Inductive Program Synthesis through
using Monte Carlo Tree Search guided by
a Heuristic-Based Loss Function

Bachelor’s thesis

Nadia Matulewicz

Supervisor: sebastijan Dumancic
Examinor: Casper Poulsen

Computer Science and Engineering
Faculty of Electrical Engineering, Mathematics & Computer Science
Delft University of Technology

January, 2022

]
TUDelft

Inductive Program Synthesis through using Monte Carlo Tree Search guided by a
heuristic-based loss function

Nadia Matulewicz
Supervisor: Sebastijan Dumancic

EEMCS, Delft University of Technology, The Netherlands
n.i.matulewicz @student.tudelft.nl, s.dumancic @tudelft.nl

Abstract

Recently, a new and promising Inductive Program
Synthesis (IPS) system, Brute, showed the poten-
tial of using a heuristic-based loss function. How-
ever, Brute also has its limitations and struggles
with escaping local optima. The Monte Carlo Tree
Search might offer a solution to this problem since
it balances between exploitation and exploration.
I design MUTE, a new IPS system which uses
MCTS guided by a heuristic-based loss function.
MUTE’s performance is tested and compared to
other IPS systems in three diverse domains, namely
robot planning, ASCII art and string transforma-
tions. MUTE’s performance for string transforma-
tions is a first indication that MUTE can outperform
Brute and other IPS systems. Manual analysis of
the results shows that MUTE can indeed escape lo-
cal optima. Two branch reducing enhancements,
namely the removal of similar programs and the re-
moval of tokens that show no potential, are essen-
tial for the success of MUTE.

1 Introduction

Program Synthesis is the automation of writing programs. In
Inductive Program Synthesis (IPS) examples are used to spec-
ify what this program is supposed to do. Program Synthesis
can be used by people without a programming background to
create programs, as well as by developers to automate part of
their job. It is useful for a variety of tasks including the dis-
covery of new algorithms, optimization of existing programs,
automation of debugging and even for teaching (Gulwani,
2010). Program Synthesis can be viewed as a search prob-
lem in which a space of possible programs is searched for a
program that solves the task.

The main motivation behind this research is a recent study
by Cropper and Dumanci¢ (2020) that introduces a new IPS
system called Brute which uses a promising search technique.
They researched IPS in Inductive Logic Programming (ILP)
which is a specific branch of machine learning. They argued
that one of the limitations of most existing ILP systems is that
an entailment based loss function is used to guide the search
algorithm. When using an entailment-based loss function, a
program is scored based on binary decisions saying that the

program either satisfies or does not satisfy a certain condi-
tion or constraint. This way, a program that almost satisfies
a constraint is scored equally bad as a program that does not
even come close to satisfying that constraint. To tackle this
problem, Brute is guided by a heuristic-based loss function
which scores a program based on how close the returned out-
put is to the wanted output. Brute’s good performance on
three domains of IPS problems showed the potential of using
a heuristic based loss function.

However, Brute struggles with tasks where local optima
occur. Brute tends to only explore the programs that immedi-
ately decrease the loss function, also in case these programs
will never lead to the optimal program. This is why it could be
beneficial to use a search algorithm that balances between ex-
ploitation and exploration: the exploitation of programs that
look the most promising and the exploration of programs that
have not been properly evaluated yet.

Monte Carlo Tree Search (MCTYS) is such a search method
that balances between exploitation and exploration. MCTS
techniques have mainly been used for game Al but have also
proven to be useful in non-game applications like procedu-
ral content generation and planning (Browne et al., 2012).
Altogether, this leads to the belief that a new IPS system
which combines the use of a heuristic-based loss function
with Monte Carlo Tree Search, has the potential to solve the
aforementioned problem and outperform Brute and other IPS
systems.

This has resulted in the following research questions:

Q1 Can a new IPS system that uses MCTS guided by a
heuristic-based loss function, escape local optima?

Q2 Can a new IPS system that uses MCTS guided by a
heuristic-based loss function, outperform other IPS sys-
tems?

To answer these questions, I made the following contribu-
tions. First of all, I did a literature search to get a better under-
standing of the topic and to find out what research has already
been done. Section 3 gives an overview of the most relevant
work. Secondly, I designed and implemented MUTE, a new
IPS system that uses MCTS guided by a heuristic-based loss
function. In section 4, the process of developing MUTE is de-
scribed. Last of all, I test and analyse MUTE’s performance
and compare it with the performance of Brute and other IPS
systems. Section 5 describes the experiments that were per-
formed. Their results can be found in section 6.

2 Used terms

Before diving into the conducted research, this section will
clarify some of the terms used in this paper.

In general, a program is a piece of code that solves a
certain task. Common programming languages like Java or
Python are very extensive and therefore it is very inefficient
to search the space of all programs that can be written in these
languages. This is why for IPS usually, a custom language is
created that consists of a limited number of statements. All
the IPS systems in this research, create programs that are sim-
ply sequences of transitional tokens. A transitional token is
a function that takes a state as an input and returns a new state.
Since the programs that we consider are sequences of transi-
tional tokens, these programs also expect a state as input and
return a state as output.

