency of the shading devices by more than 10%. Another 
reason for this outcome may be related to the limited search ability of 
the constant penalty functions. In the case of challenging constraint 
problems, Mallipeddi and Suganthan (2010) emphasised the importance 
of using advanced constraint-handling approaches. Therefore, in this 
study, the NFT adaptive penalty function is taken into consideration 
(Coit and Smith, 1996), which is an advanced version of the constant 
penalty function. The approach of the NFT is to define a threshold dis-
tance from a feasible region and to encourage the search within this 
region and the NFT neighbourhood while discouraging the search 
beyond that threshold. Eqs. (3) and (4) explain the penalised fitness 

function fp(x) using the NFT as 

fp(x) = f (x)+
(v(x)

NFT

)α
(3)  

NFT =
NFT0

1 + λ⋅g
(4)  

where f(x) is the fitness function; v(x) is the violation; α and λ are user- 
defined positive parameters taken as 2 and 0.04, respectively, NFT0 is 
the upper bound of the NFT taken as 0.1; and g is the generation or 
iteration number. The optimisation process of RbfOpt, CMA-ES, and 
jEDE takes into consideration the NFT approach to obtain a reasonable 
comparison between algorithms for each problem. The Optimus plug-in 
v1.0.2 provides an open-source NFT module that can work with other 
optimisation plug-ins in GH. 

4. Results 

The optimisation results were obtained using a computer with an 
Intel Xeon E5-1620 v3 core processor at 3.50 GHz, 16-GB DDR3 mem-
ory, and a 512-GB solid-state drive (Fig. 2). As the termination criterion, 
10,000 was considered as the maximum number of function evaluations 
(FES). In the implementation of CMA-ES and RbfOpt, non-populated 
approaches were considered in the Opossum plug-in. Therefore, 
10,000 was set as the maximum FES for CMA-ES and RbfOpt, while 40 
population sizes and 250 generations were considered for the 
population-based jEDE algorithm. During the optimisation process, 
Opossum automatically stopped the iteration if there was no alteration 
in the fitness function. Therefore, the computation times of all the al-
gorithms were also recorded. To evaluate the optimisation performance 

Fig. 2. Boxplots of the optimisation results.  
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Fig. 3. maxf(x), stdf(x), CPU, FES, and FES/CPU for five replications.  
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Fig. 4. Convergence graphs of the best optimisation results for the quad-grid scenario.  

Fig. 5. Convergence graphs of the best optimisation results for the diagrid scenario.  
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of RbfOpt, CMA-ES, and jEDE, the following five criteria were consid-
ered: maxf(x), and stdf(x), respectively, are the maximum, and standard 
deviation of the function x for five replications; CPU is the average time 
in seconds to complete one replication; FES is the total number of 
function evaluations, and FES/CPU is the number of completed function 
evaluations in 1 s (Fig. 3). The convergence graphs for the best results 
among the five replications of each algorithm are presented in Figs. 4 
and 5. In addition, Appendix B presents the convergence graphs of all the 
replications. 

