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Abstract

The exceptional flight capabilities of insects have long amazed and inspired researchers and roboti-
cists striving to make Micro Aerial Vehicles (MAVs) smaller and more agile. It is well known that
optical flow plays a prominent role in insect flight control and navigation, and hence it is being in-
creasingly investigated for applications in flying robots as well. However, optical flow based strate-
gies for estimation and stabilization of orientation remain obscure in literature. In this report, we
introduce a novel state estimation algorithm based on optical flow measurements and the knowl-
edge of efference copies. The proposed technique estimates the following states of a flying robot
(constrained to move with three degrees of freedom): roll angle, rate of change of roll angle, hori-
zontal and vertical components of velocity and height. The estimator only utilizes the knowledge of
control inputs and optical flow measurements obtained from a downward looking monocular cam-
era. Through non-linear observability analysis, we theoretically prove the feasibility of estimating
the attitude of a MAV using ventral flow and divergence measurements. Based on the findings of the
observability analysis, an extended Kalman filter state estimator is designed and its performance is
verified in simulations. To test the applicability of the estimator in flight control and stabilization,
we used the filter to implement a closed loop attitude and altitude controller in simulation. The
performance of the controller shows that despite the limited frame rate, of most available cameras,
the state estimates computed by the estimator can be used to stabilize and control the flight of an
inherently unstable MAV. We conclude the article by verifying the performance of the estimator on
flight data recorded on a real flying robot. To the best of our knowledge, the introduced strategy is
the first attitude estimation technique that utilizes monocular optical flow as the only sensory in-
formation.

Besides the investigation on optical flow based attitude estimation technique, this thesis presents a
comprehensive literature survey on the main topics relevant to the work.
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û, v̂ Optical flow components
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1
Introduction

Millions of years of evolution have shaped the nature around us to demonstrate amazing vari-
ety, adaptability and sophistication. Ever since the beginning, nature has been the prime inspi-
ration that has shaped human innovation. Velcro [1], honeycomb composite structures [2] and bio-
computing [3] are just a few examples of the thousands of technological feats that we humans have
achieved by deriving ideas from the nature. Though for the author, who is an Aerospace Engineer-
ing student, perhaps the most relevant examples of bio-mimicry are the aerial vehicles.

The extraordinary aerial feats of the natural flyers has inspired humankind’s timeless fascination
with the ability to fly. Some of the early attempts at engineering flying machines focused on mim-
icking the flapping wings that the insects and birds demonstrate [4, 5]. However, these attempts
were unsuccessful and often resulted in fatal crashes. It was only in the early nineteen hundreds
that humans achieved successful flight in a powered heavier-than-air aircraft [6]. Consequently the
twentieth century witnessed immense advances in the field of aviation. Mankind, now, has finally
gained the wings it had always aspired for. Although, despite the years of fascination with flap-
ping wing flight, the modern aircraft are fixed wing, rotary wing or lighter-than-air blimps. It is the
recent surge in the popularity of the Unmanned Aerial Vehicles (UAVs) and the conquest of their
miniaturization into Micro Aerial Vehicles (MAVs), that has brought back the bio-inspired flapping
wing flight into research spotlight.

As a result of small size and low flight speeds (similar to insects), MAVs encounter low Reynolds
number flow conditions which is the regime where flapping wing flight is more efficient than the
rotary wing or fixed wing flight [7]. In the recent years, several flight capable Flapping Wing Micro
Aerial Vehicles (FWMAVs) have been developed, like the Robobee [8], Nano Hummingbird [9], and
DelFly [10, 11]. Some of these FWMAVs have tails that provide passive stability to these platforms.
While the others, more closely resembling insects, are tailless and hence inherently unstable. De-
spite the passive stability, the tailed FWMAVs as well are no longer stable near hover, since the air-
flow component due to forward velocity of the vehicle is absent [12]. Consequently, most FWMAVs
require active attitude stabilization to maintain flight stability.

Attitude stabilization of any platform requires accurate attitude estimation, which is achieved
by ego-motion sensors and state estimation algorithms. Most MAVs (and FWMAVs) depend on
the Inertial Measurement Units (IMUs), comprising of accelerometers, gyroscopes and sometimes
magnetometers, for attitude estimation. Micro Electro Mechanical System (MEMS) IMUs are the
most widely used on-board ego-motion sensing devices in MAVs, owing to their small size and light
weight. However, as the size of these MEMS sensors reduces, their sensitivity decreases and noise
increases. Integrating the signals from these sensors to estimate orientation, velocity or position of
the robot results in a quickly diverging solution. As a result, these IMUs require the integration of

1



2 1. Introduction

augmentation sensors, like Global Positioning System (GPS), to correct for these diverging estimates
[13]. The fact that most MAVs find applications in GPS-denied environments, demands the integra-
tion of other navigation sensors. This is where nature, once again, can come to the mankind’s rescue.

Flying insects can, by far, out manoeuvre any human made flying machine while negotiating
cluttered indoor environments. Drawing inspirations from the ego-motion sensing and control
strategies used by the insects can help the researchers to significantly improve MAV stabilization
and navigation approaches. Insects use rich sensory feedback for flight stabilization and control,
drawing ego-motion information from sensory organs like halteres, ocelli and compound eyes [14].
Visual sensing plays a prominent role in the insect’s ego-motion inference. Most insects possess a
sophisticated imaging system known as the compound eyes. Apart from enabling panoramic im-
agery, the visual information from the compound eyes also provides the insects, a sense of motion
and direction, in the form of optical flow fields [7]. While moving through a stationary environment,
insects experience apparent motion of the surrounding objects in the form of retinal image shifts,
formally known as optical flow [15]. Optical flow measures the ratio of movement of the observer to
the distance of surrounding objects in the environment [16, 17]. Though this coupled relationship,
between velocity and distance, makes the estimation of absolute values of the states challenging,
analysing the optical flow fields allows the insects to assess their motion and use this information
for navigation and flight control. Optical flow information has been found to be critical to various
insect flight behaviours like obstacle avoidance [18], flight speed regulation [19, 20], altitude control
[21], and performing smooth landings [22].

Drawing inspirations from insects, optical flow has been used for navigation and control of
MAVs. Researchers have investigated the applications of optical flow based navigation strategies
for landing [23–25], obstacle avoidance [23, 26] and velocity control [27, 28] of MAVs. However,
orientation perception strategies used by the insects are yet to be properly understood [29]. Conse-
quently, optical flow based attitude estimation and stabilization strategies for MAVs remain largely
unexplored.

1.1. Research Motivation and Objective
The sensory organs involved in attitude stabilization of insects can be categorized as: inertial mecha-
nosensors like the halteres, antennae, tactile hair and gravity sensitive pendulous hair on the cerci,
and visual sensors like the ocelli and compound eyes [7]. There are evidences that indicate that vi-
sion plays a more prominent role than inertial sensing, in flight stabilization and control of many
insects. This can be attributed to the fact that the forces perceived by any inertial sensor are pro-
portional to the size of the proof mass whose inertia reacts to the applied accelerations. Size of the
proof mass becomes a limiting factor in creatures as small as the insects. Barring a few exceptions,
like the dragonflies, most insects have not been found to possess organs sensitive to accelerations
[14]. Dipteran insects, like house flies, have inertial motion sensing organs called halteres that are
known to sense rotational rates [30]. However, halteres are not found in many insects like the hon-
eybees [22]. Some insects, like cockroaches, are equipped with gravity sensitive organs, but many
other insects lack any such organs [14]. Unlike the inconsistent presence of inertial motion sensing
organs in insects, visual sensors, like ocelli and compound eyes, are ubiquitously found in almost
all insects [7]. Goulard et al. [29] reported that crash avoidance behaviour in hoverflies, subjected to
free fall, depends mainly on vision rather than gravity perception or inertial sensing. These findings
establish the hypothesis that insects might mainly depend upon vision (and hence optical flow) for
ego-motion estimation and flight stabilization. However, the techniques used by the insects to esti-
mate their orientation using optical flow remain obscure in literature.

Regarding applications to MAV attitude estimation and stabilization, researchers have attempted
to use optical flow to complement inertial sensors in estimating MAV orientation [31, 32]. Some
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researchers have also studied reactive visuo-motor control schemes, where the perceived optical
flow is directly used in a feedback loop, without estimating the absolute values of the MAV’s states
[33, 34]. Even though the visuo-motor control strategies are backed by some behavioural studies on
insect flight [22], there are evidences suggesting that the insects can estimate the absolute values of
their states. For instance, fruit flies extend their legs at a specific distance from the landing surface
and thus might be capable of estimating their distance from the surface [35]. Goulard et al. [36]
modelled the crash avoidance dynamics of insects and concluded that a closed loop pitch control
system based only on optical flow does not suffice to maintain a stable flight. To achieve stability,
the authors augmented the model with a closed loop pitch rate controller based on absolute pitch
angle estimates, suggesting that estimation of absolute orientation might be necessary for the in-
sects to stabilize their flight.

It has been shown in literature that it is indeed possible to estimate absolute distances and ve-
locities, utilizing optical flow measurements, if a robot has access to its control inputs (efference
copies) [35, 37, 38]. However, to the best knowledge of the author, feasibility of estimating MAV
attitude using optical flow measurements as the only sensory information has not been proven in
literature yet. Motivated by the described deficiency in literature, this thesis intends to pursue the
following main research objective.

Feasibility investigation and development of an optical flow based approach for attitude estima-
tion of a flying robot.

The attitude estimation approach being researched is motivated by its potential application in
attitude stabilization of inherently unstable MAV platforms. Thus, the research presented is also in-
tended to answer the following question:

• How feasible is the use of the developed optical flow based attitude estimation approach in
flight stabilization of inherently unstable MAV platforms?

Further, the applicability of optical flow based methods is highly dependent on the character-
istics of the optical sensor used [39]. Therefore, the answer to the above sub-question would also
depend on the assumption of specific sensor characteristics, which leads to the following sub ques-
tion:

• What should be the favourable characteristics of an optical flow sensor, like temporal res-
olution and noise, to be effectively used for attitude estimation and stabilization of a flying
robot ?

1.2. Report Structure
The main contributions of this thesis and the work carried out to answer the research questions are
presented in the scientific article in Part I of the report. The presented paper can be read as a stan-
dalone document and is structured as follows: The article starts with a concise introduction to the
relevant concepts and previous contributions in literature. In the second part, non-linear observ-
ability analysis has been utilized to analytically prove the feasibility of using an optical flow based
approach for attitude estimation in a flying robot. In the third part, based on the findings of the
observability analysis, an attitude estimation algorithm has been developed and its performance
has been verified in simulation. And in the fourth part of the article, results obtained by testing the
developed attitude estimator on flight data of a real flying robot have been presented. At the end,
the article has been supplemented with appendices that describe the mathematical derivations of
observability analysis for various scenarios considered in the study.
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Part II of the report is intended to present a detailed review of the literature relevant to the topic
of optical flow based attitude estimation in MAVs. In Chapter 2, inertial sensors and the conven-
tional techniques used for attitude estimation in MAVs are discussed and the limitations of these
approaches have been highlighted. In Chapter 3, motion perception and navigation strategies in
insects have been reviewed. This chapter highlights the importance of optical flow in insect flight
navigation and draws inspirations for flight stabilization and control of MAVs. Chapter 4 presents
an in-depth discussion of optical flow, its mathematical formulation and the commonly used opti-
cal flow estimation techniques. Further, the chapter discusses various optical flow sensors that have
been used in literature and reviews various optical flow based MAV navigation approaches available
in the literature. Chapter 5 is devoted to FWMAVs and discusses various state of the art FWMAVs.
Further the chapter introduces the DelFly Nimble, which in future studies will be used as a platform
for application of the approach developed in this study. Finally, Chapter 6 concludes the survey by
summarizing the findings of the literature study.
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Abstract—The exceptional flight capabilities of insects have
long amazed and inspired researchers and roboticists striving
to make micro aerial vehicles (MAVs) smaller and more agile.
It is known that optical flow plays a prominent role in insect
flight control and navigation, and hence it is being increasingly
investigated for applications in flying robots as well. However,
optical flow based strategies for estimation and stabilization
of orientation remain obscure in literature. In this article, we
propose a novel state estimation algorithm based on optical
flow measurements and the knowledge of efference copies. The
proposed technique estimates the following states of a MAV
(constrained to move with three degrees of freedom): roll angle,
rate of change of roll angle, horizontal and vertical components
of velocity and height. The estimator only utilizes the knowledge
of control inputs and optical flow measurements obtained from
a downward looking monocular camera. Through non-linear
observability analysis, we theoretically prove the feasibility of
estimating the attitude of a flying robot using ventral flow
and divergence measurements. Based on the findings of the
observability analysis, an extended Kalman filter state estimator
is designed and its performance is verified in simulations. To
test the applicability of the estimator in flight control and
stabilization, we simulated a closed loop controller to command
the attitude and height of an aerial vehicle. The performance of
the controller shows that despite the limited frame rate, of most
available cameras, the state estimates computed by the estimator
can be used to stabilize and control the flight of an inherently
unstable MAV. We conclude the article by demonstrating the
performance of the estimator on flight data recorded on a real
flying robot. To the best of our knowledge, the introduced strategy
is the first attitude estimation technique that utilizes monocular
optical flow as the only sensory information.

Index Terms—Bio-inspiration, insect flight, optical flow, atti-
tude estimation, Micro Aerial Vehicles

I. INTRODUCTION

THE recent surge in the popularity of Micro Aerial Ve-
hicles (MAVs) has brought about an increasing interest

of the research community in making these aerial robots
smaller and more agile. Decreasing sizes and increasing ma-
noeuvrability often translates into the development of inher-
ently unstable MAVs, like the tailless Flapping Wing MAV
(FWMAV), DelFly Nimble [1]. Due to the lack of inherent
stability, these MAVs require active ego-motion estimation and
flight stabilization. Micro Electro Mechanical System Inertial
Measurements Units (MEMS IMUs) are the most widely used
on-board ego-motion sensing devices in MAVs, owing to their
small size and light weight. However, as the size of these
sensors decreases, their noise increases and sensitivity dimin-
ishes. This necessitates the incorporation of complimentary

sensors and more robust state estimation techniques [2]. By
contrast, some insects are believed to lack sensory organs that
perceive inertial forces and rates, and yet their exceptional
flight capabilities have long amazed and inspired roboticists.

Insects use rich sensory feedback for flight stabilization and
control, drawing ego-motion information from various sensory
organs: inertial mechanosensors that sense inertial forces and
rotational rates like halteres, antennae and hair, and visual
sensors such as ocelli and compound eyes [3]. However, in
some insects, like honey-bees and other flying hymenopterans,
inertial mechanosensory organs have not been identified yet
[4]. As such, vision is believed to play a prominent role
in flight stabilization and control of these natural flyers [5].
Insects derive a sense of motion and direction from the visual
information captured by the compound eyes in the form
of optical flow fields [3][5]. Optical flow has been found
to be critical to various flight behaviours such as obstacle
avoidance [6], flight speed regulation [7][8][9], altitude control
[10][11] and landing [12][13]. However, the strategies used
by insects to estimate and stabilize their orientation are yet
to be completely understood [3]. Goulard et al.[14] studied
how insects cope with weightlessness and stabilize their flight
by subjecting hoverflies to free-fall. The authors concluded
that for crash avoidance and flight stabilization, the insects
utilize a multisensory control system depending mainly on
vision rather than gravity perception or inertial sensing. These
studies, establishing the importance of visual sensing in flight
stabilization and control, coupled with the apparent lack of
inertial sensing in some insects, indicate that insects might be
capable of deriving information about their orientation using
only the perceived optical flow fields.

Optical flow conveys information about the ratio of an
observer’s velocity to distance from the observed world point
[15], but neither of those parameters independently. To dis-
entangle these quantities and estimate the absolute values of
the observer’s states, additional information is necessary. This
‘scaling’ of the optical flow measurements, can be performed
by additional sensor packages like accelerometers, airspeed
sensors, sonar or stereo camera setup [16][17][18]. Inspired
by the absence of scaling sensors in some insects, several
researchers have studied approaches of using optical flow di-
rectly in a control loop without estimating the absolute values
of the MAV’s states. These visuo-motor control strategies have
been designed to perform various flight tasks such as landing
[19], obstacle avoidance [20], velocity control [21], terrain
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following [22] and stabilization [23] in MAVs.
Even though the visuo-motor control strategies are backed

by some behavioural studies on insect flight [4], there are evi-
dences suggesting that insects can estimate the absolute values
of their states, including the static states such as distances and
attitude angles. For instance, fruit flies extend their legs at
a specific distance from the landing surface and thus must
be capable of estimating the distance [24]. Based on their
observations about the behaviour of hoverflies subjected to
free fall [14], Goulard et al.[25] modelled the crash avoidance
dynamics of the insects and concluded that a closed loop pitch
control system based only on optical flow regulation does not
suffice to maintain a stable flight. To achieve stability, the
authors augmented the model with a closed loop pitch rate
controller based on absolute pitch angle estimates, indicating
that estimation of absolute orientation might be necessary for
the insects to stabilize their flight.

It has been shown that it is indeed possible to estimate
absolute distances from optical flow measurements, if a robot
has access to its control inputs (also referred to as ‘efference
copies’). Several strategies for the same have been proposed in
literature. van Breugel et al.[24] showed that during a constant
divergence landing manoeuvre, the distance remains propor-
tional to the control input (thrust) and follows an exponentially
decreasing function over time. Thus, thrust values can be
used to estimate distances during the manoeuvre. In [26], de
Croon proposed a distance estimation approach based on the
detection of self induced oscillations during fixed gain constant
divergence control. The author proved that there exists a
proportional relationship between the controller gain and the
height at which the instability occurs. Therefore, by detecting
the oscillations, the robot’s height can be estimated. The
strategy has been leveraged in [27] to perform smooth landings
of a MAV by adapting the control gains during landing. Ho et
al.[28] presented a distance and velocity estimation algorithm
that utilizes efference copies in combination with the flow
divergence measurements. The efference copies are used to
predict changes in a MAV’s states and these predictions are
corrected through the observed flow divergences. Optical flow
measurements, however, are also affected by the orientation
of the robot and hence must also encode information about
attitude. But, to the best of our knowledge, the feasibility of
estimating attitude using only optical flow measurements has
not been proven in literature yet. In this study we show that,
following an approach similar to [28], the orientation of a
MAV can be derived in addition to its height and velocities.

The main contribution of this article is the proposition of
a novel attitude estimation algorithm based on optical flow
measurements and the knowledge of efference copies. The
proposed technique estimates various MAV states: attitude,
rate of change of attitude, horizontal and vertical components
of velocity and height; utilizing only the knowledge of con-
trol inputs and optical flow measurements obtained from a
downward looking monocular camera. The performance of the
estimator has been verified in simulations and on flight data
obtained from a real flying robot.

The paper has been structured as follows. In section II, we
utilize non-linear observability analysis [29] to prove that it

is possible to estimate the attitude of a MAV, among other
states, using optical flow observables. In section III, based on
the findings of the observability analysis, an extended Kalman
filter state estimator has been designed and the performance
of the filter has been verified through simulations. Finally in
section IV, the performance of the estimator has been validated
through flight data recorded on a Parrot Bebop quadcopter.

II. ATTITUDE OBSERVABILITY USING OPTICAL FLOW
MEASUREMENTS

Since we intend to design a purely optical-flow based
attitude estimator, the first step is to derive a system model
in which the states, including attitude, are observable using
optical flow measurements. Here, observability means that
any distinct states are distinguishable by observing the output
trajectories of the system on application of a bounded measur-
able input. In this section, we use the non-linear observability
analysis [29] to analyse various system models and formulate
a model in which the states are observable using optical flow
measurements and the knowledge of efference copies/control
inputs.

A. Mathematical Formulation of Optical Flow
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Fig. 1: MAV equipped with a downward looking camera,
moving through a stationary environment. Representation
of various reference frames considered in this study. B:
body reference frame, I: inertial reference frame

In this study, the Longuet-Higgins and Prazdny mathemati-
cal model of optical flow [15] has been employed. The model
relates ego-motion of an observer (camera) moving through
a stationary environment to the perceived optical flow. Con-
sider the scenario described in figure 1, where a quadcopter
equipped with a downward looking camera, arbitrarily moves
over a planar surface. B denotes the body reference frame of
the quadcopter, centred at point B where the camera’s aperture
is also defined. It is also assumed that B converges with the
MAV’s centre of gravity (CoG). Now, let XBYBZB be a right
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handed Cartesian coordinate system, centred and fixed at B,
with the ZB-axis aligned along the camera’s optical axis. The
inertial frame of reference is denoted by I. The quadcopter
is moving with transnational velocities uB, vB, and wB, and
rotational velocities p, q and r, defined in B. To relate the
quadcopter’s motion to optical flow, the model utilizes the pin-
hole camera projection method [15]. In this formulation, world
points (xB, yB, zB) in the camera’s field of view are projected
onto the image pixel coordinates (x̂, ŷ) on the camera’s image
plane. Due to relative motion between the quadcopter and the
environment, these projections undergo a translational motion,
i.e. the optical flow, whose components, û and v̂ in pixels per
second, are obtained as described by equations 1a and 1b.

û = −uB
zB
− q + rŷ − x̂(−wB

zB
− pŷ + qx̂) (1a)

v̂ = −vB
zB

+ p− rx̂− ŷ(−wB
zB
− pŷ + qx̂) (1b)

Once the relationship between the MAV’s states and the
optical flow components has been established, the next step is
to use this knowledge to retrieve information about the MAV’s
motion and the environment structure. This information is
contained in visual observables that can be derived from
equation 1.

Commonly used visual observables, in the literature con-
cerning optical flow based navigation, are ventral flows (ω̂x =
−uB/zB0

, ω̂y = −vB/zB0
) that encode the information about

MAV’s horizontal motion and divergence (d̂ = 2wB/zB0
)

that encodes information about MAV’s vertical motion. The
ventral flows can be described as the ‘de-rotated’ optical
flow components observed at the origin of the image plane
((x̂, ŷ) = (0, 0), the point where the optical axis intersects the
image plane). Accordingly, zB0 represents the ZB coordinate
of the world point where the optical axis intersects the ob-
served plane. De-rotation refers to the procedure of eliminating
the effects of observer’s rotations, from the flow vectors,
using angular rate measurements from external sensors (eg.
gyroscopes). However, since we intend to estimate the MAV
motion states using optical flow as the only sensory infor-
mation, we use ventral flow components without de-rotation,
described by equations 2a and 2b, as key observables. Further,
we also use half divergence or relative vertical velocity ω̂z ,
described by equation 2c, as another observation. Henceforth
in this article, unless stated otherwise, the term ventral flows
will be used to refer to flows that have not been de-rotated and
the term divergence will be used to refer to relative vertical
velocity ω̂z .

ω̂x = − uB
zB0

− q (2a)

ω̂y = − vB
zB0

+ p (2b)

ω̂z =
d̂

2
=
wB
zB0

(2c)

B. Non-Linear Observability Analysis Preliminaries

A non-linear system is deemed observable if the mapping
from initial condition to output trajectory is one to one. A
standard tool to check the (local-weak) observability of a non-
linear system is the observability rank condition, introduced
by Herman and Krener [29]. In this sub-section, we briefly
introduce the observability test using the notation style adopted
in this paper.

Consider the non-linear system
∑

, described by equation
3.

ẋ(t) = f(x,u, t) (3a)

y(t) = h(x, t) (3b)

Here, x(t) ∈ Rn is the system state vector, u(t) ∈ Rp is
the input vector and y(t) ∈ Rm is the output vector. System
vector function f(x,u, t) ∈ Rn×Rp×R+ → Rn defines the
state derivatives and the observation vector function h(x, t) ∈
Rn × R+ → Rm defines the measurement functions of the
system.