The IPS systems described in this paper take a list of tran-
sitional tokens and a list of boolean tokens as input. Boolean
tokens take a state as input and return True or False. There
are two special transitional tokens, namely If and While to-
kens, that can be formed by the IPS systems by using the
given boolean and transitional tokens.

The IPS systems in this paper are tested in three different
domains of problems, namely robot planning, string transfor-
mations and ASCII art. A custom language was created for
each domain as well as a domain-specific loss function.

For robot planning, the IPS systems have to find a pro-
gram that transforms the initial state to the wanted output state
by moving a robot around on a squared grid and making it
pick up and drop a ball. Each state contains the size of the grid
and the positions of the robot and the ball. The provided lists
of transitional and boolean tokens for this domain are respec-
tively [MoveLeft, MoveRight, MoveUp, MoveDown, Grab,
Drop] and [AtTop, NotAtTop, AtBottom, NotAtBottom, AtLefft,
NotAtLeft, AtRight, NotAtRight]. The loss function is equal to
the minimum number of moves that the robot needs to pick
up the ball and drop it at the right position plus the number of
moves that the robot needs to move to its own final position.

For ASCII art, the IPS systems have to find a program that
transforms an empty grid into the wanted output image which
represents an ASCII string. Each state consists of a binary im-
age and a cursor which points to one of the pixels in the binary
image. The provided lists of transitional and boolean tokens
are [MoveLeft, MoveRight, MoveUp, MoveDown, Draw] and
[AtTop, NotAtTop, AtBottom, NotAtBottom, AtLeft, NotAtLeft,
AtRight, NotAtRight]. The loss function is equal to the binary
distance.

For string transformations, a program has to be found
that can transform a string into another string based on one
or multiple example pairs of the initial state and wanted out-
put state. Each state consists of a string and a cursor that
points to a position in the string. The lists of transitional and
boolean tokens are [MoveRight, MoveLeft, MakeUppercase,
MakeLowercase, Drop] and [AtEnd, NotAtEnd, AtStart, No-
tAtStart, IsLetter, IsNotLetter, IsUppercase, IsNotUppercase,
IsLowercase, IsNotLowercase, IsNumber, IsNotNumber; IsS-
pace, IsNotSpace]. The loss function is equal to the Leven-
shtein distance.

The provided loss functions for ASCII art and string trans-

formations are not a perfect indication of how close a program
is to solving the provided example(s). This allows local op-
tima to occur. This happens when the IPS system keeps ex-
tending the same program which has a small loss even though
this program will never lead to the program that solves the
task.

3 Related Work

As part of this research, I did a literature search to get a better
understanding of the topic and to find out what research has
already been done. Due to space limitations, this section only
provides the literature that is most relevant to my research.

3.1 Brute

Brute is an ILP system implemented in prolog. Brute’s search
for the wanted program can be divided into two stages. In
the first stage, Brute invents new transitional tokens from the
provided tokens. Up to a certain length, all possible combina-
tions of tokens are included. In the second stage, a best-first
search is performed using the invented tokens. Brute starts
by creating a priority queue that only contains the empty pro-
gram. The greatest priority is given to the programs with the
smallest loss associated. Each iteration, a program is popped
from the queue. For each invented token, a new program is
added to the queue which is equal to the just popped program
extended with this invented token. The iterations stop when a
program is found that solves all the provided I/O examples or
when a given time limit is reached.

Brute was tested in three different domains of problems,
namely robot planning, string transformation and ASCII art.
Brute was both faster and able to find larger programs than
an existing ILP system in all three of these domains. In two
out of the three domains, Brute also outperformed a version
of Brute that used an entailment-based loss function. This
shows the great potential of using a heuristic-based loss.

However, Brute was also struggling when local optima oc-
cur. E.g. consider the string transformation task of trans-
forming "james" into "J". After the first iteration, Brute
finds the program [While(NotAtEnd, [Drop])] which deletes
all but the last character and from there it cannot find the cor-
rect program.

3.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a search method that
balances between exploitation and exploration. MCTS tech-
niques have mainly been used for game Al It has achieved
great successes, also for games with a large branching factor,
like Go, or when little domain knowledge is available, like in
General Game Play (Browne et al., 2012; Chaslot, Bakkes,
Szita, & Spronck, 2008). MCTS algorithms have also proven
to be useful in non-game applications like procedural content
generation and planning.

MCTS method
MCTS is a search method that repeats four steps until a time
or space limit is reached (see fig. 1). The four steps are:

1. Selection: The search tree is traversed based on a score
that balances between exploration and exploitation until
a node is reached with an unexplored child node.

1. Selection 2. Expansion 3. Simulation

Figure 1: Four steps of MCTS

Expansion: A child node is explored.

Simulation: A simulation happens from the expanded
node until a terminal state is reached.

4. Backpropagation: The obtained result from the simu-
lation step is used to update all the traversed nodes.

W

There are many different variations and enhancements of
MCTS. A selection of these is discussed in section 3.3.