In the quad-grid results, jEDE outperformed the other algorithms in 
six zones, whereas jEDE and CMA-ES yielded the same results in three 
zones, and CMA-ES outperformed jEDE in one zone. In the case of the 
LEED scores, jEDE and CMA-ES reached three points in nine zones, while 
both algorithms reached two points only in Z10. In contrast, RbfOpt 
reported three points for Z1, two points for Z3, Z4, Z5, and Z7, and sDA 
results less than 55% in other zones. Hence, the jEDE and CMA-ES could 
cope with the quad-grid scenario and provided satisfactory results for 
LEED standards, while the RbfOpt could not achieve the same result 
owing to the insufficient sDA levels reported for Z2, Z6, Z8, Z9, and Z10. 
In the diagrid results, the constraint of ASEbound⩽10 resulted in unde-
sirable sDA solutions in Z10 for all the algorithms. Thus, the boundary 
was increased by 10% to consider the new constraint function as 
ASEbound⩽20. As a result, the jEDE outperformed the other algorithms in 
seven zones. In two zones, jEDE and CMA-ES yielded the same results, 
whereas only in one zone, the CMA-ES outperformed the jEDE. In the 
case of the LEED scores, the jEDE and CMA-ES presented three points in 
six zones and two points in three zones, whereas the RbfOpt found three 
points in three zones, two points in three zones, and insufficient results 
in four zones. Therefore, the jEDE and CMA-ES could cope with the 
diagrid scenario, while providing satisfactory results for the LEED 
standards in nine zones and acceptable results (ASEbound⩽20) in Z10, 
while the RbfOpt could not present a desirable performance for the 
entire building owing to the insufficient sDA results reported for Z7, Z8, 
Z9, and Z10. With respect to the computation time, the RbfOpt and 
CMA-ES were automatically terminated at a smaller FES than the jEDE. 
Based on the CPU results, the CMA-ES converged faster than the other 
algorithms in Z1 of the quad-grid, and Z2 and Z5 of the diagrid sce-
narios. In all the other problems, the jEDE converged faster than the 
CMA-ES and RbfOpt with less deviation in computation time despite the 
higher FES. In contrast, the FES/CPU results suggested that the jEDE 
could evaluate a single function much faster than the other algorithms. 

In the optimised solutions, the results showed that the sDA values 
diversified in all zones for the both scenarios. For instance, optimised 
solutions of the lower zones presented a high percentage of sDA because 
the dense areas in the built environment significantly blocked direct 
sunlight. Thus, the daylight was controlled using shading devices and 
considering high-transmittance glazing materials between Z1 and Z3. In 
the middle zones, it was observed that the sDA values started to vary 
between Z4 and Z7 owing to the different shading densities and glazing 
types used. In the higher zones (Z8–Z10), the sDA results were lower 
than those in the other zones because direct sunlight met with the cor-
responding floors from all directions (north, south, east, and west). 
Therefore, either dense use of shading devices or low-transmittance 
glazing materials were selected, especially in the south and east orien-
tations, to cope with this challenge. In addition, it was observed that a 
significant building twist would be desirable in the zones between Z8 to 
Z10 to decrease the impact of direct sunlight as compared with the other 
zones. The described design differences in the various zones were based 

on several reasons. Firstly, the density of the surroundings caused 
various design challenges, i.e., high building density at the ground levels 
and low density at the sky levels. Therefore, the optimisation algorithms 
found different design parameters owing to the different surrounding 
conditions. Secondly, higher zones were dependent on the lower zones 
because of the rotation and floor-to-floor height parameters. The opti-
mised parameters in the lower zones could negatively affect the higher 
zones. Nevertheless, desirable solutions were obtained from the results 
reported after the MUZO optimisation process because the independent 
rotation and floor-to-floor height parameters could control the perfor-
mance of each zone. 

With a focus on the overall building performance based on the 
average results of all the zones, Table 1 presents the sDA results for the 
entire high-rise building. The overall results of the algorithms demon-
strated that the jEDE and CMA-ES found a higher sDA in the quad-grid 
than in the diagrid. However, the RbfOpt presented a superior sDA 
performance in the diagrid scenario. Consequently, the jEDE presented 
the best sDA performance, while the CMA-ES presented the second-best 
performance, and the RbfOpt presented the third best design options. 
Moreover, based on the results in Figs. 2–5, we can also conclude that 
the quad-grid shading devices provided better daylight performance 
within acceptable comfort conditions as compared with the diagrid 
devices. Fig. 6 presents the best parameters reported after the optimi-
sation process for both scenarios, whereas Figs. 7 and 8 illustrate these 
parameters in the form of high-rise buildings. The supplementary ma-
terial presents the results of the optimised building designs. 