Unlike linear systems, where the observability can be de-
termined as a global property and holds for the entire domain
Rn of x [30], in non-linear systems observability is state
dependent and is determined locally about a given state. Let
us denote the solution to the differential equation 3a by
x(t,u(t),xo) for input u(t) and initial condition xo = x(0).
Let U be an open subset of Rn. A pair of points, xo, x1 ∈ U ,
are called U-indistinguishable, if for all bounded measurable
inputs u(t) defined in the interval t ∈ [0, T ], for which
the solutions x(t,u(t),xo) and x(t,u(t),x1) are entirely
contained in U, the output trajectories follow the relationship
h(x(t,u(t),xo), t) = h(x(t,u(t),x1), t). IU (x0) represents
the set of all points x1 ∈ U that are U-indistinguishable
form x0 ∈ U . The system

∑
is defined to be locally weakly

observable at a state xo, if there exists an open neighbourhood
V of xo, such that for every open neighbourhood U of xo,
contained in V , IU (x0) = {x0}.

At any state xo, a non-linear system can be analytically
tested for local weak observability by checking the rank of
the observability matrix formed by computing the Jacobian of
Lie derivatives of the observation equations (h(x, t)). A full
rank observability matrix (rank = n) means that the system is
locally weakly observable at xo. Equation 4 describes the Lie
derivatives of the observation equations of

∑
and equation

5 describes the observability matrix constructed using the
Jacobians of the Lie derivatives as its row vectors. Here,
the symbol ∇ represents the gradient operator, defined as
∇ = [ ∂

∂x1
, ∂
∂x2

, ∂
∂x3

, ..., ∂
∂xn

], and the symbol ⊗ represents
the Kronecker product.

L0
f h = h

L1
f h = (∇⊗L0

f h) · f
...

Lifh = (∇⊗Li−1
f h) · f

(4)



4

O =




∇⊗L0
f h

∇⊗L1
f h

...
∇⊗Lifh


 , i ∈ N (5)

Note that this analysis provides a yes or no answer about
a system being locally weakly observable at any state, but it
does not indicate how well posed the system is to observe [31].
Thus, to check the extent of local observability of a system,
we use a measure of observability, known as the degree of
observability, as described in section II-H.

C. Case 1: Constant Attitude - Constant Altitude Manoeuvre

We consider a simple model of a MAV manoeuvring with a
constant roll angle (φ), while keeping its height above ground
(zI) constant. It is assumed that the pitch (θ) and yaw (ψ)
angles remain zero and so there is no motion in the XI
direction. Further, to keep the altitude constant, it is assumed
that the MAV regulates its thrust, T , according to equation
6. Equation 7a describes the motion model for the scenario
with state vector x = [vI , φ, zI ]T . Equation 7b describes
the ventral flow observation equation. We analyse whether the
states can be observed in the described scenario through just
ventral flow (ω̂y) observations.

Tcosφ−mg = 0

T = mgsecφ
(6)

f(x, t) =
d

dt



vI
φ
zI


 =



gtanφ

0
0


 (7a)

yω̂y
=
−vIcos2φ

zI
(7b)

Since, the model has three states, to be observable, the
observability matrix needs to have rank 3, i.e. at least 3 linearly
independent rows. And as the model has only 1 observation,
we need at least up to the second order Lie derivative of the
observation to construct the observability matrix. Equation 8
describes the Lie derivatives of yω̂y

. Though the zeroth and
first order Lie derivatives (equations 8a and 8b) are linearly
independent, the second order Lie derivative (equation 8c)
becomes zero and hence all the higher order Lie derivatives are
zeros as well. So, calculating Jacobian of the Lie Derivatives
would result in an observability matrix with all rows, except
the first two rows as zero rows (since gradient of 0 is a null
vector). Thus, the observability matrix can at most have rank
2.

L0
fyω̂y =

−vIcos2φ

zI
(8a)

L1
fyω̂y =

−gsin2φ

2zI
(8b)

L2
fyω̂y

= 0 (8c)

This result shows that by observing just the ventral flow
measurements, it is not possible to estimate the absolute values
of all the three states. However, if the knowledge about one
of those states is provided, the other two can be uniquely
observed (except at those state values where the rank of O
is less than 2). The application of this result can be seen in
various works [17][18], where the researchers have used a
separate sensor setup, like sonar or stereo camera, to measure
a MAV’s height and used this information to decouple the
velocity and height in the ventral flow measurements, thus
estimating the absolute value of MAV’s velocity. The result
presented here also suggests that the height measurements can
be used to not only estimate absolute velocities, but attitude
as well, which, to our best knowledge, has not been utilized
in literature yet.

The model presented in this case is based on two important
assumptions: the MAV maintains constant roll attitude and
constant height. In the subsequent two cases, we relax each of
these assumptions and analyse the effect this has on system
observability. Further, the case presented here considers the
ventral flow values as the only observation. In section II-F
we include the divergence values as another measurement and
analyse its influence on the system observability.

D. Case 2: Varying Attitude - Constant Altitude Manoeuvre

In this scenario, we consider the motion model (equation 9a)
of a MAV manoeuvring at a constant zI but with varying φ.
To vary φ (and roll rate p), roll moment (MxB ) is considered
as an input to the system. The rationale behind considering
the moment as the system input is that an estimate of the
the moment applied on the MAV can be obtained from the
rotor velocities or the roll moment commands sent from the
flight controller to the rotors. This aspect of the model has
been further discussed in section IV-B. IxB represents the
moment of inertia of the MAV around its XB axis. Equation
9b describes the ventral flow observation equation.

f(x, t) =
d

dt




vI
φ
p
zI


 =




gtanφ
p

MxB/IxB
0


 (9a)

yω̂y =
−vIcos2φ

zI
+ p (9b)

The observability rank condition renders the described sys-
tem locally weakly observable. For brevity, the observability
analysis of this model is not being included in the article,
but can be referred to, in appendix A. For the reader’s under-
standing, observability analysis of a simplified system model
(equation 10), which in terms of observability is analogous to
the system in equation 9, is being presented here. The model
is simplified by assuming roll rate p as an input to the system
instead of the moment MxB . Thus, through this simplification,
we reduce the four state model (x = [vI , φ, p, zI ]T ) into a
three state model (x = [vI , φ, zI ]T ).
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f(x, t) =
d

dt



vI
φ
zI


 =



gtanφ
p
0


 (10a)

yω̂y
=
−vIcos2φ

zI
+ p (10b)

Equation 11 lists the Lie derivatives, up to the second order,
of the observation considered in this model. The lie derivatives
are linearly independent and calculating their Jacobians to
construct the observability matrix leads to a matrix with
linearly independent rows, thus a full rank observability matrix
(equation 12).

L0
fyω̂y =

−vIcos2φ

zI
+ p (11a)

L1
fyω̂y

= −sin2φ(g − 2pvI)

2zI
(11b)

L2
fyω̂y

=
p(g − 2gcos2φ+ 2pvIcos2φ)

zI
(11c)

O =




−cos2φ

zI

vIsin2φ

zI

vIcos2φ

z2
I

psin2φ

zI

−cos2φ(g − 2pvI)

zI

sin2φ(g − 2pvI)

2z2
I

2p2cos2φ

zI

psin2φ(4g − 4pvI)

zI

−p(g − 2gcos2φ+ 2pvIcos2φ)

z2
I




(12)
Note that the only difference between this model and the

model considered in the previous sub-section (equation 7) is
that φ is no longer constant and it is assumed that we know
the value of its time derivative (p as input). Further, the model
in equation 9, where it is considered that the second derivative
of φ is known (MxB as input), also results in a full rank
observability matrix. Analysing the observability matrices, it
can be intuitively concluded that if information about a time
derivative, of any order, of φ is actuated and is known, the
system states can be estimated by measuring just the ventral
flow. This result mathematically proves that the attitude of a
MAV can be estimated through optical flow information and
moment efference copies, which is a key contribution of this
article.

Even though we claim the observability matrix in equation
12 to be full rank, there might be state-input values that render
the matrix singular. As such, the system is not observable at
those states. For example, the matrix rank drops to 2 if the
value of input p is set to zero. Similarly, the system represented
by equation 9 becomes unobservable, when the input M and
state p simultaneously have the value zero. However, there may
exist many other state-input value combinations where these
models become unobservable, and deriving all those conditions
is difficult. Hence, we define a measure of observability, called
the degree of observability, in section II-H to analyse the
observability of the systems as values of the states and inputs
vary.

E. Case 3: Constant Attitude - Varying Altitude Manoeuvre

In this section, the assumption of constant attitude manoeu-
vre is re-established, but now we investigate what happens
when the height of the MAV varies. Since the altitude no
longer remains constant, thrust T cannot be regulated accord-
ing to the equation 6. So, T is assumed to be an input to
the system. The motion model of the system is described by
equation 13a, where m represents the mass of the MAV. As has
been done in the previous cases, we test the observability of
the system when only the ventral flow is observed, as described
by equation 13b.

f(x, t) =
d

dt




vI
φ
zI
wI


 =




Tsinφ/m
0
wI

Tcosφ/m− g


 (13a)

yω̂y =
−vIcos2φ

zI
+
wIsin2φ

2zI
(13b)

The observability test (refer appendix B) for the system
described, results in a full rank matrix. Here the knowledge
of thrust input (vertical acceleration) along with the ventral
flow measurements renders the system observable. Through
further inspection of the terms in the observability matrix it
can be concluded that if the time derivative of height, of any
order, is actuated and is known, then the states of the system
can be observed by measuring the ventral flow. This result
is an extension of the result obtained by the authors in [28],
where they use flow divergence and thrust efference copies to
estimate the height and vertical velocity of a MAV. The result
obtained by our analysis proves that the same approach can
be used to estimate attitude and lateral velocity of the MAV
as well.

F. Case 4: Constant Attitude - Constant Altitude Manoeuvre:
Measuring Ventral Flow and Divergence

Now that we have derived that the MAV attitude is observ-
able through ventral flow measurements, if the height and/or
the attitude vary and the control efference copies (thrust and/or
moment) are known, we go back to our initial case of constant
attitude-constant altitude manoeuvre and review the system
observability when divergence is also used as an observation
along with ventral flow. Equation 14a describes the motion
model and equation 14b describes the ventral flow and the
divergence measurements.

f(x, t) =
d

dt



vI
φ
zI


 =



gtanφ

0
0


 (14a)

y =

[
yω̂y

yω̂z

]
=




−vIcos2φ

zI
−vIsin2φ

2zI


 (14b)

Equation 15 lists the Lie derivatives of the observation
equation up to the first order. For the system to be locally
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weakly observable, the observability matrix needs to have
3 linearly independent rows. The first two rows are formed
by the Jacobian of the zeroth order Lie derivative of the
observation vector. The third row is obtained by the first order
lie derivative of yω̂y

. This leads to a full rank observability
matrix as in equation 16.

L0
fy =




−vIcos2φ

zI
−vIsin2φ

2zI


 (15a)

L1
fy =




−gsin2φ

2zI
−gsin2φ

zI


 (15b)

O =

[ ∇⊗L0
fy

∇⊗L1
fyω̂y

]
=




−cos2φ

zI

vIsin2φ

zI

vIcos2φ

z2
I

−sin2φ

2zI

−vIcos2φ
zI

vIsin2φ

2z2
I

0
−gcos2φ

zI

gsin2φ

2z2
I




(16)
Thus, though the system is unobservable when only the

ventral flow measurements are used (section II-C), the states
can be estimated if the divergence information is also uti-
lized. Further, we can intuitively deduce that including the
divergence measurements in the models presented in cases
2 and 3 (sections II-D and II-E) would improve the system
observability, since it will reduce the order of Lie derivatives
of the observations required to obtain a full rank observability
matrix. Gathering the conclusions of the analysis presented in
sections II-C - II-F, a complete model of optical flow based
roll attitude estimation of a MAV is formulated in the next
section.

G. Complete Model

In this section, we consider the motion model of a MAV
free to manoeuvre in the YI-ZI plane, i.e. though it is no
longer assumed that the MAV maintains constant roll angle
and height, we still assume that the MAV maintains zero pitch
and yaw angles and hence there is no motion along the XI
axis. Consequently the motion model has two inputs: moment
MxI and thrust T control efference copies. The system also
has two observations: ventral flow ω̂y and divergence ω̂z . The
equations describing the system, represented by

∑
1, are stated

as:

f(x, t) =
d

dt




vI
φ
p
zI
wI




=




Tsinφ/m
p

MxB/IxB
wI

Tcosφ/m− g




(17a)

y =

[
yω̂y

yω̂z

]
=




−vIcos2φ

zI
+
wIsin2φ

2zI
+ p

−vIsin2φ

2zI
− wIcos2φ

zI


 (17b)

From the inferences drawn in the previous sections, it
can be deduced that

∑
1 is locally weakly observable. The

observability analysis for the system has been described in
appendix C for reference. In the subsequent sections of the
article, the model of system

∑
1 has been considered to design

a state estimator and the performance of the estimator has been
verified through simulations and experiments. In the following
subsection, a measure of system observability has been defined
to monitor how observable a system is at various state-input
values.

H. Degree of Observability

So far, we have used the local weak observability analysis to
examine the system’s observability for various motion models.
However, the observability matrix rank condition only returns
a yes or no answer about a system’s observability and does
not provide any insight about how feasible it is to observe
the system [31]. Thus, establishing a measure of observability
is crucial for the analysis of the system at various state-input
values.

Krener and Ide [31] introduced the local estimation con-
dition number (κ) to measure the local observability of a
non linear system and the well-posedness of the estimation
problem. The local estimation condition number is the ratio
of the largest singular value of the local observability matrix
to the smallest:

κ(O) =
σmax(O)

σmin(O)
(18)

DO(O) =
1

log(κ(O))
(19)

Where, σmax(O) and σmin(O) represent the maximum and
minimum local singular values of matrix O. High value of κ
suggests that the observability matrix is ill-conditioned, with
κ of a singular matrix being infinity, and low values of κ
suggest that the matrix is well-posed, with κ of an identity
matrix being 1. The condition number has been adopted as
a measure of observability in several studies [32][33]. In this
article, we have adopted the reciprocal of the log of κ as the
degree of observability, DO, of the system, as described in
equation 19. This has been done to have the values of DO
vary between 0 and 1, with higher values of DO signifying
higher observability of the system. In the following subsection,
we use DO to analyse how excitation of various motion states
and inputs affect the observability of system

∑
1 and compare

the observability of
∑

1 with a system where de-rotated ventral
flow values are measured.

I. Effect of Optical Flow De-Rotation on Observability

De-rotation of optical flow field is a common practice in
vision based navigation applications [18][21]. De-rotation is
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Fig. 2: Degree of observability contour maps for variation
in values of motion states and inputs against values of
roll angle φ, for the systems:

∑
1 that observes the full

ventral flow component and
∑

2 that observes the de-
rotated ventral flow components. (a) vI variation, (b)
wI variation, (c) p variation, (d) T variation, (e) MxB
variation.

only possible when sensors measuring the rotational rates are
available. Since in this study we intend to use optical flow
vectors as the only sensory information, de-rotation of the flow
field is not feasible. However, it is interesting to analyse the
effect of de-rotation on the system observability. In this sub-
section we analyse how the excitation of various motion states
and inputs affect the observability of system

∑
1 (equation 17)

and compare
∑

1 with a system where de-rotated ventral flow
measurements are used. Let us denote this second system by∑

2. System
∑

2 is the same as
∑

1 except that instead of
observing the full ventral flow component (equation 17b),

∑
2

observes the de-rotated ventral flow components, as described
by equation 20.

yω̂y∑
2

=
−vIcos2φ

zI
+
wIsin2φ

2zI
(20)

Since the focus of our investigation is on attitude estimation,
we analyse the observability of the systems through figure 2
that depicts the DO contour maps for values of the motion
states (vI , wI , p) and inputs (T , MxB ) against values of
roll angle (φ). During the excitation of a particular motion
state/input the other states and inputs are kept at their neutral
values. The neutral values of the states and inputs are defined
as: vI0 = 0m/s, wI0 = 0m/s, p0 = 0o/s, T0 = mgsecφ,
M0 = 0Nm. T0 is defined such that the ZI component
of the thrust balances the weight (mg) of the MAV, hence
maintaining the vertical acceleration of the MAV at 0m/s2.
The height of the MAV is set at zI = 1m and the values
of mass and moment of inertia are kept similar to a Parrot
Bebop quadcopter (m = 0.4kg and IxB = 0.0018244kgm2),
since the same has been used for experimental verification of
the proposed estimator in section IV.

It can be observed from figure 2 that both the systems
need motion to be observable, i.e. both the systems remain
unobservable when all the motion states and inputs are main-
tained at their neutral values. This is an expected phenomenon
since optical flow measurements are being used that require
motion to be non-zero. The observability variation with vI
excitation (figure 2a) remains similar for both the systems.
System

∑
1 registers higher values of DO for a broader range

of φ, than
∑

2, when wI is excited (figure 2b). However, at
smaller values of angle φ, excitation in either vI or wI , does
not augment the system observability and both the systems
remain unobservable. The only motion state whose non-zero
value renders the system observable at small values of angle
φ, while other states and inputs remain neutral, is p (figure
2c). However,

∑
2 remains unobservable, irrespective of the

value of p, when other motion states and inputs are kept at
their neutral values. This demonstrates that by de-rotation of
optical flow field valuable information is lost, which otherwise,
can be leveraged to estimate the MAV motion. Thus, we will
use the model of

∑
1 to design our state estimator, as will be

discussed in section III-B.
Figure 2 also highlights several other interesting details

about the variation of the system observability with the
variation in state and input values. The observability of the
system increases with the initial increase in the absolute values
of the motion states. However, for fast manoeuvres (with
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|p| > 150o/s and |u|, |v| > 5m/s) the observability of the
system deteriorates. Further, along with p, excitation of T
about its neutral values also renders the systems observable
at small values of φ (figure 2d). Note, that in figure 2d the
red dashed line represents the locus of neutral values of T , i.e.
the points where T = mgsecφ, and both the systems remain
unobservable along this line. So, even at the instants when
the MAV is not moving (does not have a finite velocity), a
non-neutral thrust input to the system, that induces a finite
vertical acceleration, will render the system states observable.
However, the same does not hold true for moments, i.e. when
all the other states and inputs are maintained at their neutral
values, variation of moment values does not augment the
system observability, as revealed by figure 2e. Thus, it can
be inferred that for slow manoeuvres, thrust inputs are more
effective than moment inputs, in rendering the states (including
attitude) observable.

In this section, through non-linear observability analysis, we
have theoretically established that it is feasible to estimate the
attitude of a flying robot using optical flow measurements and
the knowledge of efference copy inputs. In the next section, we
use the structure of system

∑
1 to design an extended Kalman

filter, whose performance is verified in simulations.

III. VERIFICATION THROUGH SIMULATIONS

In this section, we intend to verify the findings of the ob-
servability analysis through simulations. An Extended Kalman
Filter (EKF) state estimator has been designed based on the
structure of system

∑
1, described by equation 17 in section

II-G. First, the designed estimator has been tested in a noise-
delay free scenario, to verify its convergence and the findings
of the observability analysis. Then, the effects of noise and
delays, in various inputs and measurements, on the EKF’s
performance have been analysed. The estimator’s performance
has also been verified against simultaneous discrepancies in
various inputs and measurements. Further, the state estimates
obtained from the EKF have been used to perform closed loop
attitude and altitude control of the simulated MAV and the
effect of optical flow sample rate on the controller’s stability
has been analysed.

A. Simulated System

A 3 degrees of freedom (3-DoF: free to move in the YIZI
plane and rotate about the XI axis) quadcopter model has been
simulated whose dynamics is governed by the motion model
of
∑

1 as described in equation 17a. The mass and moment of
inertia of the MAV are set similar to a Bebop quadcopter. It is
also assumed that the MAV has perfect noise free knowledge
of its states and hence a feedback PD control loop has been
implemented to stabilize and control the MAV’s flight.

Figure 3 depicts the response of the simulated MAV to
simultaneous reference step inputs in roll angle φ and height
zI . This manoeuvre of the MAV will be used as a standard
manoeuvre to test the performance of the estimator designed
in section III-B. This particular manoeuvre has been chosen to
test the estimator in simulation, since it effectively combines:
hover (t < 20s, t > 80s), rotational motion (t ≈ 20s), vertical

motion (t ≈ 80s) and simultaneous rotational and vertical
motion (t ≈ 40s).
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Fig. 3: Response of the simulated MAV system to simul-
taneous reference step inputs in (a) roll angle (φ) and (b)
height (zI).

B. Filter Design

An EKF state estimator [34] has been implemented to
estimate the MAV’s states. This choice of the filter has been
made since the EKF fits well with the way the motion model
has been described (section II-G) as the EKF also uses a
state function model and observation model which can be kept
exactly as they have been described in equation 17.

In the quadcopter, used in this study to verify the proposed
estimator (section IV), the inner stabilization loop runs at
500Hz. Capturing images from the bottom camera of the
quadcopter and using a standard vision pipeline (section IV-C),
optical flow measurements can be sampled at an average rate
of 30Hz. To keep the simulations realistic and in-line with the
experimental platform, the simulated EKF is run at 500Hz,
while the optical flow measurements are sampled at 30Hz.
Since optical flow observables are the only measurements
being used by the EKF, during the iterations when optical
flow is not sampled, the measurement update step in the EKF
is not performed.

C. Noise-Delay Free Estimation

We start the simulation analysis with an ideal noise-delay
free scenario. The noise free scenario has been specifically
chosen to check the convergence of the designed EKF and
verify the inferences drawn from the observability analysis.
Step references in φ and zI , as depicted in figure 3, are given
as inputs and response of the MAV model is estimated using
the EKF.

Figure 4 depicts the state estimation results for the noise-
delay free scenario. It can be observed that the EKF converges
to provide accurate state estimates. Moreover, on close inspec-
tion of the ±3σ estimation error bands, obtained from the
estimation error covariance, the findings of the observability
analysis can be further verified. Figure 5 depicts the variation
of degree of observability, DO, during the manoeuvre. The
estimation error variances for all the states remain high till
t = 20s as the MAV is in hover and the system observability
remains low due to lack of motion. At t = 20s a moment input
is provided to increase φ in response to the step reference. The
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Fig. 4: Estimation results for an ideal noise-delay free
scenario. (a) Horizontal velocity vI , (b) roll angle φ, (c)
roll rate p, (d) height zI and (e) vertical velocity wI
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Fig. 5: Variation of degree of observability DO during
the manoeuvre depicted in figure 3. Higher values of DO
signify higher observability of the system, with DO = 1
for an identity observability matrix and DO = 0 for a
singular observability matrix.

moment input increases p. This excitation in the motion states
and the input increases the observability of the system result-
ing in the convergence of state estimates to the true values
of the states and decrease in the estimation error variance. As
soon as the MAV achieves the reference attitude, all motion
states and inputs return to their neutral values, except vI .
However, as concluded from the observability analysis, the
system exhibits low observability for high values of vI (figure
2a). Therefore, the observability degree slightly decreases
with increasing velocity between t = 20s and t = 40s,
and increases again at t = 40s when the system is excited
through inputs in both T and MxB . Now, between t = 40s
to t = 60s the only non-neutral state of the MAV is again
vI , which decreases at a constant rate during this interval.

So, the system observability registers a slight rise during the
interval. At t = 60s the observability degree momentarily
rises because of moment inputs and thus the error variances
in the state estimates decrease, but after the application of
the moment, the MAV returns to a hovering state and due
to which the observability rapidly drops, while the errors in
state estimates increase. At, t = 80s an excitation in T is
applied to reduce the height of the MAV which momentarily
increases the observability and decreases the error covariance
of estimation, but once again after t = 80s, the MAV returns to
hover and hence the observability of the system and estimation
error covariance deteriorates.

Though analysing the noise-delay free scenario is a good
method to verify convergence of the EKF and confirm the
findings of the observability analysis, in real scenarios the
measurements and inputs to the system are corrupted with
noise and delays. Hence, it is important to test the performance
of the estimator in scenarios with noise and delays. In the
following sections we analyse the effects of noise and delays
in the optical flow measurements and efference copy inputs.

