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SUMMARY 

This research evaluates the applicability of Multivariate Imputation by Chained Equations (MICE) 

for estimating missing well-log data across different sedimentary basis. Utilizing various machine 

learning techniques including XGBoost (XGB), Random Forest (RF), K-Nearest Neighbors (KNR), 

and Bayesian Ridge (BR), the performance of MICE was tested on three different data sets from 

distinct geological contexts and preprocessing conditions with minimal user input.  

The main results indicate that the performance of MICE varied across different data sets and well-

logs, highlighting the complexity of imputing missing data in heterogeneous sedimentary basins. 

The number of iterations in MICE did not significantly impact the performance of the models, while 

data quality, pre-processing, and geological complexities played crucial roles. The Force-200 data 

set, which underwent extensive preprocessing, demonstrated better imputation performance 

compared to the Montney and Beetaloo data sets. Additionally, XGB often outperformed other 

algorithms, predicting missing values with different number of iterations. 

The main conclusions drawn from this study emphasize the need for more research to minimize 

user input and to develop more robust and flexible approaches to imputing missing data in well-

logs. The study highlights the challenge of determining a single set of hyperparameters optimal 

for all the well-logs, suggesting the need for more adaptable models or even advanced techniques 

like deep learning techniques. The research also suggests the importance of refining pre-

processing techniques, exploring further combinations of well-logs, and developing cross-

validation approaches that effectively replicates real-world scenarios to advance the application 

and reliability of MICE in data imputation of subsurface data with missing values. 
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1 | INTRODUCTION 

1.1 GENERAL CONTEXT AND PROBLEM STATEMENT 

As the urgency to mitigate climate change intensifies, it becomes necessary to move away from 

high-carbon fossil energy sources, such as oil and gas, and towards more sustainable 

alternatives. Geothermal energy, due to its low carbon emissions, and energy storage, such as 

hydrogen storage, are emerging as viable options to meet the growing global energy demand and 

address climate challenges. To optimize the exploration, development, and production of these 

geological resources, well-logs are crucial to these processes by providing measurements of 

subsurface fluids and rocks. In geological and engineering fields, these measurements provide 

essential data for interpreting subsurface geology, characterizing reservoirs, evaluating wellbore 

stability, and designing engineering strategies (Darling, 2005). 

A well-log refers to the recorded measurements and data obtained from various instruments or 

tools used in drilling and exploration activities. Well-logs consist of the determination of various 

geophysical and geological properties of the subsurface at different depths (Darling, 2005; Feng, 

Grana, & Balling, 2021), such as electrical resistivity, rock porosity, density, seismic wave velocity, 

among others. In addition, these measurements can also provide information about the 

characteristics of fluids present in the formations, such as water, oil, and gas content. By analyzing 

well-logs, geoscientists can develop a better understanding of the subsurface, improving their 

analysis and decision-making about resource exploration and production. 

However, well-logs are often incomplete and certain data is partially or entirely missing. Missing 

data in well-logs can be attributed to operational issues, economic decisions, or the complexity of 

geological formations (Darling, 2005). During the drilling of a well, logging tools can fail, or some 

measurements are not carried out due to cost considerations, resulting in certain intervals with 

missing data or complete missing logs. This absence of data in well-logs presents significant 

problems which can impact the interpretation of subsurface conditions. For instance, missing data 

can lead to inaccurate reservoir characterization, making reservoir capacity prediction, resource 

estimation, and drilling decisions difficult. Additionally, well-logs are used to calibrate seismic data 

and help to build more accurate and detailed geological models of the subsurface. When well-
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logs are not available, seismic interpretation becomes more challenging and less reliable, 

compromising understanding of the subsurface and its resources. Therefore, it is important to 

address the problem of missing data in well-logs to ensure better decision-making in this industry. 

In recent years, the application of machine learning algorithms has gained popularity in 

geosciences, particularly in well-log analysis. These algorithms can extract hidden relationships 

in the available data and make predictions about properties of interest (Hallam, Mukherjee, & 

Chassagne, 2022; Feng, Grana, & Balling, 2021). This technology has proven its effectiveness in 

a variety of applications, including lithofacies identification, anomaly detection in well-logs, drilling 

parameters predictions, and estimation of rock properties such as porosity and permeability 

(Belyadi & Haghighat, 2021). However, the presence of missing data affects the potential of these 

algorithms, since these models mostly require complete data sets for optimal performance 

(Dixneuf, Errico, & Glaus, 2021). 

Handling missing data is a common challenge in data science. Traditional techniques such as 

data deletion and mean mode substitution are common approaches used, but they have 

significant drawbacks dealing with missing values. Deleting data, for example, reduces the 

sample size in the data set and causes the loss of valuable information. Similarly, median mode 

substitution often produces biased estimates and does not effectively address the problem (Leke 

& Marwala, 2019). Additionally, these techniques do not account for possible relationships or 

patterns between missing values and other variables, which can result in inaccurate 

representations of the original data. These limitations make data deletion and mean mode 

substitution not recommended for predicting missing values in well-logs, especially in situations 

where prediction performance and maximizing data collection are critical. Instead, it is necessary 

to adopt more sophisticated and modern approaches that consider the complexity and 

interactions of the data to obtain more reliable and valuable results. 

Previous studies have explored various strategies for addressing the issue of missing data in well-

logs. One of these strategies relies on machine learning algorithms. For example, Lopes & Jorge 

(2018) and Feng, Grana, & Balling (2021) proposed the use of Random Forest and Gradient 

Boosted Trees for predicting missing values in a single well-log, demonstrating promising results 

in completing well-log data. However, in these studies, missing values were introduced artificially 

and randomly into well-logs for testing purposes that do not represent the nature of missing values 

in well-logs accurately. Additionally, Feng, Grana, & Balling (2021) employed a complete data set 

for training their model, which is not a realistic representation of the field situation where well-logs 

frequently have missing data. 

Furthermore, Multivariate Imputation by Chained Equations (MICE) emerged as an innovative 

alternative for imputing missing well-log data (Hallam, Mukherjee, & Chassagne, 2022). In this 

research, MICE was applied using machine learning models such as K-Nearest Neighbors (KNR), 

Random Forest (RF), Gradient Boosted Trees (GBT), and Bayesian Ridge (BR) in two different 
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data sets from the Norwegian North Sea. Although the study proposed a methodology for 

simultaneous imputation of all input well-logs, the evaluation focused on three logs, limiting the 

understanding of effectiveness of this imputation method. Moreover, the method of introducing 

missing values in well-logs presented gaps that need further exploration. 

Despite the valuable contributions of these studies in addressing missing data in well-logs, they 

have limitations in predicting these values. Some common limitations include that the missing 

values are often added randomly for testing, which does not accurately represent real-world 

scenarios where entire well-logs might be missing. Moreover, most studies typically focus on a 

single or few missing logs, whereas in practical settings, missing values occur in almost all well-

logs. Additionally, they often used one or two benchmark data sets with unclear pre-processing 

steps, making it difficult to apply their findings to different geological contexts or data sets. 

Therefore, this research aims to conduct a comprehensive evaluation of the performance of MICE 

with minimal user input, where all well-logs have missing values and entire well-logs could be 

missing. The goal is to determine the applicability of MICE to predict missing values in well-logs 

in different geological contexts, reflecting real-world scenarios as closely as possible. 

1.2 RESEARCH QUESTION 

This project aims to address some of the limitations identified in previous studies and literature. 

The objective is to develop a framework that allows simultaneous imputation of various well-logs 

using the MICE approach and incorporates cross-validation techniques to assess performance 

realistically with minimal user input. The main research question guiding this study is the following: 

How does MICE perform in settings where all the types of well-logs have 

missing values and entire well-logs are missing? 

To answer this question, we use three data sets from different sedimentary basins and apply MICE 

without extensive pre-processing or pre-selection of inputs to compare the performance of the 

various machine learning models in predicting missing values in well-logs. Additionally, we define 

sub-questions to help answer the main research question evaluating the performance of MICE: 

 How to define a validation study that thoroughly tests MICE’s ability to impute well-logs? 

 What is the computational efficiency and performance of MICE for different datasets with 

missing well-log data? 

 Which data sets to use to determine MICE’s domain of applicability? 

 Which machine learning methods to focus on in MICE? 
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 How to efficiently perform hyper-parameter tuning for those methods? 

 Is there a generic configuration for MICE that provides reasonable results for all types of 

well logs and all datasets? 

1.3 THESIS STRUCTURE 

This thesis is divided into five chapters, each of them contributes to answering the research 

question and provides insights into the application of MICE for predicting well-log data with 

missing values. 

 

  

Provides a critical appraisal and evaluation of existing concepts, methods, and 
applications related to well-logging, machine learning, missing values, and imputation 
techniques.

Literature Review

Presents an overview of the data sets used, including geological context, data 
description and missing value analysis.

Data Analysis

Describes the proposed framework for predicting missing values in well-logs using 
multivariate imputation by chained equations (MICE). 

Methodology

Presents the findings of the project, discussing the computational efficiency and 
performance of the implemented approaches.

Results and 
Discussion

Summarizes the key findings and evaluates the prediction of missing data, including 
recommendations for future research on implementing multiple imputation 
techniques for well-log data.

Conclusions and 
Recommendations
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2 | LITERATURE REVIEW 

This section provides a detailed review of the literature to contextualize and validate the research 

carried out. First, the concept and importance of well-logs is examined before discussing the 

problem of missing values, including its definition, causes, impacts, and the various patterns and 

mechanisms of missing data in well-logs. Various methods for handling missing data are then 

reviewed, from traditional techniques to more robust strategies such as multivariate imputation by 

chained equations (MICE). 

Subsequently, machine learning is explored, investigating its common models and the potential 

of more sophisticated ensemble models. These approaches are critically evaluated for their 

effectiveness and suitability in addressing the problem of missing well-log data. Finally, the 

machine learning workflow is explained, from data preprocessing to implementation, detailing 

techniques for developing a robust and reliable method for imputing missing values in well-logs. 

2.1 WELL-LOGS 

2.1.1 Defining Well-Logs 

Well-logs are records of measurements taken during the drilling and exploration of oil and gas 

wells. The process of acquiring these measurements, called well-logging, uses various tools and 

instruments to gather data about subsurface geology, rock formations, fluid content and other 

properties of the well (Darling, 2005; Feng, Grana, & Balling, 2021). These measurements are 

usually taken at regular intervals at different depths in the wellbore, as can be seen in the Figure 

1. 

Currently, different types of well-logs are used for lithology identification, formation evaluation, 

hydrocarbon detection, and rock mechanical property analysis in the oil and gas industry 

(Evenick, 2018). Each type of log provides specific information about subsurface characteristics 

such as density, gamma ray, resistivity, and porosity. Table 1 presents a summary of some of the 

most used well-log types for this project, including their abbreviations. 
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Table 1. Types of well-logs, including abbreviations and their applications (Darling, 2005; Evenick, 2018). 

Well-Log Abbreviation Description Application 

Density RHOB Measures bulk density of the formation. Lithology, Porosity. 

Gamma-ray GR Measures the natural radioactivity of a 
formation. Helps to identify shales and organic 
content. 

Lithology. 

Sonic DT Measures the time of compressional sound 
waves in the formation. It is a good indicator of 
density and the presence of gas. 

Lithology, 
Mechanical 
properties.  

Resistivity RES Measures the flow of electricity through a 
formation. Helps to detect hydrocarbon from 
water. 

Lithology, Porosity, 
Hydrocarbons. 

Spontaneous 
Potential 

SP Measures the electrical that arises due to 
salinity differences between the borehole fluid 
and the fluid formation. This is a good indicator 
of formation permeability and can distinguish 
shale from carbonates and sandstones. 

Permeability, Fluid 
content. 

Porosity (e.g., 
Neutron 
Porosity) 

NPHI Measures the porosity of the formation based 
on the quantity of hydrogen content. 

Porosity, Fluid 
storage capacity. 

 

 

Figure 1. Well-logs of the Montney data set Well 12 from section Data Analysis, including Density (RHOB), Gamma-ray (GR), Sonic 
(DT), Resistivity (RES), Spontaneous Potential (SP) and Neutron Porosity. 

2.1.2 Importance of Well-logs 

Well-logs play a fundamental role in geosciences, providing essential information throughout the 

life cycle of a wellbore, from exploration to subsurface optimization. They have a significant impact 
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on sectors such as oil and gas, improving the evaluation and classification of underground 

formations, which makes it possible to determine the best use of resources for the production of 

hydrocarbons, geothermal energy and gas storage (Darling, 2005; Liu, 2015). 

The importance of well logging is reflected in its wide application in various disciplines. Geologists, 

for example, use well-logging as a mapping technique to investigate the subsurface, allowing 

them to understand geological properties and formations. Petro-physicists employ well-logs to 

evaluate the hydrocarbon production potential of a reservoir, allowing them to estimate properties 

such as porosity and permeability. Geophysicists use well-logs as complementary information for 

seismic analysis, which allows them to integrate multiple sources of subsurface information. 

Reservoir engineers, on the other hand, rely on well-logs to obtain values for use in simulations, 

which help them in optimizing drilling and production operations (Liu, 2015). 

Besides these applications, well-logs can contribute to achieving economic and environmental 

sustainability goals. They serve as a source of information to identify the most productive zones 

for drilling, reducing costs, and increasing productivity. Moreover, well-logs can be employed in 

real time to identify drilling risks, detection of unstable formations and possible leaks. As a result, 

well-logs allow prompt decision-making and operations adjustments to guarantee the integrity, 

stability, and safety of well operations, while reducing environmental risks (Darling, 2005; Liu, 

2015; Lopes & Jorge, 2018). 

Despite the benefits and wide uses of well-logs, the main drawback is that these measurements 

are rarely complete. In the following sections, we will explain in more detail the topic of missing 

values in well-logs. We will start by defining a missing value, explore its possible causes, and 

understand why it is a problem in well-logs. Additionally, we will explore the different missingness 

mechanisms and patterns for missing values to select the best approach to handle missing data. 

In this context, we will investigate how these missing values can be addressed by showing 

different techniques, with a particular focus on multivariate imputation by chained equations 

(MICE). 

2.2 MISSING DATA 

2.2.1 Defining Missing Data 

Missing data refers to the absence of values in a data set (Galli, 2022; Little & Rubin, 2020). In 

other words, if an observation that was intended to be measured, collected, and recorded is not 

present in the data set, it is considered a missing value. For example, if gamma ray (GR) 

measurements in a well are supposed to be recorded at every meter of depth, but at certain 

depths this measurement is not available, these points are considered as missing values. 

Furthermore, missing data can extend beyond certain points or individual observations. For 
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instance, if spontaneous potential (SP) log has not been performed on a well, the entire log could 

be missing in the data set. Figure 2 visually shows missing values in a well and serves as a 

representation of the examples mentioned above. It is relevant to note that missing values can be 

represented as not a number (NaN) or simply remain blank in the data set. For this project, we 

use the NaN representation. 

 

Figure 2. Visualization of missing values in well-logs, using the Well 19 of the Montney data set from section Data Analysis. 