5. Validation of the method 

The design of high-rise buildings has changed owing to technological 
improvements, design concerns with environmental impacts, and 
regulation changes over time (Oldfield et al., 2009). Few buildings 
appear to be examples of such design concerns in the 21st century, as 
they comprise various building shapes and façade configurations and a 
combination of transparent and opaque surfaces. However, the design of 
high-rises using various design parameters could provide solutions for 
realising better building performance in dense urban districts, as dis-
cussed in this paper. This section presents the potential performance 
improvement that can be realised in sustainable high-rise buildings in 
metropolises by comparing the optimised scenarios obtained using the 
MUZO methodology with typical high-rise scenarios. In the majority of 
the existing high-rise buildings, the same parameter values are applied 
to the entire high-rise design (e.g., singular floor-to-floor height, same 
façade configuration, and a single glazing type). For profound compar-
isons, various combinations of parameters are defined to develop typical 
scenarios using the same parameters in the optimisation process. In 
total, 8748 typical quad-grid and 5832 typical diagrid scenarios were 

Table 1 
sDA performance of the entire high-rise building design for quad-grid and dia-
grid scenarios.  

Algorithm Quad-grid Diagrid 

jEDE 88.7 82.0 
RbfOpt 56.2 66.5 
CMA-ES 85.8 80.2  
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Fig. 6. Parameter maps of the optimised building designs.  
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generated using the values listed in Table 2, and Figs. 9 and 10 illustrate 
several examples of these scenarios. 

The performance of each typical scenario was calculated for every 
zone using the same SMs in a short time. The average performance re-
sults obtained for all the zones were considered to evaluate the overall 
building performance for the typical scenarios. In the case of the opti-
mised scenarios, the jEDE results were used for comparison, as they were 

the best proposed design solutions. Figs. 11 and 12 present comparisons 
of the quad-grid and diagrid scenarios, respectively. As a result, the 
MUZO designs exhibited the best performances with an ASE of 9.8% and 
sDA of 88.7% in the quad-grid scenario and an ASE of 10.5% and sDA of 
82.0% in the diagrid scenario. As mentioned in the results section, owing 
to the insufficient shading performance of diagrid Z10, ASEbound⩽20 was 
considered, which resulted in a slightly higher ASE performance than 

Fig. 8. jEDE (a), RbfOpt (b), and CMA-ES (c) optimised designs for the dia-
grid scenario. Fig. 7. jEDE (a), RbfOpt (b), and CMA-ES (c) optimised designs for the quad- 

grid scenario. 
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10%. Ultimately, the overall performances of the typical high-rise sce-
narios could not provide satisfactory LEED scores, which demonstrates 
the importance of using the MUZO methodology in dense urban 
districts. 

6. Discussion 

This section presents the discussion based on the optimisation results 
and the validation of the method explained in the previous sections. 
Firstly, two discussion topics are addressed: the importance of the MUZO 
methodology for metropolises, and its potential. Secondly, the ongoing 
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Fig. 10. Typical diagrid high-rise examples.  

Fig. 9. Typical quad-grid high-rise examples.  
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discussion in architectural design optimisation based on surrogate-based 
algorithms versus optimisation with SMs is focused upon.  

(1) The importance of the MUZO methodology for future metropolises: 
The results obtained in this study indicated that the MUZO 
methodology could present desirable performance outcomes for 
20 complex design problems while considering multiple param-
eters related to the architecture of high-rise buildings. Recent 
reviews have shown that not only performance aspects related to 
sustainable buildings but also parameters related to architectural 
design may present additional complexity during the optimisa-
tion process (Attia et al., 2013; Ekici et al., 2019a; Evins, 2013; 
Touloupaki and Theodosiou, 2017). Therefore, the use of the 
MUZO methodology may support architects and engineers as 
they investigate sustainable high-rise scenarios by taking into 
consideration parameters related to design concerns in the 

conceptual phase. The results also proved that the performance 
outcomes on different floor levels of high-rise buildings may be 
affected in dense urban areas. The main reason for the superior 
results obtained in the optimised designs proposed by the MUZO 
methodology was the division of one large design problem into 
sub-problems (zones). Hence, the optimisation algorithms could 
determine the best design alternatives for each zone while 
considering the performances of the various floor levels. 