Upper Confidence Bounds for Trees

The Upper Confidence Bound for Trees (UCT) algorithm
(Kocsis & Szepesviri, 2006) is the most popular MCTS algo-
rithm. UCT uses UCB1 to decide which child node to select
during the selection step of MCTS. For each child node i, the

UC'T; is computed:
2Inn
> (1)
n;

where X; is the average reward received in simulations
branching from node 4, n is the number of visits of the parent
of 7, n; is the number of visits of ¢ and C), is the exploration
constant. The child node with the greatest UT'C' is selected.

UTC; = (Xi +2C,

3.3 Reaching terminal states

When applying MCTS for program synthesis it is important
that a terminal state (in this case: an executable program)
is found before the given time or space limit is reached.
This paragraph highlights research into possible enhance-
ments that help to ensure this. The studies in this paragraph
were found in a survey (Browne et al., 2012) which provides
an overview of 5 years of MCTS research.

One of the non-game domains in which MCTS has been
applied is planning. In game domains, MCTS is used to de-
cide what move to do next, so it is not required that one of
the explored leave nodes represents a terminal state. How-
ever, in both planning and program synthesis, the goal is to
reach a terminal state which represents the solution to the
problem. This is why research done on applying MCTS in
the domain of planning is of great relevance to research of
applying MCTS in the domain of program synthesis. One ex-
ample is the study by Pellier, Bouzy, and Métivier (2010). In
their search algorithm, MHSP, they combined the “the prin-
ciples of UCT [...] with heuristic search in order to obtain
an anytime planner that provides partial plans before find-
ing a solution plan” (p.211) They argue for using a heuristic
call to replace the random simulation in the UCT. On classic
planning problems, MHSP performed comparably to classi-
cal planners.

4. Backpropagation

R

Another interesting application of UCT is shown in FUSE.
FUSE is an extension of UCT designed “to deal with 1) a fi-
nite unknown horizon [...]; ii) the huge branching factor of
the search tree” (Gaudel & Sebag, 2010, p.359). To tackle
these problems, a couple of enhancements were made. One
enhancement that was made is increasing the probability of
selecting an action that leads to a terminal state as the node
depth increases.

A limitation of the two above approaches is that they only
help for reaching terminal states that can be found at a small
depth in the search tree. However, for program synthesis,
there is a particular interest in finding greater and more com-
plex programs which would typically appear at greater depth
in the search tree. First-play urgency might offer a solution.
In UCT all child nodes of the current node will be explored
at least once before further exploiting an already visited child
node. This means that even promising nodes that occur at a
high depth are very unlikely to be exploited if the tree has a
high branching factor. First-play Urgency (FPU) was intro-
duced by Gelly and Wang (2006) to tackle this problem. A
certain value replaces the UCT of child nodes until they are
first visited. If this value is set properly, child nodes that have
shown good potential in a simulation will be revisited before
visiting their sibling nodes for the first time.

3.4 MCTS in Program Synthesis

Only one publication was found on the application of MCTS
in the field of Program Synthesis. In an exploratory study,
Lim and Yoo (2016) implemented a program synthesis sys-
tem based on MCTS and evaluated this system on six bench-
marks.

In their implementation, programs were represented by
program trees. A node called ‘concat’ was used to be able
to combine multiple instructions and an ‘if’ node with three
child branches was used to represent an if-then-else construct.
The UCT algorithm (see 3.2), guided by a heuristic fitness
function, was used to search the space of programs. To limit
the search space, typing was applied and a maximum program
length was set.

To be able to evaluate the performance, Lim and Yoo also
implemented a genetic programming (GP) based synthesis
system. They compared the results of the two programs on
six benchmarks. Both systems were able to generate good
programs on the simple benchmarks, but could not produce
correct programs on the more complex tasks.

4 Development of MUTE

As section 3 indicates, there are many possible implementa-
tions for an MCTS-based algorithm. Each implementation
will lead to different results and is suitable for different ap-
plications. In this section, the different steps taken and de-
cisions made when developing MUTE are discussed. After
this, the final implementation of MUTE is described. MUTE
was implemented in Python and the implementation code was
made public (Azimzade, Jenneboer, Matulewicz, Rasing, &
van Wieringen, 2022).

4.1 Initial version

It is not possible to determine upfront what specific imple-
mentation is of MCTS is most suitable for IPS. This is why
the initial implementation of MUTE was based on making
logical and intuitive decisions. In this section, this initial ver-
sion and its observed behaviour are described.

Implementation specifications

The first version of MUTE was based on the UCT algorithm
(see section 3.2). Browne et al. (2012) stated that “The value
c, =1/ v/2 was shown by Kocsis and Szepesvari (2006)
to satisfy the Hoeffding inequality with rewards in the range
[0,1]” (p.8). This is why the exploration constant C,, was set

to 1/+/2 and the reward was calculated using the following
formula:

maximum_expected_loss — loss
reward = ,)
maximum_expected_loss

The maximum_expected_loss is the loss that is obtained
when no program is applied to the input of the provided train-
ing examples. In this way, the reward was expected to be
between 0 and 1.

In the used data structure for the search tree, each node
contained a possibly incomplete program. Each program was
a sequence of the given transitional tokens and possibly in-
complete If and While tokens. The If and While tokens had
to be completed by expanding them with a boolean token as
their condition and a subprogram as their body. In this way,
it would be possible to build all sorts of programs, including
programs with complex If and While statements.