2.2.2 Causes and Problems of Missing Data in Well-Logs 

Missing values in well-logs can be attributed to various factors, including commercial 

considerations, geological conditions, unavailability of logging tools, mechanical or operational 

failures, and data quality control procedures (Darling, 2005). Commercial considerations play a 

critical role in the integrity of well-log data. Due to financial constraints, companies can be forced 

to make decisions that impact the acquisition of this information. These decisions could include 

limiting measurements in certain depths and formations, and in some cases, not logging some 

wells. Consequently, these considerations lead to reduced data collections and a lack of well-log 

data. 

Mechanical and operational failures also contribute to missing data. During the drilling process, 

well-logging equipment often has technical problems and failures that can lead to incorrect 

readings and incomplete data. Additionally, complex geological conditions, such as unstable 
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formations, can interrupt the logging process resulting in gaps in the data. Data quality control is 

another factor that affects the presence of missing data in well-logs. During data processing, 

outliers, errors, and certain data are identified for later removal to ensure the final record is 

accurate and reliable. However, this process can result in missing values and a subsequent 

reduction in observations in the final well-log. 

Missing values in well-logs directly affect subsurface analysis and interpretation, as incomplete 

data can complicate the understanding of subsurface geology and the evaluation of reservoir 

quality (Darling, 2005; Liu, 2015). Since well-logs are fundamental for defining rock properties 

and fluid content, incomplete well-logs lead to inaccurate predictions of formations characteristics 

and reservoir performance. For instance, when resistivity and porosity logs are incomplete, 

identifying hydrocarbons and estimating their storage capacity becomes challenging, resulting in 

unreliable estimates for determining reservoir potential. 

Furthermore, missing well-log data can compromise the integration of well-logs with other data 

sources, such as seismic data. While seismic data provides a broad and general view of the 

subsurface, it does not provide precise details about rock or fluid properties at specific points such 

as well-logs. Therefore, the combination of these two types of data gives a more complete and 

accurate picture of the subsurface. However, when well-log data is incomplete or missing, seismic 

data calibration becomes less reliable, leading to greater uncertainties in seismic interpretation 

and understanding of the subsurface. 

2.2.3 Missingness Mechanisms and Patterns 

The identification of the mechanism and pattern of missing data is crucial to determine the most 

appropriate strategy to handle missing data in well-logs. Each approach has its own strengths 

and limitations that depend on the characteristics of the data and the research objective. To 

effectively address the problem of missing data, it is necessary to understand the reasons for the 

missing values, called missing mechanisms, and the structure or pattern that these missing values 

present in the data (Little & Rubin, 2020). 

The missing mechanism refers to the process by which data is missing, specifically about the 

relationship between missing data and the values of variables in a data set. Understanding the 

missing mechanism is crucial because it can influence the validity of the methods used to handle 

missing data and the potential impact on the results of statistical analyzes or machine learning 

models (Dixneuf, Errico, & Glaus, 2021; Little & Rubin, 2020). There are three missing data 

mechanisms: missing completely at random (MCAR), missing at random (MAR), and missing not 

at random (MNAR). 

 Missing Completely at Random (MCAR): MCAR occurs when the missing values are 

unrelated to any systematic reason (White, Royston, & Wood, 2011; Huyen, 2022). 
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 Missing at Random (MAR): MAR refers to missing values that can be explained by other 

observed variables, introducing a pattern to the missing data (White, Royston, & Wood, 

2011; Huyen, 2022). 

 Missing not at Random (MNAR): MNAR is the most problematic mechanism and occurs 

when the missingness is related to both observed and unobserved variables, including the 

variable itself. MNAR indicates that there is a reason why the values are missing from the 

data set (White, Royston, & Wood, 2011; Huyen, 2022). 

In the context of well-logs, missing values could be considered as missing not at random due to 

business decisions, geological conditions, and tool limitations. For instance, to save costs, a 

company might record only certain intervals, which are the most promising for hydrocarbon or 

geothermal energy production, using other available data or geological models as a reference. 

Another example could be the failure of logging tools in specific formations due to collapses or 

complexity in data collection, resulting in gaps in the data for this interval. In these cases, the 

missing data is directly related to unobserved measurements; therefore, it would be classified as 

missing not at random. However, it is important to note that the reasons for missingness vary by 

data set. 

Missing patterns, on the other hand, refer to the structure of the missing values in the data. It 

describes how missing data is distributed in a data set, providing information about the reason for 

the missing values. There are different types of missingness pattern which includes univariate 

non-response, multivariate, monotone, general, and file matching (Berglund & Heeringa, 2014; 

Little & Rubin, 2020). In the Figure 3 shows the examples of missingness patterns. 

 Univariate Non-response: It occurs when data is missing for a particular variable, often 

because respondents chose not to provide that information (Berglund & Heeringa, 2014; 

Little & Rubin, 2020). 

 Multivariate: This pattern occurs when there is missing data in multiple variables 

(Berglund & Heeringa, 2014; Little & Rubin, 2020). 

 Monotone: It occurs in different variables due to participants dropping out or leaving the 

study for unknown reasons (Berglund & Heeringa, 2014; Little & Rubin, 2020). 

 General: This occurs in multiple variables throughout the data set, without a specific order. 

 File matching: It occurs when data sets are merged from different sources (Berglund & 

Heeringa, 2014; Little & Rubin, 2020). 
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Figure 3. Examples of missingness patterns modified from (Little & Rubin, 2020): (a) Univariate non-response, (b) Multivariate, (c) 
Monotone, (d) General, and (e) File matching. 

Well-log data often includes information from multiple wells, each well providing specific 

geological insights and different logs based on depth. Consequently, each row within these data 

sets represents a measurement at a particular depth within a given wellbore, while each column 

indicates a different property or log type. Regarding the missingness pattern, missing values in 

well-logs present a generalized structure. Where the missing data is scattered throughout the 

data set, distributed across multiple wells, depths, and variables such as geological properties or 

logs, as can be seen in the following Figure 4. 

 

Figure 4. Generalized pattern of missing data in well-logs. 
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2.3 HANDLING MISSING DATA 

Handling missing data is not a simple task, as it requires an understanding of the mechanism of 

missingness and the use of appropriate techniques to deal with it. In this section, we will discuss 

some of the traditional approaches used to handle missing data, each with their strengths and 

limitations. Among these methods, we will explain more in detail the multivariate imputation by 

chained equations (MICE) method due to its promising results in predicting missing values in well-

logs. 

2.3.1 Traditional Methods for Handling Missing Values 

I. Data Deletion 

Data deletion consists of removing observations or features with missing values. Although this 

method is quick and easy to implement, it can result in the removal of a significant proportion of 

the data set if there are missing values in multiple features (Galli, 2022). It is important to note 

that when missing values follow a missing not at random (MNAR) mechanism, data deletion can 

introduce bias and loss of information, which affects the reliability of the subsequent analysis 

(Gallatin & Albon, 2023). 

II. Single Imputation 

Imputation is the process of replacing missing data with substituted values, with the objective of 

producing a complete data set (Leke & Marwala, 2019). These methods can be univariate or 

multivariate based if the approach considers relationships with other variables in the data set 

during the imputation process. For instance, multivariate imputation predicts missing values of a 

variable using information from other variables in the data set. Additionally, imputation methods 

can also be categorized into single and multiple imputation. 

Single imputation replaces the missing values with a single imputed value to produce a complete 

data set. Although this method is simple to implement with minimal computational resources, 

single imputation can introduce bias into the data set, especially for missing not at random 

(MNAR) mechanisms. This method does not capture the variability and uncertainty associated 

with the missing values (Little & Rubin, 2020; Berglund & Heeringa, 2014). Therefore, single 

imputation may underestimate uncertainty and lead to potentially invalid inferences. Two common 

single imputation methods are mean median substitution and regression methods. 

Mean-Median Substitution 

This method replaces missing values with the mean or median variable. However, this approach 

can change the distribution of the original variables if there is a high percentage of missing data, 

and lead to biased estimates. Mean median substitution is more effective when the data is missing 

completely at random, MCAR (Galli, 2022; Leke & Marwala, 2019). 
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Regression Methods 

Regression methods have been used to estimate missing values by setting the target variable as 

the dependent variable and the remaining features as independent variables or predictors. 

However, regression methods are not an ideal solution to deal with MNAR data (Jafari, 2022). 

These methods assume that the missing values are missing at random (MAR), considering that 

the probability of missingness is only related to the observed variables. Consequently, regression 

methods may not capture the relationship between the missing values and the unobserved 

variables in MNAR, leading to biased estimates and misleading results (Leke & Marwala, 2019). 

III. Multiple Imputation 

Multiple imputation creates various data sets with different imputed values for the missing entries. 

These data sets are then combined to obtain a single set of estimates, resulting in a final 

completed set (Little & Rubin, 2020). This method considers the variations between the imputed 

data sets, effectively incorporating the uncertainty arising from the imputation process into the 

final results (Dixneuf, Errico, & Glaus, 2021). 

Multiple imputation is multivariate. It preserves the distribution of each variable and maintains 

associations among variables, making it more robust and precise, reducing bias in subsequent 

analysis (Berglund & Heeringa, 2014). A popular and flexible technique within multiple imputation 

is multivariate imputation by chained equations (MICE), which is known for its applicability to 

various types of missing data (Dixneuf, Errico, & Glaus, 2021; Hallam, Mukherjee, & Chassagne, 

2022). 

However, it is important to note that the idea of imputation can create a false belief that the data 

is complete. Even though it offers a convenient solution to handle missing data, it can introduce 

biases in subsequent analyses (Little & Rubin, 2020). The imputation model, whether single or 

multiple imputation, may not perfectly match the true underlying distribution assumptions or the 

assumed missing data mechanism, which can bias the results. Moreover, multiple imputation can 

also introduce biases if important variables are omitted, incorrect relationships are assumed, or 

crucial interactions are omitted in the imputation model (Berglund & Heeringa, 2014). 

2.3.2 Multivariate Imputation by Chained Equations (MICE) 

Multivariate imputation by chained equations (MICE) is used to impute incomplete multivariate 

data (Buuren & Groothuis-Oudshoorn, 2011). This method employs an iterative procedure in 

which each variable with missing values is imputed based on the other variables, resulting in 

multiple imputations that are combined to create a final complete data set (Berglund & Heeringa, 

2014; Dixneuf, Errico, & Glaus, 2021). 

The MICE steps are as follows: 
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1. Initialization: Initial imputations for missing values are created using a simple method like 

mean imputation from observed values. 

2. Iteration: In each iteration, an incomplete variable is selected, and its missing values are 

imputed based on the observed values and imputed values of other variables. This 

process is repeated for all incomplete variables. 

3. Convergence: The stability of the imputations across iterations is evaluated, and the 

process continues until convergence is achieved. 

4. Combination: Multiple imputations are combined to obtain a single imputed data set, on 

which statistical analysis can be performed. 

MICE offers several advantages for imputing missing data. It can handle various types of variables 

and complex data structures, including categorical, continuous, and ordinal variables (White, 

Royston, & Wood, 2011). By generating multiple imputations, MICE captures the uncertainty 

associated with missing data and enables proper estimation of standard errors and valid statistical 

inference. Furthermore, MICE conserves the relationships between variables by imputing missing 

values based on observed values and their associations with other variables, regardless of the 

missingness mechanism (Buuren & Groothuis-Oudshoorn, 2011). 

However, it is important to acknowledge certain limitations and assumptions associated with 

MICE. The method assumes that the missing data follows missing at random (MAR) or missing 

completely at random (MCAR) mechanisms. For this reason, MICE may introduce bias and 

inaccurate imputation if the missing data is missing not at random (MNAR) (Buuren & Groothuis-

Oudshoorn, 2011). Additionally, it is crucial to determine the appropriate model and the number 

of iterations to find a balance between computational efficiency and imputation quality. Otherwise, 

unreliable results could be obtained. For this reason, it is important to monitor converge, and 

empirical evidence presented by Buuren & Groothuis-Oudshoorn (2011) suggest that 

convergence is often achieved with a relatively small number of iterations, ranging from 10 to 20. 

MICE allows to select the number of iterations. When the number of iterations is set to 1, the 

algorithm performs a single imputation, although it is designed for multiple imputation. In this 

configuration, the algorithm could estimate the missing values using to some extent the 

relationships between variables. However, the result may not include all the complexities and 

characteristics of the data that can be better captured through multiple iterations. 

In the context of well-logs, the multivariate imputation by chained equations (MICE) is considered 

a promising method for handling missing data. The MICE approach provides a more robust 

prediction by generating multiple imputed data sets and it has the advantage of simultaneously 

estimating all well-logs, yielding a complete final data set. A previous study has shown promising 

results using MICE in a limited number of well-logs (Hallam, Mukherjee, & Chassagne, 2022). 
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2.4 MACHINE LEARNING 

Machine learning is a powerful tool that allows us to develop models based on empirical data, 

without the need for physical laws. The objective of this technique is to determine the 

dependencies between variables, which allows predictions and supports decision-making on new 

and unseen data (Bangert, 2021). 

In this project, we focus our attention on supervised learning regression models, a type of machine 

learning model. Supervised learning is used to predict an outcome based on other input features, 

and when it is applied in regression, it aims to predict continuous numerical values (Müller & 

Guido, 2016). This approach is widely used in geosciences using well-log data, for tasks such as 

lithofacies identification, well-log anomaly detection, production estimation, and rock property 

prediction (Belyadi & Haghighat, 2021; Bangert, 2021). 

Furthermore, machine learning can be used to estimate missing data. This is carried out by 

considering the feature with missing values as a target vector and using the remaining features 

for prediction (Gallatin & Albon, 2023). Previous studies by Feng, Grana, & Balling (2021) and 

Lopes & Jorge (2018) have demonstrated effective use of ensemble methods, including Random 

Forest and Gradient Boosted Trees, to predict missing values in a single well-log. 

However, machine learning models require complete features and sufficient data for training and 

prediction. When substantial data is missing, it reduces the amount of information available to the 

model, potentially leading to less accurate and less robust predictions. Since well-log data sets 

are often incomplete, this limitation prevents the optimal performance of these models. Moreover, 

most machine learning algorithms cannot deal with missing values in the target and feature arrays 

by default, which requires addressing them beforehand during the pre-processing step (Gallatin 

& Albon, 2023). 

It is important to highlight that diverse machine learning algorithms can be employed for the 

imputation process. Some of these models can be combined with certain imputation techniques 

to obtain a more robust and generalizable prediction (Gallatin & Albon, 2023). For example, the 

multivariate imputation by chained equations (MICE) approach can be implemented in 

combination with ensemble methods and other machine learning algorithms. Using this approach 

allows the prediction of all variables with missing data without extensive pre-processing, 

considering the relationships between the different variables in the data (Dixneuf, Errico, & Glaus, 

2021; Hallam, Mukherjee, & Chassagne, 2022). 

In this section, we will explore different supervised learning regression models used in this project, 

categorized into common baseline models and ensemble models. We will highlight their 

capabilities, strengths, and effectiveness in well-log data. 
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2.4.1 Common Baseline Models 

I. K-Nearest Neighbors (KNN) 

The KNN regressor is an algorithm that predicts the value of a data point considering the values 

of its k nearest neighbors. The algorithm finds the closest data points in the training data set to 

make a prediction for a new data point. The choice of the value of the number of neighbors “k” is 

an important parameter to obtain reliable results (Bangert, 2021). This model is simple to 

implement, fast and effective in capturing local patterns in the data. The main advantage of this 

model is that it can give reasonable performance without much tuning, and it is a good reference 

method before implementing more advanced algorithms (Müller & Guido, 2016). 

