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ABSTRACT  

Discrete element modelling of clays requires defining the interaction energy between two particles. The Derjaguin, 

Landau, Verwey and Overbeek (DLVO) theory combining the effect of the van der Waals forces and the Coulombic 

forces due to the double layer of counterions provides a widely accepted framework to characterise the pair potential 

energy. Solutions of the Poisson-Boltzmann (PB) equation to quantify the Coulombic forces are only available for the 

case of infinitely extended and uniformly charged facing plates (1D conditions). However, these assumptions are not 

representative of a clay particle system. Particles should be represented by platelets of finite size and finite thickness, with 

different charges between the edge and the basal planes. This paper addresses the problem of deriving the Coulombic 

interaction forces for plates of finite size and thickness in 3D configuration by solving the Poisson-Boltzmann equation 

numerically via the Finite Element Method (FEM). It is shown that 2D particles (plates of infinitesimal thickness) provide 

an adequate representation of Coulombic interaction as long as the particles are uniformly charged. The advantage of 2D 

particles is to reconcile numerical modelling with analytical solutions available in the literature. The use of 2D particles 

is questionable when considering different charges between basal planes and edges.  
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1. Introduction 

Colloidal-size particles, typically between 10 nm and 

several microns, develop an electrical surface charge, 

unlike granular materials (Mitchell and Soga,2005; 

Sposito 1998). Many physical and chemical properties of 

clays are directly or indirectly controlled by the nature 

and the amount of surface charge, as this directly affects 

interparticle interactions. 

Discrete element modelling of clays (Discrete 

Element Method (DEM) or Coarse-Grained Molecular 

Dynamics (CGMD) modelling) requires defining the 

interaction energy or force between two particles. The 

DLVO theory combining the effect of the van der Waals 

forces and the Coulombic forces due to the double layer 

of counterions provides a widely accepted framework to 

characterise the pair potential energy. However, the 

analytical solutions usually employed for describing the 

two competing forces generally considers infinite 

thickness, infinitely extended and uniformly charged 

facing parallel plates (one-dimensional condition). This 

configuration ignores i) the interaction forces arising at 

the platelet ends that can present an opposite charge with 

respect to the basal planes, ii) the finite size of the 

particle, iii) the small thickness of the particle as opposed 

to the infinite thickness considered in most analytical 

developments, and iv) the non-parallel configuration.  

A realistic description of clay particle systems 

requires the implementation of a physically-consistent 

energy/force-separation function that takes into account 

the 6 degrees of freedom of the particle, the particle 

geometry and an appropriate spatial description of the 

non-homogeneous surface charge distribution. To this 

end, the Coulombic forces arising from the interaction of 

the Electrical Double Layers (EDL) need to be assessed 

by solving the Poisson-Boltzmann equation numerically.  

This paper focuses on the use of the finite element 

method (FEM) to characterise the Coulombic interaction 

between clay particles. The numerical framework is first 

validated against classical 1D solution for uniformly 

charged parallel sheets and then used to explore the effect 

of finite particle thickness and particle size, two of the 

assumptions that need to be removed from classical 

DLVO solutions available in the literature. Finally, it 

addresses the modelling of different charge between 

faces and edges.  

 

2. Kaolinite electrical charge  

The physicochemical properties of clay particle 

surfaces are determined by the crystal structure. 

According to Sposito (1998), clay particles develop 

surface charge from (i) structural isomorphous 

substitutions and (ii) proton adsorption and desorption 

reactions. The sum of these two charges is referred to as 

the ‘intrinsic charge’. The intrinsic charge is 

counterbalanced by a layer of absorbed ions closely 
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attached to the particle surface (usually denoted ‘Stern 

layer’) and by the counterions in the diffuse double layer 

(Figure 1). Sposito (1998) introduces the concept of total 

particle charge, hereafter denoted by σ [C/m2], 

representing the net surface charge resulting from the 

intrinsic charge plus the adsorbed ions immobilised in the 

Stern layer. 