D. Effects of Noise and Delays in Optical Flow Measurements

Though in simulations the optical flow measurements are
computed through equation 17b, in real applications optical
flow vectors are obtained by processing the image frames
captured by the on-board camera (the algorithms that have
been used to compute the optical flow measurements dur-
ing the experiments are discussed in section IV-C). These
algorithms, calculating optical flow, are often based on ideal
assumptions and not confirming to these assumed conditions
introduces discrepancies in the obtained values. Further, the
processing the computer vision algorithms also introduces lags
in the system. Thus, in real world scenarios, the optical flow
measurements are corrupted with irregular noise and delays.
Examining the robustness of the estimator against noisy-
delayed optical flow data is necessary to verify its feasibility
in real applications. In this subsection, the performance of
the estimator is analysed against different levels of noise and
delays in the ventral flow and divergence observations.

Since the focus of this study is to estimate the attitude
of a MAV, we adopt the Root Mean Square Error (RMSE)
in attitude estimates as the measure of estimator accuracy
in this article. For a Kalman filter (KF), RMSE is the most
natural finite-sample approximation of standard deviation in
estimation errors [35], and since a KF is designed to minimize
the Mean Squared Error (MSE) of predictions, RMSE provides
an intuitive measure of the filter performance. As such, RMSE
is one of the most popular measures of estimation accuracy
[35], [36], [37]. Equation 21a defines the RMSE in estimated
values of a state x at each time instant, when the estimator
is run N times for different noise realizations. The obtained
values are averaged over the time duration of the whole
trajectory to calculate the Average RMSE (ARMSE) values
as defined in equation 21b.

RMSEx(t) =

√∑N
k=1(x̂k(t)− xk(t))2

N
(21a)
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TABLE I: ARMSE in roll
angle (φ) estimates for vari-
ous levels of Gaussian noise
in optical flow measure-
ments. Noise standard de-
viation (σ) values are in
rad/s and s−1 for ventral
flow and divergence mea-
surements respectively.

Measurement Noise σ ARMSEφ (o)

Ventral Flow
yω̂y

0.01 0.26
0.10 0.36
0.50 1.19
1.00 3.28

Divergence
yω̂z

0.01 0.26
0.10 0.31
0.50 1.66
1.00 2.47

TABLE II: ARMSE in roll
angle (φ) estimates for
various levels of delay in
optical flow measurements.

Measurement Delay (s) ARMSEφ (o)

Ventral Flow
yω̂y

0.04 0.29
0.20 0.44
0.50 0.76
1.00 1.23

Divergence
yω̂z

0.04 0.28
0.20 0.41
0.50 0.64
1.00 1.04

ARMSEx =

∑T
t=0RMSEx(t)

τ
(21b)

Where, x̂ represents the estimated values of state x and τ
represents the total time duration of the performed manoeuvre.

The EKF is tested for various Gaussian noise and delay
levels in the ventral flow and divergence measurements, as
listed in tables I and II. To compensate for the randomness
introduced due to Gaussian noise generation, for each scenario,
the simulator is run for 50 different noise realizations. While
analysing the estimator against noise/delay in a particular mea-
surement, the other measurements and inputs of the system are
kept noise-delay free. The resulting RMSEφ time variations
are depicted in figure 6 and tables I and II list the ARMSEφ
values.

The EKF registers high estimation errors for noise standard
deviation of order 1 rad/s and 1 s−1 (for ventral flow and
divergence measurements respectively) which of course are
quite high values. However, for more realistic noise values, the
filter converges and performs satisfactorily well. The EKF is
tested for delays as high as 1s in the optical flow measurements
and the estimator proves to be robust to those delays. The
RMSEφ time variation, as depicted in figures 6d and 6b,
reveals that the estimator is more sensitive to measurement
delays during rotations than during vertical manoeuvres. This
result is in line with the inference drawn during observability
analysis, in section II-H, that excitation in T is more effective
in augmenting the system observability, than excitation in
MxB . Further, the RMSEφ peaks at t ≈ 40s and t ≈ 80s are
higher in figure 6b than in figure 6d, thus indicating that the es-
timator is more sensitive to delays in divergence measurements
than ventral flow measurements during vertical manoeuvres.
This is to be expected, since at low roll angles, ventral flow
observations contain significantly less information about the
MAV’s vertical motion than the divergence observations. Here,
the term vertical refers to the ZI direction.
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Fig. 6: Variation of RMSE in φ estimates (RMSEφ) with
time, for different levels of noise and delays in optical
flow measurements. RMSE values have been calculated
over 50 runs of the simulator with different noise realiza-
tions. (a) RMSEφ variation for different levels of noise
in ventral flow measurements, (b) RMSEφ variation for
different levels of delays in ventral flow measurements, (c)
RMSEφ variation for different levels of noise in diver-
gence measurements, (d) RMSEφ variation for different
levels of delays in divergence measurements.

E. Effects of Noise and Delays in Efference Copy Inputs

Along with optical flow measurements, the estimator also
makes use of the knowledge of efference copies (thrust T
and moment MxB ) to estimate the MAV’s states. However,
these efference copy inputs are not readily available and
have to be estimated from the control commands sent to the
MAV’s actuators or the MAV’s motor speeds. The models used
to estimate the efference inputs are not perfect and involve
certain discrepancies, as discussed in section IV-B. Thus, to
be feasible in real robot applications, the estimator needs
to be robust to those discrepancies. In this subsection, the
estimator performance is examined against various levels of
Gaussian noise and delays in thrust and moment inputs to the
EKF. As has been done in the previous subsection, during
each studied scenario, the noise and delays in other inputs
and measurements are kept zero. The EKF is tested over 50
simulation runs, for each case, with different noise realizations.
Tables III and IV list the ARMSEφ values and figure 7
depicts the time variation of RMSEφ values for various levels
of noise and delays in the efference copy inputs. Note that the
noise standard deviations for T and MxB are represented in
proportion to m and IxB respectively. This has been done to
make the values more representative of the noise introduced in
acceleration and angular acceleration of the MAV, thus making
the analysis more intuitive.

Interestingly, the estimator is robust to high values of noise
in T (tested for noise standard deviation as high as 5m N ),
however, loses its stability for delays in T inputs approaching
1s. On the other hand, the estimator converges for delays and
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TABLE III: ARMSE in roll
angle (φ) estimation for
various levels of Gaussian
noise in efference copy in-
puts. Noise standard devi-
ation (σ) values are pro-
portional to IxB and m for
moment and thrust respec-
tively.

Input Noise σ ARMSEφ (o)

Moment
MxI

0.01IxB 0.32
0.05IxB 0.58
0.10IxB 0.91
0.50IxB 6.79

Thrust
T

0.10m 0.25
0.50m 0.26
1.00m 0.27
5.00m 0.35

TABLE IV: ARMSE in roll
angle (φ) estimation for
various levels of delay in
efference copy inputs.

Input Delay (s) ARMSEφ (o)

Moment
MxI

0.04 0.28
0.20 0.40
0.50 0.64
1.00 1.02

Thrust
T

0.04 0.26
0.20 0.32
0.50 0.69
1.00 156.71
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Fig. 7: Variation of RMSE in φ estimates (RMSEφ) with
time for different levels of noise and delays in efference
copy inputs. RMSE values have been calculated over
50 simulation runs with different noise realizations. (a)
RMSEφ variation for different levels of noise in moment
input, (b) RMSEφ variation for different levels of delays
in moment input, (c) RMSEφ variation for different
levels of noise in thrust input, (d) RMSEφ variation for
different levels of delays in thrust input.

noise in MxB inputs as high as 1s and 0.1IxB , but registers
high ARMSEφ values. Thus, estimation accuracy in φ is
more robust to discrepancies in T inputs as long as the lag
remains low, but discrepancies in MxB inputs result in higher
inaccuracy in φ estimates. The sensitivity of the estimator to
inaccurate MxB values can be reasoned as the attitude is more
directly related to the moments (second derivative) than the
thrust values. The implications of this subsection’s findings
are discussed in section IV-B where models to estimate T and
MxB are obtained to test the estimator with real flight data.

F. Estimation in presence of noise and delays
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Fig. 8: Estimation results in presence of noise and delays
in the measurements and inputs. (a) Horizontal velocity
vI , (b) roll angle φ, (c) roll rate p, (d) height zI and (e)
vertical velocity wI

Simulating the estimator with noise and lags in a partic-
ular input or measurement, while keeping other inputs and
measurements noise free, is an apt method of analysing the
sensitivity of the EKF to discrepancies in particular inputs and
measurements. However, while functioning in a real robot, the
estimator has to perform against simultaneous discrepancies in
various measurements and inputs. In this subsection, the esti-
mator is tested in presence of noise and delays, representative
of the values expected to be experienced in a real robot, in all
the measurements and inputs.

The moment and thrust inputs to the EKF are lagged by
0.04s delay each and polluted with Gaussian noise having
standard deviation values 0.1IxB and 0.5m respectively. To
simulate the external disturbances experienced by a flying
MAV, moment and thrust inputs to the simulated MAV system
are corrupted with Gaussian noise having standard deviation
values 0.05IxB and 0.1m respectively. Further, a lag of 0.1s
and Gaussian noise with standard deviation values 0.1rad/s
and 0.1s−1 respectively, are added to the ventral flow and
divergence measurements.

Figure 8 depicts the estimation results obtained for the
described scenario. Due to the presence of noise and delays,
the estimation uncertainty, depicted by the blue ±3σ error
band, is more compared to the noise-free scenario (figure 4),
however it follows the same variation trends as described in
section III-C. Thus, further verifying the inferences drawn
from the observability analysis in section II-H.
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To analyse convergence of the EKF, measurement innova-
tions (or residuals) are utilized. Measurement innovations are
defined as the difference between the sensor measurements and
the predicted measurements, as described by equation 22. For a
converged EKF, the innovation sequences should follow a zero
centred Gaussian distribution. Figure 9 depicts the histogram
distributions of ventral flow and divergence measurement
innovations. It can be visually verified that the histogram
distributions resemble a Gaussian distribution. To analytically
verify this observation, we used the Kolmogorov-Smirnov
test (KS test) [38] of normality. The KS test, examines the
null hypothesis that the distribution of data in a particular
series is significantly similar to a Gaussian distribution. A
significance level of p = 0.05 has been used to test the
innovation sequences. For both, ventral flow and divergence
measurement innovations, the KS test validated the null hy-
pothesis with p-values 0.5292 and 0.4001 respectively, thus
verifying the normality of the sequences. Further, the means
of the innovations are calculated as: 6.25 × 10−4rad/s for
ventral flow innovations and −2.3 × 10−3s−1 for divergence
innovations, verifying that the means of both the innovation
sequences are close to zero. Thus, the innovation sequences
follow zero centred Gaussian distribution suggesting that the
EKF converges to its optimum state.

iym
(t) = ym(t)− h(x̂(t, t− 1), t) (22)

Here, ym(t) represents the measurements, iym
(t) represents

the measurement innovations and x̂(t, t − 1) represents the
predicted state at time instant t.
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Fig. 9: Histogram distribution of (a) ventral flow inno-
vation values, mean = 6.25 × 10−4rad/s, KS-test p-
value= 0.5292 and (b) divergence innovation values,
mean = −2.3× 10−3s−1, KS-test p-value= 0.4001.

G. Attitude-Altitude Controller

The motivation behind investigating the optical flow based
attitude estimator in this study is to finally use the estimated
values to stabilize and control the orientation of an inherently
unstable MAV. In most MAV applications, that use IMUs as
the primary sensors to estimate attitude, the measurements are
sampled at high frequencies (≈ 200 − 500Hz) to stabilize
the MAV’s dynamics. However, low frame rates associated
with most available cameras, limit the efficiency an optical
flow based controller. For instance, optical flow measurements
are sampled from the bottom camera of a Bebop, using
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Fig. 10: Block diagram depicting the implementation of
the attitude-altitude control loop.
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Fig. 11: Performance of the attitude-altitude controller.
Optical flow measurements are sampled at 30Hz. (a) Roll
angle φ tracking performance, (b) Height zI tracking
performance.

Paparazzi vision pipeline (section IV-C), at a frequency of
30Hz. Thus, apart from verifying the convergence of the
proposed estimator, it is important to analyse if the estimates
are computed fast enough to stabilize the dynamics of a MAV.

A simple PD control loop, as depicted in figure 10, has
been implemented in simulation to control the roll angle (φ)
and height (zI) of the MAV. Step inputs in attitude and altitude
reference are kept similar to as analysed in the previous
subsections (figure 3). As has been done in this analysis so
far, the mass and moment of inertia of the simulated MAV
are kept the same as a Bebop 1 quadcopter. The noise and
delay levels are kept the same as described in section III-F.
We first analyse the scenario where the EKF runs at 500 Hz
while the optical flow measurements are sampled at 30 Hz.
Figure 11 depicts the controller’s performance in tracking φ
and zI references. Despite the low sample rate, the controller
is able to stabilize and control the dynamics of the simulated
MAV.

It is interesting to observe the controller’s performance
when the MAV is in hover (t ≈ 0 − 20s and t > 80s).
As discussed in the previous sub-sections, due to the lack of
motion during hover, the observability remains low and the
estimation error covariance increases. In presence of noise,
this causes the estimates to diverge from the true state values.
However, as the estimates diverge, the differences between
the estimated states and reference inputs increase, which
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Fig. 12: Performance of the attitude-altitude controller in
maintaining the MAV at hover. The repeated excitation
of the control inputs, retains system observability and
causes small oscillations in the states of the MAV. (a)
Roll angle φ tracking performance, (b) Height zI tracking
performance.

induces (bad) corrective actions through thrust and/or moment
commands. This excitation in control inputs increases the
observability of the system and hence the estimates converge
again with the true state values. The convergence of the
estimates leads to (good) corrective actions from the controller,
which (re)stabilizes the flight. Therefore, in flight conditions
with low motion of the MAV, the controller repeatedly excites
the input commands with ‘good’ and ‘bad’ corrective actions.
This leads to small oscillatory motion of the MAV. The
phenomenon becomes more clear by observing the figure 12
where we analyse the controller’s performance in maintaining
the MAV at hover.

As discussed, the sample rate of the optical flow mea-
surements plays a very important role in the controller’s
ability of stabilizing the MAV. To study the influence of
measurement sample rate, we simulate the controller with the
optical flow measurements sampled at various frequencies.
ARMSE between the true MAV states and reference states has
been chosen as the measure of controller’s performance. In this
analysis, the ARMSE corresponding to the state x is computed
as described in equation 23. xr represents the reference value
of state x.

ARMSEx =

k=N∑

k=1

√∑τ
t=0(x(t)− xr(t))2

τ

N
(23)

50 simulation runs have been performed for each sample
rate, while keeping the noise and delays at the same level as
described in section III-F. The obtained ARMSE values (with
±3σ deviations in RMSE), in tracking φ and zI references,
are depicted in figures 13a and 13b respectively. We can
conclude that the controller becomes unstable below 5Hz
optical flow sampling frequency, while resulting in high values
of reference tracking errors for sampling frequencies below
10Hz. For higher values of measurement sampling frequencies,
the controller’s performance improves.

In this section, we have designed an EKF based on the find-
ings of the observability analysis, described in section II. The
estimator has been tested in simulation and its performance
in estimating the MAV’s states has been verified. Further, a
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Fig. 13: Average RMSE in (a) roll angle φ and (b) height
zI reference tracking for the simulated controller with the
optical flow measurements sampled at different sampling
frequencies. The ARMSE values are obtained over 50
simulation runs with different noise realizations. The red
bars represent ±3σ errors in the RMSE values. At 1Hz
sampling frequency, the controller is unstable and hence
the corresponding data points are out of bounds in the
figures.

closed loop PD controller has been implemented that controls
the attitude and altitude of the MAV using state estimates
computed by the proposed estimator. In the following section,
we verify the performance of the estimator in practice using
flight data recorded on a flying robot.

IV. VERIFICATION THROUGH EXPERIMENTS

In this section we verify the performance of the proposed
estimator in practice on real flight data recorded on a Parrot
Bebop quadcopter. The quadcopter is flown in a controlled
environment to perform certain manoeuvres, as discussed in
the following subsections. The estimator is run off-line, on
logged flight data, to estimate the states of the MAV.

In this section, to measure the quality of measured/estimated
values, we have used RMSE between the ground truth and the
measured/estimated values of various quantities for single ma-
noeuvres. Thus, instead of using the RMSE relation described
in equation 21a, we use the following equation for calculating
the RMSE between true value x and measured/estimated value
x̂ of a quantity x, over a manoeuvre of total duration τ :

RMSEx =

√∑τ
t=0(x̂(t)− x(t))2

τ
(24)

A. Experimental Setup

The experiments have been conducted indoors in a con-
trolled flight arena called CyberZoo, at the faculty of
Aerospace Engineering, Delft University of Technology. A
Parrot Bebop quadcopter has been used as the MAV platform
to verify the estimator. The MAV runs custom autopilot
software designed using the open-source autopilot framework
Paparazzi UAV1. A quaternion based PID inner control loop,
available in Paparazzi, has been used to stabilize the attitude of
the Bebop using ego-motion data from IMU. Further the outer
control loop commands the position of the quadcopter inside

1Paparazzi UAV: http://wiki.paparazziuav.org/wiki/Main Page
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Fig. 14: Block diagram depicting the experimental verification procedure.

the CyberZoo, using position data from OptiTrack motion
capture system. The bottom camera of the MAV has been used
to record images which are processed to obtain the optical
flow measurements, as discussed in section IV-C. To obtain
accurate optical flow measurements, all flights are performed
over a textured mat as visible in figure 15. Figure 14 depicts
the experimental verification procedure adopted in this study.

Fig. 15: Bebop flying over a textured surface at CyberZoo
during the experiments.

B. Thrust and Moment Model

The proposed estimator uses the knowledge about thrust T
and moment MxB efference copies. The efference copies can
be obtained from the control commands sent to the MAV’s
actuators or from the velocities of the actuators. There exists
a time lag between the transmission of control commands to
the motor mixing module, that computes the commands to be
sent to individual motor speed controllers, and the generation
of T and MxB . This lag is expected to be less between the
motors’ rotational velocities and the generated T and MxB .
Thus, to reduce the effect of the time difference, T and MxB
values are estimated from the rotor velocities using the linear
model described in equation 25. The linear model is inspired
from the reduced model of forces and moments [39], with the

assumptions that the aerodynamic effects are negligible and
the pitch and yaw rates remain small during the flight.

T = κ1Ω2
1 + κ2Ω2

2 + κ3Ω2
3 + κ4Ω2

4 (25a)

MxB = b(κ1Ω2
1 − κ2Ω2

2 − κ3Ω2
3 + κ4Ω2

4) (25b)

b denotes the distance between MAV’s CoG and motor axes,
along the YB axis. Ωi and parameter κi respectively denote
the rotational speed and thrust coefficient of the ith rotor. We
used a Weighted Least Squares (WLS) parameter estimation
approach to compute the parameters κi, i = 1, 2, 3, 4, for the
MAV used in the experiments. The equations corresponding
to MxB are weighted 100 times more than the equations
corresponding to T to compensate for the difference in scales
of T and MxB values. A merged data set of individual
manoeuvres performed by the MAV in response to reference
step inputs in vertical velocity and roll angle has been used
to fit the model. True values of T are computed by low-pass
filtering and the (unscaled-unbiased) accelerometer measure-
ments along the ZB direction and multiplying the resulting
values with m. Further, the true values of MxB are computed
by differentiating the low pass filtered, (unscaled) gyroscope
roll rate measurements and multiplying the resulting values
with IxB . Table V lists values of the computed parameters, κ,
and figure 16 depicts the performance of the computed model
in estimating the values of T and MxB for the same data-set
which has used to fit the model. 81.11% prediction R2 value
was achieved for the T estimation model, however, the MxB
estimation model performed poorly with R2 value 12.41%.

Further investigating the moment model, we found that
the unaccounted aerodynamic effects significantly affect the
generated moments, even during low velocity manoeuvres.
This inference is in accordance with the remark made in [40],
where the authors have modelled the moments produced by
aerodynamic effects on a Bepobop quadcopter. The derived
model includes terms corresponding to the translational and



15

TABLE V: Estimated parameters of the thrust T and
moment MxB model. The values of the obtained thrust
coefficient parameters, κ, are listed in the units kgm.

κ1 κ2 κ3 κ4

1.49× 10−6 1.79× 10−6 1.21× 10−6 1.40× 10−6
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Fig. 16: Estimation performance of the thrust and moment
model on the estimation data-set. (a) Moment MxB esti-
mation. Estimation R2 = 12.41% (b) Thrust T estimation.
Estimation R2 = 81.11%.

rotational velocities of the MAV. However, since we intend
to not use any sensory information other than optical flow
measurements, we do not have direct access to the values of
these states. This poses a ‘chicken and egg’ problem, where
we require the values of the moments to estimate the motion
states of the MAV and need the values of the same motion
states to estimate the values of the moments.

This deficiency of our estimator remains unsolved in the
scope of the current investigation and we intend to tackle it
in the future studies. To validate the feasibility of the pro-
posed estimator, we consider manoeuvres where the applied
moments on the quadcopter remain small and hence can be
approximated as zero. We thus use only the values estimated
by the thrust model as input to the EKF. The first considered
manoeuvre, M1, is where the quadcopter responds to vertical
velocity reference step inputs, while maintaining its horizontal
position and orientation. Figure 17a depicts the trajectory
followed by the Bebop in the YIZI plane. In the second
manoeuvre, M2, the quadcopter is given position set-points
to move in an approximate vertical rectangular trajectory, as
depicted in figure 17b. Note, that inM2, to move horizontally,
the MAV has to change its roll angle, and thus the actual
moments being applied are higher than in M1. On the other
hand, inM1, though the moment values remain low, the MAV
only moves vertically, thus measuring low ventral flow values
(with high errors). As we will discuss in section IV-D, despite
these discrepancies, the estimator converges and is able to
calculate the state estimates with good levels of accuracy for
the considered manoeuvres.

C. Optical Flow Computation

The image processing pipeline used to obtain the optical
flow measurements from the images captured through the
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Fig. 17: Trajectory followed by the MAV in YI−ZI plane
during the maneuveres (a)M1 and (b)M2.
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Fig. 18: Ventral flow ω̂y measurements computed during
the manoeuvres M1 and M2. The ‘True Value’ of ω̂y
has been computed by substituting the values of the state
estimates, obtained using the IMU and OptiTrack mea-
surements, into equation 17b. (a) ω̂y measurements during
manoeuvre M1. (b) ω̂y measurements during manoeuvre
M2.

bottom camera of the MAV is depicted in figure 14. Maximally
25 corners are detected in each 240 × 240 image utilizing
the Features from Accelerated Segment Test (FAST) corner
tracking algorithm [41][42], and these features are tracked to
the next image using the Lucas-Kanade optical flow algorithm
[43]. Among the vectors computed by tracking the corners,
the median vector is selected as global ventral flow, and its
components are scaled, using the camera’s intrinsic properties
and the time difference between the two captured frames,
to compute the ventral flow components in rad/s. Figure
18 depicts the measured YI ventral flow component (yω̂y )
for the manoeuvres M1 and M2. The ground truth in the
figure has been computed by substituting the state estimates
obtained from on-board IMU and OptiTrack measurements
into equation 17b.

In Paparazzi, there are two different divergence computation
algorithms available: Size Divergence [27] and Linear Flow
Fit [44]. Here, we compare the measurements computed by
both the methods, for the regime of the manoeuvres being
considered in this study.

The Size Divergence method computes flow divergence
by utilizing distances between the tracked corners in two
subsequent images. 100 pairs of tracked corners are randomly
sampled with replacement among all the possible pairs. Then,
for each pair i, the distance between the corners in the previous
image, d(t−∆t),i and the current image d(t),i are computed.
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By calculating the ratio of d(t−∆t),i − d(t),i to d(t−∆t),i,
the expansion and contraction of the flow is measured. To
compute the global divergence, the average of these calculated
ratios is taken. Further, using the time difference between
the two subsequent images, the flow divergence in s−1 is
computed. Equation 26 summarizes the method described
here. Np denotes the number of corner pairs sampled.