II. Bayesian Ridge (BR) 

The Bayesian Ridge regression model is a linear model that incorporates Bayesian inference for 

regression analysis. This model introduces regularization that prevents overfitting and improves 

generalization. One of the primary advantages of the Bayesian ridge regression is its ability to 

incorporate prior information about parameters and construct good prior distributions (Michimae 

& Emura, 2022). By assigning probability distributions to the regression coefficients, this algorithm 

allows a comprehensive representation of uncertainty in the estimated parameter and predictions 

(Belyadi & Haghighat, 2021). Moreover, Buuren & Groothuis-Oudshoorn (2011) suggest the use 

of this model for handling missing data in multivariate imputation by chained equations (MICE). 

III. Decision Tree 

A decision tree can be used for various tasks, not limited to regression. It implements a hierarchy 

of if/else questions guiding the decision-making process, where each tree node represents a 

question or a terminal node, also called a leaf. This terminal node provides the final outcome or 

prediction (Belyadi & Haghighat, 2021). 

 

Figure 5. Structure of a decision tree from (Jeyaraman, Olsen, & Wambugu, 2019). 
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Decision trees have advantages that make them easy for non-experts to visualize and 

understand such as their interpretability. Furthermore, algorithms based on decision trees do 

not need pre-processing such as normalization or feature standardization, these algorithms 

work well with data at different scales. However, the main drawback of this model is that 

decision trees tend to overfit and offer poor generalization performance (Müller & Guido, 

2016). As a solution, ensemble methods are used instead of a single decision tree. 

2.4.2 Ensemble Models 

Ensemble methods combine multiple machine learning models to create more robust models and 

improve prediction performance. The most common ensemble methods are based on Decision 

Trees, such as Random Forest and Gradient Boosting (Müller & Guido, 2016). 

I. Random Forest (RF) 

Random Forest is an ensemble approach that combines predictions from multiple decision trees 

to make more accurate predictions (Bangert, 2021). This algorithm addresses the problem of 

overfitting and sensitivity to outliers in individual decision trees by introducing randomness and 

diversity into the model. Random Forest builds several decision trees, each randomly trained on 

different subsets of data and features, using a technique called bagging or bootstrap aggregation 

(Müller & Guido, 2016). 

 

Figure 6. Decision Tree and Random Forest from (Belyadi & Haghighat, 2021). 

Bagging is a technique for generating multiple subsets of data by randomly sampling using 

replacement from the original data set. Each subset, defined as bootstrap sample, is the same 

size as the original data set, but may contain duplicate instances and exclude some original 

instances. By creating various bootstrap samples, Random Forest builds different decision trees, 

introducing model diversity and reducing variance. The result is the average of the predictions of 

multiple trees (Belyadi & Haghighat, 2021; Müller & Guido, 2016). 

As mentioned above, Random Forest can reduce overfitting, improving the stability of the 

ensemble and improving its generalization capacity. However, this model can be computationally 

expensive and time consuming, especially for large data sets. Furthermore, tuning 

hyperparameters for optimal performance can be time consuming and computationally intensive 

(Belyadi & Haghighat, 2021; Müller & Guido, 2016). 
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Figure 7. Bagging or Bootstrap aggregation for regression tasks. 

II. Gradient Boosting Trees 

Gradient Boosting Trees is an ensemble method that sequentially trains multiple decision trees 

using boosting. Unlike the Random Forest, it focuses on reducing bias by correcting for errors 

made by previous models (Müller & Guido, 2016). Each new tree is built to improve ensemble 

performance by assigning more weight to instances that were incorrectly predicted. The 

predictions from each tree are combined, often using a weighted average or other techniques, to 

obtain the final prediction (Bangert, 2021). 

 

Figure 8. Boosting for Regression tasks. 
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This technique is frequently employed in machine learning competitions due to its high predictive 

accuracy. One of the most implemented models is XGBoost (XGB), which not only returns 

excellent performance, but also it has the capability to handle missing values within a dataset, 

eliminating the need for the implementation of an imputation strategy. However, its main drawback 

is that requires careful tuning of the parameter and may take a long time to train (Bangert, 2021). 

2.5 A CRITICAL APPRAISAL OF APPROACHES TO ADDRESS 

MISSING WELL-LOG DATA 

Previous studies have addressed the challenge of missing data in well-logs, proposing a variety 

of techniques that take advantage of machine learning algorithms. Random Forest and Gradient 

Boosted Trees have shown promising results in predicting and imputing missing values in well-

log data (Lopes & Jorge, 2018; Feng, Grana, & Balling, 2021). However, these approaches 

artificially and randomly introduced missing values, which can misrepresent real-world scenarios, 

where some well-logs may be completely missing. 

An innovative alternative that addresses this problem is the implementation of multivariate 

imputation by chained equations (MICE) (Hallam, Mukherjee, & Chassagne, 2022). This method 

applies machine learning models such as K-Nearest Neighbors (KNR), Random Forest (RF), 

Gradient Boosted Trees (GBT), and Bayesian Ridge (BR), to impute missing values in well-log 

data sets. The effectiveness of this approach has shown its successful application in Norwegian 

North Sea data sets, such as the Volve data set and the Force-2020 well-logging machine learning 

data set, where the Gradient Boosted Trees (XGB) algorithm obtained the best performance. 

Nevertheless, the evaluation of MICE focused on three logs: Sonic Sheer Slowness (DTS), Sonic 

Compressional Slowness (DTC) and Density (RHOB). This limits the generalizability of this 

imputation method. Different well-logs, such as gamma-ray (GR), resistivity (RES) and neutron 

porosity (NPHI), measure various physical properties with unique patterns, dependencies, and 

ranges of values. Consequently, models trained on a specific set of well-logs may not generalize 

effectively to others that behave differently, respond to different geological conditions, and have 

variable value ranges. For this reason, it is critical to test these methods in a wider variety of well-

logs and geological settings. 

Additionally, the study by Lopes & Jorge (2018) has revealed how machine learning models can 

fill gaps in Neutron Porosity (NPHI) logs, using a data set from offshore Dutch wells in the North 

Sea. However, the study does not present a clear methodology for dealing with missing values 

and lacks a detailed explanation of how they used the wells for training and testing, making it 

challenging to verify their claims and adapt the results to other contexts. 



 

 

20 

Similarly, the study of Feng, Grana, & Ballin (2021) addressed the prediction of missing measures 

in the travel-time of the shear velocity (DTS), using the Volve data set. Nevertheless, the paper 

shows certain limitations. First, the authors did not explicitly mention how missing values were 

created. It seems that missing values were randomly introduced into the target log to create gaps. 

Second, they used a complete database for training the model, which is not realistic since well-

logs are often incomplete. Additionally, this research was limited to a single data set and used 

hold-out validation, which may lead to poor generalization and inaccurate performance evaluation 

due to the temporal or spatial dependencies of the data. 

Despite the valuable contributions of these studies in predicting missing well-log data, common 

limitations indicate the need for more comprehensive investigation. Most of these studies 

introduce random missing values for the tests, which fail to represent real-world situations where 

complete well-logs might be missing. They also focus on single or limited number of logs although 

missing values are found in almost all well-logs. Furthermore, these approaches are often tested 

on one or two reference data sets, with unclear pre-processing steps Although the Dutch and 

Norwegian data sets are known for their high-quality records due to rigorous protocols the 

absence of clear pre-processing guidelines can make it difficult to transfer findings to different 

geological contexts or data sets. 

Based on these limitations, it is necessary to implement a robust and complete machine learning 

workflow. This methodology should reflect realistic missing well-log data scenarios, accommodate 

a variety of well-log types, and ensure its generalizability when tested across different data sets 

and geological contexts. It is essential to develop a framework that not only accurately imputes 

missing data, but also evaluates its effectiveness and applicability to different data sets. 

Therefore, the following section provides an overview of a standard machine learning workflow 

and the steps required to design a robust and reliable framework for missing well-log data 

imputation. 

2.6 MACHINE LEARNING WORKFLOW 

Machine learning workflow is a sequence of activities or processes crucial for deploying a 

successful machine learning model for predictions (Jeyaraman, Olsen, & Wambugu, 2019). Each 

step plays an important role to ensure effective model training, evaluation, and deployment. The 

understanding of these processes is essential since it allows developing a more robust proposal 

to predict the missing values in well-logs. The workflow typically consists of data pre-

preprocessing, data splitting, model training, evaluation, and deployment. 
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Figure 9. Standard Machine Learning Workflow (Jeyaraman, Olsen, & Wambugu, 2019) 

2.6.1 Data Pre-processing 

Data pre-processing is the initial step in the machine learning framework to prepare data for 

training a model. This includes processes such as data cleaning, feature selection, and feature 

engineering (Jeyaraman, Olsen, & Wambugu, 2019). 

Data cleaning is essential to address missing values, outliers, or incorrect values that can affect 

the performance of a prediction model. Traditionally, these values are handled before training the 

model by implementing strategies such as data deletion, mean-mode substitution, and imputation 

methods. In the context of this study, we focus specifically on addressing missing values. 

However, it is important to note that the evaluation of missing value predictions is not commonly 

performed directly in current practices. For this reason, the proposed framework not only predicts 

the missing values, but it also evaluates those predictions directly, filling a gap in the current 

methodology and providing a more comprehensive analysis of the imputation process. 

Following the data cleaning step, the most important features are selected to train the model, 

which usually are the variable highly correlated with the output variable. Additionally, feature 

engineering techniques are applied to obtain new features that allow a better performance of the 

model (Jeyaraman, Olsen, & Wambugu, 2019). 

Data scaling is required in certain situations to ensure that certain algorithms are not biased by 

the magnitude of the data. Feature scaling guarantees that each input variable contributes equally 

to the learning process, regardless of its range or unit. Even though normalization or 

standardization of the data is recommended for imputation algorithms like MICE, the suitability of 

scaling depends on the specific model used within the MICE frameworks. Different models may 
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have different requirements regarding data scaling. For instance, algorithms such as Random 

Forest and XGBoost do not require and are not affected by feature scaling. Additionally, data 

scaling can speed up the training process and improve model performance (Belyadi & Haghighat, 

2021). Normalization is a common technique for scaling data in an interval between 0 and 1. 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (𝑋′) =  
𝑋 − 𝑋𝑚𝑖𝑛 

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

2.6.2 Data Splitting 

Data splitting is the partitioning of data between subsets for training, validation, and testing. The 

goal of this process is to test and evaluate the performance of machine learning models. It is 

common that 80% of the data is allocated to train the model and the remaining 20% is kept for 

testing and evaluation (Bangert, 2021; Jeyaraman, Olsen, & Wambugu, 2019). 

The training set is crucial for model training, as it allows the model to learn patterns and 

relationships. For this reason, it is essential to ensure that the training data is diverse and 

representative of different scenarios to ensure robust generalization. On the other hand, testing 

sets evaluate the performance of the model on unseen data (Jeyaraman, Olsen, & Wambugu, 

2019). 

In machine learning applications, it is common to split data randomly between training and test 

sets. However, this practice may introduce uncertainty to the model since it is possible that the 

training set is not representative of the overall data distribution, potentially leading to a biased 

model. Another drawback of this technique is that it only provides a single evaluation of the model, 

which may not be indicative of its true performance on unseen data (Belyadi & Haghighat, 2021). 

To address the limitation of a single evaluation, validation sets and cross-validation techniques 

are employed. The validation set is a separate fraction of the data that is used as additional 

indicator to evaluate the model, commonly used to hyperparameter tuning. Cross validation, on 

the other hand, asses the generalization performance of supervised machine learning models by 

generating multiple validations sets. This method provides a more robust evaluation compared to 

using a single split into a training and test sets (Belyadi & Haghighat, 2021). 

Cross validation is a technique for evaluating how the trained model will perform on unseen data. 

This technique takes full advantage of the data set for robust model evaluation, providing a more 

realistic estimate of model performance when applied to unseen data. In the context of well-logs, 

the evaluation process is typically performed randomly and does not consider the characteristics 

of missing values in well-logs. To address this limitation and achieve a more robust evaluation, it 

is necessary to implement an approach that uses cross-validation in a realistic manner. This 

approach should replicate how the missing values are present in well-logs, providing a more 

precise assessment of the performance of a model. 
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The most popular cross-validation technique is k-fold, where the data set is divided into K subsets 

or folds. Subsequently, the model is trained and tested K times, with each fold as test set once 

and the remaining folds as training sets. This approach allows us to evaluate the model on 

different subsets of data, reducing bias and variance in the evaluation. In k-fold cross-validation, 

the value of k is typically 5 or 10, but it can be user-specified. It is important to note that as the 

value of k increases, the computation time also increases (Belyadi & Haghighat, 2021; Müller & 

Guido, 2016). 

 

Figure 10. Data splitting in five-fold cross-validation from (Müller & Guido, 2016) 

As can be seen in the Figure 10, five-fold cross validation is performed, the data is split into five 

parts of approximately equal size called folds. Subsequently, a sequence of models is trained, 

where each model is trained using one-fold as the test set and the remaining folds as the training 

set. This process is repeated until each fold has been used as the test set. Another variation of 

cross-validation is GroupKFold, which considers groups in the data that should not be split when 

creating the training and test sets (Müller & Guido, 2016). This approach is particularly useful in 

geoscience application, where multiple observations from the same well need to be generalized 

to other wells. In the following Figure 11, it is shown that in each split in GroupKFold ensures that 

each group is entirely in the training or test set. 

 

Figure 11. Data splitting with GroupKFold from (Müller & Guido, 2016) 

2.6.3 Training Process 

The training process in machine learning involves the selection and training of suitable models to 

learn the underlying patterns and relationships within the labeled training data set. During this 

step, models are trained using iterative optimization algorithms to minimize errors or maximize 

likelihood. By adjusting parameters, the model learns to make predictions (Jeyaraman, Olsen, & 

Wambugu, 2019). Therefore, it is crucial to balance the complexity and generalization of the 

model, considering bias-variance trade-off. 
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The bias-variance trade-off is used in machine learning to deal with the relationship between bias 

and variance in predictive models. Bias in a model refers to the tendency to oversimplify or make 

certain assumptions that may or may not reflect with the true patterns or relationships present in 

the data, while variance relates to the variation in predictions for a specific data point (Belyadi & 

Haghighat, 2021). For instance, high bias refers to a model that oversimplifies the data, leading 

to underfitting and poor performance on both training and testing data. High variance, on the other 

hand, refers to a model that fits the training data too closely, including noise and random 

fluctuations, resulting in overfitting. Overfitting leads to high performance on the training data but 

poor performance on the testing data as the model fails to generalize to new, unseen data 

(Bangert, 2021). 