The algorithm worked as follows. First, the search tree is
initialized with an empty program at its root. Each edge either
expands or completes a part of the program contained in the
node it originates from. In the simulation step, random tokens
are chosen to finish the program. However, corresponding to
the idea of Gaudel and Sebag (see section 3.3), preference is
given to actions that lead to a terminal state. As a result, the
simulation step takes less time and the obtained loss is more
likely to represent the actual value of the node from which the
simulation started.

Observed behaviour

T used a selection of 100 examples sets (50 for string transfor-
mations and 25 for each of the two other domains) to observe
the behaviour of this initial implementation.

First of all, as expected, the search tree grew asymmetri-
cally. Secondly, this algorithm also struggled with local op-
tima. Like Brute, for string transformations, MUTE often
found deleting everything to be the best program. Due to the
large branching factor, the branch containing the optimal pro-
gram was not exploited enough to find this program. The
depths of the leaves of the search tree were between 3 and 6
after the time limit of 10 seconds was reached. This means
no programs containing more than 6 tokens were considered.

4.2 Variations

Starting from this initial version, different variations were im-
plemented and tested. In this subsection, I will discuss the ob-
servations made when testing these different variations. Since
string transformations are most suitable for observing local

optima, only the example sets of this domain were used for
analyzing the behaviour of the different versions of MUTE.

Deleting statistics of exploited nodes

One problem in performance was caused by programs that
had low loss associated, but could not be expanded any fur-
ther. For example, the program [While [NotAtEnd] [Drop],
Drop] could not be expanded since it deletes all the charac-
ters of the given input string. However, due to its low loss, it
was the cause of many visits to its parent node.

Therefore, as a first alteration, MUTE deleted statistics of
nodes that could not be expanded any further. If a node had
been fully exploited, the node was removed and its parent
node was updated such that it no longer contained the number
of visits and the reward obtained through this removed child
node.

This relatively small alteration already showed some im-
provements in the results. This was the first version of MUTE
that was able to solve tasks where Brute got stuck because of
local optima, but only for a very limited number of cases.

Using complete tokens only

The second problem that was tackled, was that of having a lot
of different nodes that contain similar programs. Two pro-
grams are similar if they produce the same output for the
given input examples. E.g. the program [Drop] is similar
to the program [MakeUpperCase, Drop]. To be able to keep
track of similar programs, it is more practical to work with
complete tokens only. In this way, there are no incomplete
programs and thus for each node the resulting states can be
computed. These resulting states can then be used to recog-
nize similar programs.

I decided to introduce an invent function to be able to find
programs that contain /f and While statements without hav-
ing to deal with the complexity of incomplete tokens and
programs. To be able to compare the performances of new
IPS algorithms with Brute’s performance, I implemented a
Python version of Brute together with a group of peer stu-
dents. I reused the invent function of this implementation for
my newer version of MUTE. In this newer version, a program
is simply a sequence of invented tokens.

Now, in the expansion step, the program in the new node
is applied to the given examples immediately. If the program
turns out to be invalid, or similar to a program that was found
before, it is removed immediately. In the simulations step, it
is no longer necessary to add tokens to be able to compute
a reward. Similar to the anytime planner built by Pellier et
al. (2010) (see section 3.3), the reward is computed, without
doing any random simulation, using the loss associated with
the program in the new node. The obtained reward is more
likely to match the actual value of the program contained in
that node and it will save computation time.

Against expectations, using the invented tokens, MUTE
still solved the exact same string transformation tasks as be-
fore. However, by analyzing the algorithm in debug mode,
some notable observations were made. First of all, the invent
function resulted in 2780 invented tokens. This means that for
each node, first 2779 sibling nodes had to be explored before
exploitation of this node would happen. This huge branching
factor resulted in a search tree that only had a height of 3 after

10 seconds of execution time in debug mode. This means the
longest program found existed of only three invented tokens.

New invent function

To decrease the branching factor, a new invent function was
introduced. This invent function returned the following in-
vented tokens:

1. Invented tokens containing just a single transitional to-
ken.

2. Invented If and While tokens consisting of a single
boolean token as its condition and one or two distinct
transitional tokens as its body.

For string transformations, this new implementation of the in-
vent function led to only 705 invented tokens instead of 2780.

As aresult of the reduced branching factor, the search tree
had a height of 4 instead of 3 after 10 seconds of execution
time in debug mode. However, still the same number of string
transformation problems got solved.

Tracking token scores
To use a more informed selection policy, a dictionary was in-
troduced to keep track of token scores. By collecting statistics
on each invented token, the UC'T' could be extended to also
include the token score.

The token score was updated after each time this invented
token was selected for the new node in the expansion step. A
token was rewarded a score of -1 if the addition of the token
leads to an invalid program, a program similar to a program
that was found before, or a program with a greater loss than
the program without the token. The token was rewarded a
score of +1 if the token leads to a program with a smaller loss
than the program without the token. A token score of 0 was
rewarded in other cases. The average token score was added
to the UCT.