However, the Size Divergence algorithm has been derived
with the assumption of the MAV moving in the vertical
direction [27] and hence rotations and horizontal motion might
induce discrepancies in the divergence measurements.

ω̂z =
1

Np

Np∑

i=1

1

∆t

[
d(t−∆t),i − d(t),i

d(t−∆t),i

]
(26)

The second vision algorithm, Linear Flow Fit, is based
on the Longuet-Higgins and Prazdny mathematical model of
optical flow [15], described in equation 1. The algorithm
assumes that the flow vectors are de-rotated, and hence only
contain information about the translational component of op-
tical flow. With this assumption and neglecting the second
order terms in x̂ and ŷ, the equation 1 is modified and a
linear model is approximated between the flow vectors and
their pixel coordinates, as described by equation 27. The
parameters of the linear model, pu = [pu1

, pu2
, pu3

] and
pv = [pv1 , pv2 , pv3 ], are estimated using a maximum likeli-
hood linear least squares estimate within a robust RANdom
SAmple Consensus (RANSAC) estimation technique [45].

û = pu[1, x̂, ŷ] = −ω̂x + (ω̂xα+ ω̂z)x̂+ ω̂xβŷ (27a)

û = pv[1, x̂, ŷ] = −ω̂y + ω̂yαx̂+ (ω̂yβ + ω̂z)ŷ (27b)

α and β denote the gradients of the ground surface. Note,
that since in this study we focus on flying over a flat textured
surface without any inclination, α = 0 and β = 0. The
divergence can be obtained as:

ω̂z =
pu2

+ pv3
2

(28)

Note that the Linear Flow Fit method assumes the avail-
ability of de-rotated flow vectors. However, we use the raw
flow vectors (including rotational component) for divergence
computation, which might introduce errors in the calculated
measurements. Since both the methods involve assumptions
that are violated by the manoeuvres being considered in this
study, the quality of measurements obtained by the two meth-
ods are compared. Figure 19 depicts the divergence measure-
ments obtained, using the two described algorithms, during
manoeuvres M1 and M2. The ground truth is calculated
by substituting the state estimates, obtained from IMU and
OptiTrack measurements, into equation 17b. It can be observed
that the Size Divergence method results in higher number of
outliers. Further, calculating the RMSE between the ground
truth and the divergence measurements results in the values
listed in table VI. Since, the Linear Flow Fit method results
in relatively more accurate divergence measurements, it has

been used to test the estimator’s performance on real flight
data, as described in section IV-D.
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Fig. 19: Divergence ω̂z measurements computed using the
Size Divergence and Linear Flow Fit methods. The ‘True
Value’ of ω̂z has been computed by substituting the values
of state estimates, obtained using the IMU and OptiTrack
measurements, into equation 17b. (a) ω̂z measurements
during manoeuvre M1 (b) ω̂z measurements during ma-
noeuvre M2.

TABLE VI: RMSE in optical flow measurements during
the maneuveres M1 and M2. The RMSE values for the
ventral flow measurements are in units rad/s and for the
divergence measurements are in units s−1.

Measurement
RMSE

Maneuvere M1 Maneuvere M2

Ventral Flow 0.14 0.15

Size Divergence 0.29 0.18

Linear Flow Fit Divergence 0.28 0.15

D. Estimation Results

In this subsection, we present the results obtained by testing
the estimator against real flight data recorded on a Parrot Be-
bop quadcopter during the manoeuvresM1 andM2 depicted
in figure 17. The state estimates have been compared with the
true state values obtained from the on-board inertial sensors
and the OptiTrack positioning system. During manoeuvreM1,
the MAV translates in the vertical direction while maintaining
its orientation and horizontal position. Thus, the MAV’s roll
angle (φ) remains close to zero and does not vary much.
To verify the EKF’s convergence, the initial state estimates
provided to the estimator are set to be far from the true
initial state values of the MAV. Table VII lists the initial state
estimates provided to the EKF and the true initial values of
the states during the manoeuvres M1 and M2.

As discussed in section IV-B, due to complex aerodynamic
effects, we could not fit an accurate function for the calculation
of moments using the rotor velocities. So, the manoeuvresM1

andM2 have been chosen such that the moment values remain
low and thus are approximated to be zero. The EKF has been
tuned to have high process noise variance corresponding to
the state p. This has been done to decrease the estimator’s
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TABLE VII: Initial state estimates provided to the EKF
and the true intial state values during the manoeuvresM1

and M2.

Initial State Values EKF M1 M2

vI (m/s) 2 0.01 0.11

φ (o) 10 0.11 0.25

p (o/s) 10 -6.93 -1.76

zI (m) 2 1.10 0.97

wI (m/s) 2 -0.05 -0.01

confidence on the moment inputs, since the term containing
moment only appears in the derivative equation of p (see
equation 17a).
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Fig. 20: Estimator’s performance on real flight data
recorded on a Bebop 1 quadcopter during manoeuvreM1.
(a) Horizontal velocity vI , (b) roll angle φ, (c) roll rate
p, (d) height zI and (e) vertical velocity wI

Figures 20 and 21 depict the estimation results for manoeu-
vres M1 and M2 respectively. In M1, only the vertical mo-
tion states, zI and wI have been excited and hence the other
states, including p, remain close to zero. Thus, approximating
the moment values to be zero is an appropriate assumption.
It can be observed that, even though the time interval of the
manoeuvre considered is low (τ ≈ 8s), the estimates converge
to their true values and the estimation error variances decrease.
The RMSE between the true and estimated values of φ is
computed to be 2.56o, which is satisfactorily low considering
the wrong initial estimate given to the EKF and the low time
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Fig. 21: Estimator’s performance on real flight data
recorded on a Bebop 1 quadcopter during manoeuvreM2.
(a) Horizontal velocity vI , (b) roll angle φ, (c) roll rate
p, (d) height zI and (e) vertical velocity wI

duration of the manoeuvre.

However, inM2, the MAV also translates horizontally, due
to which φ and p vary. Thus, significant values of moment
act on the MAV. Despite setting the process noise variance
corresponding to the state p at a high value, the discrepancy
in the moment values input to the EKF affects the estimator’s
accuracy. As can be expected, the p estimates are affected the
most. p estimation error variance remains high through-out the
manoeuvre and a high RMSE value of 4.65o/s is registered
between the true and estimated state values of p. However,
despite the zero moment inputs, the predicted values of p in
the EKF are corrected using the optical flow observations and
the variation trend in the estimated values of p matches the
variation trend in the true p values, as depicted in figure 21c.
The estimated values of the other states, including φ, converge
to their true values and the estimation error variances reduce.
Considering the discrepancies in the information provided
to the EKF (moment model), reasonable attitude estimation
accuracy is obtained, with RMSE between true and estimated
values of φ being 2.12o.

Through the results depicted in figure 20 and 21 we verify
a proof of concept of the proposed optical flow based attitude
estimator. Despite the deficiencies in the inputs and measure-
ments provided to the estimator, it converges and provides state
estimates with considerable accuracy. In the following section,
we discuss various aspects and implications of the introduced
approach and conclude the article.
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V. DISCUSSION

In this section we reflect on various aspects and implica-
tions of the optical flow based attitude estimation approach
introduced in this article.

A. Moment Model

It is necessary that we remark upon the main deficiency
in the presented work: the dependency on moment efference
copies and the inability to estimate a model to accurately
compute the moments.

As discussed in section III-E, accuracy of the attitude
estimates is more sensitive to discrepancies in the moment
inputs than the thrust inputs. Further, the low moment of
inertia, associated with most MAVs, means that even small
errors in the estimated moments translate into large errors in
the predicted angular accelerations. The EKF only has two
observations, to correct for these errors, neither of which
provide a direct measure of the attitude or the rate of change
of attitude. Thus, the estimator’s accuracy critically depends
on error-free knowledge of the moment inputs.

On a Bebop, moment generation is significantly affected
by the aerodynamic effects due to translational motion, even
in relatively slow flights [40]. Thus, fitting a model to es-
timate the moments using only the rotor velocities (or the
control commands) is difficult. As, the moments are being
augmented by translational and rotational velocities, ideally
terms corresponding to these velocities should also be used to
calculate the moment. However, in this investigation we have
conditioned ourselves to use optical flow measurements as the
only sensory information, we cannot use additional sensors to
measure the velocities. This poses a ‘chicken and egg’ problem
where we need the values of moments to estimate the velocities
and on the other hand, we need the values of the velocities to
estimate the moments.

For applicability of the approach in real robots, it is nec-
essary to find a solution to this ‘chicken and egg’ problem.
In future studies, we intend to utilize advanced model fitting
methods to fit the moment estimation function. Another viable
solution might be to accommodate the aerodynamic terms in
the estimator’s motion model. The proposed solution can be
summarized through the following equations:

d

dt
p =

M

IxB
(29a)

M = f(Ω1,Ω2,Ω3,Ω4, vI , wI , p) (29b)

Here, we propose that the roll rate, p, derivative relation in
equation 17a be replaced by equation 29a. Thus, instead of
directly using MxB as an input to the model, we augment the
motion model by including a non-linear function of moment
estimation, M , that depends on the rotor speeds and the
MAV’s velocities. Similarly, a non-linear function for thrust
estimation can also be modelled which would then replace
the thrust, T , terms in the motion model. For instance, the
aerodynamic model derived in [40] can be used as the said
non-linear functions. The new system would take the rotor

velocities as inputs instead of the thrust and moment values.
However, the change in the motion model would augment
the observability relations. The implications of the proposed
strategy, of estimating moments, on the system’s observability
remains to be investigated in future studies.

B. Control of a Tailless Flapping Wing MAV: DelFly Nimble
The attitude estimation approach introduced in this article

uses optical flow measurements from a monocular camera
as the only sensory information and thus provides a very
attractive solution for miniaturization of MAVs. For tiny flying
robots, like DelFly Nimble [1], Robobee [46], or tiny quadro-
tor pocket drones [47], every sensor setup is a significant
payload. Thus the proposed optical flow based state estimation
strategy is highly relevant for such MAVs. The approach might
even be essential for inherently unstable FWMAVs, like the
DelFly Nimble, that require active ego-motion estimation and
stabilization. In future studies, we intend to implement the
proposed attitude estimation approach for flight stabilization
and control of the Nimble. In this subsection, we present
a preliminary analysis on the feasibility of the proposed
approach for flight control of a DelFly Nimble.

The flight dynamics of the Nimble is complicated. Thus
for this preliminary analysis, we use the same MAV model
as has been used so far in this investigation, with the mass
and moment of inertia of the simulated MAV set equal to that
of the Nimble. An attitude-altitude controller, as discussed in
section III-G, has been implemented to control the height and
roll angle of the MAV. The Nimble, with mass of 0.029kg
and inertia of 1.26 × 10−4kgm2 about its YB axis [48], has
approximately 10 times less mass and inertia as compared
to a Bebop quadcopter. Thus, it can be expected to be more
sensitive to noise and delays in the inputs and measurements.
Note that since we simulate the roll dynamics of the MAV, we
have used the Nimble’s inertia about YB axis as the simulated
MAV’s inertia about XB axis. Further, the 4g stereovision
system, Stereoboard [49], has been modified into a monocular
setup which is lightweight enough to be carried on a Nimble.
The monocam setup has a frame rate of about 30Hz and thus
we simulate the controller with the optical flow measurements
being sampled at 30Hz and the EKF running at 500Hz. For this
analysis, the delays in all the inputs and measurements and the
noise in the measurements are kept the same as described in
section III-F. However, having 10 times less mass and inertia,
we set the noise values in thrust and moments to be 10 times
the values used in section III-F, thus keeping the noise, in
vertical acceleration and angular acceleration, of the same
order as previously considered. The simulated MAV has been
given the same reference attitude and height to track as used
in III-G (refer figure 3).

As expected, we observed that the simulated MAV controller
is more sensitive to the noise and delays in the inputs, and
thus the EKF has been tuned to have higher values of process
noise variances corresponding to the states wI and p. Figure
22 depicts the results obtained by simulating the controller.

Though the controller struggles to track the reference states
and the MAV oscillates, the system does-not become un-
stable and the reference trajectory is approximately tracked
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Fig. 22: Performance of the attitude-altitude controller on
a MAV model with mass and inertia representing a DelFly
Nimble. (a) Roll angle φ tracking performance, (b) Height
zI tracking performance.

though with high errors. Therefore, the preliminary analysis
establishes that it is feasible to use the introduced approach
for flight stabilization of a MAV of the scale of Nimble.
However, being a FWMAV, the Nimble’s body experiences
considerably more oscillations and disturbances as compared
to a Bebop. Thus the optical flow readings as well as the
efference copy inputs can be expected to be more noisy. Given
the sensitivity of the simulated system to noise and the poor
performance of the controller in the scenario studied (figure
22), in practice it might be necessary to sample the optical
flow measurements at a higher frame rate. However, only a
few available cameras, like the Curved Artificial Compound
Eyes (CURVACE) [50], have high frame rates and are light
enough to be used on the Nimble. In future investigations,
we will consider implementing the approach presented in this
article on a Nimble using a suitable camera.

C. Implications for Insect Flight

Various theories of insect flight suggest that insects employ
visuo-motor control strategies to perform various navigation
tasks [4], thus using optical flow measurables directly in
a control loop, without estimating the absolute values of
their states. However, there are evidences suggesting that
the insects might be able to estimate the absolute values of
their states [25][24]. Some approaches have been developed
that hypothesize how the insects can estimate their velocities
[28] and distances [24][26] using optical flow and control
efference copies. However, to the best of our knowledge, the
strategies used by insects for optical flow based estimation of
orientation is largely un-explained. Our findings form a novel
hypothesis about how some flying insects can estimate their
states, including attitude, using optical flow as the prominent
sensory information.

In our analysis, we showed that while maintaining the MAV
in hover with the attitude-altitude control strategy (section
III-G), the thrust and moment control inputs are repeatedly
excited with ‘good’ and ‘bad’ corrective actions. This causes
the MAV to perform small oscillations. It will be an interesting
case to investigate whether similar oscillations are also found
in hovering insects. If these oscillations are indeed found to be
performed by the insects, it can then be hypothesized that the
oscillations play a more critical role in the flight stability of

insects that do not have halteres (and thus prominently depend
on optical flow for flight stabilization), than in insects that
possess the said rotational rate sensing organs. Experimentally
studying and comparing the hovering flight characteristics of
the two kinds of insects would test the stated hypothesis and
further help elucidate the flight control strategies employed by
insects.

VI. CONCLUSIONS

In this article, we have proposed a novel bio-inspired state
estimation technique that uses optical flow measurements (as
the only sensory information) and the knowledge of control
efference copies to estimate the roll attitude, roll rate, height,
horizontal and vertical velocities of a MAV flying over a
flat textured surface with three degrees of freedom (3-DoF).
We used non-linear observability analysis to mathematically
prove the feasibility of estimating orientation of a MAV using
optical flow measurements. This analysis has been verified in
simulations. A closed loop attitude-altitude controller based
on the proposed estimator has been shown to be capable of
stabilizing the flight of a MAV. Further, we verified a proof of
concept of the estimator by demonstrating its performance on
flight data of a real robotic platform. In future investigations,
we intend to devise a more effective strategy of estimating
the values of the efference inputs and incorporate it with the
estimator. Further, we will implement the proposed approach
to estimate and stabilize the flight of a MAV in real-time.

The findings of this study propose a promising technique
for miniaturization of MAVs and provide a novel hypothesis
about optical flow based attitude estimation strategies used
by the insects. Thus this study brings us a small step closer
towards making MAVs as nimble as the insects.
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APPENDIX A
OBSERVABILITY ANALYSIS: VARYING ATTITUDE CONSTANT ALTITUDE CASE

For brevity, all the expressions involved in the observability analysis, for various scenarios, have not been included in
the main article. Instead, the observability analysis derivations are being presented in the following appendices for reader’s
reference.

In this appendix, we present the observability analysis for the case: ‘varying attitude, constant altitude’, as described in
section II-D, equation 9. Following equations describe the system being considered for observability analysis:

f(x, t) =
d

dt




vI
φ
p
zI


 =




gtanφ
p

MxB/IxB
0


 (30a)

yω̂y =
−vIcos2φ

zI
+ p (30b)

There are four states to be estimated, thus the observability matrix needs to have minimum four independent rows. Therefore,
we consider the Lie derivatives up-to the third order of the ventral flow observation. The Lie derivatives can be computed as
follows:

L0
fyω̂y

=
−vIcos2φ

zI
+ p (31a)

L1
fyω̂y

=
MxBzI − (IxBgsin(2φ))/2 + IxBpvIsin(2φ)

IxBzI
(31b)

L2
fyω̂y

=
MxBvIsin(2φ) + IxBgp+ 2IxBp

2vIcos(2φ)− 2IxBgpcos(2φ)

IxBzI
(31c)

L3
fyω̂y

= −[
6MxBgcos

3(φ)− 5MxBgcos(φ) + 6MxBpvIcos(φ) + 2IxBgp
2sin(φ)

IxBzIcos(φ)
+

−12MxBpvIcos
3(φ) + 8IxBp

3vIcos2(φ)sin(φ)− 12IxBgp
2cos2(φ)sin(φ)

IxBzIcos(φ)
]

(31d)

Computing the Jacobian of the Lie derivatives, we obtain the following elements of the observability matrix.

O1 =

{−cos2(φ)

zI

vIsin(2φ)

zI
1

vIcos2(φ)

z2
I

}
(32a)

O2 =

{
psin(2φ)

zI

−cos(2φ)(g − 2pvI)

zI

(vIsin(2φ))

zI

sin(2φ)(g − 2pvI)

2z2
I

}
(32b)

O3,1 =
(2IxBcos(2φ)p2 +MxBsin(2φ))

IxBzI
(32c)

O3,2 =
−4IxBvIsin(2φ)p2 + 4IxBgsin(2φ)p+ 2MxBvIcos(2φ)

IxBzI
(32d)

O3,3 =
(g − 2gcos(2φ) + 4pvIcos(2φ))

zI
(32e)

O3,4 =
−(MxBvIsin(2φ) + IxBgp+ 2IxBp

2vIcos(2φ)− 2IxBgpcos(2φ))

(IxBz
2
I)

(32f)

O4,1 =
(−4IxBsin(2φ)p3 + 6MxBcos(2φ)p)

(IxBzI)
(32g)

O4,2 = −[
2IxBgp

2 + 12IxBgp
2cos2(φ)− 24IxBgp

2cos4(φ)− 8IxBp
3vIcos2(φ)

(IxBzIcos2(φ))
+

16IxBp
3vIcos4(φ)− 12MxBgcos

3(φ)sin(φ) + 24MxBpvIcos
3(φ)sin(φ)

(IxBzIcos2(φ))
]

(32h)

O4,3 = − (6MxBvIcos(φ)− 12MxBvIcos
3(phi) + 4IxBgpsin(φ) + 24IxBp

2vIcos2(φ)sin(φ)− 24IxBgpcos
2(phi)sin(φ))

IxBzIcos(φ)
(32i)
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O4,4 = [
6MxBgcos

3(φ)− 5MxBgcos(φ) + 6MxBpvIcos(φ) + 2IxBgp
2sin(φ)

IxBz
2
Icos(φ)

+

−12MxBpvIcos
3(φ) + 8IxBp

3vIcos2(φ)sin(φ)− 12IxBgp
2cos2(φ)sin(φ)

IxBz
2
Icos(φ)

]
(32j)

Note, that some elements of the Jacobian are too large to be represented in a matrix. Thus for the clarity of representation,
we have split the observability matrix into row vectors (equations 32a and32b) and individual elements (equations 32c to 32j).
The term Oi,j refers to the element at ith row and jth column of the observability matrix O. Similar notation style has been
used in the following appendices as well.

From the computed elements of the observability matrix, it can be inferred that the observability matrix is full rank. Thus
the system represented by equation 9 is locally weakly observable.
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APPENDIX B
OBSERVABILITY ANALYSIS OF CONSTANT ATTITUDE VARYING ALTITUDE CASE

In this appendix, we derive the observability analysis for the ‘constant attitude, varying altitude case’ as discussed in section
II-E. The system equations (equation 13) can be restated as follows:

f(x, t) =
d

dt




vI
φ
zI
wI


 =




Tsinφ/m
0
wI

Tcosφ/m− g


 (33a)

yω̂y =
−vIcos2φ

zI
+
wIsin2φ

2zI
(33b)

Since the system has four states, the observability matrix needs to have at least four independent rows for the system to be
observable. Thus we consider Lie derivatives of the ventral flow observations up to the third order:

L0
fyω̂y =

−vIcos2φ

zI
+
wIsin2φ

2zI
(34a)

L1
fyω̂y

=
−(cos(φ)(sin(φ)w2

I − vIcos(φ)wI + gzIsin(φ)))

z2
I

(34b)

L2
fyω̂y = cos(φ)[

2mw3
Isin(φ) + TvIzIcos2(φ)− 2mvIw2

Icos(φ)

(mz3
I)

+

3gmwIzIsin(φ)− TwIzIcos(φ)sin(φ)− gmvIzIcos(φ)

(mz3
I)

]
(34c)

L3
fyω̂y

= −3cos(φ)[
2mw4

Isin(φ)− (Tgz2
Isin(2φ))/2− Tw2zIsin(2φ) + g2mz2

Isin(φ)− 2mvIw3
Icos(φ)

(mz4
I)

+

2TvIwIzIcos2(φ) + 4gmw2
IzIsin(φ)− 2gmvIwIzIcos(φ)

(mz4
I)

]
(34d)

Computing the Jacobian of the Lie derivatives, we obtain the elements of the observability matrix, as follows:

O1 =

{−cos2(φ)

zI

(wIcos(2φ) + vIsin(2φ))

zI

(2vIcos2(φ)− wIsin(2φ))

(2z2
I)

sin(2φ)

(2zI)

}
(35a)

O2,1 =
(wIcos2(φ))

(z2
I)

(35b)

O2,2 =
−(cos(2φ)w2 + vIsin(2φ)wI + gzIcos(2φ))

z2
I

(35c)

O2,3 =
(cos(φ)(2sin(φ)w2

I − 2vIcos(φ)wI + gzIsin(φ)))

(z3
I)

(35d)

O2,4 =
(cos(φ)(vIcos(φ)− 2wIsin(φ)))

z2
I

(35e)

O3,1 =
−(cos2(φ)(2mw2

I − TzIcos(φ) + gmzI))

(mz3
I)

(35f)

O3,2 =
4mw3

Icos
2(φ)− 2mw3

I − 3gmwIzI + 2mvIw2
Isin(2φ) + 2TwIzIcos(φ)

(mz3
I)

+
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(mz3
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(35g)

O3,3 = −2cos(φ)[
3mw3

Isin(φ) + TvIzIcos2(φ)− 3mvIw2
Icos(φ) + 3gmwIzIsin(φ)

(mz4
I)

+
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(mz4
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]
(35h)

O3,4 =
(cos(φ)(6msin(φ)w2

I − 4mvIcos(φ)wI + 3gmzIsin(φ)− TzIcos(φ)sin(φ)))

(mz3
I)
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O4,1 =
(6wIcos2(φ)(mw2

I − TzIcos(φ) + gmzI))

(mz4
I)

(35j)

O4,2 = [
9Tgz2

Icos(3φ)− 24mw4
Icos(2φ) + 18Tw2

IzIcos(3φ)− 24mvIw3
Isin(2φ)− 12g2mz2
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+

6Tw2
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]
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3TvIwIzIcos2(φ) + 6gmw2
IzIsin(φ)− 3gmvIwIzIcos(φ)

(mz5
I)

]
(35l)