 

 
Figure 1. Clay particle electrical charges. 

It is possible to measure experimentally the 

components of the total particle charge through chemical 

methods. However, data interpretation relies on the 

assumptions about the distribution of surface charge on 

basal planes and edges resulting from the layered nature 

of clay particles. 

The structural charge is usually attributed to the basal 

planes. The surface charge derived from isomorphous 

substitution only depends on the type and degree of the 

substitutions. Thus, it is largely independent of the pH 

and electrolyte composition of the solution. In contrast, 

the charge on the edge and the alumina (octahedral) face 

is assumed to be pH-dependent due to the 

protonation/deprotonation of exposed hydroxyl groups 

(Wang and Siu 2006).  

Traditional methods for measuring the different 

components of the total particle charge include the 

Cesium-Adsorption Method and proton titration (Schroth 

and Sposito 1997). These techniques reveal that the basal 

planes always carry a homogeneous negative surface 

charge. On the other hand, in acidic solutions clay edges 

carry a positive charge, while the edges are negatively 

charged in alkaline solutions. Measurements of structural 

and net proton charge carried out by Schroth and Sposito 

(1997) and Zhou and Gunter (1992) on a reference 

kaolinite identified as KGa-1 show a negative face 

surface charge ranging from -40 mC/m2 to -80 mC/m2, 

and a pH-dependent edge surface charge ranging from -

60 mC/m2 to +10 mC/m2 as pH decreases (Figure 2). 

More recently, atomic force microscopy (AFM) 

measurements of the surface electrical charge have 

provided an entirely different picture. In kaolinite, these 

colloidal force measurements reveal that the silica 

tetrahedral basal plane is negatively charged at pH > 4, 

whereas the charge on the alumina octahedral changes 

from negative to positive as pH reduces below 6 (Gupta 

and Miller, 2010). Overall, surface charge measurements 

reveal that, in absolute terms, a difference of up to two 

orders of magnitude in the particle surface charge is 

observed for KGa-1 kaolinite between the traditional 

electrical charge measurement techniques (cation 

exchange and titration) and the AFM measurements. 

Indeed, all the measurements performed by Gupta and 

Miller (2010) of the total charge of the basal planes of 

KGa-1 do not exceed ±10 mC/m2 (Figure 3).  

 

 
Figure 2. Electrical charge derived from chemical methods for 

KGa-1 kaolinite (Casarella 2022). 

 

 
Figure 3. Electrical charge derived from AFM 

measurements for KGa-1 kaolinite (Casarella 2022). 

There is no clear answer on which of the two 

discussed methods provides the most realistic surface 

charge determination, as both techniques stand on several 

assumptions. Regardless of the surface charge model 

adopted, it appears that Coulombic interactions for 

kaolinite should be modelled by considering different 

charges for the alumina (octahedral), silica (tetrahedral) 

face, and edges.  

 

3. DLVO theory  

The DLVO theory assumes that the interaction 

between two charged particles in an electrolyte depends 

on the balance of electrostatic Coulombic forces and Van 

der Waals attractive forces acting between the particles. 

Coulombic forces result from the interaction between 

electric double layers (EDLs). When a charged object is 

immersed in a polar fluid, it attracts ions of opposite 

charge and repels ions of like charge. This results in an 
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excess of ions of one sign at the particle surface, referred 

to as the screening phenomenon (Debye and Huckel 

1923), and an excess of ions of the opposite sign in the 

solution. Hence, a single charged clay particle in a polar 

fluid is surrounded by an Electrical Double Layer (EDL). 

The first layer of the EDL is formed by the charged ions 

firmly attached to the particle surface (Stern layer). The 

second layer consists of a non-uniform distribution of 

ions electrically attracted by the particle surface charge 

and subjected to a progressive thermal motion that drives 

them away from the particle itself. As a result, the 

electrostatic potential is exponentially dumped for 

increasing distance from the charged particle. 