 

Figure 12. Illustration of underfitting and overfitting by darts example from (Bangert, 2021). High bias – Underfitting and High 
variance - Overfitting 

The optimal model aims to achieve a balance between bias and variance by finding an appropriate 

level of complexity. To optimize the bias-variance trade-off, techniques such as regularization, 

cross-validation, and ensemble methods are employed. Regularization prevents overfitting by 

adding constraint to the model. Cross-validation evaluates performance on unseen data and 

guides the selection of the best model complexity. Ensemble methods combine multiple models 

to reduce variance and improve the performance of the predictions (Belyadi & Haghighat, 2021). 
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Figure 13. Balance of the model from (Belyadi & Haghighat, 2021) 

2.6.4 Evaluation Process 

The evaluation process is crucial for assessing the performance and effectiveness of a supervised 

machine learning model (Jeyaraman, Olsen, & Wambugu, 2019). To evaluate the performance of 

a trained model, various evaluation metrics are implemented. The following metrics are the most 

frequent used: 

I. Mean Squared Error (MSE) 

It measures the average squared difference between the predicted values and the actual values. 

A lower MSE shows better performance, indicating that the predictions of the model are closer to 

the true values (Belyadi & Haghighat, 2021). 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − 𝑦_𝑝𝑟𝑒𝑑 𝑖)2

𝑛

𝑖=1

 

II. Mean Absolute Error (MAE) 

It calculates the average absolute difference between the predicted values and the actual values. 

It provides a measure of the average prediction error. Similarly, a lower MAE implies better 

performance since it represents a smaller average prediction error (Belyadi & Haghighat, 2021). 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑦_𝑝𝑟𝑒𝑑 𝑖|

𝑛
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III. The Coefficient of Determination or R-Squared Scored (R2) 

It measures the goodness of fit for a regression model (Müller & Guido, 2016). R2 indicates the 

proportion of the variance in the output variable that can be explained by the input variables. 

Higher R2 values, closer to 1, implies better model performance, as it indicates that a larger 

proportion of the variation in the data is captured by the model (Bangert, 2021). 

𝑟2 = 1 −
∑ (𝑦𝑖 − 𝑦_𝑝𝑟𝑒𝑑 𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦_𝑎𝑣𝑔 𝑖)2𝑛
𝑖=1

 

The evaluation metrics allow us to compare the performance of each model or approach 

implemented in the project. Additionally, it is important to visualize the results to observe trends 

and patterns that metric evaluations do not provide. The visualizations could make it possible to 

identify specific regions or intervals in which the model performs well or poorly, highlighting areas 

for improvement. 

2.6.5 Deployment Process 

The focus of this process is on selecting the model with optimal performance and integrating it for 

real-world application after following a machine learning framework. In my opinion, the evaluation 

of model performance is a critical aspect. By comparing the performance of different models, we 

can gain valuable insights into their strengths and weaknesses. This allows us to select the most 

suitable model or to determine if the approach is reliable to use in real world applications. 
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3 | DATA ANALYSIS 

This section investigates and analyzes the three data sets used for this project: Montney, Beetaloo 

and Force-200. Each of these data sets represents a unique geologic formation with distinct data 

preprocessing techniques, providing a rich source of information for well-log data exploration. The 

following sections are divided into three main subsections, each of which focuses on one of the 

chosen data sets. Within each subsection, the geological context is explained, and exploratory 

data analysis (EDA) is performed. The geological context provides essential background on 

formation, sedimentology, stratigraphy, and other relevant geological aspects. The EDA section, 

on the other hand, describes how these data sets were selected and pre-processed, and provides 

statistical information about the data sets, including analysis of missing values. 

3.1 MONTNEY 

3.1.1 Geological Context 

The Montney formation is located in the Western Canadian Sedimentary Basin (WCSB), as can 

be seen in Figure 14. This formation spans parts of Alberta to northeastern British Columbia and 

exhibits a variety of unique sedimentological and stratigraphic features. The Montney formation 

has been used for oil and gas production since it contains conventional and unconventional 

petroleum accumulations (Crombez, Rohais, Baudin, & Euzen, 2016; Ducros, Sassi, Vially, 

Euzen, & Crombez, 2017). 

The WCSB is a foreland basin where the Montney formation lies. This foreland basin gets thicker 

from East to West with maximum thickness of 5 km at the deformation limit. The sediments started 

to accumulate in the basin from the Early Paleozoic to the Cenozoic. The formation and 

subsequent evolution of this region were significantly influenced by the orogeny of the Canadian 

Cordillera, which began in the Middle Jurassic. This event transformed the WCSB from the 

western margin of Pangea into a foreland basin (Crombez, Rohais, Baudin, & Euzen, 2016; 

Ducros, Sassi, Vially, Euzen, & Crombez, 2017). 
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Figure 14. Geographical location of Montney Wells. 

The sedimentology of the Montney formation is complex and diverse. The Montney formation 

initially formed in the Peace River area, and it is characterized by dark gray shale to argillaceous 

siltstone interbedded with shale. In Alberta, this formation changes from dolomitic bioclastic 

sandstone to fine to very fine-grained grey sandstone, siltstone, and shale towards British 

Columbia. The most proximal deposits recorded in Alberta and British Columbia are tidal deposits. 

Therefore, the formation contains delta deposits dominated by waves, tides, and rivers along with 

turbiditic deposits (Crombez, Rohais, Baudin, & Euzen, 2016). The Montney formation transitions 

from foreshore, tidal, and shoreface sandstone, siltstone, and coquina bed deposits to offshore-

transition and offshore organic-rich siltstones and turbiditic deposits (Ducros, Sassi, Vially, Euzen, 

& Crombez, 2017). 

The Montney formation was deposited during a second-order sequence, approximately 5 million 

years, which is subdivided into several third-order sequences composed of multiple para-

sequences (Crombez, Rohais, Baudin, & Euzen, 2016). The Triassic succession, which includes 

the Montney formation, corresponds to a mix of siliciclastic, evaporitic, and carbonate 

sedimentation (Ducros, Sassi, Vially, Euzen, & Crombez, 2017). In British Columbia, the formation 

is divided into three units: Lower, Middle, and Upper Montney, each reflecting specific periods in 

the geologic timescale (Crombez, Rohais, Baudin, & Euzen, 2016). The Montney and Doig 

formations together form a pro-grading clastic ramp deposited during the Early to Middle Triassic, 



 

 

29 

highlighting the transition from a passive to an active margin setting (Ducros, Sassi, Vially, Euzen, 

& Crombez, 2017). 

 

Figure 15. Cross-section with the main stratigraphic intervals and lithologies of the Montney formation from (Ducros, Sassi, Vially, 
Euzen, & Crombez, 2017). 

3.1.2 Exploratory Data Analysis (EDA) 

I. Selection and Description of the Data Set 

The Montney data set contains wellbore information from the year 2001, including lithography and 

stratigraphy. This dataset was selected for its diverse geologic complexity, characterized by 

diverse sedimentological and stratigraphic features. Its sedimentary composition includes shales, 

siltstones, and various sandstones, and the formation exhibits tidal, wave-dominated deltas and 

river deposits with turbiditic deposits. Due to the high variability of depositional environments, 

from shallow to deep marine, different wells can have completely different patterns.  

Furthermore, the presence of missing values in the data set reflects the common challenge in 

well log data, aligning with the objective of this thesis to assess the ability of the proposed 

framework to estimate these missing values. For these reasons, the Montney data set represents 
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a challenge for machine learning applications, which is interesting for evaluating the 

generalization and performance of the model in predicting missing values in different wells. 

Unlike other data sets, the Montney data set preserves the integrity of the original data. Although 

a selection of wells was performed, other preprocessing steps, such as depth alignment, were 

not performed. Therefore, machine learning models can be evaluated in a more realistic scenario, 

which conserves how the data is originally obtained. 

II. Data Analysis 

This data set initially comprises 122,374 samples, with 19 features extracted from 20 wells. 

However, for the purpose of this study, we focus only on well-logs; therefore, we reduce the 

number of features to 12. These features include identification of the well, depth, coordinates, 

well-logs, lithography, and stratigraphy. 

Table 2. Montney features used for the project. 

Feature Description Data Type 

WELL_ID Identification of the well Categorical 

X X-coordinate of the well Continuous 

Y Y-coordinate of the well Continuous 

DEPTH Depth of the well Continuous 

RHOB Bulk Density Continuous 

GR Gamma Ray Continuous 

DT Sonic Travel Time Continuous 

RES_10 Log 10 of Resistivity Continuous 

SP Spontaneous Potential Continuous 

NPHI Neutron Porosity Continuous 

LITHO Lithology Categorical 

STRAT Stratigraphic information Categorical 

 

As can be seen in the Table 2, the data present 3 categorical characteristics and 9 continuous 

ones. The categorical variables are well identification, lithography, and sequence stratigraphy. 

Regarding the lithography, the data set presents 9 different formations, of which 60% of the data 

is made up of the Montney formation. This formation is followed by the Doig and Halfway 

formations with 28% and 10% of the data respectively. On the other hand, the most frequent 

lithostratigraphic groups are HST4, HST1, LST3 and HST2 with percentages of 32%, 16%, 11% 

and 11% respectively. Therefore, the high amount of data from certain formation or 

lithostratigraphy groups may lead to biased estimates, impacting the ability of the model ability to 

accurately predict properties in other formations or groups. To address this issue, it is possible to 

improve performance on imbalanced data by implementing MICE with robust models like Random 

Forest and XGBoost. These machine learning models can handle imbalanced data better than 

other algorithms, capturing complex relationships between the well-logs.  
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The resistivity log was transformed to log base 10, which is a common practice that helps to 

reduce data variability and skewness. It is important to mention that we transform all the resistivity 

logs for the 3 data sets. The frequency distribution of the original resistivity and the transformed 

resistivity are shown in the following figure: 

 

Figure 16. Histogram of Resistivity vs Log 10 Resistivity for Montney. 

Table 3. Descriptive Statistics for numerical features in Montney data set. 

 count mean std min 25% 50% 75% max 

DEPTH 122374 2236.37 423.63 825.62 2043.20 2214.14 2367.30 4670.80 

RHOB 97195 2.63 0.06 1.89 2.60 2.63 2.66 3.13 

GR 78812 100.99 38.46 0.00 79.25 104.19 122.16 746.48 

DT 81112 200.58 23.54 3.36 185.05 199.09 209.80 505.83 

RES_10 98066 2.09 0.70 0.28 1.62 2.04 2.51 5.00 

SP 92701 68.89 347.96 -362.23 -203.41 -6.16 148.54 964.69 

NPHI 93366 0.12 0.05 0.00 0.09 0.12 0.15 0.64 

 

Furthermore, descriptive statistics for numerical variables for well-logs, including depth, is 

performed. The data set presents a wide range of depth in the wells, ranging from approximately 

800 m to 4,600 m. It was observed in the Figure 15, the variability of depth may be due to that the 

wellbores are in a foreland basin, which gets thicker from East to West. For this reason, wells 

located in the eastern part of the formation tend to be shallower than those located in the western 

part. 

Furthermore, the complexity and diversity of the sedimentology of this region is reflected in the 

well-log data. Different rock compositions in the basin, such as shales, siltstones, and different 

types of sandstones, from dolomitic bioclastic sandstones to fine-grained to very fine-grained gray 

sandstones, could be associated with variability in well-log measurements. For instance, 

sandstones present higher porosity and lower density than shales, resulting in variations in the 

readings. In addition, different types of depositional environments such as tidal, wave-dominated 

deltas and rivers with turbiditic deposits along the basin can introduce variations in recorded 

readings since they can result in sequences of different lithologies, grain sizes, and sedimentary 

structures. For instance, wave-dominated delta present coarser sediments than tidal 
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environments, resulting in higher porosity readings. Therefore, we consider that implementing 

MICE may predict missing values considering the observed variability and heterogeneity in the 

well-log data, which are influenced by the different rock types and depositional environments. 

 

Figure 17. Missingness Analysis of well-logs in Montney data set. 

The data contains missing values in each of the well-logs, as illustrated in Figure 13. Missing 

values occur in a range of 20% to 36%, with percentages of missing values for RHOB, GR, DT, 

RES_10, SP, and NPHI of 20%, 36%, 34%, 20%, 24% and 24%, respectively. We observe a 

generalized missingness pattern with a missing not at random mechanism. Therefore, methods 

such as data deletion, mean-mode substitution and simple imputation are not suitable approaches 

to deal with missing values in well-logs due to their limitations and potential biases. 

 

Figure 18.  Correlation Matrix of well-logs in Montney data set. 

The well-log correlation matrix shows that DT and RES_10 have the highest correlation of 0.45. 

Similarly, NPHI and RES_10 logs are moderately correlated, 0.43. It is also seen that DT and 
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RHOB are moderately correlated. Therefore, we consider that MICE can take advantage of all 

these correlations to impute missing values, including the low correlated well-logs. 

 

Figure 19. Montney pair plot of well-logs. 

As can be seen in the scatter plots and distributions, the data is dispersed with no clear pattern 

or trend. The well-logs relationship is not clearly linear, which makes it difficult to interpret visually. 

Although pair plots provide insights about how features are related, they are limited in capturing 

other relationships within the data. However, MICE may capture these ignored relationships in 

the data set since this method incorporates the relationships and interactions between variables 

when inputting missing values. This could allow us to capture associations and interactions 

between well-logs that are not identified from simple visual inspection. 
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3.2 BEETALOO 

3.2.1 Geological Context 

Located in the Northen Territory of Australia, the Beetaloo sub-basin is part of the McArthur Basin, 

and it is one of the oldest petroleum systems in the world. This intracratonic basin contains 

sandstones and unconventional shale reservoirs such as the middle Velkerri and lower Kyalla 

shales, which were deposited approximately between 1400 - 1280 Ma and 1250 - 1190 Ma, 

respectively (Crombez, et al., 2022; Faiz, et al., 2021). 

 

Figure 20. Geographical location of Beetaloo Wells. 

The Beetaloo sub-basin is defined by several fault zones and geological features. The basin is 

bounded by the Batchelor and Urapunga fault zones in the north, Batten Fault Zone and the 

Murphy high mark to the east, the Helen Springs high in the south, and the Birrindudu Basin to 

the west (Crombez, et al., 2022). Moreover, the sub-basin has experienced multiple burials and 

uplifts, recording the formation and breakup of different supercontinents and tectonic activities 

(Faiz, et al., 2021). 

The Beetaloo sub-basin includes formations such as Velkerri and Kyalla, which are part of the 

Roger group that includes rocks from the Mesoproterozoic age. These formations are mainly 

composed of siltstone and claystone, with occasional sandstone and limestone. The Velkerri 

formation is known for its organic rich mudstones and siltstones, indicative of a high-energy, wave-

dominated nearshore depositional environment. The Amungee member, situated in the middle 

Velkerri, is considered the most attractive member for unconventional resources (Piane, et al., 

2021). The Moroak sandstone, another important formation of Beetaloo, is characterized by fine 
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to medium grained sandstone interlayered with minor coarse-grained sandstone, conglomerate, 

and siltstone. These formations have been shaped by a variety of depositional environments from 

shallow marine deltaic to offshore, including wave and fluvial environments (Crombez, et al., 

2022). 

 

Figure 21. 2D cross-section from the subsurface of the Beetaloo sub-basin with the simplified lithostratigraphy of the Roger group 
from (Crombez, et al., 2022). 