O4,4 = −3cos(φ)[
8mw3

Isin(φ) + 2TvIzIcos2(φ)− 6mvIw2
Icos(φ) + 8gmwIzIsin(φ)

(mz4
I)

+

−4TwIzIcos(φ)sin(φ)− 2gmvIzIcos(φ)

(mz4
I)

]
(35m)

It can be verified that the above elements result in a full rank observability matrix for various state-input value combinations.
Thus the system represented by equation 13 is locally weakly observable.
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APPENDIX C
OBSERVABILITY ANALYSIS OF THE COMPLETE MODEL (SYSTEM

∑
1)

In this appendix, we derive the observability matrix for the complete model of the estimator studied in this investigation.
The motion model and observation equations of the system (described in equation 17) can be restated as follows:

f(x, t) =
d

dt




vI
φ
p
zI
wI




=




Tsinφ/m
p

MxB/IxB
wI

Tcosφ/m− g




(36a)

y =

[
yω̂y

yω̂z

]
=




−vIcos2φ

zI
+
wIsin2φ

2zI
+ p

−vIsin2φ

2zI
− wIcos2φ

zI


 (36b)

Since the system has five states, the observability matrix needs to have at least five independent rows for the system to
be locally weakly observable. Thus we will have to consider Lie derivatives, at least up to the second order of one of the
observations and up to the first order of the other observation equation. The said Lie derivatives are derived in the following
equations:

L0
fyω̂y

=
−vIcos2φ

zI
+
wIsin2φ

2zI
+ p (37a)

L0
fyω̂z

=
−vIsin2φ

2zI
− wIcos2φ

zI
(37b)

L1
fyω̂y =

2MxBz
2
I + IxBvIwI − IxBw

2
Isin(2φ) + IxBvIwIcos(2φ)− IxBgzIsin(2φ) + 2IxBpwIzIcos(2φ) + 2IxBpvIzIsin(2φ)

2IxBz
2
I

(37c)

L1
fyω̂z

=
(mw2

Icos
2(φ)− TzIcos(φ) +mpvIzI + gmzIcos2(φ) +mvIwIsin(2φ)/2− 2mpvIzIcos2(φ) +mpwIzIsin(2φ))

(mz2
I)

(37d)

L2
fyω̂y = −[

4IxBmvw
2 − 4IxBmw

3
Isin(2φ)− 4IxBTpz

2
Icos(φ)− IxBTvIzIcos(3φ) + IxBTwIzIsin(3φ) + 2IxBgmvIzI

(4IxBmz
3
I)

+

4IxBmvIw
2
Icos(2φ)− 4MxBmwIz

2
Icos(2φ)− 4MxBmvIz

2
Isin(2φ)− 3IxBTvIzIcos(φ) + IxBTwIzIsin(φ)

(4IxBmz
3
I)

+

8IxBmpw
2
IzIcos(2φ)− 8IxBmp

2vIz2
Icos(2φ) + 8IxBmp

2wIz2
Isin(2φ) + 2IxBgmvIzIcos(2φ)

(4IxBmz
3
I)

+

8IxBgmpz
2cos(2φ) + 8IxBmpvwzsin(2φ)− 6IxBgmwIzIsin(2φ)

(4IxBmz
3
I)

]

(37e)
The 25 elements of the observability matrix can be computed as:

O1 =

{−cos2(φ)

zI

(wIcos(2φ) + vIsin(2φ))

zI
1

(2vIcos2(φ)− wIsin(2φ))

(2z2
I)

sin(2φ)

(2z2
I)

}
(38a)

O2 =

{−sin(2φ)

(2zI)

−(vIcos(2φ)− wIsin(2φ))

zI
0

(2wIcos2(φ) + vIsin(2φ))

(2z2
I)

−cos2(φ)

zI

}
(38b)

O3,1 =
(wI + wIcos(2φ) + 2pzIsin(2φ))

(2z2
I)

(38c)

O3,2 =
−(w2

Icos(2φ) + gzIcos(2φ) + vIwIsin(2φ) + 2pwIzIsin(2φ)− 2pvIzIcos(2φ))

(z2
I)

(38d)

O3,3 =
−(wIcos(2φ) + vIsin(2φ))

(zI)
(38e)

O3,4 =
−(2vIwI − 2w2

Isin(2φ) + 2vIwIcos(2φ)− gzsin(2φ) + 2pvIzIsin(2φ) + 2pwIzIcos(2φ))

(2z3
I)

(38f)
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O3,5 =
(vI + vIcos(2φ)− 2wIsin(2φ) + 2pzIcos(2φ))

(2z2
I)

(38g)

O4,1 =
(wIsin(2φ)− 2pzIcos(2φ))

(2z2
I)

(38h)

O4,2 =
(TzIsin(φ)−mw2

Isin(2φ) +mvIwIcos(2φ)− gmzIsin(2φ) + 2mpwIzIcos(2φ) + 2mpvIzIsin(2φ))

(mz2
I)

(38i)

O4,3 =
−(vIcos(2φ)− wsin(2φ))

(zI
(38j)

O4,4 =
−(2mw2

Icos
2(φ)− TzIcos(φ) +mpvIzI + gmzIcos2(φ) +mvIwIsin(2φ)− 2mpvIzIcos2(φ) +mpwIzIsin(2φ))

mz3
I

(38k)

O4,5 =
(4wIcos2(φ) + vIsin(2φ) + 2pzIsin(2φ))

2z2
I

(38l)

O5,1 = −[
2IxBmw

2
Icos

2(φ)−MxBmz
2
Isin(2φ)− IxBTzIcos

3(φ)

IxBmz
3
I

+

2IxBmp
2z2
I + IxBgmzIcos

2(φ)− 4IxBmp
2z2
Icos

2(φ) + 2IxBmpwIzIsin(2φ)

IxBmz
3
I

]
(38m)

O5,2 = −[
3IxBTwIzIcos(3φ)− 8IxBmw

3
Icos(2φ) + 4IxBTpz

2
Isin(φ) + 3IxBTvIzIsin(3φ)− 8MxBmvIz

2
Icos(2φ)

IxBmz
3
I

+

−8ImvIw2
Isin(2φ) + 8MxBmwIz

2
Isin(2φ) + IxBTwIzIcos(φ) + 3IxBTvIzIsin(φ)− 16IxBgmpz

2
Isin(2φ)

IxBmz
3
I

+

−16IxBmpw
2
IzIsin(2φ) + 16IxBmp

2wIz2cos(2φ) + 16IxBmp
2vz2
Isin(2φ)− 12IxBgmwIzIcos(2φ)

4IxBmz
3
I

+

−4IxBgmvIzIsin(2φ) + 16IxBmpvIwIzIcos(2φ)

4IxBmz
3
I

]

(38n)

O5,3 = −[
2mw2

Icos(2φ)− TzIcos(φ) + 2gmzIcos(2φ) + 2mvIwIsin(2φ)− 4mpvIzIcos(2φ) + 4mpwIzIsin(2φ)

mz2
I

]

(38o)

O5,4 = [
6ImvIw2

I − 6IxBmw
3
Isin(2φ)− 2ITpz2

Icos(φ)− IxBTvIzIcos(3φ) + IxBTwIzIsin(3φ) + 2IxBgmvIzI
2IxBmz

4
I

+

−2MxBmwIz
2
Icos(2φ)− 2MxBmvIz

2
Isin(2φ)− 3IxBTvIzIcos(φ) + IxBTwIzIsin(φ) + 8IxBmpw

2
IzIcos(2φ)

2IxBmz
4
I

+

−4Imp2vIz2
Icos(2φ) + 4Imp2wIz2

Isin(2φ) + 2IxBgmvIzIcos(2φ)− 6IxBgmwIzIsin(2φ)

2IxBmz
4
I

+

4Igmpz2
Icos(2φ) + 8IxBmpvIwIzIsin(2φ) + 6IxBmvIw

2
Icos(2φ)

2IxBmz
4
I

]

(38p)

O5,5 = −[
8IxBmvIwI − 4MxBmz

2
Icos(2φ)− 12IxBmw

2
Isin(2φ) + IxBTzIsin(φ) + IxBTzIsin(3φ) + 8IxBmp

2z2
Isin(2φ)

4IxBmz
3
I

+

8IxBmvIwIcos(2φ)− 6IxBgmzIsin(2φ) + 16IxBmpwIzIcos(2φ) + 8IxBmpvIzIsin(2φ)

4IxBmz
3
I

]

(38q)
It can be verified that all the rows of the obtained observability matrix are linearly independent, thus rendering the system

locally weakly observable.
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2
Inertial Measurements based Attitude
Estimation in MAVs

A prerequisite to successful autonomous flight is the determination and control of the vehicle’s ori-
entation in space with respect to an inertial frame of reference. The conventional method for atti-
tude estimation in MAVs is the use of IMUs comprising of accelerometers, gyroscopes and some-
times magnetometers. MEMS IMU sensors are popular, in the field of MAVs, because they perfectly
fit the stringent weight and size restrictions that come with the challenge of miniaturization of these
platforms. However, these sensors suffer from high noise and inherent drift that lead to erroneous
attitude estimates. So, these attitude estimates, obtained from the inertial measurements, have
to be corrected by software solutions and/or complementary sensors. This chapter is intended to
present a brief review of the inertial measurements based attitude estimation techniques and high-
light the drawbacks of the approach.

2.1. Inertial Sensors
Specific force sensors: accelerometers, and rotation sensors: gyroscopes, are conventionally used in
MAVs as the inertial motion sensors to estimate vehicle position, orientation and velocities. Often
these sensors are also supplemented by magnetic field orientation sensors, called magnetometers.
This section intends to discuss the basic principles of operation and the mathematical models of
these sensors.

Accelerometers
An accelerometer is the standard device used in MAVs to measure linear accelerations. All ac-
celerometers work on the principle of a mass-spring-damper system, and measure the force re-
quired to accelerate a proof mass in the vehicle’s body reference frame. Consider the system repre-
sented by figure 2.1.

Let ys = Ys si n(ωs t ) denote the displacement of the vehicle containing the system and xs denote
the displacement of the proof mass m. If the relative displacement of the proof mass is denoted
by rs = xs − ys , then, using Newton’s second law, the equation of motion of the proof mass can be
written as:

mr̈s + cṙs +krs =−mÿs = mω2
s Ys si n(ωt ) (2.1)

where, c denotes the damping constant of the damper and k denotes the spring constant.

1https://leancrew.com/all-this/2012/05/accelerometers/
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Figure 2.1: Spring-mass-damper system. Source:1

Then the steady state solution for rs is also a sinusoid, with the same frequency, ωs , and ampli-
tude, Rs , defined by:

Rs =
Ys

(
ωs

ωsn

)2

√[
1−

(
ωs

ωsn

)2]2

+
[

2ζ
ωs

ωsn

]2
(2.2)

Where,ωsn denotes the natural frequency of the spring mass system, and ζ is the damping ratio:

ωsn =
√

k

m

ζ= c

2
p

km

(2.3)

In equation 2.1 if the ratio ωs
ωsn

is assumed to be small ( ωs
ωsn

<< 1) then the relation can be simpli-
fied to:

Rs = Ys

(
ωs

ωsn

)2

(2.4)

Thus, if the spring mass damper system is designed with a high ωsn and if motion frequency of
the vehicle if small compared to that value, then the displacement amplitude, Rs , of the proof mass
will be proportional to the acceleration amplitude,ω2

s Ys , of the vehicle. Thus the acceleration of the
vehicle can be measured by measuring the displacement of the proof mass and using the known
natural frequency of the system. This is the basic principle of operation of all accelerometers [40].

It should be noted that the measurement of a vehicle’s acceleration is complicated by the fact
that it is almost impossible to distinguish between the force acting on the proof mass due to earth’s
gravity, g and the force required to accelerate the proof mass. Thus accelerometers measure the spe-
cific force, f b , in vehicle’s body frame, and not the vehicle’s true acceleration in navigation frame,
an

i i , as described in equation 2.5.

Here, the superscripts, n and b, represent the navigation and body reference frames respectively
and Rbn is the rotation matrix for transforming values in navigation frame to the body frame. The
subscripts describe the frames in which subsequent differentiations of the position have been per-
formed to obtain the linear accelerations (with i representing the inertial frame of reference). Thus
an

i i refers to the acceleration of a vehicle, w.r.t navigation reference frame, computed by double dif-
ferentiating the position of the vehicle in inertial frame. For navigation, the acceleration an

nn is of
interest and it can be derived from an

i i as: (formulation adopted from Kok et al. [41])

f b = Rbn(an
i i − g n) (2.5)
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an
nn = an

i i −2ωn
i e × vn

n −ωn
i e ×ωn

i e ×pn (2.6)

Where, ωi e denotes the angular velocity of earth, v is the velocity of the vehicle and p is the
distance of the sensor from the earth’s centre. Note that the relation has been derived with the as-
sumption that the navigation frame is fixed to the earth reference frame, which is valid as long as
the displacement of the vehicle remains small compared to the earth’s size. This is a reasonable as-
sumption for MAV applications. The term 2ωn

i e ×vn
n is the Coriolis acceleration component and the

term ωn
i e ×ωn

i e ×pn is the centrifugal acceleration component.

To be used in parameter estimation algorithms, a mathematical model of the sensor measure-
ment has to be formulated and a frequently used accelerometer measurement model can be de-
rived by combining equations 2.5 and 2.6, as formulated in equation 2.7 [41]. The model uses the
assumptions that the centrifugal acceleration is absorbed in the local gravity vector and the Coriolis
acceleration magnitude is small compared to the magnitude of the acceleration measurements.

am,t = f b
t +δb

a,t +eb
a,t

am,t = Rbn
t (an

nn,t − g n
t )+δb

a,t +eb
a,t

(2.7)

Where, δa,t denotes the accelerometer bias and ea,t denotes the sensor noise. MEMS accelerom-
eter noise can typically be modelled quite accurately as Gaussian noise and hence, if properly cal-
ibrated, the measurements in the three accelerometer axes are independent with the covariance
matrix being diagonal. The accelerometer bias is slowly time varying. One way of treating this time
varying bias is to model it as a constant parameter, assuming that the experiment duration is small
compared to the time required for the bias to change significantly. Otherwise, the sensor bias varia-
tion is treated as Gaussian and the bias is estimated during the state estimation step by including it
in the state vector [41].

Gyroscopes
Gyroscopes are inertial sensors that exploit the property of inertia, namely the resistance to a change
in angular momentum, to sense rotational rates and the attitude of a moving platform. In their most
basic form, gyroscopes are a spinning wheel or disk on an axle that is free to assume any orienta-
tion, as depicted in figure 2.2. Due to the conservation of angular momentum, a spinning rotor
possesses two fundamental properties: Rigidity and Precession. Rigidity is defined as the property
that resists any force or moment that tends to change the direction of the spin axis. Free gyroscopes
use the rigidity property to remain in a fixed orientation relative to inertial space and hence provide
reference datums for a vehicle’s attitude and heading angles. Precession is defined as the property
of angular change in direction of rotation under the influence of an applied force. Rate gyroscopes
use the precession property to encode angular rates [42].

Though the rotating disc is the most common principle of operation for gyroscopes, gyroscopic
devices based on other operating principles also exist, such as fibre optic gyroscopes, solid state ring
lasers and, the ones being ubiquitously used in MAV applications, MEMS gyroscopes [13]. MEMS
gyroscopes measure rotational rates based on the principle of Coriolis forces, similar to halteres in
dipteran insects (discussed in Chapter 3). If a proof mass is vibrated sinusoidally in a plane that
is rotating with some angular velocity, ω, then due to the acting Coriolis force the mass vibrates
sinusoidally (perpendicular to the original direction of motion) with amplitude proportional to ω.
Measuring this Coriolis induced motion amplitude provides the knowledge of ω.

So, the gyroscope measures the angular velocity of the body frame with respect to the inertial
frame, expressed in the vehicle body frame. Let this angular velocity be denoted by ωb

i b . Now, using
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Figure 2.2: The spinning wheel: Demonstration of gyroscopic precession and rigidity. Source [42]

the same notations as were used for the derivation of the accelerometer measurement model, ωb
i b

can be expressed as: [41]

ωb
i b = Rbn(ωn

i e +ωn
en)+ωb

nb (2.8)

To determine the orientation of the body with respect to the navigation frame, the angular ve-
locity ωb

nb is of interest. Using equation 2.8, a gyroscope measurement model can be described as:

ωm,t =ωb
i b,t +δb

ω,t +eb
ω,t

ωm,t = Rbn
t (ωn

i e,t +ωn
en,t )+ωb

nb,t +δb
ω,t +eb

ω,t

(2.9)

Here, δb
ω,t and eb

ω,t represent the sensor bias and sensor noise respectively. Similar to accelerom-
eters, MEMS gyroscope noise can be modelled as Gaussian and the gyroscope bias is slowly time
varying, which can either be modelled as a constant parameter or estimated as a part of the time
varying state vector.

Apart from modelling of the sensor noise and bias, various other modelling choices are also pos-
sible. If the sensor platform does not travel significant distances compared to the size of the earth,
then the navigation frame can be assumed to be fixed to the earth frame making ωn

en zero. Further,
the magnitude of earth rotation, ωn

i e , is fairly small compared to the magnitude of the actual mea-
surements. Assuming the navigation frame is fixed to earth and the magnitude of earth’s rotational
velocity is negligible, the model in equation 2.9 can be simplified into:

ωm,t =ωb
nb,t +δb

ω,t +eb
ω,t (2.10)

Magnetometers
Magnetometers measure the local magnetic field, which consists of the earth’s magnetic field as well
as the magnetic field induced by other magnetic materials in the vicinity. The local earth magnetic
field is denoted by mn . The horizontal component of mn points towards the magnetic north pole
of earth and ratio between the horizontal and vertical components is described by the dip angle δ.
The local magnetic field, and hence the dip angle, varies with position on earth. But if we assume
the that the displacement of the sensor platform is small compared to the size of the earth, then lo-
cal magnetic field can be assumed to be constant during the experiment duration. In case the local
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magnetic field is not polluted by the presence of other magnetic materials in the vicinity, then in-
formation about the vehicle’s orientation can be extracted from the magnetometer measurements.
Magnetometers are often used to determine the vehicle heading (orientation around the gravity
vector). Information about a vehicle’s orientation is encoded by the direction of the magnetic field
vector, and its magnitude is irrelevant. Therefore, the magnetic field can be modelled as [41]:

mn = [
cosδ 0 si nδ

]T
(2.11)

And the magnetometer measurements can be modeled as:

mm,t = Rbn,t mn
t +em,t (2.12)

Where, em denotes the magnetometer noise and is often modelled as Gaussian noise. This
model defines the vehicle’s orientation with respect to the magnetic north. If the vehicle’s orien-
tation with respect to the true north is of interest then the magnetic declination has to be taken
into account. However, in practice the magnetic field measurements are polluted by the effects of
other magnetic materials in the sensor’s vicinity, which is undesirable for orientation estimation
applications [41].

2.2. Estimation Methods
Seemingly the most intuitive method of estimating the attitude of a vehicle is through integration
of the rate gyroscope measurements. However, due to the time varying bias, the rates measured by
the gyroscopes drift over time. Integration of these noisy, biased measurements lead to erroneous
attitude estimates. This calls for a more sophisticated attitude estimation approach. Roll and pitch
attitude information can also be extracted from accelerometer measurements as the accelerome-
ter is sensitive to the gravity vector. Magnetometer measurements can be used to determine the
vehicle heading. Hence, attitude information from the accelerometers and magnetometers can be
fused with the gyroscope measurements to increase the accuracy of attitude estimates, as depicted
in figure 2.3.

Figure 2.3: Sensor fusion to increase the accuracy of attitude estimates

Two widely used methods of sensor fusion for attitude estimation, namely Kalman filter and
complimentary filter, are briefly discussed in this section.

2.2.1. Kalman Filter
In 1960, R. E. Kalman introduced Kalman filter (KF) [43] that provides a recursive solution to the
discrete-data linear filtering problem. Since then, KF has been extensively utilized by researchers,
particularly in the field of robotic navigation.

Consider the following discrete time controlled process:

x t = Ax t−1 +B u t−1 +w t−1

z t = H xt +νt
(2.13)
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Where, x is the state vector of the process, which will be estimated by the KF. z denotes the
measurements. The random variables w and ν represent the process and measurement noises re-
spectively. They are generally assumed to be independent, white noises with Gaussian distribution.
Let Q denote the process noise covariance matrix and R denote the measurement noise covariance
matrix. A represents the discrete system matrix, B denotes the discrete input matrix and H denotes
the discrete observation matrix.

KF estimates the states of a system by using a recursive predict-update method: first, the time
update step is executed during which the process state is projected forward in time, using the pro-
cess motion model, to obtain the ‘a priori’ state predictions for the next time step. In the second
step, the measurement update is executed during which the process measurements are used to cor-
rect the ‘a priori’ predictions and obtain an improved ‘a-posteriori’ estimate. After each time update
and measurement update pair, the estimation process is repeated with the previous estimated states
used to project the new predicted states. This recursive loop is depicted in figure 2.4. The specific
equations for time and measurement updates are presented below:

Time Update
x̂−

t = Ax̂ t−1 +B u t−1

P−
t = AP t−1 AT +Q

(2.14)

Here, P denotes the state prediction error covariance matrix. (̂.) sign over the variables represents
that the value is estimated and (−) sign in superscript denotes that the estimated values are not the
optimal estimations but one step ahead predictions.

Measurement Update

K t = P−
t H T (HP−

t H T +R)−1

x̂ t = x̂−
t +K t (z t − x̂−

t )

P t = (I −K t H)P−
t

(2.15)

Here, K denotes the Kalman gain.

As described, KF addresses the problem of estimating the state of a discrete-time controlled pro-
cess which is governed by linear differential equations. However, generally the attitude estimation
governing equations are non linear and hence the conventional KF has to be adapted to be able to
deal with non linear systems. Extended Kalman Filter (EKF) [45] is a popular variation of the con-
ventional Kalman filter in which the non linear state and observation equations are linearised about
some nominal values before performing the time and measurement updates. Various other popu-
lar variations of the Kalman filter, like Iterated Extended Kalman Filter (IEKF) [46] and Unscented
Kalman Filter (UKF)[47], also address the non linear state estimation problem.

2.2.2. Complementary Filters
Complimentary filters [48, 49] take into account the varying validity of sensor information with re-
spect to frequency, to estimate the states. Gyroscopes provide good attitude estimates in short pe-
riods of time, but due to inherent drift, the values diverge in long term. On the other hand signals
from accelerometers and magnetometers are noisy and are often corrupted by: accelerations (non
gravitational) sensed by the accelerometers, and magnetic field of magnetic materials and devices in
vicinity sensed by the magnetometers. Hence only the long term measurements of the accelerom-
eters and magnetometers are reliable. A complimentary sensor takes advantage of this knowledge
and uses high pass filtered gyroscopic data and low pass filtered accelerometer and magnetometer
data to generate reliable attitude estimates, as depicted in figure 2.5.
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Figure 2.4: Block diagram depicting a Kalman filter operation. Source [44]

Figure 2.5: Block diagram depicting a complementary filter operation

Assume a signal x with measurements y1 having a high frequency disturbance n1 (like attitude
data from accelerometers and magnetometers) and y2 with a low frequency disturbance n2 (like
attitude data from the integrated gyroscope readings).

y1 = x +n1

y2 = x +n2
(2.16)

The estimated value of x, denoted as x̂, is obtained by combining low pass filtered y1 readings
and high pass filtered y2 measurements. In frequency domain, let x, x̂, y1, n1, y2 and n2 be denoted
as X (s), X̂ (s), Y1(s), Y2(s), N1(s) and N2(s) respectively. Then the frequency domain estimated signal
values can be formulated as:

X̂ (s) = L(s)Y1(s)+ (1−L(s))Y2(s) (2.17)

Here, L(s) denotes a low pass transfer function and hence (1− L(s)) denotes a high pass transfer
function. Using the relations in equation 2.16 to simplify equation 2.17, leads to:

X̂ (s) = L(s)(X (s)+N1(s))+ (1−L(s))(X (s)+N2(s)) (2.18)

X̂ (s) = X (s)+L(s)N1(s)+ (1−L(s))N2(s) (2.19)
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Equation 2.19 implies that the low pass transfer function L(s) suppresses the high frequency noise
N1(s) and the low frequency noise N2(s) is suppressed by the complementary high pass filter (1−
L(s)), making the estimate X̂ (s) equal (approximately) to the true signal value X (s).