This alteration did not give the wanted effect. Tokens that
led to local optima had the greatest average token score and
again this led to the preference of the wrong tokens in the
selection step. However, the analysis of the computed token
scores provided a valuable insight. A lot of tokens had an
average token score of -1, meaning the addition of this to-
ken had always led to either invalid or similar programs or
an increased loss. Examples of such tokens are If{isNumber
[MakeLowerCase]) and While(NotAtStart [MoveRight]). Re-
moving these tokens as options to expand the program could
save a lot of computation time. This time can be used to ex-
ploit tokens that show more potential instead.

Removing tokens that show no potential

To be able to remove the tokens that show no potential, a new
constant, Cy, is introduced. When the token score has been
updated C; times, the average token score is computed. If
this equals -1, the token is removed from the set of invented
tokens, and that token will no longer be used to expand a pro-
gram. Also, the token score is no longer used in computing
the UC'T since this only worked counterproductively.

When analyzing the new implementation in debug mode,
some interesting observations were made. After 10 seconds
of execution time with C; = 5, 669 out of the 705 invented
tokens were removed and the search tree had a height of 6.

I Domain [C, [C]
Robot planning 0 00
. - 1
String transformation 2. ﬁl 7
ASCII art 0.25 - 7 11

Table 1: Optimised constants

When analyzing the 36 invented tokens that were left, I noted
that some useful tokens had been removed. These were to-
kens that were not useful at the start of the program, but that
would have been useful later in the program . When I set
C; = 10, this led to promising results. 52 invented tokens
were kept and the search tree had a height of 5. Some of the
string transformation tasks that could not be solved before
were now solved completely or the best-found program came
close to solving it.

Fine-tuning of constants

The last alteration was fine-tuning the exploration constant
C} in the UCT and the constant Cy. The fine-tuning was
done per domain since I expected there to be significant dif-
ferences between the optimal values for the different do-
mains. For robot planning, I expected that MUTE would per-
form best with the minimal exploration constant of C,, = 0
since the used heuristic is a perfect indication of how close
a program is to the wanted program. However, this is not
the case for the loss functions of ASCII art and string trans-
formations and therefore my expectation was that they would
perform better for values of C), greater than 0.

For each of the domains, 75 example sets were used to fine-
tune the constants. Table 1 shows the final values of the con-
stants per domain. For robot planning, the value C; = oo was
chosen to make sure two essential tokens, namely Grab and
Drop, would not be removed just because they lead to invalid
programs when the robot has not reached the ball yet.

4.3 Final version

For clarity, this subsection describes the final implementation
of MUTE.

Data structure

MUTE is a UCT algorithm in which the root node of the
search tree represents the empty program and is the only
node that does not contain a token. All other nodes contain
an invented token and represent the program that you get by
adding this token to the program represented by their parent
node.

Setup

Invented tokens are created from the input tokens. After this,
the search tree is initialized which contains only a root node.
Other required variables are also initialized, for example vari-
ables for tracking statistics or for keeping track of the pro-
grams found so far.

Iteration

In the selection step, a node is selected by traversing the
search tree. The UCT with the domain-dependent explo-
ration constant C), (Table 1) is used for this.

In the expansion step, a child node is added to the selected
node. This child node contains an invented token that had
not yet been chosen for any other child nodes of the selected
node. In the simulation step, no random simulation is done.
Instead, the loss corresponding to the program represented by
the new node is used to compute the reward (equation 2).

In the backpropagation step, the values of the traversed
nodes are updated based on the obtained reward. Also, the
token score is updated for the token that was selected when
creating a new child node. If the token token score indicates
no potential after the token has been selected C times, the
token is removed from the list of invented tokens and will no
longer be selected in the expansion step.

The selection, expansion, simulation and backpropagation
steps are repeated until a program is found that results in a
loss of zero for all the given examples, or until a given time
limit is reached.

S Experiments

To answer the research questions, MUTE’s performance was
tested and compared to the performance of other IPS systems.
This section describes the setup of the experiments conducted
and the analysis that was done.

5.1 Setup

To find the answer to Q2, MUTE’s performance was com-
pared to the performance of Brute and three other IPS sys-
tems. My research is one of five, in which specific search al-
gorithms were combined with a heuristic to see if this can lead
to better performing IPS systems. The other four studies were
executed by my peer students, F. Azimzade, B. Jenneboer,
S. Rasing and V. van Wieringen. The specific search algo-
rithms that were researched by them are respectively genetic
algorithms (GA), A* search (AS), very large-scale neighbour-
hood search (VLNS) and Metropolis-Hastings (MH). Each
research resulted in a new IPS system which will be described
in forthcoming papers. Like MUTE, the new IPS systems
were all implemented in Python and with the group of peer
students, we also implemented a Python version of Brute
(Azimzade et al., 2022). Since the implementation of the
GA system was only finished after this paper was finalized,
the performance of this system will not be part of the experi-
ments.

Each of the remaining algorithms was tested on the do-
mains of robot planning, ASCII art and string transformations
(see section 2). These are the same domains that were used
by Cropper and Dumanci¢ (2020) to test the performance of
Brute. The test data was received from Dumancic.

For ASCII art, for each integer 1 < n < 5, 50 tasks were
selected for which the wanted output represented a string con-
sisting of two ASCII characters.

For robot planning, for each grid size an € 2,4,6,8, 10,
55 tasks were selected which all consisted of a randomly gen-
erated input and output state. 55 tasks were selected for each
grid size.