3.2.2 Exploratory Data Analysis (EDA) 

I. Selection and Description of the Data Set 

The Beetaloo data set contains well-log information, including lithography and stratigraphy from 

the North of Australia. This data set was chosen for its unique geological context, characterized 

by a variety of depositional environments such as shallow marine deltaic to offshore, along with 

wave and fluvial environments. Compared to Montney, Beetaloo may present less heterogeneity, 

making it an easier case study and providing a contrasting environment in which to assess the 

proposed framework. 

Furthermore, the lack of pre-processing allows for a more realistic evaluation of the proposed 

framework, and missing values in the data reflects a common challenge in well-logs. These 

factors, including the geological context of Beetaloo, align with the objectives of this thesis and 

present another different scenario to rigorously test the performance of the model to estimate 

missing values. Like Montney, the Beetaloo data set was subjected to well selection and resistivity 

transformation using the base 10 logarithm. 
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II. Data Analysis 

This data set contains 352,143 samples with 12 features extracted from 32 wells after removing 

unnecessary features. These features include well identification, depth, coordinates, well-logs, 

lithography, and stratigraphy: 

Table 4. Beetaloo features used for the project. 

Feature Description Data Type 

WELL_ID Identification of the well Categorical 

X X-coordinate of the well Continuous 

Y Y-coordinate of the well Continuous 

DEPTH Depth of the well Continuous 

RHOB Bulk Density Continuous 

GR Gamma Ray Continuous 

DT Sonic Travel Time Continuous 

RES_10 Log 10 of Resistivity Continuous 

SP Spontaneous Potential Continuous 

NPHI Neutron Porosity Continuous 

LITHO Lithology Categorical 

STRAT Stratigraphic information Categorical 

 

The data presents 3 categorical features and 9 continuous. The categorical variables of 

lithography have 13 different formations, which 30% of the data correspond to Middle Velkerri 

Formation. This formation is followed by Kyalla Formation, Upper Velkerri Formation, Moroak 

Sandstone, and Lower Velkerri Formation with 18%, 18%, 11% and 10%, respectively. As 

mentioned above, in situations where certain categories are overrepresented, the predictive 

model could be biased and perform poorly in underrepresented categories. For this reason, we 

suggest that using MICE with robust machine learning models may solve this problem of 

imbalanced data. 

Table 5. Descriptive Statistics for numerical features in Beetaloo data set. 

  count mean std min 0.25 0.5 0.75 max 

DEPTH 352143 1414.14 924.82 1.40 613.81 1287.57 2050.69 3920.03 

RHOB 227657 2.63 0.17 1.21 2.56 2.62 2.68 4.63 

GR 215742 145.88 58.58 3.61 115.01 152.15 181.38 422.92 

DT 252249 78.66 13.18 0.22 69.17 77.92 88.41 145.84 

RES_10 282225 1.44 0.56 0.00 1.13 1.37 1.67 5.00 

SP 200326 -36.58 101.26 -283.75 -124.52 -6.89 41.39 225.62 

NPHI 168481 0.15 0.07 0.00 0.11 0.16 0.20 1.00 

 

The descriptive statistics of the numerical variables indicate significant diversity in the data set. 

For example, well depths range from 1.4 m to 3,920 m with an average depth of approximately 
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1,414m. The average well depth in the Beetaloo dataset is less than that in the Montney dataset, 

which could be due to multiple burials and uplifts that the Beetaloo sub-basin has experienced. 

Moreover, we observe values with wide ranges such as GR, DT, and SP. These may be influenced 

by various factors related to the geological context. For example, clay-rich formations such as the 

Velkerri and Kyalla shales tend to have higher GR values. 

 

Figure 22. Missingness Analysis of well-logs in Beetaloo data set. 

In the Beetaloo data set, missing values are present in all well-logs in a range of 20% to 52%. 

The percentages of missing values for RHOB, GR, DT, RES_10, SP, and NPHI are 35%, 39%, 

28%, 20%, 43%, and 52%, respectively. We observe a generalized pattern of shortages with a 

missing not at random mechanism. Therefore, like Montney, data deletion, mean-mode 

substitution and simple imputation are not recommended alternatives to deal with them. It is 

important to note that this data set presents well-logs with missing values of around 50%. This 

situation can affect the performance of the model and consume more time since MICE could 

struggle predicting the missing values. 

 

Figure 23. Correlation Matrix of well-logs in Beetaloo data set. 
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The correlation matrix shows highly correlated well logs as DT and NPHI with 0.71. Similarly, GR 

and NPHI also present a moderate correlation of 0.55. However, the remaining correlations are 

moderate to low. It is important to note that MICE considers all features, even if they are poorly 

correlated, in imputation, but highly correlated well logs may contribute more to missing value 

predictions. 

 

Figure 24. Beetaloo pair plot of well-logs. 

The pair plot shows a very complex data set with sparse data and high variability. No clear pattern 

or trends are identified in the scatterplots. However, MICE can capture hidden relationships in the 

data set that other techniques can ignore and are visually difficult to interpret. 
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3.3 FORCE-200 

3.3.1 Geological Context 

Viking Graben, located in the North Sea, is one of the fields with the largest amount of 

hydrocarbons in Western Europe. It was formed due to crustal extension throughout the Mesozoic 

and shares a complex geological history. The geologic history of the Viking Graben is complex 

with diverse sedimentary environments and stratigraphy (Jackson & Larsen, 2009; Holgate, 

Jackson, Hampson, & Dreyer, 2013). 

 

 

Figure 25. Geographical location of Force-200 Wells. 
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The South Viking Graben forms a narrow rift basin at the southern end of the Viking Graben. The 

structural configuration of the South Viking Graben was caused by extension phases during the 

Permo-Triassic and Late Jurassic (Murillo, Horsfield, & Vieth-Hillebrand, 2019). This Graben 

presents a network of normal faults in E-W direction. The first step of fault-controlled subsidence 

occurred approximately in the early to late Permian. During the Permian to Triassic, evaporite-

dominated units (Zechstein Group) were deposited in a marine bay. These deposits were followed 

by shales (Smith Bank Formation) and sandstone-dominated clastic units (Skagerrak Formation) 

during the Triassic. The Middle and Late Jurassic experienced a fault-controlled subsidence and 

a eustatic rise in sea level, resulting in the deposition of a deeper succession within the delta plain 

of the southern Viking Graben (Sleipner Formation) and the passage of shallow marine deposits 

(Hugin Formation). upwards in shelf deposits (Heather Formation), which in turn are overlain by 

deep marine deposits (Draupne Formation) (Jackson & Larsen, 2009). 

Similarly, the Northern Viking Graben also experienced an initial phase of extension during the 

Permo-Triassic, followed by multiple extension passes during Middle-Late Jurassic. The basin 

was characterized by tectonic quiescence and spatially uniform subsidence during the Early 

Jurassic. However, the Middle-Late-Jurassic rifting event can be divided into several phases of 

basin-wide rifting and fault-related subsidence. The Northern Viking Graben contains three 

important Middle-Late Jurassic sandstone formations, namely the Krossfjord, Fensfjord and 

Sognefjord formations. These formations overlay and interfinger with the Heather Formation, a 

series of siltstones and mudstones, which is split into three units on the Horda Platform: 

Bathonian, Callovian, and Oxfordian–Kimmeridgian. These three units either overlap or underlie 

with the Brent, Krossfjord, Fensfjord, and Sognefjord formations in the stratigraphic column 

(Holgate, Jackson, Hampson, & Dreyer, 2013). 

 

Figure 26. Cross-section from West to East the Viking Graben from (Holgate, Jackson, Hampson, & Dreyer, 2013). 
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3.3.2 Exploratory Data Analysis (EDA) 

I. Selection and Description of the Data Set 

The Force-200 data, obtained from the “Machine Learning Lithology Prediction Competition” by 

FORCE, differs from other datasets in its complex geological context and rigorous pre-processing. 

The geology of Force-200 is characterized by clayey and sandy sediments and carbonates 

deposited mainly during the Jurassic and Cretaceous ages. The North Sea presents an intricate 

rift basin structure, characterized by multiple phases of extension and diverse sedimentary 

environments throughout different geologic periods. The presence of intricate fault-controlled 

subsidence, various sandstone formations, and other unique geological features provides a 

contrasting and challenging environment in which to evaluate the proposed framework. 

Additionally, the Force-200 data set has been used in previous research (Hallam, Mukherjee, & 

Chassagne, 2022), allowing for comparisons and validations with this study. Unlike the Beetaloo 

and Montney data sets, Force-200 has experienced and substantial pre-processing, extensive 

pre-processing, following the strict Norwegian Protocol guidelines for reporting well data and the 

additional cleaning process by experts for the machine learning competition. This intensive 

preprocessing may differ from the original data acquisition scenario, but it offers a unique 

opportunity to evaluate the performance of the model in predicting missing values within a different 

processing context. 

The Norwegian protocol pre-processing recommendations mainly cover data cleanup, depth 

shifting, and interpolation for reporting well data The data is cleaned-up during the creation of the 

composite log, including removal of sonic cycle skips, normalization of SP, and corrupted data is 

replaced by other data or by null values. Subsequently, the depth shifting procedure is carried out 

to ensure precise alignment of data curves, aligning them with an accuracy of 0.2 meters. The 

gamma-ray log or the first gamma-ray run in hole is used as the reference log for depth shifting. 

Depth shifting is critical when depth discrepancies between log traces exceed 0.5 meters. 

Furthermore, the interpolation is employed to address sections with invalid data or no data, but 

only if the gap between data points exceeds the geologically insignificant distance, typically up to 

1 meter (Directorate, 2018). 

II. Data Analysis 

The Force-200 data sets include separate training and test sets. The train set contains 1,170,511 

observations and 98 wells, whereas the test set has 122,397 observations with 10 wells. These 

two datasets were built and preprocessed by different companies and experts based on the 

Norway protocol for well data (Directorate, 2018). We keep 16 features of these data sets, 

removing unnecessary features for this project. Like previous data sets, we conserve well ID, 

depth, coordinates, well-logs, lithography, and stratigraphy. Additionally, the resistivity logs were 

also transformed to log base 10. 
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Table 6. Force features used for the project. 

Feature Description Data Type 

WELL_ID Identification of the well Categorical 

X X-coordinate of the well Continuous 

Y Y-coordinate of the well Continuous 

DEPTH Depth of the well Continuous 

RHOB Bulk Density Continuous 

GR Gamma Ray Continuous 

DTC  Shear Wave Sonic Continuous 

DTS Compressional Wave Sonic Continuous 

RD10 Log 10 of Deep Resistivity Continuous 

RM10 Log 10 of Medium Resistivity Continuous 

RS10 Log 10 of Shallow Resistivity Continuous 

SP Spontaneous Potential Continuous 

NPHI Neutron Porosity Continuous 

PEF Photo Electric Factor Continuous 

FORMATION Lithology Categorical 

STRAT Stratigraphic information Categorical 

 

As can be seen, the data present 3 categorical characteristics and 13 numerical ones. The 

categorical variables of lithology have 69 different formations, which 15% correspond to the Utsire 

formation. This formation is followed by the Kyrre, Lista, Heather and Skade formations with 8%, 

6%, 6% and 4%, respectively. Furthermore, the most frequent groups in the data are the 

Hordaland, Shetland, Viking, Rogaland, Dunlin and Norland groups with 25%, 20%, 11%, 11%, 

10% and 10% of the train data. This data set is more balanced compared to Montney and 

Beetaloo data sets. 

Table 7. Descriptive Statistics for numerical features in Force data set. 

 count mean std min 25% 50% 75% max 

DEPTH 1170511 2184.09 997.18 136.09 1418.60 2076.60 2864.39 5436.63 

RHOB 1009242 2.28 0.25 0.72 2.09 2.32 2.49 3.46 

GR 1170511 70.91 34.23 0.11 47.63 68.37 89.04 1076.96 

DTC 1089648 113.36 29.99 7.42 87.83 109.59 140.77 320.48 

DTS 174613 204.66 71.07 69.16 155.94 188.20 224.65 676.58 

RD10 1159496 0.48 0.33 0.01 0.28 0.39 0.55 3.30 

RM10 1131518 0.48 0.30 0.00 0.28 0.39 0.57 3.30 

RS10 630650 0.50 0.37 0.00 0.27 0.38 0.61 3.34 

SP 864247 60.03 76.57 -999.00 32.40 55.39 83.39 526.55 

NPHI 765409 0.33 0.13 -0.04 0.24 0.33 0.42 1.00 

PEF 671692 6.32 10.96 0.10 3.41 4.31 5.97 383.13 
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From the descriptive statistics, we can see that the data set covers a wide depth range, from 136 

m to 5,436 m, with an average depth of 2,184 m. This means that we have a large variation in 

depth being analyzed in this data set, allowing us to examine a larger number of geological 

formations. The wide range of depths in the Force dataset reflects the geologic complexity of the 

Viking Graben, which experienced crustal extension and compromising diverse rock formations 

layered across various depths and affected by normal faults. Moreover, we see values with wide 

ranges such as GR, DTC, DTS, SP, PEF, and resistivity logs. As mentioned above, it is attributed 

to the complexity of the Viking graben, which resulted in the formation of numerous lithologies in 

the area. It is also seen that the NPHI has negative values and values equal to 1, which can be 

caused by tool failures or data acquisition errors. It is important to note that for this data set we 

did not remove outliers. 

 

 

Figure 27. Missingness Analysis of well-logs in Force data set. 

 

From the missing plots, we identified a generalized missing pattern with a missing not at random 

mechanism, highlighting the need for a robust method for dealing with missing data such as MICE. 

We observe that DTS is almost missing with 85% of the data missing. The RS10, NPHI and PEF 

also have a high percentage of missing data, 46%, 35%, 43% of the data are missing data 

respectively. As mentioned, a high percentage of missing data can lead to increased uncertainty 

in the imputed values and biased results, especially if the data is missing not at random. 
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Figure 28. Correlation Matrix of well-logs in Force data set. 

The correlation matrix indicates that there are strong correlations between several of the well-log 

variables. For example, there is a strong correlation between DTC and DTS of 0.85, which is 

expected as both measure sound speed through rocks but in different ways. Similarly, RD10 and 

RM10 are highly correlated with 0.9, as both are measures of resistivity at different depths. These 

well-logs with high correlation can be leveraged to impute missing values more precisely. 

However, it is important to mention that highly correlated features can cause multicollinearity, 

resulting in biased results and overfitting when using linear regression models. In this case, 

multicollinearity may occur when two or more well-logs are highly correlated, and one well-log can 

be estimated linearly from other log with high performance. For instance, in the Force data set, 

the well logs of DTC and DTS are likely to present multicollinearity. RD10 and RM10 indicate high 

correlation; as a result, they can also cause multicollinearity. 

Therefore, high correlations should be interpreted cautiously in MICE, as they can be both 

advantageous and problematic. High correlations can be advantageous in MICE because they 

can provide valuable information in the imputation. However, they can also be problematic due to 

the potential for multicollinearity, which can affect the performance and reliability of the imputed 

values. 

On the other hand, it is observed that GR, SP and PEF have low correlations with other variables. 