Even though the complementary filters are less accurate compared to the Kalman filters, they
are much simpler to implement and are computationally more efficient [50].

2.3. Limitations
As discussed, MEMS inertial sensors are cheap and light weight, perfectly suited to MAV applica-
tions. However, these sensors are cursed with high noise and inherent drift making deriving accu-
rate attitude estimates a challenge. Sensor fusion algorithms are capable of computing satisfactory
estimates of the orientation, but the fact remains that the usage of these algorithms brings about
a significant processing burden. Moreover, ideally the roll and pitch angle measurements from ac-
celerometers require a level flight (zero accelerations) condition and otherwise is corrupted with
non gravitational accelerations. Magnetometer readings are also corrupted due to the magnetic
field induced by other on-board devices and magnetic materials in the vicinity. This reduces the re-
liability of the attitude estimates obtained by fusing the signals from these sensors (especially while
using complementary filters). This makes the integration of alternate sensors (like airspeed sensors
for flight speed measurements, GPS for position measurements etc.) necessary for accurate state
estimation and control.

Further, the financial and intellectual capital that is invested in MAV development is only justi-
fied if the MAVs are able to perform useful tasks such as surveillance, mapping, atmospheric sens-
ing etc. To be able to perform these tasks, MAVs need to be capable of extracting useful information
from their environments. Inertial sensors only provide information about the vehicles’ ego-motion
and do not provide any information about their environment. So, the MAVs require additional ex-
teroceptive sensors (such as chemical sensors, light intensity sensors, laser range sensors, cameras
etc.) to be able to interact with their environment. The requirement of integration of extra sensors is
always highly undesirable for MAV development. Cameras are the most commonly used exterocep-
tive sensors in MAVs and act as the eyes of these aerial robots. As will be discussed in the subsequent
chapters, natural flyers use their eyes for imagery as well as extracting spatial sense of direction and
motion. If the cameras in MAVs could also be used for extracting ego-motion estimates, they might
be able to complement the inertial sensor or even replace them.



3
Motion Perception and Navigation
Strategies in Insects

Flying insects act as the prime inspiration for researchers working towards development of MAVs
capable of efficiently flying in confined indoor spaces. With the ability to fly along longitudinal,
lateral and vertical directions, combined with the ability to manoeuvre with high linear and rota-
tional accelerations, insects are capable of out-manoeuvring any human-made flying machine at
low flight speeds. This chapter intends to draw inspirations from insects by reviewing their sensing,
stability and control strategies.

3.1. Ego-Motion Sensors
The absence of inherent flight stability, in many insects, makes an active feedback control system
essential [7]. Insects use feedback from various sensory organs, like the halteres, antennae, ocelli
and compound eyes, to stabilize and control their flight. This section summarizes various sensory
organs used for ego-motion sensing in insects.

3.1.1. Mechanosensors
Mechanosensors refer to sensory organs that perceive any change in mechanical forces. Various
mechanosensors in insects measure the inertial forces, limb and wing loads and orientation, and
wind gusts. This section reviews various mechanosensory organs found in insects.

Halteres
In house flies and other dipteran insects, the hind pair of wings has evolved into club shaped or-
gans known as halteres. The halteres vibrate at the wing flapping frequency and, when the insects
undergo rotational motion, the halteres experience Coriolis forces, induced by the linear motion of
the halteres within the rotating frame of the insects’ body. Dickinson [30] demonstrated that the
halteres detect these Coriolis forces and use this information to encode the insects’ angular rates.
Dickinson also indicated that this angular velocity feedback is crucial for insects’ flight stability.

Antennae
Antennae are found in almost all insects and serve a variety of different sensory functions in differ-
ent insects, like air-current sensing organs [51] and chemoreceptors [52]. Sane et al. [53] reported
that the antennal mechanosensors play an important role in mediating flight control in hawkmoths,
similar to the role halteres play in dipteran insects.
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Hair
Insects possess tactile hair in different parts of their bodies, dedicated to different functions. They
measure the angles of their appendages’ joints (like head, legs, wings and body joints) using clusters
of such mechanosensitive hair, called hair plates. As the appendages move, they brush against these
hair, and the deformation of the hair encode the relative orientation of the appendages [54]. Wind
sensitive hair clusters are also found in insects that measure wind gusts [14].

Cerci
The cerci are cone-shaped appendages, generally extending from the rear of an insect, prominently
found in crickets and earwigs. The cerci, instead of being a dedicated sensory organ, houses var-
ious sensors. In many species of insects, they are covered with mechanosensitive hair, measuring
air-currents. In some insects, the cerci can also include chemosensors. In some crickets and cock-
roaches, the cerci have club shaped hair that deflect like a pendulum under gravity’s pull. These hair
are thought to be important for measuring gravity orientation (graviception) in those insects [54].
These hair have been found to be important in cockroaches for flight stabilization [29], however
their functions in other insects have not been explored yet [54].

3.1.2. Visual Sensors
Visual information plays an extremely important role in various insect flight behaviours like trig-
gering escape or landing, controlling flight speed and altitude, as well as chasing mates and prey.
In some insects about two thirds of all the neurons in the brain contribute to visual information
processing [14], which renders vision as the insects’ most important sensory modality. Most insects
possess two kinds of vision sensors, about one to three ocelli on the dorsal part of the insects’ head
and a pair of compound eyes.

Ocelli
Ocelli are rudimentary light sensors, which complement the primary vision system in insects: the
compound eyes. Typically an adult insect possesses three ocelli, each encoding information about
the light levels in the environment. Together the ocellar signals provide information about the in-
sect’s orientation changes [55]. Ocelli are believed to function synergistically with the compound
eyes to reduce the delay of visual responses [7]. Figure 3.1 depicts the head of a blowfly consisting
of a pair of compound eyes along with three ocelli, namely medial ocellus (mo), lateral left ocellus
(llo), and lateral right ocellus (rlo).

Figure 3.1: Visual sensors on a blowfly : lce and rce respectively denote the left and right compound eyes. The three
ocelli of the blowfly, medial, lateral left, and lateral right ocellus, are labelled mo, llo, and rlo respectively. Source: [55]



3.2. Importance of Optical Flow in Insect Navigation 45

Compound Eyes
In insects, years of evolution have created a sophisticated vision system known as the compound
eyes. Each compound eye is composed of hundreds of individual photoreceptor units, called the
ommatidia, arranged on a convex surface. Images received from this convex array of photorecep-
tors are merged to obtain panoramic vision. Figure 3.1 depicts the two compound eyes on a blowfly,
marked lce and rce.

Apart from imagery, the compound eyes also provide the insects with a spatial sense of direc-
tion and motion. Each ommatidium functions in conjunction with its closest neighbours to encode
image motion, forming the Elementary Motion Detectors (EMDs). A famous theoretical model of
the EMD was devised by Bernhard Hassenstein and Werner Reichardt [56]. Figure 3.2 depicts the
structure of a simple EMD model. The model consists of two photoreceptors, A (left) and B (right),
viewing adjacent regions of the same scene. Now, since the two photoreceptors are viewing the
same scene, both will encode the same temporal variation of intensity, however with a certain lead
or lag depending on the direction of motion of the scene. Detecting this lead or lag in the photore-
ceptor signals, with respect to each other, encodes the direction of motion of the scene. A simple
way of doing this is to delay the signal from A and correlate it with the signal from B and vice versa. If
the delayed signal from A is more strongly correlated with the signal from B, than the delayed signal
from B is correlated with the signal from A, it would mean that the signal from A leads the signal
from B and hence the scene is moving from A to B. Movement sensitive neurons have been discov-
ered and characterized whose responses are very well estimated by the EMD model discussed above
[57]. Thus, these neurons encode the image motion on the insect retina, formally known as Opti-
cal Flow (OF) field [15], which helps the insects to perceive ego-motion. Optical flow is essentially
the measure of the ratio between the observer’s relative movement and distance of the surrounding
objects in the environment. A detailed discussion about optical flow, its mathematical formulation,
computation techniques and applications in MAV navigation has been presented in Chapter 4.

Figure 3.2: The Reichardt EMD model. Source: [58]

3.2. Importance of Optical Flow in Insect Navigation
The sensory organs, discussed in the previous section, play a very important role in insect flight sta-
bility and manoeuvrability. The visual and mechanosensory systems are capable of sensing body
deviations and enable the insects to provide compensating reactions to maintain a stable flight [7].
However, there is strong evidence that the inertial mechanosensors play a rather less important role
than the visual sensors in many insects. This is because the forces transduced by any inertial sensor
are proportional to the size of the proof mass whose inertia reacts to the applied accelerations. Size
of the proof mass is a limiting factor in a creature as small as an insect. Barring a few exceptions
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(like dragonflies1) most flying insects do not use organs with static proof masses to measure accel-
erations [14]. Some insects, that have been found to measure inertial forces in flight (like dipteran
flies), make use of organs that use moving proof masses, like the halteres. However, organs like hal-
teres have not been found in some insects like the honeybees. Unlike the inconsistent presence of
the inertial sensors in insects, the visual sensors are ubiquitously present in almost all insects. Thus,
it can be argued that ego-motion sensed by the visual sensors and the inertial sensors might be re-
dundant and insects rely more on their vision, to perceive ego-motion, than the inertial sensors.

Navigating through a stationary environment, insects perceive the apparent motion of the envi-
ronment as retinal image shifts, or optical flow, as discussed in the previous section. Analysing the
optical flow field allows the insects to estimate ego-motion and use this information for flight con-
trol and navigation. This section reviews various flight behaviours observed in insects that reveal the
importance of optical flow in insect navigation : 1) the optomotor response, 2) obstacle avoidance
and negotiating narrow gaps, 3) visual odometry, 4) regulating flight speed, 5) performing smooth
landings 6) altitude control and 7) attitude control.

The Optomotor Response
Reichardt [59] made the observation that a tethered insect, flying inside a stripped drum, tends
to execute turns in the direction of the drum’s rotation. This response of the insects is called the
optomotor response and it has been found to be a behaviour that is common in most flying insects.
It serves to help the insects in course stabilization. For example, if a wind gust causes the insect
to drift towards the left direction, it would create a rightward retinal image motion and the insect
will generate a compensatory yaw torque towards the right direction. The optomotor response also
forms the basis of various behaviours observed in insects, discussed in the subsequent sections.

Obstacle Avoidance and Negotiating Small Gaps
Insects demonstrate exceptional capability of gracefully flying through cluttered environments and
avoiding obstacles on their flight path. To investigate how the insects gauge and balance their dis-
tance from walls and obstacles, Kirchner and Srinivasan [18] trained bees to fly through an appara-
tus in which each side wall consisted of a pattern of black and white gratings, as depicted in figure
3.3, adapted from [22].

The gratings on one of the side walls could be moved horizontally at any desired speed. When
the gratings were held stationary, the bees tended to fly along the mid-line of the tunnel (figure
3.3A). When gratings on one side were moved in the direction of the bees’ flight, thus reducing the
speed of retinal image motion on the side of the moving grating, relative to the other, the bees’ tra-
jectory moved toward the side of the moving grating (figure 3.3B). When the grating was moved in
the opposite direction, thus increasing the retinal image velocity on one eye relative to other, the
bees shifted their trajectory towards the side of the stationary grating (figure 3.3C). These observa-
tions demonstrate that the insects might not be measuring their absolute distances from the walls,
and instead might be simply balancing the retinal image speed on both eyes to navigate through
small gaps.

Further, experiments were conducted with the two walls carrying gratings of different spatial
frequencies. The results obtained were similar to the results obtained when gratings on both sides
had the same spatial frequency (figure 3.3D-F). This result demonstrates that the bees indeed bal-
ance the retinal image speed of their two eyes and not the contrast frequencies produced by the
succession of dark and light bars. The results of the above experiments remained the same irrespec-
tive of whether the contrast of the gratings, or their intensity profiles, on the two sides were equal

1Dragonflies have a sufficiently large and heavy head, such that the head lags behind the body during angular rotations,
thereby allowing the neck tactile hair to measure angular accellerations [14].
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Figure 3.3: Depiction of Kirchner and Srinivasan’s experiment [22]. The green shaded bars represent the positions of the
flight trajectories recorded over multiple flights. Position of the long axis bar represents the mean flight trajectory

position and the width of the bar represents the standard deviation. Arrow beside the wall with gratings denotes the
direction of motion of the gratings

or considerably different. Thus indicating that the honeybees are capable of measuring the retinal
image velocities robustly and use this information to steer a collision free flight.

Visual Odometry
To investigate how the honeybees perceive the distances they have flown, Srinivasan et al. [60]
trained bees to enter a tunnel and collect the reward of sugar solution placed at a fixed distance
from the entrance of the tunnel. The tunnel’s walls and floor were lined with black and white grat-
ings. The trained bees were then tested in an identical tunnel but with the reward removed. During
the tests the bees were observed to search for the reward in the vicinity of the location where the
reward was placed during training. This indicated that the bees remembered the position of the
reward and hence somehow could measure the distance they had flown during training. When the
bees, trained in a tunnel of a given cross section, were tested in a narrower tunnel, they were ob-
served to search for the reward at a shorter distance from the entrance, and when tested in a wider
tunnel, they searched at a longer distance. Further, when the textures from the walls and floor of
the tunnel were removed by lining the tunnel with axial rather than vertical strips, the bees lost their
ability to estimate the distance of the reward. These findings reveal that the bees possess a visually
driven odometer that measures the distance flown by integrating the velocity of the retinal image.

Flight Speed Regulation
David [19] investigated how insects measure speed in the absence of acceleration sensing organs.
He studied the flight of fruit flies upstream along the axis of a barber’s pole wind tunnel. The author
named the wind tunnel a barber’s pole wind tunnel as the walls of the tunnel were decorated helical
black and white stripped pattern. This caused an apparent motion of the pattern when the cylin-
der was rotated. During the experiments the rotational speed of the tunnel was regulated such that
the fly remained stationary. Further, increasing or decreasing the rotational speed of the cylinder
caused the fly to move backward or forward (respectively) along the tunnel axis such that the retinal
image velocity remained constant. This revealed that the flies were holding the angular velocity of
the retinal image constant to regulate their ground speed.

It appears that bees also utilize a similar strategy to regulate their flight speed [60]. This was
revealed by observing bees’ flight through a tapered tunnel. As the tunnel narrows down, bees tend
to decrease their flight speed, thus keeping the retinal velocity of the image of the wall constant.
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Further, Portelli et al. [20] also studied vision based flight control in honey bees and reported that
the insects control their flight speed based on the optical flow perceived not only in the lateral and
ventral parts of their visual field,but also in the dorsal part.

Performing Smooth Landings
Studies of landing behaviour in flies have revealed that in case of approaches perpendicular (or close
to perpendicular) to the surface, the expansion of the retinal image of the surface (looming cues),
as it is approached, provides strong cues that are used to regulate the descent speed [22]. How-
ever, the looming cues are weak, when a bee performs a landing where its angle of approach to the
surface is considerably less than 45o i.e. grazing landings. In such landings, a translational optical
flow component in the front to back direction strongly dominates the image motion in the ventral
visual field of the insects. Srinivasan et al. [61] observed the trajectories of honeybees landing on
a flat horizontal surface and concluded that bees, approaching the surface at relatively shallow de-
scent angles, hold the angular velocity of the image of the surface constant as they approach it. This
maintains their forward velocity proportional to their height above the surface. Further, the descent
speed is maintained proportional to the forward speed, hence making it proportional to the insects’
height above the surface as well. This behaviour ensures that, near touch down, the bees have ap-
proximately zero horizontal as well as vertical velocities, making the landings smooth. Based on
their observations, the authors derived a model of the trajectory of a honeybee performing grazing
landing, as formulated in equation 3.1.

Vd (t ) = BV f (t ) = Bωh(to)e−ωB(t−to ) (3.1)

Where, Vd denotes the descent velocity, V f denotes the forward velocity, B is the constant of
proportionality between V f and Vd , ω̂ denotes the constant angular velocity of the image of the sur-
face and h(to) denotes the height at initial time t = to . In a later study Chahl et al. [62] implemented
the above model to control the descent of a fixed wing model aircraft, as will be discussed in section
4.4.1.

The task of landing becomes a bit more complicated when the surface is not horizontal, i.e. the
landing surface inclination increases. Baird et al. [63] analysed trajectories of honeybees landing on
a vertical surface and found that the bees control their speed by holding the rate of expansion of the
image constant. This strategy is also applicable to landings on horizontal flat surfaces. The strategy
has been used for autonomous landing of MAVs , as discussed in section 4.4.1.

Altitude Control
Portelli et al. [21] studied the altitude control behaviour in honeybees, trained to fly in a double
roofed tunnel2 after entering it near either the ceiling or the floor of the tunnel. The honeybees,
entering the tunnel near the ceiling and the floor, flew forward hugging the ceiling and the floor
respectively. Thus, midway through the tunnel, the bees hugging the ceiling experienced a sudden
change in their distance from the tunnel ceiling. The bees reacted by increasing their altitude and
quickly hugging the new higher ceiling, thus keeping the optical flow in their dorsal field of view
constant. However, the bees entering the tunnel near the floor kept hugging the floor and did not
react to the ceiling height change. Further, when the bees trained to hug the ceiling were made to
enter the tunnel near the floor and vice versa, the bees quickly changed their altitude to hug the
surface they had been trained to follow. This study shows that trained honey bees regulated their
altitude based on the visual cues (optical flow patters) memorized during training.

2the height of the tunnel ceiling increased midway through the tunnel



3.2. Importance of Optical Flow in Insect Navigation 49

Attitude Control
Insects’ ability to perform highly demanding manoeuvres, requires the ability to accurately control
their orientation. Many animals use gravity as a cue to maintain the up-right orientation of their
body. In insects walking on the ground, gravity perception, through gravity sensitive tactile hair on
cerci and limb load cues, has been found to play a significant role in gaze stabilization and body tilt
compensation [29, 54]. During flight however, insects experience high accelerations, due to forces
like air drag, making it very difficult to distinguish these forces from gravity. Unlike vertebrates, that
have specialized organs in the vestibular system that measure accelerations, many insects lack or-
gans that measure accelerations using a static proof mass, often attributed to the insects’ diminutive
stature. Halteres use a moving proof of mass to detect Coriolis forces and hence encode rotational
rates, however, it is still debatable if the halteres are capable of encoding rotational accelerations
[14]. Lacking well defined acceleration measuring organs, it becomes a question as to how the in-
sects estimate and stabilize their attitude and whether gravity perception plays a major role in it.
Goulard et al.[29] subjected hoverflies to freefall and studied how the insects coped with weight-
lessness under different visual conditions. Figure 3.4 shows the experimental apparatus and the
trajectories of various hoverflies subjected to free fall, in total darkness, in a nearly uniform white
environment and with two sides of the box lined with horizontal black and white strips. Falling
in darkness resulted in a large number of crashes, however in presence of vertical strips almost all
the hoverflies initiated wingbeats and generated large enough thrust to avoid crashing. Though,
wingbeats were also initiated in total darkness, indicating that the free fall was perceived and hence
involvement of other sensory modalities may not be ruled out. The authors however suggested that
it is unlikely that load cues from the insects’ dangling legs were used to detect free fall, instead sens-
ing airflow generated by self-motion while falling, led to the perception of free fall. The authors con-
cluded that the crash avoidance performance of the insects suggests the existence of a multisensory
control system, depending mainly on vision rather than gravity perception or inertial sensing.

Figure 3.4: Experimental apparatus used to study the flight behaviour of hoverflies subjected to free fall. Source [29]

The secondary visual sensors, namely the ocelli, that serve as fast and ultra-sensitive horizon de-
tectors, through their triangulation orientation permit the detection of horizon tilt along two axes.
The ocelli appear to contribute to phasic dorsal light responses (DLR) that compensates for atti-
tude changes imposed by fast head and body movements [14]. Thus the ocelli play a major role in
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complementing the compound eyes in attitude stabilization of the insects and contribute towards
reducing the latency of visual responses in insects [7].

3.3. Inspirations for Roboticists
Tiny flying insects, appearing in the nature, have a lot to teach to roboticists and researchers striving
to make MAVs as nimble as the insects. Insects depend on a high modality sensory feedback control
system to stabilize their flight and perform remarkable manoeuvres. The sensory organs involved in
attitude estimation can be categorized as the inertial mechanosensors like the halteres, antennae,
tactile hair and gravity sensitive pendulous hair on the cerci, and visual sensors like the ocelli and
compound eyes [7]. Evidently, the visual sensors play a more important role in insect flight stabiliza-
tion than the inertial sensors. Some insects, like the cockroaches possess gravity sensitive organs,
however many other insects lack acceleration measuring apparatus [14]. Rotational rate measuring
halteres are found in dipteran insects, however many other insects like the honeybees and other
hymenopteran flying insects do not have any organs that have yet been identified to measure their
rotation rates and orientation [22]. Thus the question arises, if some insects completely lack the in-
ertial sense and only depend on vision for flight stability and control. Attitude estimation in insects
is yet to be properly understood, but it is quite possible that the information encoded by the iner-
tial sensory organs are redundant and the ego-motion information encoded by the visual sensors
might be enough for flight stabilization. This hypothesis, if true would have great implications in
the field of robotics. It would mean that flight stabilization can be achieved by only using suitable
optical sensors encoding optical flow information. This thesis intends to contribute towards testing
this hypothesis. The next chapter discusses the notion of optical flow in further detail and reviews
various optical flow based MAV navigation strategies available in literature.
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Optical Flow

Optical Flow or Optic Flow is the pattern of apparent motion of the elements of a visual scene caused
by relative motion between the observer and the scene. As described in the previous chapter, natural
fliers use optical flow for efficient flight control and stabilization. Inspired by the biological naviga-
tion models, several researchers have attempted to use optical flow for ego-motion estimation and
state reconstruction of Micro Aerial Vehicles (MAVs). This chapter provides a detailed introduction
to the field of optical flow.

4.1. Modelling Optical Flow
James J. Gibson pointed out that the deformation of the retinal image due to ego-motion was not
just a nuisance but a rich source of information concerning the world in which the motion occurs
[15]. Imagine the visual field of a pilot flying above a runway. Each point in the pilot’s retinal image is
the projection of the objects in the three-dimensional world onto a two-dimensional image surface
(retinal surface). When the pilot moves relative to her environment, the points in her retinal image
shift as well. This image motion can be described by a velocity field, or optical flow field, where each
velocity vector points in the direction of motion of the corresponding image point and the length
of the vector is proportional to the magnitude of velocity of the image point. As presented in [15],
figure 4.1 depicts the optical flow field perceived a pilot (a) looking in the forward direction while
performing a flyby over a runway, (b) looking forward while approaching the runway during landing
and (c) looking in the right direction while performing a fly by over a runway.

The mathematical modelling of optical flow requires projecting points in 3-dimensional world
on a 2-dimensional image plane. This section describes two frequently used formulations of opti-
cal flow, where the first formulation (section 4.1.1) uses a perspective projection method and the
second formulation (section 4.1.2) uses a spherical projection method.

4.1.1. Formulation using Pinhole Camera Model
This camera model is used for the formulation of perspective projection, where world points are
projected on a 2-D image plane. The model makes two important assumptions: 1) The camera
aperture is assumed to be a point (pin hole) and 2) the image plane is assumed to be a planar sur-
face. One of the most frequently used formulations of this model is that of Longuet-Higgins and
Prazdny [17].