(2) Potential of the MUZO methodology: This study focused on opti-
mising the sDA and ASE daylight metrics of LEED standard to 
evaluate the sustainability score of high-rise buildings. The 
MUZO methodology may integrate more performance aspects 
related to sustainable buildings (e.g., energy consumption, 
building integrated photovoltaics, and adaptive comfort). In such 
a case, the formulation of the problem could comprise multi- 
objective or many-objective optimisation to handle more than 

Fig. 11. Validation for quad-grid scenario (MUZO design versus 8748 scenarios).  

Fig. 12. Validation for diagrid scenario (MUZO design versus 5832 scenarios).  
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two conflicting performance aspects. In addition, the complexity 
of the problem can be controlled by varying the number of zones. 
In this study, ten zones were considered, which is a predefined 
parameter that can be changed by the decision-maker based on 
the density of the surroundings. The consideration of fewer zones 
would limit the number of design decisions for the entire high- 
rise design, while the use of a larger number of zones may in-
crease the complexity and computational burden exponentially. 
During the optimisation process, 1,095,395 and 1,139,785 FES 
were considered for the quad-grid and diagrid scenarios, 
respectively, in order to determine which presents the best per-
formance, and 14,580 FES were considered to evaluate the per-
formance generated in typical high-rise scenarios. If these tasks 
were based on simulations, which required 4 min to calculate the 
performance of one design, 17.12 years would be required to 
complete all these computations. The MUZO methodology pro-
vided near-optimal alternatives for 4 days using SMs. Moreover, 
the aforementioned optimisation tasks were completed in GH 
using the Optimus and Opossum plug-ins. The flexibility of the 
proposed methodology allows the use of other digital platforms 
for optimisation, e.g., Python, C++, and C#, because the pre-
dictive models can be defined in another software.  

(3) Surrogate-based optimisation algorithms versus optimisation with 
SMs: An ongoing discussion in the literature is focused on the use 
of either surrogate-based optimisation (e.g., RbfOpt) or SMs with 
heuristic optimisation algorithms (e.g., this study). While the user 
can optimise the design task using surrogate-based algorithms 
when considering a small amount of FES, the overall process still 
requires a significant amount of time owing to the replication of 
the optimisation process using simulations. However, decision- 
makers can investigate the design problem extensively in a 
reasonable amount of time using SMs, various algorithms, and 
replications, but with a prediction error. The accuracy of the SMs 
can be improved for each design problem, as explained in part 1 
of this study; however, achieving zero error is almost impossible. 
Therefore, we can conclude that surrogate-based optimisation is 
convenient for small-scale design problems (e.g., office spaces), 
whereas optimisation with SMs is useful for large-scale design 
problems (e.g., high-rise buildings). 

7. Conclusion 

This paper presents the second part of the MUZO study and is focused 
on the optimisation problems and algorithms, results, and validation of 
the method. The results of this study showed that the performance of the 
entire high-rise building in dense urban districts can be improved by 
focusing on each zone as a separate design problem, and the optimisa-
tion process is explained in this paper. The combination of these ap-
proaches with the SMs presented in part 1 allowed us to complete the 
optimisations of entire high-rise buildings in a short time. The obtained 
results indicated satisfactory sDA and ASE performances that met the 

LEED criteria in 19 out of 20 design problems comprising various 
complexities. Although the jEDE slightly outperformed the CMA-ES al-
gorithm, the RbfOpt presented a lower sDA performance as compared to 
the other algorithms. This underscores the importance of employing 
various optimisation algorithms with replications in architectural design 
optimisation because "the global optimal of each design problem is unex-
plored". In addition, the validation of the method also demonstrated that 
the building performance achieved using the MUZO methodology 
exhibited a remarkable improvement as compared to that of typical 
high-rise scenarios in dense urban districts. Therefore, the consideration 
of different parameters for various floor levels may provide significant 
performance improvements in the design of sustainable high-rise 
buildings in metropolises. 