For instance, the highest correlation in SP is 0.11, showing weak linear relationship with other 

logs. However, MICE considers all features in the imputation, even if they are poorly correlated. 



 

 

45 

 

Figure 29. Force pair plot of well-logs. 

The pair plot visualizes the complex relationships and distributions for the Force data set. The 

data is also noisy and scattered with high variability in the data. However, we can identify the 

relationship in the scatter plot for DTC and DTS, showing a strong relationship. This relationship 

and the high correlation observed could be explained because both measures are sonic logs. 

There may be other relationships and trends in the data that we are not able to see, but MICE 

can capture to perform the predictions. 
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4 | METHODOLOGY 

This project aims to propose a framework for evaluating the performance of MICE in predicting 

well-log data with missing values, using three separate data sets from different sedimentary 

basins. The methodology is developed within a Python programming environment, implementing 

various machine learning models. This section is divided into three parts, which will explain the 

selected models, the proposed framework, and the computational environment used for modeling. 

4.1 SELECTED MODELS 

4.1.1 MICE 

The multivariate imputation by chained equations (MICE) is used in this methodology for its ability 

to keep the relationships between variables makes it suitable for the complex structure of the well-

log data. This method allows the integration with machine learning algorithms enabling a unified, 

flexible, and robust approach that can estimate all well-logs with missing values simultaneously. 

Additionally, previous studies have shown promising results using MICE with well-log data 

(Hallam, Mukherjee, & Chassagne, 2022). 

4.1.2 Machine Learning Algorithms 

The following regressor models are specifically chosen for their proven effectiveness in predicting 

missing values and compatibility with MICE: 

 K-Nearest Neighbors (KNR) 

o Selection Reason: Offers reasonable performance without extensive tuning. 

o Attributes: Excellent reference method. 

 Bayesian Ridge (BR)  

o Selection Reason: Recommended for handling missing data in MICE (Buuren & 

Groothuis-Oudshoorn, 2011). 

o Attributes: Incorporates prior information about parameters and constructs good 

prior distributions. 
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 Random Forest (RF)  

o Selection Reason: Addresses overfitting and sensitivity to outliers. 

o Attributes: Enhances performance and generalization. 

 XGBoost (XGB)  

o Selection Reason: Known for high predictive performance. 

o Attributes: Can handle missing values without additional imputation strategies. 

4.2 WORKFLOW 

The workflow of this research consists of five main steps: data pre-processing, data splitting, 

model training, testing imputation, and final evaluation. These steps are structured to facilitate the 

evaluation of MICE performance with various machine learning models to predict well-logs with 

missing values. An overview of the entire workflow is shown in the Figure 30, summarizing the 

key processes. The subsequent sections provide detailed information about each step of the 

proposed approach. 

 

 

Figure 30. Workflow Diagram Representing the Processes of the Methodology. 

4.2.1 Data Pre-processing 

Data pre-processing is the initial step in the proposed framework. This step consists of cleaning 

and preparing the data sets for model training. This process includes renaming columns, dropping 

unnecessary columns, replacing outliers with missing values, and converting well-logs. 

Specifically, resistivity logs are transformed using base 10 logarithm, a common practice to reduce 

data variability and skewness. This transformation can also improve the performance of machine 

learning algorithms. Moreover, categorical variables, such as wells and sequential stratigraphy, 
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are converted into numerical forms suitable for machine learning models using label encoding. 

This encoding technique assigns a unique integer label to each category. It is important to note 

that handling missing values is intentionally omitted in this step since the framework aims to 

predict all missing values simultaneously. 

4.2.2 Data Splitting 

After pre-processing, the data set is divided into a training set (~80%) and a “blind-well” test set 

(~20%). This split is done by selecting certain wells from the original data set to create a “blind-

well” test set. These wells are used as unseen data that will assess the generalization of the 

model.  

Before proceeding with model development, the training and test sets are evaluated to ensure 

that the data is representative. This evaluation includes the following analyses: 

 Location: Well location plotting ensures that the spatial distribution of training and test 

wells covers all relevant regions of the area. 

 Missingness Pattern: Heatmaps are used to compare the missingness patterns in both 

the training set and the original data set, ensuring similarity. In addition, test well-logs are 

analyzed to ensure sufficient data to evaluate the models. 

 Distributions: Density plots help verify that statistical properties of the well-logs in the 

training set are preserved as in the original data set. 

 Correlation: Correlation heatmaps provide insights into the relationships between 

different well-logs in both the original and training sets, ensuring representativeness. 

By evaluating the training and test sets, we ensure that the training set is adequate to build a 

reliable and generalizable model, which has unseen data to evaluate its performance. The details 

of these analyses can be found in the appendix DData Analysis. 

4.2.3 Model Training 

The model training involves teaching a model to recognize patterns in training data; therefore, the 

model can make predictions when presented with new data. This process is implemented using 

MICE with the four selected machine learning models. The model training consists of three steps: 

hyperparameter tuning, evaluation of the best parameters, and the final training of the model. 

I. Hyperparameter Tuning 

This step allows the identification of the best combination of parameters for a given model, using 

a 5-fold cross-validation procedure as shown below: 

1. K-Fold Splitting: The data set is divided into 5 parts, 4 are used for training and 1 for 

validation. This ensures that the model is evaluated on unseen data at each fold.  
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2. Simulating Missing Data: In each fold, a copy of the training data is made, and specific 

points are set as missing (NaN) based on validation values. Therefore, it is replicated how 

missing values occur in real-world scenarios where some well-logs might be entirely 

missing. 

3. Normalization: The training data with simulated missing values is scaled within the 

interval [0, 1]. The original training data is also scaled using the same transformation to 

avoid leakage. This ensures that the evaluation metrics are on comparable scale since 

the well-logs have different units. 

4. Imputation: The missing data is predicted using the MICE method with different machine 

learning models. The imputation is performed only for the scaled training data with 

simulated missing values. 

5. Evaluation: The performance of each model is evaluated with the scaled data by 

comparing the original values with the imputed values. It uses the normalized mean 

squared error (NMSE) as the metric. The combination of parameters that yields the lowest 

NMSE is considered the best. 

Note: By scaling the training data with simulated missing values, it is ensured that the training 

data does not have information from the validation data. This process is done for each fold, 

avoiding leakage between training and validation data. 

II. Evaluation of the Best Parameters 

This step consists of evaluating the performance of the optimal parameters obtained from the 

hyperparameter tuning using the custom cross-validation procedure described above. The 

evaluation considers three metrics: R-Squared (R2), Normalized Mean Squared Error (NMSE), 

and Normalized Mean Absolute Error (NMAE). Time is also recorded to assess the efficiency of 

each model. 

III. Final Training Model 

Based on previous results, the final model is trained using the entire training set with the best 

combination of parameters. This model is trained on the scaled training data using normalization.  

4.2.4  Testing Imputation 

This step is essential to ensure that imputation models can effectively predict missing values using 

the blind-well test set. The step performs the following three processes: 

I. Scaling 

The blind-well test set, selected during the initial data splitting, is first scaled using the same 

normalization scaler fitted with the training data, ensuring the well-logs are on a similar scale. The 

scaled values are stored separately for later comparison. 
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II. Custom Cross-Validation to Impute 

Like the model training, the custom cross-validation is implemented to simulate and estimate 

missing values for all well-log combinations as follows: 

1. KFold Splitting: The KFold method splits the well-log combinations into 5 parts, creating 

multiple folds for cross-validation. 

2. Simulating Missing Data: In each fold, a copy of the unscaled blind-well test data is 

created, and specific well-logs are set as missing values (NaN). 

3. Scaling: The copied blind-well test data, with simulated missing values, is scaled using 

the transformation applied to the training data. 

4. Imputation: The trained imputation model fills the missing values within the scaled blind-

well test data, and the results are stored. 

5. Inverse Transformation: The imputed values are transformed back to their original scale 

for subsequent evaluation. 

 

III. Results of the Blind-Well Test Set 

The results are assembled into a detailed data set containing the original values, the original 

scaled values, the scaled imputed values, and the imputed values for each well-log. This 

consolidated information is used for the final evaluation of the performance of the models, which 

will be carried out in the next step. 

4.2.5 Final Evaluation 

The model performance is evaluated based on three metrics: R-squared (R2), Normalized Mean 

Squared Error (NMSE), and Normalized Mean Absolute Error (NMAE). It is important to note that 

the evaluation metrics are computed with scaled data; therefore, it is normalized MSE and 

normalized MAE. The main metric used for comparison is the NMSE, which can effectively 

compare the performance across all the imputed features. These metrics provided insights into 

the precision and error associated with the imputations from each model.  

Moreover, graphical visualizations are performed to identify trends or intervals where the model 

performs better or worse, which the evaluation metrics cannot fully capture. These visualizations 

include plots of well-logs comparing original values versus imputed values, and scatter plots of 

true values versus predicted ones. In addition, the computational time is analyzed from each train 

model. 

By comparing the various imputation models on different data sets, the results can be analyzed 

to assess the performance of MICE, answering our research question and providing a clear 

perspective on how MICE performs predicting missing values in well-logs. 
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4.3 COMPUTATIONAL ENVIRONMENT 

The models were trained and evaluated on a system with the following specifications: 

 Processor: 11th Gen Intel(R) Core(TM) i5-11400H @ 2.70GHz   2.69 GHz 

 Memory: 15.84 GB DDR4 RAM 

 Graphics Card: NVIDIA GeForce RTX 3050 

 Storage: 500 GB SSD 

 Operating System: Windows 11 Home, 64-bit 

 Software Environment: Python 3.9.16, Scikit-learn 1.2.1 
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5 | RESULTS AND DISCUSSION 

5.1 RESULTS 

5.1.1 Metric Evaluation of MICE 

For the evaluation of the imputed well-logs, we mainly use NMSE and R2 metrics. This evaluation 

is carried out with different number of iterations, values of 1, 10 and 20. In this study, the machine 

learning models are performed with the default hyperparameters, and MICE with the same 

random state. 

I. Force-200 

The Force-200 data set presents favorable results in predicting the missing values using the MICE 

approach, see Figure 31. These results are consistent with a previous study by (Hallam, 

Mukherjee, & Chassagne, 2022), which also considered MICE as imputation method evaluating 

the performance only for DTC, DTS and RHO. 

The MICE results from 1 to 20 iterations indicate that the models perform well using this approach 

since most of the R2 values are positive. However, the SP log consistently yields negative R2 

scores across all the models and number of iterations. Furthermore, GR presents negative R2 

scores, indicating poor performance in the KNR and BR models with 1 iteration. Across most of 

the well-logs, XGB and RF consistently outperform KNR and BR. 

Comparing the performance of MICE with 1 to 20 iterations, we observe that the difference in R2 

scores and NMSE values are relatively minimal. For KNR, BR, RF, and XGB, NMSE and R2 

values for most of the well-logs tend to remain stable regardless of the number of iterations. 

Although increasing the number of iterations does not yield significant enhancements, the 

computational resources and time required for running multiple iterations become notably high. 

This inefficiency makes higher iterations less practical without substantial performance 

improvements. 
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Figure 31. Force-200 Results of MICE with 1 to 20 Iterations using R2 and NMSE metrics. 

II. Montney 

The results of MICE in the Montney data set show that XGB has the lowest NMSE and the best 

R2 scores compared to the other models. However, none of the models predict with good 

performance the SP logs, which present largely negative R2 values regardless of the number of 

iterations. Additionally, the number of iterations in MICE imputation does not lead to any significant 
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change in the performance of R2 and MSE in the four models tested. The results were marginally 

better with 1 iteration compared to 10 iterations, suggesting that increasing the number of 

iterations may not necessarily lead to improvements in predictive performance. 

 

Figure 32. Montney Results of MICE with 1 to 20 Iterations using R2 and NMSE metrics. 
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III. Beetaloo 

The MICE approach with different iterations parameters, from 1 to 20, present variations in the 

performance of the predictions model used in KNR, BR, RF and XGB. Similarly, to Force-200 and 

Montney, the results also indicate that increasing the number of iterations does not lead to 

significant improvements in the estimations and performance. Additionally, none of the models 

performed well consistently for all the well-logs such as GR, DT, REST_10, SP, and NPHI. For 

instance, SP log presented the worst R2 scores in all models tested regardless of the number of 

iterations. The XGB model has the best performance among the other algorithms. 

 

Figure 33. Beetaloo Results of MICE with 1 to 20 Iterations using R2 and NMSE metrics. 
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5.1.2 Blind-Wells Performance 

The MICE performance on individual blind wells is evaluated using the average of NMSE and R2. 

This evaluation considers the models for each data set using 10 iterations. Additionally, the 

number of observations and the fraction of missing values are taking into account in this analysis. 

I. Force-200 

 

Figure 34. Force-200 Blind Wells Performance using MICE. 

Performance across different wells exhibits considerable variability. While certain wells show 

promising predictions with positive R2 values, others present extremely negative R2 values. Well 

performance ranges from a low NMSE, such as the well 76 with a value of 0.0009, to a high 

NMSE, such as the well 22 with a value of 0.0152. The well 14 shows the highest positive R2 

value of 0.7374. In contrast, the well 19 exhibits a substantially negative R2 value of -11.3799, 

suggesting possible deficiencies in the generalization of the specific model to that well. 

Furthermore, the well 92 has the highest number of observations and performs relatively well with 

an R2 of 0.3853. However, the wells 22 and 19 have significantly negative R2 values although 

they have more than 10,000 and 17,000 observations respectively, indicating poor performance. 

Additionally, the well 19 have complete log data and the well 22 presents missing values in some 

logs such RS10 and SP, 64% and 47% respectively. Notably, these wells exhibit the worst R2 

scores. On the other hand, wells 104, 23, 3, 14, 76, which have RS10 and SP entirely missing, 

present positive values in R2, indicating a better performance. For further details refer to the 

appendix DData Analysis and the notebooks [GitHub]. 

https://github.com/LuisCBaez/Predicting_Well_logs_MICE_TUDelft_Msc_Thesis.git
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II. Montney 

 

Figure 35. Montney Blind Wells Performance using MICE. 

The Montney data set presents negative R2 values in all the well-logs, indicating the poor 

performance in the predictions. It is important to note that these wells are almost complete, only 

well 2 has 35% of the NPHI log missing. Particularly, well 6 has the worst performance with an 

R2 of -44.0357 despite having more than 1,000 observations. 

III. Beetaloo 

 

Figure 36. Beetaloo Blind Wells Performance using MICE. 

Among the wells examined in this data set, well 2 stands out for its remarkably poor performance 

despite having complete log data and the highest number of observations. The average R2 of this 

well is -110.5466. On the other hand, well 4 presents better performance with an average R2 

close to 0.32. Although this well has no SP log and shows about 15% missing data in other logs, 

the well 4 has the best performance of this data set. 
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Based on the blind wells analysis, the number of observations and log integrity in a well do not 

appear to have a consistent relationship with the MICE performance along different datasets. 

5.1.3 Lithostratigraphy Performance 

Like the previous analysis of blind wells, the MICE performance of the models is evaluated with 

respect to the lithostratigraphic units for each data set. This evaluation also considers the total 

number of observations, fraction of missing values and the average of NMSE and R2. 