As depicted in figure 4.2, consider a monocular observer moving through a static environment
with translational velocities, (U ,V ,W ), and angular velocities, (A,B ,C ), relative to the scene. Let O
be the instantaneous position of the observer’s nodal point, or vantage point, where the aperture
of the camera is defined, and OX Y Z be a Cartesian coordinate system centred and fixed at O. Let
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(a) (b) (c)

Figure 4.1: Optical flow field observed by a pilot (a) looking in the forward direction while performing a flyby over a
runway, (b) looking forward while approaching a runway during landing and (c) looking in the right direction while

performing a fly by over a runway. Source : [15]

Figure 4.2: Coordinate system depicting perspective projection. Source: [17]

the Z -axis be aligned along the observer’s line of sight or the optical axis. The image plane or the
retinal surface, perpendicular to the optical axis (OZ ), is denoted by the x̂ and ŷ axes. The optical
axis intersects the image plane at the principal point, denoted by po = (0,0, f )T . f represents the
focal length of the sensor. We consider f = 1 to simplify the derivation.

The components of velocity of the world point P , with respect to the moving frame OX Y Z are
formulated as :

Ẋ =−U −B Z +C Y

Ẏ =−V −C X + AZ

Ż =−W − AY +B X

(4.1)

Now, as evident from figure 4.2, the world point P can be projected on the image plane to the
point p = (x̂, ŷ)T = (X /Z ,Y /Z )T . As the observer is moving, the projected point p will also move
with velocity components (û, v̂)T = ( ˙̂x, ˙̂y). These velocity components, or optical flow components,
can be related to the observer’s velocity and the depth of the world point P as :
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û = Ẋ

Z
− X Ż

Z 2 = (−U

Z
−B +C ŷ)− x̂(−W

Z
− Aŷ +B x̂)

v̂ = Ẏ

Z
− Y Ż

Z 2 = (−V

Z
−C x̂ + A)− ŷ(−W

Z
− Aŷ +B x̂)

(4.2)

Velocities û and v̂ , as given by equation 4.2, can also resolved into separate translational and
rotational components, as :

û = ûT + ûR

ûT = (−U + x̂W )/Z

ûR =−B +C ŷ + Ax̂ ŷ −B x̂2

,

v̂ = v̂T + v̂R

v̂T = (−V + ŷW )/Z

v̂R =−C x̂ + A+ Aŷ2 −B x̂ ŷ

(4.3)

Where, ûT and v̂T denote the optical flow components due to observer’s translational motion
and ûR and v̂R denote the optical flow components due to the observer’s rotational motion. It is
interesting to note that the translational component of optical flow is independent of observer’s
angular velocity (A,B ,C ) and the rotational component of optical flow is independent of the three-
dimensional structure of the scene.

4.1.2. Formulation using Spherical Camera Model

Figure 4.3: Coordinate system depicting spherical camera projection. Source: [64]

The assumptions used by pinhole camera model are not valid when using wide field of view
cameras. In such cases a more general model, namely the spherical camera model is utilized. The
spherical camera model involves projecting a world point onto a spherical image surface. As de-
picted in figure 4.3, consider a monocular observer, with it’s vantage point at O, moving through
a static environment described by the spherical coordinates (R,Θ,Ψ) centred at O. Let the trans-
lational velocity vector and the rotational velocity vector, of the observer, be denoted by T and R
respectively. The image surface is a spherical surface centred at O and has a radius f = 1. The world
point P = P is projected to the corresponding image point p = p̂ = P/||P||. Now, as formulated by
Koenderink and van Doorn [16], the velocity of the image point, as the observer moves is given by :
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v̂ = 1

||P|| [(T.p̂)p̂−T]−R× p̂ (4.4)

Which can also be written as :

v̂ = v̂R + v̂T

v̂T = 1

||P|| [(T.p̂)p̂−T]

v̂R = R× p̂

(4.5)

Where, v̂T denotes the image velocity component due to the observer’s translational motion and
v̂R denotes the image velocity component due to the observer’s rotational motion. So, as we could
do in the case of perspective projection (equation 4.3), we can again write the optical flow vector
as a linear combination of optical flow vectors that would have been caused by separate translation
and rotation of the observer (equation 4.5). Moreover, similar to what was observed in equation 4.3,
the translational optical flow component is independent of the observer’s angular velocity and the
rotational optical flow component is independent of the three-dimensional structure of the envi-
ronment.

4.2. Optical Flow Estimation
So far in this chapter, the concept of optical flow has been introduced and it’s mathematical for-
mulation has been described. Equations 4.2 and 4.4 relate the optical flow field to the observer’s
ego-motion and the three dimensional structure of the scene. So, to be able to derive information
about motion and scene structure, the first step is to estimate the optical flow vectors. This section
serves to provide an overview of various optical flow estimation techniques. Optical flow estimation
involves using the time varying image intensity, captured using an optical flow sensor, to compute
an approximation to the image motion field. A common starting point for most optical flow estima-
tion techniques is the assumption that the intensity patterns in the local time varying image regions
remain approximately constant under motion at least for a short time duration [65]. Mathematically
this can be formulated as:

I (x, t ) ≈ I (x+δx, t +δt ) (4.6)

Where, I (x, t ) is the image intensity function, δx is the displacement of local image region at (x, t )
in time duration δt . Now expanding the right hand side of equation 4.6 using Taylor series expan-
sion, ignoring the terms of order O2 and higher, and rearranging the equation yields an expression
popularly known as the brightness constancy constraint.

∇I .v̂+ It = 0 (4.7)

Where, v̂ denotes the image velocity, ∇I = (Ix , Iy )T and It are the first order derivatives of the
image intensity function.

However, the brightness constancy constraint is not sufficient to compute both components of
v̂ as the equation 4.7 is ill poised1. This implies that the velocity component perpendicular to the
direction of local gradient of image intensity function, can not be estimated. This phenomenon
is called the aperture problem [66]. Only at the image location where there is sufficient intensity
structure can the image velocity components be fully estimated using the constraint equation [67].

1The constraint has one linear equation and two unknowns, as v̂ = (û, v̂).
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For example, consider the figure 4.4. Through apertures A and B, motion is estimated to be along
the normal direction of the edges. Thus the motion of the object is not correctly perceived through
apertures A and B. However, through aperture C, motion can be fully estimated, since it is computed
at a corner point where there is sufficient local intensity structure, i.e. intensity gradient is visible
in two linearly independent spatial directions. For this reason, many optical flow estimation tech-
niques implement, as a first step of computation, a corner detector such as the popular Harris [68]
and FAST [69] corner detection algorithms.

Figure 4.4: Illustration of the aperture problem occurring with a square shaped object in motion. A, B and C denote the
three apertures, the thin arrows represent the direction of motion of the object and the thick arrows represent the

direction of image motion perceived through the respective apertures. Source: [70]

In the following parts of this section two popular classes of optical flow detection algorithms,
gradient based methods and correlation based methods, have been briefly reviewed.

4.2.1. Gradient based Methods
Gradient based optical flow estimation techniques employ the spatio-temporal derivatives of the
image intensity function in conjunction with the brightness constancy assumption to estimate the
optical flow field. The gradient based methods can be further categorized into local and global ap-
proaches depending on whether the algorithm is implemented in small local regions of the image
or on the image as a whole.

The local gradient based estimation techniques are employed within small local neighbour-
hoods of the image to estimate the local optical flow vectors. The Lucas Kanade optical flow estima-
tion method, introduced in 1981 by B. Lucas and T. Kanade [71], despite being about four decades
old, is still the most widely used optical flow estimation algorithm. The method addresses the aper-
ture problem of equation 4.7, by aiding it with the assumption that the velocity components, û and v̂
are constant within a small neighbourhood of a point in an image. For example, if two points within
a small neighbourhood in an image are considered with the above stated assumption, the brightness
constancy criteria would yield two linear equations with two unknowns, hence a solvable system.
The Lucas-Kanade technique obtains an overdetermined system of equations by considering more
than two neighbouring pixels. The local optical flow components are then estimated using ordinary
least squares. This also forms the basis from which most other techniques of this class are derived
[72, 73].

The global gradient based optical flow computation methods use a global smoothness condition
to compute a dense flow field over the whole image, instead of computing local flow vectors. One
such energy function was introduced by Horn and Schunck [65] :
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E(v̂) =
∫

[(∇I .v̂+ It )2 +λ(||∇û||2 +||∇v̂ ||2)]d xd y (4.8)

Here λ is a regularization constraint, that denotes the influence of the spatial smoothness term.
Some other works in the domain of global gradient based methods include [67, 74]. The key advan-
tage that global methods pose over the local methods is the information flow over large distances
in the image [75]. Local methods encounter a singular system of equations in case of lack of in-
tensity patterns, like for image regions containing a blank wall. Global methods on the other hand
can fill in the optical flow information from nearby gradient constraints. However, the global meth-
ods suffer from poor computational efficiency, due to their iterative optimization process. So, the
global methods are rarely used in applications requiring real-time computation of optical flow, like
in MAVs.

4.2.2. Correlation based Methods
The correlation based matching approaches involve estimating the displacement (as an approxi-
mation of velocity) of an image patch that yields the best match (correlation) between the image
patch in two consecutive frames. Matching image regions often amounts to maximizing a similarity
measure, such as the normalized cross-correlation [76] and sum of squared difference (SSD) [77] of
intensity values. Correlation based methods do not rely on presence of significant image features
[67], generally do not suffer from the aperture problem and tend to be robust to random noise [78].

However, these methods have a major drawback: their time complexity grows quadratically
with the maximum number of possible displacements allowed for the pixels. Inspired by this prob-
lem, Camus [78] proposed an alternative approach that performs the region matching in a spatio-
temporal search space, thus keeping time complexity linear in number of possible displacements of
the pixel.

4.3. Optical Flow Sensors
Very small conventional cameras are a frequently used sensor system for optical flow computation.
For instance, Wagter et al. [79] introduced a 4 grams stereo camera with an embedded microproces-
sor (figure 4.5A). The maximum reachable frame rate of the stereo camera system is 30 Hz. This sys-
tem has been used in [27, 80] for stereo-vision and optical flow based velocity estimation in pocket
drones. de Croon in [37] introduced a monocular distance estimation method using optical flow
manoeuvres and the knowledge of control inputs. The downward facing camera on a parrot AR
drone was used for this study. However, generally the frame rate of these cameras are low which
makes the update rate of optical flow information slow. Moreover a vast amount of effort has to be
made in making processing more efficient.

Conventional cameras perceive the environment as a series of consecutive frames of images
generated by capturing the pixel values at fixed time intervals. But unlike conventional cameras,
the event based vision sensors capture the changes in perceived brightness by generating events.
Accordingly, the outputs of these sensors are streams of events that encode variations in image in-
tensity at a particular time and location on the image plane. Thus the event based cameras eliminate
the enormous amounts of redundant information contained in the frames captured by the conven-
tional cameras. The Dynamic Vision Sensor (DVS) is an event-based vision sensor, designed by
Lichtsteiner et al. [82] and commercialized by iniLabs2 under the product names of DVS128 (figure
4.5B), eDVS, Mini-eDVS and DAVIS240C. However, with DVS128 weighing 65 grams without lens
and the Mini-eDVS weighing 5 grams (with lens), these sensors are still quite heavy to be used in
small MAVs, especially in FWMAVs.

2https://inilabs.com/

https://inilabs.com/
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Figure 4.5: Optical flow sensors. A) 4 gram Stereoboard beside a 2 Euro coin. Source:[79], B) Dynamic Vision Sensor
DVS128. Source: https://inilabs.com/, C) Centeye TAM4 integrated on a flex circuit breakout with a lens. Source: [81], D)

Cylindrical CURved Artificial Compound Eye CURVACE. Source: http://curvace.org/, E) Optical mouse sensor based
Bitcraze’s Flow deck v2 optical flow sensor. Source: https://www.bitcraze.io/

In the pursuit of small, lightweight optical sensors, some researchers have also used custom
made lightweight optical chips. Centeye3 developed the image chip called TAM 4 (figure 4.5C) that
has been used for altitude sensing in RoboBee [81]. One of Centeye’s latest works is the Centeye
Multi-Mode Stereo Sensor, sporting two RockCreek vision chips, IR lights for illumination and a
laser light (that can be used for range sensing). The sensor has a 150o FOV and weighs 1 gram.

Inspired by the robustness and efficiency of the biological ego-motion estimation methods,
Franceschini et al. [83] built optronic velocity sensors, whose principle of operation is based on
fly EMDs. Ruffier and Franceschini[24, 84] have used these EMD based sensors to demonstrate the
applications of optical flow regulation for guidance and control of a tethered MAV platform. Another
bio-inspired approach has been the fabrication of the CURved Artificial Compound Eye, CURVACE
(figure 4.5D), that outputs a video stream with a Field of View (FoV) of 180o ×60o [85]. It consists of
630 artificial ommatidia, which are photo-detectors similar to the ommatidia found in insect com-
pound eyes. It is capable of delivering 1950 frames per second (fps) output and weighs 1.75 grams.

A widely used method is using the dedicated optical flow sensory chips, found in optical com-
puter mice [86, 87](figure 4.5E). These chips consist of a tiny built in camera and hardware dedicated
to computation of a single 2 dimensional optical flow vector. These sensors are generally fast and
are available in cheap packages. However, their performance highly depends on illumination con-
ditions and available contrast.

4.4. Optical Flow based MAV Navigation
In chapter 3, insect navigation behaviours were studied and contribution of optical flow in making
flying insects nimble was discussed. Inspired by insect navigation, optical flow has been widely used
in MAV navigation by various researchers. This section discusses various optical flow based strate-
gies that have been proposed and utilized for MAV navigation. Table 4.1 in Section 4.4.5 summarizes
the works that are being discussed in this section and highlights the knowledge gaps.

4.4.1. Landing
Grazing Landing
To the best knowledge of the author, Chahl et al. [62] presented the first vision based MAV navi-
gation strategy implementation in which ventral optical flow components were used. The optical

3http://www.centeye.com/

https://inilabs.com/
http://curvace.org/
https://www.bitcraze.io/
http://www.centeye.com/
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flow, measured using a downward facing camera, was maintained constant to control the descent
of a fixed wing MAV, in accordance to the model of landing honeybee trajectory derived by Srini-
vasan et al. [61] (equation 3.1 in section 3.2). According to the model, the forward speed and the
descent speed of the MAV were maintained proportional to the height of the MAV. Though the au-
thors could not land the aircraft using this approach, due to a finite stall speed of the aircraft, their
results demonstrated the potential of the method in achieving smooth landings. In a similar study,
Green et al. [23] implemented the strategy on a fixed wing MAV and demonstrated successful land-
ings.

In further studies Ruffier and Franceschini [24] and Franceschini et al. [88] explored regulation
of ventral optical flow in their autopilot OCTAVE (Optical flow based Control sysTem for Aerial Vehi-
cles) to enable a tethered rotorcraft to perform terrain following, automatic take off and automatic
landing. The experimental MAV manoeuvred with 2DoFs: pitch angle and the magnitude of thrust
vector. Landing was performed by reducing the forward speed of the MAV (which remained pro-
portional to the MAV’s height) by slowly pitching up the MAV. Ruffier and Franceschini [84] further
extended their work to demonstrate terrain following and landing over a moving platform.

Since the landing strategy maintains the horizontal velocity of the MAV proportional to its height,
it is not possible to independently control the vertical dynamics. Thus, the strategy reduces the
flight envelope of certain MAVs, as hovering and pure vertical motion, which are the key advantages
of rotorcraft MAVs, become impossible.

Vertical Landing
As discussed in section 3.2, Baird et al. [63] showed that insects maintain the divergence of the
image constant while landing on a vertical surface. This is a more general strategy and applies to
landings on horizontal surfaces with shallow descent angles, i.e. grazing landings, as well. But now
the vertical and horizontal motions become independent of each other and hence this navigation
strategy can be applied in rotorcraft MAVs without limiting their flight capabilities.

Herissé et al. [89] demonstrated the application of constant divergence strategy to hover and
land a vertical take-off and landing (VTOL) MAV on a moving platform. Ho and de Croon [90]
worked on characterization of divergence estimated with a downward facing monocular camera
on a MAV during a constant divergence landing manoeuvre. The results showed that as the MAV
approaches the landing surface, the controller becomes unstable because of significant oscillations
generated in the estimated divergence due to noise and delays. Instead of regarding this as a prob-
lem, de Croon [37] showed that for a specific gain, optical flow control becomes unstable at a spe-
cific height above the landing surface. And so the author proposed that the MAV can detect oncom-
ing self-induced oscillations and use these for estimating the height. Further, Ho et al. [25] used
this theory to demonstrate a constant flow divergence landing control strategy. The strategy starts
with increasing the MAV control gain to induce oscillations, thus detecting the height and a suitable
starting gain. The MAV then descents while reducing its control gain exponentially, thus achieving
smooth landings.

4.4.2. Obstacle Avoidance
Tammero et al. [91] showed that fruit flies turn away from regions with high optical flow, thus avoid-
ing obstacles. Similar bio-inspired strategies have been widely adopted by researchers for obstacle
avoidance in MAVs.

Iida [92] implemented this strategy to perform course stabilization and obstacle avoidance in a
blimp like flying robot. Images captured through a panoramic vision system were processed on a
host computer, to detect the image motion through bio-inspired correlation based detectors, called
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the Elementary Motion Detectors (EMDs). The panoramic vision system provides a visual field of
360o ×260o and separate two dimensional arrays of EMDs were implemented on the left and right
visual fields, to extract motion information, both in horizontal and vertical directions. Obstacles
were avoided by turning the MAV away from the side on which the integrated large field EMD reg-
istered higher activation, i.e. higher image motion speed. An advantage of using EMDs to extract
motion information is that it does not require computationally expensive feature tracking. Green
et al. [23] also used EMDs to perform collision avoidance on a 26 grams fixed wing MAV. The au-
thors used a Centeye developed VLSI optic flow sensor, Ladybug, that detects image motion based
on EMD circuitry. In the study, the authors assumed the rotational component of optical flow to be
small and used the optical flow readings from the sensor as translational optical flow. However, it
remains unclear if this was an apt approximation for the experiments considered in the study.

Zufferey and Floreano [26] implemented optical flow based obstacle avoidance in a 30 grams
fixed wing MAV. They used two linear cameras to measure frontal and lateral optical flow, and yaw
rates from a rate gyroscope were used to eliminate the rotational component of the optical flow. Ob-
stacles were avoided by initiating a turn once the divergence of the detected optical flow exceeded a
set threshold and the direction of the turn was decided by taking the difference of the optical flows
detected through the left and right cameras. Beyeler et al. [33] presented a flight control system, op-
tiFlow, for autonomous control of a flying wing MAV in cluttered environments. An airflow sensor
was used for controlling the flight speed and the effects of rotations on the optical flow measure-
ments were compensated using a rate gyroscope. Further, assuming a constant speed, the authors
derived a control strategy that used optical flow measurements to calculate the pitch and roll con-
trol commands while accounting for the obstacle proximities in various viewing directions.

The works discussed so far implement a sensory-motor control strategy where obstacles were
avoided by directly using the optical flow sensor measurements as the primary input, to derive the
control signals, without estimating the metric depth or distance to the obstacles. These methods
however, can only be applied in special environments and might fail in unknown cluttered environ-
ments. Zingg et al. [93] used an optical flow based approach to obtain a depth map of the surround-
ings of a quadrotor navigating through an indoor corridor. The computed depth map was then used
to maintain the quadrotor at the centre of the corridor, hence avoiding the walls. A depth estimation
based obstacle avoidance method might be more viable in complex indoor environments, however,
depth can only be estimated from the translational component of optical flow, thus requiring com-
pensation of the rotational effects using IMU data. This makes the approach heavily reliant on the
accuracy of the IMU data, as evident from the test results reported by the authors [93].

4.4.3. Velocity Control
Insects have been known to regulate optical flow for flight speed control [19, 60], as was discussed
in Section 3.2. Following a similar bio-inspired approach, Serres et al. [94] presented LORA III (Lat-
eral Optic flow Regulation Autopilot, Mark III), which is a dual optical flow regulator consisting of
two intertwined feedback loops, controlling a MAV’s forward and lateral velocities. The MAV used is
a miniature hovercraft, equipped with two EMD optical flow sensors measuring the lateral optical
flow at the sides, at an angle of ±90o . Lateral thrust (which determines the lateral speed) is con-
trolled by regulating the lateral optical flow, measured on the side closer to the wall, to be equal to
a fixed setpoint. This ensures that the distance of the MAV from the nearest wall becomes propor-
tional to the vehicle’s forward velocity. The forward velocity is controlled by regulating the sum of
the optical flow measurements on the two sides to a fixed set-point. Thus the LORA III autopilot en-
ables the MAV to control its cruise speed and avoid lateral obstacles. Moore et al. [95] implemented
an optical flow based approach on a 30 grams helicopter equipped with a 2.6 grams vision system
consisting of a ring of eight vision chips. Velocity control was performed by controlling the forward
thrust based on the total sum of observed translational optical flow. Further, the authors also uti-
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lized optical flow to perform corridor centring and collision avoidance. However, it can be pointed
out that though a single camera is capable of detecting motion in three directions, the authors are
using eight cameras to detect motion in only two directions, forward and sideways, thus there is
further scope of reducing the sensor redundancy and hence the MAV weight.

Apart from sensory-motor approaches to velocity control, some researchers have also studied
metric velocity estimation in MAVs using optical flow. Kimberly et al. [27] presented an efficient
vision algorithm called Edge-FS (Edge Flow and Edge Stereo) for velocity and depth estimation in
a Pocket Drone equipped with a forward facing 4 grams stereo camera board. The authors used an
edge histogram matching approach to compute optical flow (Edge Flow) and stereo disparity (Edge
Stereo). The stereo disparity estimates depth which was used to scale the velocity estimates com-
puted using Edge Flow and to detect the distance to the nearest object for obstacle avoidance. So,
metric velocity estimation requires the estimation of depth which can be done using a stereo vision
system as in [27], or a range measurement sensor like a laser range finder. This dependency on an
additional sensor is clearly a disadvantage for MAV applications.

The problems of the missing scale factor, for metric velocity estimation using optical flow, and
position drift due to error accumulation over time (by integrating the erroneous velocity estimates),
were considered by Briod et al. [28], where the authors used optical flow to aid inertial sensors for
ego-motion estimation and control of a 46 grams quadcopter. The introduced method used trans-
lation induced optical flow’s direction (which is independent of depth and hence the environment)
to define a constraint on the velocity vector, which the authors call TOFDC (Translation Optic-Flow
Direction Constraint). This constraint is used to compensate for inertial navigation velocity drift,
thus obtaining velocity estimates with higher confidence.

4.4.4. Attitude Stabilization
Effective attitude stabilization requires accurate attitude estimation. Optical flow, as already dis-
cussed, encodes ego-motion information and hence might have the potential to replace or aug-
ment inertial measurements for attitude estimation. Omari and Ducard [31] presented a state es-
timation framework that allows estimation of attitude, full metric velocity and orthogonal distance
from a wall, of a MAV equipped with an IMU-camera navigation system. The method uses an UKF
(Unscented Kalman Filter) to fuse optical flow measurements, of a single feature observed using a
spherical camera, with gyroscope and accelerometer measurements. The full observability of the
system states, however, depends on various conditions, like excitation of the platform with accel-
erations along two independent axes and non alignment of the optical flow feature vector with the
body frame velocity vector of the platform. The observability limitations of the approach could be
improved by including the vehicle dynamics into the state estimation problem. Verveld et al. [32]
studied the observability of vehicle motion states using six orthogonal optical computer mouse sen-
sors. The six sensor configuration was not enough to obtain full observability, and required augmen-
tation using a 3-axis accelerometer. The authors introduced a HKF (Hybrid Kalman Filter) which
combines steps of UKF with IEKF (Iterated Extended Kalman Filter). The approach was tested in
simulation and experiment where a tethered sensor setup was made to oscillate like a pendulum
and its motion states were estimated. The results indicated that the system was capable of estimat-
ing the states in favourable lighting conditions and in presence of enough motion. The study reveals
various limitations of the approach, first being the diminishing observability with the lack of motion
due to low optical flow input and the other being the use of multiple optical sensors. The need of
using multiple optical flow sensors arises from the fact that each of these sensors measures optical
flow in a very limited FOV, since local optical flow measurements from a single sensor can have the
same value for different motion patterns. The use of a sensor with wide FOV could therefore reveal
more information with less number of redundant sensors. Zhang et al. [96] demonstrated attitude
estimation in a tethered 3-DoF helicopter based only on optical flow measurements using a single
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camera. The authors used a gradient descent algorithm to obtain the angular rates from the set of
six non linear equations (relating optical flow vectors to the platform angular rates and environment
structure) obtained at three image corner points. Then the attitude of the platform was computed
by integrating the angular rates. However, to be applied on a free flying MAV, the approach would
require integration of inertial sensors as direct integration of the noisy angular rates obtained by
solving the optical flow equations might lead to attitude drift.