In conclusion, the relevance of this study is confirmed by the ob-
tained optimisation results and the validation of the presented method. 
Thus, this study underscores the affect of the use of the MUZO approach 
for metropolises while dividing high-rise buildings into zones to be 
considered as separate design problems. The importance of artificial 
intelligence methods for swift optimisation for determining sustainable 
high-rise alternatives with the use of a large number of parameters was 
also demonstrated. In real-world applications, there is a possibility of 
combining 10 zones into one objective function instead of dealing with 
10 separate problems. However, the design process may involve a large 
number of parameters, such as 260 parameters in the quad-grid and 220 
parameters in the diagrid scenarios of this study. Therefore, the domain 
of architectural design optimisation requires tools and algorithms that 
can simultaneously cope with more than 200 parameters for high- 
dimensional constrained problems (Chu et al., 2011; Jia et al., 2011). 
A sensitivity analysis could decrease the total number of design pa-
rameters; however, the final design may not reflect all the architectural 
concerns owing to some variables having been discarded. Another 
alternative to decrease the overall complexity of the design process 
could be the consideration of two algorithms that belong to different 
optimisation domains (e.g., surrogate-based and EC). Finally, in real- 
world applications, fewer zones may be considered, which would also 
decrease the computational complexity, based on the density of the 
urban plot under study. 
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Appendix A. Parameters of the quad-grid and diagrid scenarios     

Parameters Explanation Location Type  Unit  Boundary 

Quad-grid façade   xQ1,xQ6,xQ11,xQ16  Number of vertical devices N-S-E-W Discrete  –  [0, 8]   
xQ2,xQ7,xQ12,xQ17  Length of vertical devices  Continues  m  [0.0, 1.5]   
xQ3,xQ8,xQ13,xQ18  Rotation of vertical devices  Discrete  ◦ [-60, 60]   
xQ4,xQ9,xQ14,xQ19  Number of horizontal devices  Discrete  –  [0, 2]   
xQ5,xQ10,xQ15,xQ20  Length of horizontal devices  Continues  m  [0.0, 1.5]   
xQ21 ,xQ22 ,xQ23 ,xQ24  Glazing type  Discrete  –  [1, 4]            

Diagrid façade   xD1,xD5,xD9,xD13  Length of 1st order diagonal N-S-E-W Continues  m  [0.0, 1.5]   
xD2,xD6,xD10,xD14  Length of 2nd order diagonal  Continues  m  [0.0, 1.5] 

(continued on next page) 
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(continued )    

Parameters Explanation Location Type  Unit  Boundary   

xD3,xD7,xD11,xD15  Rotation of diagonal devices  Discrete  ◦ [-60, 60]   
xD4,xD8,xD12,xD16  Number of diagonal devices  Discrete  –  [0, 5]   
xD17,xD18 ,xD19 ,xD20  Glazing type  Discrete  –  [1, 4]            

Building shape   x1, ...,x10  Floor-to-floor height of zones – Continues  m  [4.0, 5.0]   
x11 , ...,x20  Rotation of zones  Discrete  ◦ [-10, 10]   

Type Explanation Tvis U-val. g-val. 

Glazing types 1 Tinted float 8 mm blue − 12 mm air − Temperable Low-E 8 mm blue 0.22 1.6 0.28 
2 Temperable Low-E 8 mm neutral − 12 mm air − Clear float 8 mm − 12 mm air − Temperable Low-E 8 mm green 0.45 0.9 0.40 
3 Tinted float 8 mm green 0.68 5.6 0.51 
4 Ultra-clear float 8 mm − 12 mm air − Ultra clear float 8 mm 0.82 2.8 0.81  

Appendix B 

Appendix B1. Quad-grid convergence graphs for all replications from Z1 to Z5
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Appendix B2. Quad-grid convergence graphs for all replications from Z6 to Z10

B. Ekici et al.                                                                                                                                                                                                                                    



Solar Energy 224 (2021) 309–326

324

Appendix B3. Diagrid convergence graphs for all replications from Z1 to Z5
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Appendix B4. Diagrid convergence graphs for all replications from Z6 to Z10

Appendix C. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.solener.2021.05.082. 
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