For string transformations, 50 different tasks were selected
from the provided test data. Each task was defined by 10
examples that demonstrated the wanted behaviour. For each

task and for each integer 1 < n < 9, n examples were ran-
domly chosen and given as training examples for the search
algorithms. By choosing n different examples each time, 5
to 10 trials were available for each task and each n. All 10
examples were used to test whether the returned program was
correct. Only if the program returned the correct output for
each of the 10 outputs, the task was considered to be solved.

5.2 Analysis

To be able to answer Q1 and get a better understanding of the
behaviour of both MUTE and Brute, an analysis was done on
a selection of their results of the string transformation tasks.

For each of the 50 string transformation tasks that were
used in testing the performances, a single trial from each of
complexity 1, 5 and 9 was selected and used for this analysis.

For both MUTE and Brute, the following data was obtained
for each of the selected trials: input, expected output and ob-
tained output for each test example; whether the task was
solved successfully; execution time; the found program and
it’s length; the number of explored programs and the number
of iterations.

For MUTE, for each iteration in which a new best program
was found, the program, its loss, and the iteration number
were also saved. For Brute, each iteration, the loss and the
length of the current program were saved.

The obtained data were manually analyzed.

6 Results

This section provides the results of the experiments and anal-
ysis that are described in section 5.

6.1 Experiments

The resulting plots of the experiments can be found in Figures
2 and 3.

For ASCII art, MUTE performs worse than Brute. The
percentages of solved tasks for MUTE are lower and the exe-
cution time per solved is longer. For the tasks with only one
ASCII symbol in the wanted output image, MUTE outper-
forms the three other systems. However, for tasks with more
than one ASCII symbol in the wanted output image, the per-
centage of solved tasks is close or equal to zero for all systems
except Brute. To come back to Q2, the results for ASCII art
do not show support for the hypothesis that MUTE is able to
outperform Brute and other IPS systems.

For robot planning, all systems perform very well and solve
all tasks for each grid size. MUTE is slower than three of the
other systems, but MUTE’s average execution time for solved
tasks is still far below the given time limit of 10 seconds. It
is hard to answer Q2 based on the results for robot planning
since all 5 IPS systems have a perfect performance.

For the string transformations, overall, MUTE has a greater
percentage of solved tasks than the other systems. For the
tasks with a smaller number of training examples, MUTE out-
performs the other systems. As the given number of training
examples per task increases, the percentages of solved tasks
of MUTE and the VLNS approach each other. All the sys-
tems have a smaller average execution time per solved task
than MUTE. However, MUTE’s average execution time for

100 100 100
AS
s 80 S s 80
8 S 8
el el
g o0 g 60 g 60 — YE
T g 40 O e . . S
“ o “ MH
© = ©
L 20 © 5 W
Vot 0
0 - - - 0 .
1 2 3 a 5 MH 2 4 6 8 10 1 2 3 4 5 6 7 8 9
No. symbols Grid size No. training examples
(a) ASCII art (b) Robot planning (c) String transformations
Figure 2: Success rates

10 1f5 T
S 3 80 s 80
5 s s
) 60 e el
_; g 60 g 60 VINS MUTE
0 2 3 AS
g 40 o 40 o 40 ¢
%]
o MEMUTE oA ¥ "
=20 \M\%_ e 5 \© v

AS

o ¢
0 1 2 3 4 5 6
Average execution time of solved tasks (sec)

(a) ASCII art

0 . . ’ . . ’
00 01 02 03 04 05 06 0.7 08

Average execution time of solved tasks (sec)

(b) Robot planning

20

0 , r
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Average execution time of solved tasks (sec)

(c) String transformations

Figure 3: Success rate versus execution time

the solved string tasks is still much below the given time limit
of 10 seconds.

Altogether, even though the results of ASCII art and robot
planning do not show any clear support, MUTE’s perfor-
mance for string transformations suggests that the answer to
Q2 is yes. Mainly examples for string transformations were
used when designing MUTE and doing intermediate testing.
This might explain why MUTE performs so well for this do-
main, but not for ASCII art. Further research is required to
get a better understanding of why MUTE was outperformed
by Brute on the latter domain and to find out if MUTE can be
useful in other domains.

6.2 Analysis

The analysis gave greater insight into the results obtained for
MUTE and Brute for string transformations,

Brute

For Brute, one main cause for failing to solve a task was that
it got stuck in local optima. This could be observed by ana-
lyzing the length of the program per iteration and its costs.
For each task, solved or not, each iteration the program
length either increased or stayed the same compared to the
program that was considered in the iteration before. The cost
of the selected programs would decrease in the first few it-
erations and after this stay the save for all the iterations that
followed. This indicates that programs will never be extended
if they have greater costs than the best program found so far.

This would mean that even if you would run Brute for an in-
finite amount of time, it would still not be able to find the
wanted the program, if this program is not formed by extend-
ing the best program found so far each time.

An example that demonstrated this was Task 3. For this
task, the wanted program had to make the first letter upper-
case and delete the remaining letters. E.g. "charles" had to
be transformed to "C". An example of a program that does
this is [MakeUppercase, While(NotAtEnd, [Drop])]. This
program could be formed by Brute by simply combining two
invented tokens. However, Brute is unable to do this. Instead
Brute finds the program which deletes all but the character in
the string and cannot find a better program after this.