Various researchers have also attempted to implement reactive sensory-motor control strate-
gies for attitude stabilization using optical flow. The optiPilot [33] (discussed in Section 4.4.2) was
demonstrated to be able to effectively reject roll and pitch perturbations and stabilize the flight of a
neutrally stable flying wing MAV. Goosen [34] proposed an optical flow based system (Figure 4.6) for
flight stabilization and control of flapping wing MAV. The system uses six orthogonal optical com-
puter mouse sensors, facing in X±, Y ± and Z± directions. Each of these sensors measures a single
optical flow vector in two directions, which are used to drive the control actuators in the wings and
the main flapping actuator. The concept was tested in simulation and experiment by Selvan [97]
and van Vrede[39]. Implementation on a tethered 3-DOF bi-copter [39] revealed that stabilization
based on rotational, horizontal and vertical feedback was possible using on-board processing on
a simple micro-controller. However, the author reported poor control performance in trajectory
tracking, which is reasoned to be due to the use of proportional velocity feedback. The author also
concludes that the performance of such an approach on a free flying MAV would significantly de-
pend on the quality of optical flow sensor used. Use of optical mouse sensors is not particularly
ideal due to its sensitivity to lighting conditions and limited FoV requiring integration of multiple
sensors (as discussed earlier in this section). The performance of the approach on a highly vibrat-
ing platform such as a flapping wing MAV is also uncertain and would be interesting to be evaluated.

Despite the works reported in this section, optical flow based attitude estimation and stabiliza-
tion of a free flying MAV remains to be a research problem that is largely unexplored (as apparent
from table 4.1) and hence an interesting topic for the current study.

Figure 4.6: Schematic of the optical flow based stability and obstacle avoidance control system proposed by Goosen [34]

4.4.5. Summary
Table 4.1 summarizes the works, studied in this section, on the application of optical flow in MAV
navigation. Several researchers have used the IMU measurements to de-rotate the optical flow
components and then used the translational optical flow for their navigation strategy. While other
researchers have used optical flow to complement the inertial sensors in ego-motion estimation.
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Navigation Optical Flow + Inertial Sensors Purely Optical Flow
Task Free Flying Tethered Free Flying

Landing or
Altitude Control

Chahl et al. [62]
Herissé et al. [89]

Ho et al. [25]

Ruffier & Franceschini
[24][84]

Franceschini et al.
[88]

Duhamel et al. [81]

Green et al. [23]

Obstacle
Avoidance

Zufferey and Floreano [26]
Beyeler et al. [33]
Zingg et al. [93]

Iida [92]
Green et al. [23]

Velocity
Control

Moore et al. [95]
Kimberly et al. [27]

Briod et al. [28]
Serres et al.[94]

Attitude
Stabilization

Omari and Ducard [31] 4

Verveld et al. [32]5

Beyeler et al. [33]
Zhang et al. [96]

Table 4.1: Summary of optical flow based navigation strategies in MAVs

However, the available literature lacks studies on purely optical flow based methods. To the best
knowledge of the author, implementation of purely optical flow based attitude estimation and sta-
bilization strategy, in an inherently unstable MAV platform, has not been reported yet. This makes
the the research objective formulated in Chapter 1 an extremely intriguing topic to pursue in this
thesis.

4Framework only studied in simulations
5Framework studied in simulations and experimental investigation was done on a tethered pendulum like sensor setup
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Flapping Wing Micro Aerial Vehicles

In chapter 2, the extraordinary aerial capabilities of the insects have been described. At present, over
a million species of insects and over 13000 warm blooded vertebrate species are capable of flight [7],
and all of them use wing flapping as their propulsion mechanism. Therefore, being inspired by these
exceptional natural flyers, the fascination of humankind with flight was first focused on flapping
wing flying machines. There have been numerous scientific and amateurish attempts of imitating
the natural flyers [4, 5], however, most vehicles failed to take off, demonstrated significantly limited
performance, or even conveyed their pilots to death [98]. The recent trend of miniaturization of un-
manned aerial vehicles (UAVs) towards the micro aerial vehicle (MAV) category, thus requiring the
development of small and light aerial vehicles capable of achieving flight in low Reynolds number
flows, has inspired the researchers to consider flapping wings as the propulsion and flight control
mechanism for these vehicles. In the last two decades, researchers have actively worked towards
mimicking the insect flight through flapping wing micro aerial vehicles (FWMAVs). The FWMAVs
are expected to fill the gap between fixed wing and rotary wing MAVs. Though the fixed wing plat-
forms demonstrate good forward flight characteristics, they lack the ability to hover and to take-off
and land vertically (VTOL). On the other hand, rotary wing platforms have hover and VTOL capa-
bility, however, they have lower efficiency and performance, especially in forward flight. FWMAVs
bring together the best of both worlds by being able to hover, VTOL, perform complex and agile
manoeuvres and demonstrate higher efficiency and performance at low Reynolds number flight
conditions. This chapter provides an overview about the state of the art flapping wing aerial robots,
followed by a detailed description of the robotic platform, the Delfly Nimble.

5.1. State of the Art
Several flight capable FWMAVs have been developed in the recent years. The FWMAVs can be cat-
egorized based on their wing configurations : (1) ones inspired from birds and most insects, having
only one pair of wings (monoplane), (2) ones inspired from quad-winged insects, like the dragon fly,
with the four wings being in tandem configuration, and (3) ones having the four wings in biplane or
X-wing configuration. Further, FWMAVs are also categorized, based on the presence of tail, as tailed
and tail-less FWMAVs. Figure 5.1 depicts a few important state of the art FWMAVs, grouped based
on their wing configurations and the presence or absence of a tail.

The monoplane configuration of the wings is the most common wing configuration occurring
in nature, like in birds, honeybees, fruitflies etc. This mechanism is also widely adopted for the de-
velopment of FWMAVs [8, 9, 99, 100, 104–106]. It is the most simple and straightforward concept in
terms of design and construction, however, the resulting wing motion often leads to considerable
oscillations of the body, which are disadvantageous for on-board sensors.

63
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Figure 5.1: State of the art FWMAVs grouped based on their wing configurations and the presence or absence of tails. A)
Tamkang University’s Golden Snitch [99], B) Caltech’s Micro Bat [100], C) AeroVironment’s Nano Hummingbird [9], D)

Harvard University’s Robobee [8], E) Festo’s BionicOpter [101](Source : https://www.festo.com/), F) Berkeley University’s
I-Bird [102], G) University of Toronto’s Mentor [103], H) TU Delft’s DelFly Explorer [79], I) TU Delft’s DelFLy Nimble [11]

Some FWMAVs make use of two pairs of wings, arranged in tandem or biplane configuration.
The tandem configuration of the wings is inspired by nature as it occurs in some insects like drag-
onflies. However, mimicking this configuration in robotic flyers is difficult and hence efforts in this
direction are rare[101, 107]. A more widely used alternative of the tandem configuration, is having
the wings in a biplane (or X-wing) configuration [10, 102, 103]. Opposite phase of flapping wings
reduces the body oscillations, making the platform more suitable for carrying sensors onboard.
Moreover, in bi-plane configuration, the wings exploit the mechanism of clap and fling to enhance
lift generation [10].

Another important categorization of the FWMAVs is on the basis of tailed and tailless designs.
The presence of a tail provides the platform with passive stability [10, 99, 102, 103]. Apart from
stabilizing the platforms, the tails also have control surfaces mounted on them that provide the
required control moments. Tailless designs, on the other hand, lack inherent stability but are more
agile and manoeuvrable [8, 9, 11, 106]. Being tailless, they are also smaller and lighter than their
tailed counterparts and hence more closely resemble insects. However, the lack of inherent stability
makes an active control system necessary.

5.2. Delfly Nimble
Current work is being pursued as a part of the Delfly project1 at Delft University of Technology. The
project started in 2005, when a group of undergraduate students completed studies by making the
first design of a DelFly, named Delfly I. The project since then has followed a top-down approach,
which means that the research started with a fully functioning system, through which theoretical
insights were gained and the research progressed by creating and studying progressively better sys-
tems, while always maintaining a fully functioning platform [10]. The first version of Delfly, named
Delfly I (figure 5.2A), was developed with a bi-plane wing configuration and an inverted V tail. Fol-
lowing that study, different Delfly configurations have been created, with different design goals,

1http://www.delfly.nl

https://www.festo.com/group/en/cms/10224.htm
http://www.delfly.nl/home/
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Figure 5.2: Various DelFly versions. A) DelFly I (left) and DelFly II (right) [10], B) DelFly Micro [10], C) DelFly Explorer
[79], D) DelFly Nimble [11]

namely Delfly II (figure 5.2A), Delfly Micro2[10](figure 5.2B), Delfly Explorer [79](figure 5.2C) and
DelFly Nimble (figure 5.2D).

In 2018, Karásek et al. [11] presented the first tailless version of Delfly, the Delfly Nimble (figure
5.3A). The robot weighs 28.2 grams and has a wing span of 33 cm, with its 14 cm long wings flapping
at a frequency of 17 Hz during hover. As discussed in the previous section, Nimble, being tailless, is
inherently unstable and hence it requires active attitude stabilization. To do this it carries a minia-
ture 2.8 grams autopilot, Lisa/S [109], equipped with a 72MHz ARM Cortex-M3 microcomputer and
an MPU6000 6 axis MEMS IMU (consisting of a 3 axis gyroscope and accelerometer) among other
sensors. Attitude is estimated by fusing the accelerometer and gyroscope measurements using a
complementary filter. In future studies, the optical flow based strategy being developed as a part
of this thesis project will be implemented for ego-motion estimation and flight stabilization of the
Nimble. Unlike tailed FWMAVs, Nimble does not have control surfaces to produce control moments
and hence it adjusts its wing actuation system to stabilize and control its flight. The following sec-
tion (Section 5.2.1) describes the mechanisms used by the Nimble to control its position and orien-
tation during flight, which is followed by a description of its flight dynamics in section 5.2.2.

5.2.1. Flight Control Mechanisms
The Nimble can actuate its flapping mechanism to control four degrees of freedom (DoFs): thrust,
pitch, roll and yaw. The helicopter model is employed to allow motion in 6-DoF space. The for-
ward/backward flight is controlled by body pitch (figure 5.3C) and lateral flight is achieved by body
roll (figure 5.3D). To control its orientation, the robot produces pitch, roll and yaw torques by ad-
justing its wing-beat pattern. The wing root servo facilitates yaw control by changing the wing root
angle such that the flapping cycle averaged thrust vectors of the left and right wings are tilted in
opposite directions (figures 5.3E and H). Pitch moment is generated by adjusting the dihedral an-
gle, which shifts the flapping cycle averaged thrust vector relative to the CoG (figure 5.3F and I). To
change the dihedral angle, a servo driven mechanism, between the two flapping mechanisms, is
utilized. Unlike other members of the DelFly family, which have a single flapping mechanism, the
Nimble has two separate flapping mechanisms, independently driving its left and right wing pairs.
Individual thrust modulation of each flapping mechanism allows for roll control (figure: 5.3G and
J). Finally, the thrust is modulated by symmetric actuation of the flapping mechanisms. The result-
ing control torques and thrust have high magnitude, high bandwidth, very little coupling and are
minimally sensitive to the vertical location of the centre of mass (CoG) [11].

5.2.2. Flight Dynamics Model
As already discussed, an active feedback control system is crucial for the Nimble to maintain its
stability. Now to design an efficient control system for the Nimble, a model of its flight dynamics

2In 2008 Delfly Micro was included in the Guinness book of records for being the smallest ornithopter carrying a camera
[108].
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Figure 5.3: The DelFly Nimble. A) Nimble and its various components. (B-D): Hover (B), forward flight (C), and lateral
flight (D). (E-G): Control mechanism design details, (E) the wing root deflection mechanism for controlling the yaw

moment, (F) the dihedral deflection mechanism for controlling the pitch moment, and (G) the flapping mechanism,
used for controlling the thrust and roll moment. (H-J): Wing actuation and aerodynamic forces and torques during yaw

control (H), pitch control (I), and roll control (J). Magenta arrows represent actuation, gray arrows represent the nominal
flapping cycle average aerodynamic thrust vectors, and red arrows represent flapping cycle average thrust and torques

after control actuation. Source: [11]

is necessary. This section describes a minimal longitudinal dynamic model of the Delfly Nimble as
presented by Kajak et al [110].

Considering the Nimble to be a rigid body with its movable parts mass less, the standard rigid
body equations of motion are utilized. The longitudinal equations of motion of the Nimble, assum-
ing perfect symmetry of the robot, no wind and flapping cycle averaged forces and moments, can
be formulated as:

mu̇ =−θ̇w −mg si nθ+X (5.1)

mẇ = θ̇u +mg cosθ+Z (5.2)

Iy y θ̈ = M (5.3)

Where, m is mass of the robot, u and w denote its velocities in longitudinal and vertical direc-
tions (body reference frame), θ denotes its pitch angle, M is the pitch torque, Iy y is its moment of
inertia about the body lateral axis and X and Z respectively denote the longitudinal and vertical
body forces.

Figure 5.4 depicts the force body diagram of the robot. It is assumed that the wings are the
source of all aerodynamic forces and the body drag is neglected. The wings generate a thrust force
T and the body motion induces a drag D , both acting at the flapping cycle average centre of pres-
sure (CoP). The dihedral angle of the robot is represented by the adjustable longitudinal position of
the CoP with respect to the CoG. The drag force has the following components respectively in the
body x and z direction :
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Figure 5.4: 2D longitudinal free body diagram of DelFly Nimble. CoP represents the mean centre of pressure, CoM
represents the centre of mass. The control variables have been depicted in blue colour. Source: [110]

Dx =−bx f uCoP (5.4)

Dz =−bz f wCoP (5.5)

Here, f represents the flapping frequency, bx and bz represent the drag coefficients along x and
z axes respectively. uCoP and wCoP respectively represent the longitudinal and vertical components
of the velocity of the CoP (as it is adjustable). These velocities further can be formulated as :

uCoP = u − lz θ̇+ ˙ld (5.6)

wCoP = w − ld θ̇ (5.7)

Where, ld and lz respectively represent the longitudinal and vertical positions of the CoP. It
should be noted that among these, ld is adjustable by adjusting the dihedral angle but lz is fixed.
Following the described free body diagram in figure 5.4, the body forces and moments can be writ-
ten as :

X = Dx =−bx f (u − lz θ̇+ ˙ld ) (5.8)

Z = Dz −T =−bz f (w − ld θ̇)−T ( f ) (5.9)

M = Dx lz + (Dz −T )ld =−bx f lz (u − lz θ̇+ ˙ld )+bz f ld (w − ld θ̇)−T ( f )ld (5.10)

Here, thrust, T , is assumed to be a linear function of the flapping frequency f . Experimentally
gathered data is linearly fit to estimate the thrust model.

T = 2(c1 f + c2) (5.11)

where, c1 and c2 are the fitted coefficients [110].

Finally inserting equations 5.8-5.14 into equations 5.1-5.3, the complete set of longitudinal flight
dynamic equations are derived :
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mu̇ =−mθ̇w −mg si nθ−bx f (u − lz θ̇+ ˙ld ) (5.12)

mẇ = mθ̇u +mg cosθ−T ( f )−bz f ld (w − ld θ̇) (5.13)

Iy y θ̈ =−bx f lz (u − lz θ̇+ ˙ld )+bz f ld (w − ld θ̇)−T ( f )ld (5.14)

Parameter Value Unit
m 29.4 g
Iy y 1.26×10−4 kg m2

bx 4.21×10−3 N s2m−1

bz 9.16×10−4 N s2m−1

lz 27.1 mm
c1 0.0114 4N H z−1

c2 -0.0449 N

Table 5.1: Optimized longitudinal model parameters for a DelFly Nimble

Note that the model has two adjustable inputs (CoP location ld and the flapping frequency f )
and only five parameters to be estimated (mass m, moment of inertia Iy y , vertical location of CoP lz

and drag coefficients bx and bz ). Based on appropriate assumptions, the starting estimates of each
of these parameters were obtained : The mass was measured by a precision scale. The moment
of inertia was analytically estimated from locations and masses of its individual components. The
drag coefficients were estimated by performing ordinary least squares regression on experimentally
gathered data of steady level flight of the robot at various flight speeds in a wind tunnel. It was as-
sumed that the CoP lies at quarter chord distance from the wing leading edge, and thus a starting
estimate of lz was obtained. Further open loop validation of the model with the above stated pa-
rameter values was performed after which the parameter values were optimized to obtain the best
match between simulation and flight data. The obtained parameter values are listed in table 5.1.

The authors demonstrate that the model very well captures the effects of varying some proper-
ties, like the centre of mass position or controller parameters. Further, following a similar approach
the lateral dynamics of the robot can also be derived.

This concludes the description of the FWMAV DelFly Nimble, which in future studies will be
used as a platform to implement the attitude estimation approach being developed in this investi-
gation.



6
Literature Consolidation

As a preliminary part of this thesis, an in depth literature study has been conducted which has been
presented in Part II of this report. This section intends to conclude the literature study by summa-
rizing its key findings.

Conventionally, IMUs, comprising of accelerometers, gyroscopes and sometimes magnetome-
ters, are used for motion sensing and attitude estimation in MAVs. MEMS IMUs, owing to being
small and light weight, are popular choices for MAV applications [13]. However, as the size of these
IMUs reduce, their noise increases and sensitivity decreases. The noise and inherent drift lead to
quickly diverging attitude estimates when angular rate measurements from the gyroscope are di-
rectly integrated [41]. Hence, sensor fusion algorithms like the Kalman filters [45–47] and comple-
mentary filters [48, 49] are used to increase the estimation accuracy. However, these algorithms
increase the computational burden on the on-board processor, which is highly undesirable.

Many important inspirations can be drawn from the motion perception and navigation strate-
gies used by the insects for effective stabilization and control of MAVs. Insects use rich sensory
feedback for flight stabilization and control, drawing ego motion information from sensory organs
like halteres, ocelli and the compound eyes. Visual sensing plays a prominent role in the insect’s
ego-motion inference. Most insects are equipped with a sophisticated imaging system known as
the compound eyes [7]. The compound eyes, apart from enabling panoramic imagery, also encodes
information about motion and direction in the form of optical flow fields [15, 56]. Optical flow
sensing is critical to various insect flight behaviours like obstacle avoidance and navigation through
small gaps [18], flight speed regulation [19, 20], altitude control [21], and performing smooth land-
ings [22]. Though attitude estimation and stabilization in insects is yet to be completely understood,
there is enough evidence to prove that optical flow sensing is critical to effective attitude stabiliza-
tion in insects [29].

The concept of optical flow can be defined as a means to quantify the relative motion between
the objects in a static scene and a moving observer [15]. In essence, optical flow measures the ratio
of movement velocity to the distance of surrounding objects. Two commonly used mathematical
formulations of optical flow have been described in the report: formulation using perspective pro-
jection method [17] and formulation using spherical projection method [16]. Further, two classes of
widely used optical flow computation algorithms have been described in the report: gradient based
methods [65, 71, 73] and correlation based methods [76–78].

Various optical flow sensors have been used in literature for optical flow based MAV navigation
applications: like small conventional cameras[27, 79], dedicated optical flow sensors used in com-
puter mice [86, 87] and Elementary Motion Detector (EMD) based sensors [83]. The bio-inspired
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artificial compound eye CURVACE [85] can be considered to be one of the most promising optical
flow sensors. Weighing just 1.75 grams, CURVACE is capable of streaming images with 180o ×60o

Field of View (FoV) at frame rates as high as 1950 Hz. However, applications of CURVACE in MAV
navigation have not been extensively investigated yet.

Drawing inspirations from insects, researchers have investigated the applications of optical flow
based navigation strategies for landing [23–25], obstacle avoidance [23, 26] and velocity control
[27, 28] of MAVs. However, works in the field of optical flow based attitude estimation and stabi-
lization remains obscure.

The literature study is concluded by reviewing state of the art in FWMAVs. Various recently de-
veloped tiny FWMAVs like the Robobee [8], Nano Hummingbird [9], and Delfly [10, 11] have been
reviewed and their characteristics described. This is followed by a detailed description of flight con-
trol mechanisms and dynamics model of the DelFly Nimble[11] which, in future studies, will be
used as a MAV platform for the application of the attitude estimation approach being developed in
this study.

The lack of understanding of the strategies used by insects for estimating and stabilizing their
attitude and the deficiency of literature concerning optical flow based attitude estimation methods
for MAVs, motivated the objective of the current study: “Feasibility investigation and development
of an optical flow based approach for attitude estimation of a flying robot".



Thesis Conclusions

Based on a comprehensive literature survey, on the topic of optical flow based attitude estimation
and stabilization of Micro Aerial Vehicles (MAVs), it was found that the techniques used by insects
for estimating their absolute attitude and stabilizing their flight are still not completely understood.
However, there are evidences which indicate that insects prominently make use of optical flow fields
for ego-motion estimation. The feasibility of estimating absolute values of attitude from optical flow
fields would mean that a camera can be effectively used to complement or even replace the inertial
measurement units (IMUs) for flight stabilization of MAVs. Thus, to test this hypothesis the ob-
jective of this thesis was decided as: “Feasibility investigation and development of an optical flow
based approach for attitude estimation of a flying robot".

In this thesis, through non linear observability analysis it has been proven that it is indeed pos-
sible to estimate the attitude of a MAV using optical flow measurements and the knowledge of con-
trol efference copies. Based on the findings of the observability analysis, an extended Kalman filter
(EKF) state estimator has been designed and its performance has been verified in simulations and
on flight data obtained from a real flying robot. The estimator only uses ventral flow and divergence
measurements obtained from a downward looking monocular camera, along with the knowledge
of control inputs to estimate: pitch angle, pitch rate, horizontal and vertical components of veloc-
ity and height, of a MAV constrained to move with 3 degrees of freedom. In simulations, the state
estimates obtained from the estimator have been used in a closed loop to control the attitude and
altitude of a MAV, thus establishing the feasibility of using the approach in attitude stabilization of
an inherently unstable MAV.

To the best of the author’s knowledge, the approach introduced in this study is the first attitude
estimation algorithm that utilizes optical flow as the only sensory information. Thus, through the
investigations performed and results obtained during the course of this thesis project, the set re-
search objective has been met and the research questions have been satisfactorily answered.

In future investigations, a more effective approach of modelling the moment efference inputs
based on the MAV’s rotor velocities will be devised and incorporated. Further, the estimator will be
implemented on-board a tailless flapping wing MAV: DelFly Nimble, and attitude stabilization of
the platform will be performed.

The findings of this thesis propose a very attractive solution for miniaturization of MAVs. Fur-
ther, the findings also form a novel hypothesis about how some flying insects can estimate their
states, including attitude, utilizing optical flow as the prominent sensory information. Thus the
work performed in this thesis brings us a small step closer to making MAVs as nimble as the insects.
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Look at the sky. We are not alone. The whole
universe is friendly to us, and conspires only to
give the best to those who dream and work.

Dr. A.P.J. Abdul Kalam
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