I. Force-200 

 

Figure 37. Force-200 Lithostratigraphy Performance using MICE. 

In the Force-200 data set, the Shetland and Viking groups present the best R2 score, with R2 

values of 0.2041 and 0.2917 respectively. These groups have the lowest percentage of missing 

values in the DTS log compared with other groups. The Shetland group has 73% of the data 

missing in the DTS log, while the Viking group has 71%. It is important to note that Cromer Knoll 

group has positive R2 values, and this group also presents one of the three least percentage of 

missing values in the DTS log with 71% of the data missing. 



 

 

59 

On the other hand, the Hordaland group has the highest number of observations with negative 

R2 scores, indicating poor performance. This group has the highest missing values in log such 

DTS, NPHI and RS10 with values of 96%, 57& and 50% respectively. 

The Zechstein group also has the worst performance than the other groups. This group presents 

the highest NMSE of 0.0530 and most negative R2 of -62.2284, suggesting poor model 

predictions for this lithostratigraphy. This group has DTS, SP and RM10 missing with 94%, 83% 

and 79% respectively. 

II. Montney 

 

Figure 38. Montney Lithostratigraphy Performance using MICE. 

In this data set, all the stratigraphic units performed poorly regardless of the number of 

observations. The HST2 unit stands out with the lowest NMSE; however, it presents a negative 

R2 score. Despite the higher number of observations and maintaining relatively strong data 

integrity, HST2 performs poorly in predicting missing values. 
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Moreover, HST4 records the highest NMSE value among the stratigraphy units, indicating larger 

discrepancies between the predicted values and original values. HST4 is the second stratigraphy 

with the highest number of observations and presents a high percentage of missing values in 

logs. For instance, GR, DT, NPHI, and SP logs are missing in approximately 49%, 43%, 32% and 

32% respectively. 

III. Beetaloo 

 

Figure 39. Beetaloo Lithostratigraphy Performance using MICE. 

The Beetaloo data set also presents negative average R2 values across all the stratigraphy units, 

indicating poor performance of the predictions. Among these units, the RST-3.10 stratigraphy 

stands out with the least negative R2 score of -0.0784, while the TST-3.9 unit has the largest 

negative R2 score, which is -1,578.3262. 

It is worth noting that a large number of observations for a given stratigraphic unit does not 

necessarily correlate with better performance such as RST-2.6 and RST-2.5. Additionally, the 

Beetaloo data set, based on the exploratory data analysis, has high percentages of missing 
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values across all well-logs. For example, RHOB, GR, SP, and NPHI log have more than 50% of 

the data missing. Therefore, in the stratigraphy performance analysis, data integrity can return 

negative values of R2, leading to poor model performance. 

5.1.4 Graphical Evaluation of MICE 

The graphical evaluation uses well-logs and scatter plots to visualize the original values versus 

the imputed values. This analysis can identify patterns that the evaluation metrics cannot capture. 

I. Force-200 

Based on the blind well analysis, the well 19 presents the worst negative average R2 score even 

though this is the only well that contains all the logs complete. In contrast, the wells 104, 23, 3, 

14, 76, which lack RS10 and SP logs, present positive values in R2, indicating a better 

performance. For this reason, the wells 19 and 14 have been chosen for the graphical evaluation 

of the imputation results. 

 

Figure 40. Well-Log Plot of the Well 19 with Original Values and Predicted Values using XGB in the Force-200 Data set, the blue 
lines are original logs, and the red lines are the predicted logs. 

It can be seen in the Figure 40 that the original records such as DTC, DTS, RD10, RM10 and 

RS10 are very similar to each other. This underlines the strong correlation that exists between 

these logs, suggesting that the presence of one log can provide information about others logs. 
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Regarding the imputed logs, it can be observed that the predicted logs follow the trend of the 

original logs. However, there are shifts and peaks with outliers in some intervals, indicating the 

limitation of MICE in predicting missing well-log data. For instance, the estimated log of SP is 

shifted and spikey compared to the original log, which is smooth and flat. 

On the other hand, the Figure 41 shows the scatter plots of the well 19, which can be seen that 

DTC, DTS, RD10, RM10, RS10 present a more linear relationship compared to the other logs. 

Although RHOB and NPHI logs have linear relationships, they are noisier and more dispersed 

than the sonic and resistivity logs. For instance, the noisiest areas correspond to the Hordaland 

group, which presents negative average R2 scores. It is important to mention that this group has 

the highest number of observations and the highest missing values in logs such as RHOB, DTS 

and NPHI where the data is dispersed in the scatter plots. 

 

Figure 41. Scatter Plots - Original Values versus Imputed Values of the Well 19, Force-200 data set. 
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Figure 42. Well-Log Plot of the Well 14 with Original Values and Predicted Values using XGB in the Force-200 Data set, the blue 
lines are original logs, and the red lines are the predicted logs. 

The well-logs from well 14 reflect similarities to the findings from well 19. These logs show that 

the original data from DTC, DTS, RD10 and RM10 are nearly identical. However, the well 14 lacks 

RS10 and SP logs, which could explain the good performance in predicting the missing values. 

Since MICE struggles in predicting SP, the absence of this log could improve imputation 

performance. Additionally, the predictions are generally consistent in this well, but there are peaks 

and outliers at various depth intervals in different imputed logs. 

Moreover, the Figure 43 shows scatter plots for the well 14, which validate the strong linear 

relationships for logs such as DTC, DTS, RD10, and RM10, like the well 19. GR and NPHI 

maintain their linearity, but they are more dispersed than the sonic and resistivity logs. It can be 

observed that MICE also struggles in predicting GR logs where there is no linear correlation 

between the original values versus the predicted values. 

In the scattered plots of the well 14, the areas with the greatest dispersion and noise correspond 

to groups such as Hordaland and Zechstein. Both groups have low performance in previous 

analyses. This can be seen particularly in the scatter plots of RHOB, RD10, RM10 logs in the 

following figure. 
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Figure 43. Scatter Plots - Original Values versus Imputed Values of the Well 14, Force-200 data set. 

II. Montney and Beetaloo 

The wells of the Montney and Beetaloo data sets perform poorly in predicting missing values. 

Specifically, the Montney data set reveals that all the wells have negative R2 values, and the well 

16 has the best performance among others. On the other hand, in the Beetaloo data set, only the 

well 4 have positive R2 score, while the remaining wells have negative R2 values. Based on these 

findings, the Montney well 16 and the Beetaloo well 4 are selected for graphical analysis. 

As can be seen in the Figure 44, the Montney well 16 is presented. These well-logs show the 

limitations of MICE in predicting missing logs on this data set. Although the estimated values 

follow the general trend of the original values, numerous peaks and outliers are observed in most 

of the intervals. Additionally, certain changes in the original values are not estimated by the 

algorithm; specifically, the marked circles in the DT log underline the inability of MICE to precisely 

estimate these changes. It seems that the algorithm tends to use the mean value of the log to 

predict these changes, leading to imprecision and unreliable results. 
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On the other hand, the imputed SP log is very spikey and in certain intervals is shifted compared 

to the original log, which is smooth and almost flat. 

 

Figure 44. Well-Log Plot of the Well 16 with Original Values and Predicted Values using XGB in the Montney Data set, the blue lines 
are original logs, and the red lines are the predicted logs. The circles remark on the poor performance of MICE in predicting missing 

values. 

 

Figure 45. Well-Log Plot of the Well 4 with Original Values and Predicted Values using XGB in the Beetaloo Data set, the blue lines 
are original logs, and the red lines are the predicted logs. 
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The Figure 45 illustrates the logs of the Beetaloo well 4. Like Montney, it can be seen that MICE 

does not predict precisely the missing logs. Although the estimated logs follow the trend of the 

original logs, there are many outliers and spikes in all the logs at various depths, indicating the 

poor performance of the algorithm. 

It is important to highlight that the absence of the SP log in this well could contribute to the positive 

R2 score it has obtained this well 4. This observation can be extended to other wells within the 

Beetaloo data set that also lack the SP log, such as wells 8 and 28. Even though these wells 

show negative R2 values, they are very close to a score of 0. 

5.1.5 Computational Efficiency 

We recorded the time during the cross-validation phase to comprehensively measure the 

computational efficiency of each model and data set. 

 

Figure 46. Computational Efficiency of the Models, including Zoom Plots for each Data set. 

The Force-200 data set is the largest with over a million observations, whereas Montney is the 

smallest data set with approximately a hundred observations. As expected, larger data sets tend 
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to require more computational time than the smaller ones, given the increased data size and 

potential model complexity. 

The BR algorithm presents the most time-efficient across all data sets. For instance, BR took only 

138.60 seconds to complete the cross-validation in the Force-200 data set despite it is the largest. 

However, BR required 4,607.77 seconds in the Beetaloo data set, which has only 300,000 

observations approximately. 

On the other hand, the XGB model has variable computational time based on the data set, but it 

is more time efficient than KNR and RF on larger data sets. For example, the time required for 

KNR increases considerably as the size of the data set grows. While it only took about 4 minutes 

for the Montney dataset, it took over 3 hours for Beetaloo and over 6 hours for Force-200. 

Additionally, RF is the method that requires the longest time on all data sets. This could be due 

to the nature of the algorithm, which involves bootstrapping and building multiple decision trees. 

5.1.6 Hyperparameter Tuning 

The hyperparameter tuning process is an essential step in machine learning models to improve 

their performance. However, it is important to take into account the trade-off between the 

improvement in performance and the computational time consumed in the tuning process. This 

section discusses the results obtained from the sensitivity analysis and hyperparameter tuning 

performed. 

I. Sensitivity Analysis 

Since hyperparameter tuning can be computationally expensive, particularly for ensembles 

models such as RF and XGB. Therefore, we performed a sensitivity analysis of these algorithms 

to limit the number of parameters and the range of values for tuning. The sensitivity analysis was 

applied in the Montney and Beetaloo data sets first. During this process, we evaluate the 

performance of each well-log individually using different parameters, varying one parameter at a 

time. 

Additionally, a sensitivity analysis for RF is performed for the maximum depth of the tree using 

the Force-200 data set. The primary reason was that setting maximum depth of the tree as default, 

which has no limit of depth in RF, was leading to computational issues. It was necessary to set a 

value for this parameter to perform the other estimations. Another reason was the high impact of 

the maximum depth of the tree on the performance of the models. We considered that it was 

important to evaluate this parameter for all data sets. It is essential to note that it was necessary 

to take a sample from the Force data set for this analysis due to the long time required to carry 

out this analysis. The sample was taken considering the same strategy for the data split in this 

project, which is based on wells and makes sure if the data is representative. For further 

information about this refer to the notebook of the Force-200 [GitHub]. 

https://github.com/LuisCBaez/Predicting_Well_logs_MICE_TUDelft_Msc_Thesis.git
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Figure 47. Sensitivity Analysis of the Force-200, Montney and Beetaloo data sets, using max_depth for RF model. 

As can be seen in the Figure 47, the results demonstrate that each well-log has unique 

performances, complicating the task of finding the optimal combination of parameters that 

simultaneously improves the performance of all the features. For instance, there is not a common 

maximum depth of the tree that improves the performance simultaneously for all the well-logs in 

the Force-200 data set. 

Random Forest model for each dataset shows that depth around 10 appears to provide the best 

performance in terms of MSE. A depth of 1, which means a very shallow trees, the models 

performed poorly, which is considerable as the model is likely underfitting the data, and not 

capturing the underlying complexity of the data sets. In contrast, a very deep tree (maximum 

depth of the tree = None) can lead to overfitting, but this setting cannot be tested for this study. 
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II. Tuning 

The hyperparameter tuning was carried out on four machine learning models: KNR, BR, RF, and 

XGB for two different locations, Montney and Beetaloo. The Table 8 shows the results of the 

hyperparameter tuning for XGB in the Montney data set. 

Table 8. Results of Hyperparameter Tuning for XGB in the Montney data set. 

Parameters NMSE 

('max_depth=6', 'reg_alpha=0', 'reg_lambda=2') 0.0045 

('max_depth=10', 'reg_alpha=0', 'reg_lambda=1') 0.0051 

('max_depth=7', 'reg_alpha=0', 'reg_lambda=1') 0.0053 

('max_depth=10', 'reg_alpha=0.5', 'reg_lambda=2') 0.0055 

('max_depth=6', 'reg_alpha=0.5', 'reg_lambda=0') 0.0055 

('max_depth=6', 'reg_alpha=0', 'reg_lambda=0') 0.0055 

('max_depth=10', 'reg_alpha=0.5', 'reg_lambda=1') 0.0057 

('max_depth=7', 'reg_alpha=0.5', 'reg_lambda=2') 0.0057 

('max_depth=10', 'reg_alpha=0.5', 'reg_lambda=0') 0.0059 

('max_depth=7', 'reg_alpha=0.5', 'reg_lambda=0') 0.0059 

('max_depth=7', 'reg_alpha=0.5', 'reg_lambda=1') 0.0060 

('max_depth=6', 'reg_alpha=0.5', 'reg_lambda=1') 0.0060 

('max_depth=6', 'reg_alpha=0', 'reg_lambda=1') 0.0061 

('max_depth=6', 'reg_alpha=0.5', 'reg_lambda=2') 0.0061 

('max_depth=7', 'reg_alpha=0', 'reg_lambda=2') 0.0063 

('max_depth=10', 'reg_alpha=0', 'reg_lambda=0') 0.0064 

('max_depth=10', 'reg_alpha=0', 'reg_lambda=2') 0.0071 

('max_depth=7', 'reg_alpha=0', 'reg_lambda=0') 0.0072 

Average 0.0059 

 

The XGB model tuning shows the normalized MSE recorded as 0.0045 using that using 

parameters max depth=6, regularization term alpha=0, regularization term lambda=2. This model 

shows slight sensitivity towards its hyperparameters as we can observe some variation in the 

performance. It is important to note that the best values of max depth and alpha were the default 

values. However, the parameter lambda, which the default value is 1, shows the lowest scores, 

but with different values of max depth. In this analysis, it also observed that values between 6 and 

10 shows better performance than other values. 

The process of hyperparameter tunning was repeated for the Beetaloo data set with similar 

observations. All the models presented minor or insignificant variations in NMSE with different 

parameters; therefore, the improvement obtained from hyperparameter tuning in MICE in these 

two scenarios do not justify the time and computational resources spent. For this reason, it is not 

carried out hyperparameter tuning for the Force-200 data set. For further details refer to the 

appendix AHyperparameter Tuning and notebooks [GitHub]. 

https://github.com/LuisCBaez/Predicting_Well_logs_MICE_TUDelft_Msc_Thesis.git
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5.2 DISCUSSION 

The focus of the project was to evaluate the performance of MICE in predicting missing well-log 

data in various sedimentary basins. To begin with, we evaluate various number of iterations in 

each data set. We use 1, 10 and 20 iterations to analyze the impact on the predictions. According 

to Buuren & Groothuis-Oudshoorn (2011), it is recommended to use 10 to 20 iterations to obtain 

reliable results. 