There are tasks that Brute is unable to solve because the
wanted program cannot be formed using only the tokens in-
vented by Brute. There were also a few tasks for which only
a small number of training examples were given and Brute
found a program that produced the correct output for the
training examples, but not for all the test examples. In all
the other cases, Brute gets stuck because of a local optimum.

MUTE

There are quite some tasks that MUTE was able to solve even
though Brute got stuck in a local optimum.

One example of a task where MUTE is able to escape a lo-
cal optimum is Task 5 in which only the last four digits need
to be kept from a string of digits. E.g. "22022002" has to be
transformed to "2002" and "1252010" has to be transformed

into "2010". After iteration 4, the best program found is
[Drop], after iterations 709, 3593 and 18566 the newly found
best programs are respectively [Drop, Drop], [Drop, Drop,
Drop] and [Drop, Drop, Drop, Drop] and in the 41288th
iteration the final program, [While(NotAtEnd [MoveRight]),
MovelLeft, MoveLeft, MoveLeft, MoveLeft, While(NotAtStart
[Drop, MoveLeft]), Drop], is found.

Another task that demonstrates the capabilities of MUTE
is Task 29 in which Mute needs to keep only the name of
the month in a string representing a date which also con-
tains some numbers and other characters. E.g. "June 20
- 2002" should be transformed into "June" and "2007
(September)" into "September"”. MUTE is able to es-
cape multiple local optima after which it finds a program that
solves the task.

The made observations clearly demonstrate that the answer
to Q1 is yes.

I also analyzed the results of the tasks that MUTE was not
able to solve. I found four causes of these failures. First of
all, there were three tasks for which the tokens invented by
MUTE were insufficient to be able to solve the task. One
task needed the addition of a space character and the other
two required more complex While tokens that contained If of
other While statements in their bodies. Secondly, there were
some tasks for which MUTE found a program that solved
the training examples, but not the test examples. These
were mainly trials that provided only one I/O example as
training data and one trial that provided 5 I/O examples as
training data. Thirdly, there were a few tasks that could not
be solved because the invented tokens required to solve them
were removed since they showed no potential in the first few
iterations they were used in. Lastly, there were tasks for
which MUTE simply needed more time to be able to solve
them. The latter was the case for the majority of the trials
that could not be solved, especially for complexities 5 and 9.

Even though this analysis shows the potential of using
an MCTS-based algorithm, it should also be noted that
the initial version of MUTE did not show this potential.
MUTE was able to perform so well, only after different
enhancements were made. This means that other IPS
algorithms might also benefit from similar enhancements
like the removal of invented tokens that show no potential
and the removal of programs that are similar to programs that
were found before. This would probably also increase the
performance of Brute because local optima would be fully
exploited after a certain number of iterations. Therefore,
if similar programs were to be removed, Brute would
eventually move on to exploit the next best program.

7 Conclusion

This paper searches for an answer to the questions Can a
new IPS system that uses MCTS guided by a heuristic-
based loss function, escape local optima? (Q1) and Can
a new IPS system that uses MCTS guided by a heuristic-
based loss function, outperform other IPS systems? (Q2).
For this purpose MUTE, a new IPS system that uses MCTS
guided by a heuristic-based loss function, was designed and

its performance was tested and analyzed.

MUTE’s performance was tested on three diverse domains,
namely ASCII art, robot planning, and string transformation.
In ASCII art, MUTE was outperformed by Brute. In robot
planning, no local optima occurred and MUTE was a 100 per-
cent successful in solving the tasks just like the four other IPS
systems. On the string domain, MUTE showed its potential
and gave a first indication that the answer to Q2 is yes.

Two enhancements seemed essential for this success of
MUTE. The first of these enhancements is the removal of to-
kens that show no potential. The second enhancement is the
removal of similar programs. Both enhancements reduce the
branching factor a lot, allowing MUTE to spend more time
exploiting the remaining branches. Other IPS systems might
also benefit from similar enhancements.

To get more insight into the behaviour of MUTE and Brute,
an analysis was done on their data on a selection of string
transformation tasks. This data showed that MUTE is able to
escape local optima, where Brute gets stuck. This means that
the answer to Q1 is yes.

8 Future work

This study offers a lot of starting points for further research.

First of all, MUTE’s performance can be further tested and
analyzed. A manual analysis of its results for ASCII art could
be conducted, similar to the analysis that was conducted for
string transformations. This might lead to ideas on how to
further improve MUTE, or reveal properties of the type of
domains that an MCTS-based IPS system simply will not be
successful for.

Secondly, a lot of enhancements can be found in the MCTS
research field of which some might lead to improvements of
MUTE and other IPS systems. For example, parallelization
(Browne et al., 2012) would allow MUTE to do more itera-
tions in the same amount of time, which could lead to solving
more tasks without needing more time.

It would also be interesting to see if the token score en-
hancement can be used to improve other IPS systems. Using
the token score in other smart ways, for example by using it
in the selection policy might also be worth researching.