On the other hand, at particles distances from 

hundreds of nanometers down to interatomic spacing 

(about 0.2 nm), weak attractive van der Waals forces 

originate from the correlations in the fluctuating 

polarisations of nearby particles (Israelachvili 2011). 

3.1. Coulombic interaction 

Within the DLVO framework, the electrostatic 

energy can be estimated by computing numerically the 

electric potential distribution around the particle, which 

satisfies the Poisson-Boltzmann (PB) equation: 

∇�� = ���
��� + ���

�	� + ���
�
� = − �
�

� �������
�� − �����

�� � (1) 
where �[N m C-1] is the electrical potential, �� [ion/m3] 

is the reference concentration taken at a considerable 

distance from the surface, � is the ions valence,  =  � ∙
 " is the dielectric permittivity,  � is the dielectric 

permittivity in vacuum [ �=8.854210-12 C2J-1m-1],  " is 

the relative dielectric permittivity, and � is the charge of 

the electron [�=1.602 10-19 C],  

The boundary conditions to solve Eq. (1) depend on 

particle geometry and whether constant potential or 

constant charge is assumed at the particle surface. For the 

sake of simplicity, all the results proposed in this research 

are limited to the assumption of constant surface charge.  

Resolving Eq. (1) for the electrical potential  enables 

the calculation of the free energy of the EDL in terms of 

Grand Potential Ω [J] (Gupta et al., 2020). At constant 

surface charge: 

Ω − Ω� = $ ∑ &'�'()'* − $ +�
� |∇�|� +-

./ �� ∑ 0��
�


− 112 3 (4 (2) 
where Ω� [J] is the grand potential in the reservoir, B [m2] 

represents all the boundaries indexed by j, V [m3] is the 

system volume, i [V] and qj [C/m2] are the electric 

potential and the charge respectively at the jth surface, . 

is the Boltzmann constant [.=1.38 10-23 J K-1], and / [K] 

is the absolute temperature.  

3.2. Van der Waals interaction 

Van der Waals forces are attractive intermolecular 

forces originating from the correlated motion of electrons 

in adjacent colloidal particles (Mitchell and Soga, 2005). 

The van der Waals interaction energy for pairs of 

bodies of different geometry can be derived from the van 

der Waals interaction energy between two atoms. Under 

the assumption of additive interaction, one may integrate 

the interaction energy of all the atoms in one body with 

all the atoms in the other. 

In the case of two colloidal square platelets of 

infinitesimal thickness and size 6 [m] at separation 

distance 7 [m], the van der Waals interaction energy, 

89:; [J/m2], can be calculated as follows: 

89:; =
− <=

>�< $ (?�
@

� $ (?A
@

� $ (B�
@

� $ A
0C(����D)�E(	��	D)�EF�1G (BA

@
�

 (3) 
with IJ being the Hamaker constant (Hamaker 1937) 

and I [m2] being the particles surface. 

According to Hamaker (1937), UvdW is negative and, 

thus, attractive as the net force between colloidal 

particles is always attractive. 

Eq. (3) can be analytically solved when considering 

parallel square platelets (De Rocco and Hoover 1960): 

89:; = <=
>�< K@F�E�@�F

FLC@�EF� atan � @
C@�EF�� − @

FP atan 0@
F1Q (4) 

3.3. DLVO interaction 

The total interaction energy, Ut [J/m2], between two 

colloidal particles is the sum of the van der Waals 

contribution, 89:;, and Coulomb electrostatic 

contribution, 8S:T = (Ω − Ω�)/I − 8� [J/m2], with 8� 

being the Coulombic free energy at infinite separation 

distance (Gupta et al., 2020). 

8V = 89:; + 8S:T  (5) 
where 89:; is analytically computed according to Eq. (4) 

and 8S:T  can be numerically derived according to Eq. (1) 

and Eq. (2). 