Nevertheless, the number of iterations in MICE does not lead to any significant change in the 

performance of R2 and NMSE in all the models tested. This challenges the idea that increasing 

the number of iterations would lead to an improvement in the imputation performance, at least 

with the data sets used in this study. Consequently, it is inefficient to increase the number of 

iterations since the computational resources and the time needed to execute the multiple 

iterations significantly increase. 

Comparing the performance between data sets, the Force-200 data set reveals favorable results 

in predicting missing values using MICE in well-logs. These results are consistent with a previous 

study by Hallam, Mukherjee, & Chassagne (2022), which also considered MICE as imputation 

method evaluating the performance only for DTC, DTS and RHO. However, Hallam, Mukherjee, 

& Chassagne did not extend their evaluation to other logs, included in our study. Moreover, the 

authors only use benchmark data sets from the same region which have undergone extensive 

preprocessing steps. For this reason, we proposed to work with various data sets with different 

preprocessing steps, locations, and sedimentary basins. 

Furthermore, we propose a methodology that uses cross-validation to replicate how missing 

values occur in real-world scenarios where some well-logs may be missing entirely. This method 

allows us to simultaneously evaluate all well-logs and provides a proposal for the limitation of 

some studies that introduce random missing values for the tests, which do not represent real-

world situations. Therefore, by working with different sedimentary basin data sets and 

implementing a more realistic approach to assess missing values, we can evaluate the 

performance of MICE and its generalization in a more robust way. 

Using the proposed approach, we observed negative values of R2 particularly in SP and GR logs. 

This indicates poor performance of MICE in predicting missing values in these well logs in all data 

sets, including the Force-200 data set. This can be explained by the weak correlation of SP and 

GR with the other well-logs, and the complex geological conditions of each data set; as a result, 

the algorithm cannot capture relationships between the logs and has difficulty precisely imputing 

their missing values. 

Comparing the performance of the 3 data sets, the Force-200 presents better results in R2 and 

NMSE. Montney and Beetaloo exhibits average negative values for R2 in all their models and 
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high values for the NMSE. This performance difference between data sets may be explained by 

Montney and Beetaloo are not extensive preconditioned as Force-200. Data preprocessing could 

explain the high correlations between well-logs in the Force-200 data set, which are not observed 

in Montney and Beetaloo. The Force-200 data set has undergone extensive pre-processing, 

following the strict guidelines of the Norwegian Protocol for Reporting Well Data and additional 

cleaning process by experts for machine learning competition. The Norwegian protocol 

preprocessing recommendations mainly cover data cleanup, depth shifting, and interpolation for 

reporting well data (Directorate, 2018). As a result, this procedure could ultimately infer the 

performance of the imputation of missing values in Force-200. 

Based on the MICE performance analysis, XGB often outperforms other algorithms such as KNR, 

BR, RF, in terms of imputing missing values using MICE with different number of iterations. This 

can be seen on the evaluation metrics NMSE and R2 applied to different well-logs and data sets. 

For instance, in the Beetaloo and Montney data sets, XGB predicts with positive R2 values most 

of the well-logs such as RHOB, DT, and NPHI. The consistent performance of the XGB model 

suggests that gradient boosting techniques could be further explored and optimized for these 

types of data sets. 

In addition, we evaluate the performance of individual blind wells for each data set using NMSE 

and R2 metrics, which shows that data quality may have influenced better predictions in the 

models. For instance, we observe that certain wells with fewer observations perform better than 

larger wells. It is also observed that the missing values are relevant in some wells and data sets, 

which could affect the performance of the model. For example, the Beetaloo data set has the 

worst imputation performance compared to Force-200 and Montney. This could explain because 

Beetaloo presents the highest percentage of missing values in all the well-logs, ranging from 20% 

to 52% of the data missing. This implies that the higher the percentage of missing data, the more 

difficult it is to impute the missing values, as the relationships between the variables may not be 

precisely represented. 

On the other hand, the evaluation of the lithostratigraphic units reveals a pattern similar to the of 

the analysis of blind wells. Performance discrepancies between these units are likely due to a 

combination of factors, including data quantity and quality, geological complexities, and extent of 

data coverage. A higher volume of observations within a specific stratigraphic unit does not 

necessarily correlate with better model performance. This underscores the importance of both 

data quality and geologic context for accurate predictions in lithostratigraphic units. 

It is important to note that any of these models reached convergence, including models with 20 

iterations. Since MICE is an iterative process and requires convergence to produce reliable 

results, this lack of convergence can also explain the poor performance of the models. When 

there is an issue with the convergence, this could be due to insufficient number of iterations, high 

percentage of missing values or small sample sizes. 
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The evaluation of MICE is enhanced by analyzing both well-log and scatter plots since these 

graphical insights reveal patterns that might not be evident through mere evaluation metrics. 

These plots show the limitations of MICE in predicting missing well-log data precisely, particularly 

for logs with complex relationships. The presence or absence of specific well-logs in certain wells 

significantly influences the imputation performance, impacting both evaluation metrics and 

graphical representations. For instance, the absence of SP seems to lead to an improvement in 

the imputation performance in some cases, as observed in higher R2 values. The reason for this 

improvement may be related to the fact that SP presents the most negative values compared to 

other records; therefore, when there is no SP, the average performance of that well or stratigraphy 

improves. However, it is important to consider further analysis and test different combinations of 

well-logs to evaluate the performance. 

On the other hand, the computational efficiency section provides valuable information on the 

practicality of these models. As data size grows, computational demands increase. However, 

certain models, such as BR, showed surprising efficiency on the longest data sets, making it a 

potential candidate for future large-scale applications. The performance of XGB also stands out 

for its balance between efficiency and performance, especially in contrast to models like the KNR 

and RF, which required more time. 

The process of hyperparameter tuning reveals that well-logs have different performances with 

one set of parameters. This variability in the performance indicates that each well-log has unique 

characteristics that require a custom model to obtain optimal predictions, showing a great 

limitation of MICE to optimize performance across all features simultaneously. The best 

hyperparameters for each well-log may differ from each other, creating a challenge to find a single 

optimal set for the overall model. For example, we observe that improving the performance of one 

well-log sometimes negatively affects others logs. Therefore, there is a need for a more flexible 

approach that can better adapt to the unique characteristics of each well-log. Potential future 

strategies could involve implementing feature-specific models or exploring advanced machine 

learning methods, such as deep learning and neural networks, capable of learning complex 

feature interactions. 

This study underscores the complexity of imputing missing data from well-logs in heterogeneous 

sedimentary basins. Although machine learning algorithms with MICE offer automated solutions, 

the findings emphasize the need for more research to minimize user input. Challenges arise from 

the limited and diverse nature of well-logs, the wide ranges of values, and the complex 

relationships within the data. In particular, the extensive preprocessing, as seen on the Force-200 

dataset, can yield better results. Since the understanding the subsurface is complex, future 

strategies could include custom models for different well-logs or advanced techniques such as 

deep learning and neural networks to better capture complex feature interactions. 
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Limitations: 

This study is limited by the use of data sets with limited missing measurements, which may not 

fully represent scenarios with entirely missing well-logs. The exploration of hyperparameters was 

restricted due to practical limitations, potentially missing optimal combinations. Hyperparameter 

tuning was carried out for specific data sets, excluding the Force-200 data set due to its size and 

resource demands. The reliance on a single benchmark data set with strong correlations raises 

questions about the applicability of MICE to more diverse data sets with varying pre-processing 

levels. The absence of uncertainty analysis in the models, influenced by consistent random states, 

and the computational complexity of such analysis present further limitations. Moreover, the 

methodology employed for cross-validation, aiming to replicate how missing values manifest in 

real-world scenarios, only represents situations where some well-logs may be missing entirely 

and does not account for gaps or intervals where data might be absent. This may not wholly reflect 

the diversity of missing data patterns seen in practice. Moreover, the methodology used for cross-

validation, with the goal of replicating how missing values manifest in real-world scenarios, only 

represents situations where some well-logs may be completely missing and does not account for 

gaps or intervals where data may be missing. This may not fully reflect the diversity of missing 

data patterns seen in practice. While the study comprehensively evaluated all well-logs in each 

dataset, it did not assess different combinations of well-logs for model performance. Lastly, there 

was no direct comparison between MICE and conventional machine learning strategies that 

independently predict single well-logs. 
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6 | CONCLUSIONS 

6.1 CONCLUSIONS 

In conclusion, this study aimed to evaluate the performance of Multivariate Imputation by Chained 

Equations (MICE) in predicting missing well-log data in various sedimentary basins. The research 

was conducted using three different data sets from distinct geological contexts, with minimal user 

input and preprocessing. The results showed that MICE, when combined with machine learning 

algorithms such as XGBoost (XGB), Random Forest (RF), K-Nearest Neighbors (KNR), and 

Bayesian Ridge (BR), can provide valuable insights into the prediction of missing well-log data. 

The XGB algorithm frequently outperformed other techniques, especially in imputing missing 

values using MICE across varying iterations. However, the performance of MICE varied across 

different data sets and well-logs, highlighting the complexity of imputing missing data in 

heterogeneous sedimentary basins. 

The study revealed that the number of iterations in MICE did not significantly impact the 

performance of the models, challenging the idea that increasing the number of iterations would 

lead to improved imputation performance. The results also indicated that data quality, 

preprocessing, and geological complexities play a crucial role in the performance of MICE. The 

Force-200 data set, which underwent extensive preprocessing, demonstrated better imputation 

performance compared to the Montney and Beetaloo data sets. 

The evaluation of MICE performance was complemented with graphical visualizations, which 

showed the limitations of MICE in predicting missing well-log data precisely, particularly for logs 

with complex relationships. The presence or absence of specific well-logs in certain wells 

significantly influenced the imputation performance, impacting both numerical metrics and 

graphical representations. 

The study also highlighted the challenges of finding a single optimal set of hyperparameters for 

the overall model, as each well-log has unique characteristics that require a custom model to 

obtain optimal predictions. This suggests a need for more flexible approaches that can better 

adapt to the unique characteristics of each well-log, such as implementing feature-specific models 

or exploring advanced machine learning methods like deep learning and neural networks. 
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6.2 RECOMMENDATIONS AND FUTURE RESEARCH 

Despite the limitations of this study, it provides insights into the applicability of MICE for predicting 

missing well-log data in different geological contexts. The findings emphasize the need for more 

research to minimize user input and develop more robust and flexible approaches to imputing 

missing data in well logs. This new approach should facilitate and guide the user in preprocessing 

methods and the selection of appropriate imputation methods, machine learning algorithms and 

hyperparameters. This could involve developing decision frameworks that analyze well-log 

characteristics and suggest the most appropriate approach based on available data. 

Furthermore, more advanced imputation techniques can be explored beyond traditional machine 

learning algorithms. Techniques such as deep learning have shown promising results in handling 

complex data relationships. For instance, investigate the viability of training neural networks to 

impute missing well-log data that includes geological relationships and well-logs interactions for 

more accurate predictions in heterogeneous sedimentary basins. 

Another area of future research could focus on understanding the reasons behind the poor 

performance of certain wells and lithostratigraphy units. This may involve investigating the quality 

of the data, identifying missing features relevant to those wells or stratigraphic units, or exploring 

alternative modeling techniques. For wells and stratigraphic units with strongly negative R2 

values, reassessing model applicability or considering collecting more data or additional features 

could help improve predictions. 

In addition, it would be valuable to examine the impact of preprocessing on different datasets, 

similar to the comprehensive preprocessing performed on the Force-200 dataset, which follows 

Norwegian protocol guidelines. Investigate whether preprocessing techniques can improve MICE 

performance on data sets with lower log correlations, such as Montney and Beetaloo. This can 

provide information about the generalization of preprocessing strategies. 

To further evaluate the performance of MICE, it is recommended to explore various combinations 

of well-logs, including variations in the number of well-logs used within the models. Additionally, it 

would be important to contrast MICE with conventional machine learning methodologies that 

predict individual well-logs, allowing the evaluation of effectives and performance of both 

approaches in different sedimentary basins. 

Finally, it is necessary to investigate further a cross-validation approach that effectively replicates 

real-world scenarios. These scenarios involve the presence of missing intervals within certain 

well-logs, and even extend to cases where entire well logs are missing. This approach would 

allow for a more realistic assessment and provide a comprehensive evaluation of MICE 

performance and its ability to address complex challenges in the context of subsurface data.  
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APPENDIX A | D

DATA ANALYSIS 

The following figures illustrate key aspects of the data splitting strategy to ensure that the data is 

representative and well-suited for model evaluation. For further information refer to the notebooks. 

A.1 MONTNEY 

 

Figure 48. Geo graphical distribution of the wells in the training and test sets for Montney. 
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Figure 49. Pattern of missing values in the test set for Montney. 

 

Figure 50. Distribution of well-logs features in the original dataset and training set for Montney. 
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Figure 51. Missing data patterns between the original data set and training set for Montney. 

 

 

Figure 52. Correlation matrices for the original data set and the training set for Montney. 
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Figure 53. Fraction of missing data in wells from the Montney data set. 

 

Figure 54. Fraction of missing data in stratigraphy units from the Montney data set. 
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A.2 BEETALOO 

 

Figure 55.  Geographical distribution of the wells in the training and test sets for Beetaloo. 

 

Figure 56. Pattern of missing values in the test set for Beetaloo. 
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Figure 57. Distribution of well-logs features in the original dataset and training set for Beetaloo. 

 

 

Figure 58. Missing data patterns between the original data set and training set for Beetaloo. 
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Figure 59.  Correlation matrices for the original data set and the training set for Beetaloo. 

 

 

Figure 60. Fraction of missing data in wells from the Beetaloo data set. 
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Figure 61. Fraction of missing data in stratigraphy units from the Beetaloo data set. 

A.3 FORCE-200 

 

Figure 62. Fraction of missing data in wells from the Force-200 data set. 
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Figure 63. Fraction of missing data in stratigraphy units from the Force-200 data set. 
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APPENDIX B | A

HYPERPARAMETER TUNING 

A.1 SENSITIVITY ANALYSIS 

Table 9. Hyperparameters and Values used for the sensitivity analysis. 

Algorithm Hyperparameter Tunned Values Default Value 

Random 
Forest 

max_depth {1, 6, 10, 15} None 

n_estimators {1, 10, 50, 100, 200} 100 

min_samples_split {2, 6, 10, 15} 2 

min_samples_leaf {1, 5, 10, 15} 1 

XGBoost 

max_depth {1, 3, 6, 7, 10, 15} 6 

n_estimators {1, 10, 50, 100, 200} 100 

min_child_weight {0, 0.5, 1, 2} 1 

learning_rate 
{0, 0.05, 0.1, 0.3, 
0.5} 

0.3 

gamma {0, 0.5, 1} 0 

reg_alpha {0, 0.5, 1} 0 

reg_lambda {0, 1, 2} 1 
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A.1.1 Montney 

I. Random Forest 

 

Figure 64.  Sensitivity Analysis RF for Montney. 
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I. XGBoost 

 

Figure 65. Sensitivity Analysis XGB for Montney. 
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A.1.2 Beetaloo 

I. Random Forest 

 

Figure 66. Sensitivity Analysis RF of Beetaloo. 
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II. XGBoost 

 

Figure 67. Sensitivity Results of XGB for Beetaloo. 

 