The last idea I would like to offer is to go back to using the
original version of MUTE, which (in theory) was able to form
complex programs thanks to the use of incomplete tokens.
When this version would be enhanced with the removal of
similar programs and the removal of tokens that show no po-
tential, the reduced branching factor might lead to increased
performance.

9 Responsible Research

As part of this research, I followed lectures on conducting
research in a responsible way. During these lectures differ-
ent good as well as bad research practices were discussed. In
this section, I will discuss my efforts for conducting responsi-
ble research based on three topics that were discussed during
these lectures.

One of the topics I kept in mind while writing my paper
was the bias in science towards positive results. In the lec-
tures about responsible research, it was discussed that there

is a preference in science to producing positive results. This
is unfortunate since it is very important that negative results
are also published because these also contain important in-
sights. Mehta (2019) advocates the publication of negative
results and states that “When negative results aren’t published
in high-impact journals, other scientists can’t learn from them
and end up repeating failed experiments, leading to a waste
of public funds and a delay in genuine progress.” This is
why in my paper, I describe the whole process of designing
MUTE and not just the final implementation. The first ver-
sion of MUTE seemed unsuccessful in escaping local optima
and this can be considered a negative result. In my paper, |
still describe this initial version as well as the observations
that I made while testing it. This way others can also use
the insights that I gained by building and testing this initial
version of MUTE. After building the initial version, I did dif-
ferent attempts to improve MUTE. Some of these attempts
were successful, others were not. Again, I described both the
successful and the not-so-successful attempts as well as the
insights I gained.

During my research, I also highly valued the principle of
scrupulousness. Results and observations made during re-
search are most valuable if they are obtained using correct
methods. Experiments need to be designed, set up and con-
ducted with care. In designing and setting up my experi-
ments, I wanted to make sure the results would provide an-
swers to my research questions. To ensure this, I defined my
research questions before deciding what experiments I would
conduct. With my peer group and supervisor, we discussed
and wrote down different possibilities for doing experiments
and collecting data. Once I decided on my research questions,
I decided what experiments and data would be most useful to
answer these questions. Another action I took to ensure the
quality of my results was that, together with the students in
my peer group, I made a selection of data that would be used
for testing and comparing our different algorithms. I made
sure I used different data when training MUTE or doing in-
termediate testing. This way overfitting could be prevented.

The last topic I will discuss regarding responsible research
is transparency and reproducibility. In my paper, I tried to
make my reasoning and methods as clear as possible. I do
this by chronologically taking the reader with me in the whole
process. In the introduction, I give the motivation and outline
for the research. After this, I give an overview of the litera-
ture that formed the base for my reasoning in the rest of the
paper. Next, I describe the process of designing MUTE. I
try to provide the reader with all the relevant implementation
details so that anyone interested would be able to implement
MUTE themselves. I also published the implementation code
and referenced it in my paper, so anyone interested can access
and use it. In the experiment section, I describe how I test
my final version of MUTE. I clearly state the source of the
test data as well as what data exactly I retrieve and analyze.
Together with the implementation code, this allows others to
reproduce the results I obtained.

References

Azimzade, F., Jenneboer, B., Matulewicz, N., Rasing, S.,

& van Wieringen, V. (2022). Bep_project_synthesis.
https://github.com/victorvwier/BEP_project
_synthesis. GitHub.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M.,
Cowling, P. L., Rohlfshagen, P, ... Colton, S. (2012).
A survey of monte carlo tree search methods. IEEE
Transactions on Computational Intelligence and Al in
games, 4(1), 1-43.

Chaslot, G., Bakkes, S., Szita, 1., & Spronck, P. (2008).
Monte-carlo tree search: A new framework for game
ai. AIIDE, 8,216-217.

Cropper, A., & Dumancié, S. (2020). Learning large logic
programs by going beyond entailment. arXiv preprint
arXiv:2004.09855.

Gaudel, R., & Sebag, M. (2010). Feature selection as a one-
player game. In International conference on machine
learning (pp. 359-366).

Gelly, S., & Wang, Y. (2006). Exploration exploitation in
go: Uct for monte-carlo go. In Nips: Neural informa-
tion processing systems conference on-line trading of
exploration and exploitation workshop.

Gulwani, S. (2010). Dimensions in program synthesis. In
Proceedings of the 12th international acm sigplan sym-
posium on principles and practice of declarative pro-
gramming (pp. 13-24).

Kocsis, L., & Szepesvéri, C. (2006). Bandit based monte-
carlo planning. In European conference on machine
learning (pp. 282-293).

Lim, J., & Yoo, S. (2016). Field report: Applying monte
carlo tree search for program synthesis. In Inferna-
tional symposium on search based software engineer-
ing (pp. 304-310).

Mehta, D. (2019). Highlight negative results to improve sci-
ence. Nature. doi: https://doi.org/10.1038/d41586-019
-02960-3

Pellier, D., Bouzy, B., & Métivier, M. (2010). An uct ap-
proach for anytime agent-based planning. In Advances
in practical applications of agents and multiagent sys-
tems (pp. 211-220). Springer.

https://github.com/victorvwier/BEP_project_synthesis
https://github.com/victorvwier/BEP_project_synthesis