However, as the van der Waals pair-interaction 

energy given in Eq. (4) is independent from the particles 

surface charge, σ, the following study focuses only on the 

electrostatic component of the total interaction energy, 

8S:T . 
 

4. Numerical modeling of Columbic 
interactions  

Figure 4 shows the boxlike domain employed for 

finite element method (FEM) computation in the 

platform COMSOL to compute the electrostatic potential 

 and hence, the pair-wise electrostatic energy, UEDL. 

Two charged parallel plates of infinitesimal thickness 

and finite size L=1000 nm are placed in the central 

region. 

The boundary conditions to solve the PB equation (Eq. 

(1)) were as follows: (i) a Dirichlet boundary condition 

(DBC), X =0, was imposed on all the six outer surface 

boundaries of the box domain; (ii) on the platelets surface 

a Neumann boundary condition (NBC), Y · [X = \/ , 

was considered for the constant surface charge model. 

The simulation box size depends on the plate size and 

inter-plate separation. The electric potential, X, around 

the charged plates in electrolyte solutions practically 

vanishes at a distance of 300 nm outward from the plate 
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surfaces both for constant surface charge and constant 

surface potential. As a result, the box side was fixed to 

1200 nm to ensure that the distance of the particle surface 

from the outer box boundary was 300nm when the 

particles were positioned at the maximum interparticle 

distance of 600nm. 

 

 

Figure 4. Schematic diagram of the boxlike analysis domain 

in COMSOL for finite element analysis of face-to-face 

particle configuration. 

To simulate non-homogeneous charge distribution, 

the particle surface area was divided into two regions: an 

inner square (dark blue in Figure 4) representing the 

particle ‘face’ and an outer region surrounding the inner 

square (light blue) representing the particle ‘edge’. The 

surface ratio between the face area, Sface [m2], and the 

edge area, Sedge [m2], is constant for all the performed 

simulations and equal to Sface/Sedge=1.77 (meaning that 

Sedge corresponds to 1/3 of the total particle area). 

The boxlike domain was divided into two zones to 

implement the FEM analyses effectively. The squared 

particles (inner and outer area) were meshed with 

quadratic elements, having a side of 20 nm. The volume 

around the particles was meshed with tetrahedral 

elements, increasing size from the particles' surface to the 

domain's boundary, with a maximum element growth 

rate of 1.2. 

 

5. Results and discussion 

5.1. Validation of FEM numerical modelling  

To assess the accuracy of the potential energy 

calculated at different interparticle separation distances 

using FEM in this work, the 1D FEM numerical solution 

of Eq. (2) was benchmarked against the rigorous solution 

of the PB equation derived by solving Eq. (1) for two 

parallel semi-infinite charged plates as proposed by 

Verwey and Overbeek (1948). The two solutions overlap 

(Figure 5), and the FEM analysis was used to derive the 

electrical potential under 3D conditions. 

5.2. Effect of finite particle size  

The FEM electrostatic energy for infinite parallel 

plates was compared to the pair-wise electrostatic energy 

of charged finite parallel plates of infinitesimal thickness. 

The different curves presented in Figure 6 nearly 

overlap. For homogeneous surface charge in face-to-face 

configuration, the 1D solution can accurately describe 

clay platelet interaction regardless of particle size (as 

already proposed by Verwey and Overbeek, 1948). These 

results confirm that the FEM analysis procedure for 

solving the non-linear PB equation is successfully carried 

out also in 3D. 

 

 
Figure 5. Validation of the finite element analysis for face-to-

face infinite charged particles (1D) against the rigorous 

analytical solution according to Verwey and Overbeek (1948). 

A homogeneous surface charge equal to 2 mC/m2. 

 

 
Figure 6. The electrostatic potential energy is computed 

numerically for facing parallel squared plates of increasing size 

(constant infinitesimal thickness) and compared with the 1D 

numerical solution for parallel infinite plates. A constant 

surface charge equal to 2 mC/m2 was considered for all the 

computations. 

 

5.3. Effect of particle thickness  

Although real clay particles are plate-like particles 

with a thickness-to-width ratio varying from 1/10 

(kaolinite) to 1/100 (smectite), the FEM domain in Figure 

4 assumes infinitesimal particle thickness, as it allows for 
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a consistent reduction in the computational costs of the 

numerical simulation. To confirm the validity of this 

assumption, the potential energy of two facing plates of 

finite thickness, ] [m], was compared with the solution 

for infinitesimal thickness (Figure 7). 

 
Figure 7. Electrostatic potential energy computed between two 

facing parallel squared plates of width L=1000 nm for varying 

plate thickness ]. Constant surface charge equal to 2 mC/m2 was 

considered for all the computations. 

 

The potential energy for infinitesimally thick 

particles qualitatively catches the features of the 

behaviour of platelets characterised with more realistic 

finite thicknesses (Figure 7). With decreasing plate 

thickness, the electrostatic energy of the finite plates 

system approaches the one for infinitesimal thickness. 

The qualitative agreement between the electrostatic 

energies computed for particles of finite and infinitesimal 

thickness legitimises the choice of the model in Figure 4 

to explore the influence of the total particle surface 

charge on the particle-to-particle electrochemical 

interaction. 

5.4. Interaction of particle with homogeneous 

charge 

According to the PB equation, the surface particle 

charge strongly affects the distribution of ions in the 

electrolyte solution and, thus, the distribution of electric 

potential, X, in Eq. (1). 

Figure 8 shows the dependency of the energy 

separation function on particle surface charge under the 

assumption of homogeneous charge (\̂ _`� = \�:a� =
\). 

The electrostatic energy increases with increasing 

particle surface charge (Figure 8a). Moreover, Figure 8b 

reveals a non-linear dependency between the Coulombic 

interaction energy and the square of the surface electrical 

charge, contrary to what happens for purely electrostatic 

interaction between two charged planar surfaces in a 

media (capacitors). 

(a)  

(b)  
Figure 8. Dependency of the electrostatic potential energy on 

the homogeneous particle surface charge. A finite particle size 

equal to 1000 nm was considered for all the computations. 

 

5.5. Interaction of particles with non-

homogeneous charge 

To investigate the dependency of \�:a� on the 

electrostatic energy between two interacting finite clay 

platelets, it is convenient to introduce the parameter R as 

the ratio \̂ _`�/\�:a� . Considering a constant value of 

\̂ _`�=-2mC/m2, Fig. 9 explores the effect of positive 

particle edges (negative values of R) according to the 

traditional description of particle surface charge. 

Figure 9 shows that, for increasing values of edges 

surface charge, the electrostatic energy does not vary 

monotonically for varying R. It monotonically decreases 

for decreasing R when \�(b� < |\def�| (R<0) and 

monotonically increases for \�(b� > |\def�| (R<-1).  
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Figure 9. Dependency of the positive edge surface charge on 

the electrostatic potential energy. Finite particle size equal to 

1000 nm and face surface charge \̂ _`�=-0.002 mC/m2 were 

considered for all the computations. 

 

6. Conclusions 

The paper has addressed the problem of deriving the 

Coulombic interaction forces for plates of finite size and 

thickness in 3D configuration by solving the Poisson-

Boltzmann equation numerically via the Finite Element 

Method (FEM). It has been shown that 2D particles 

(plates of infinitesimal thickness) provide an adequate 

representation of Coulombic interaction as long as the 

particles are uniformly charged. The advantage of 2D 

particles is to reconcile numerical modelling with 

analytical solutions available in the literature. The use of 

2D particles is questionable when considering different 

charges between basal planes and edges. 3D particles 

(plates with finite thickness) are likely required to model 

the effect of different charges between basal planes and 

edges.  
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