
Practical Verification of QuadTrees

Jonathan Brouwer
Jesper Cockx
Lucas Escot

June 23, 2021

Abstract
Agda2hs is a program which compiles a subset of Agda to Haskell. In this paper,

an implementation of the Haskell library QuadTree is created and verified in this sub-
set of Agda, such that Agda2hs can then produce a verified Haskell implementation.
To aid with this verification, a n umber o f t echniques h ave b een p roposed w hich are
used to prove invariants, preconditions and post-conditions of the QuadTree library.
Using these techniques, the properties of the library have been proven. Additionally,
recommendations are made to reduce the time needed for verification.

1 Introduction
Haskell is a strongly typed, purely functional programming language [1]. An advantage of
this is that it simplifies reasoning about the correctness of algorithms and data structures.
Even though this reasoning is simple, Haskell does not provide mechanisms to guarantee
this correctness as the code changes, so there is still a risk of making mistakes. Using tests
can also never guarantee that code is correct. In contrast, Agda is a dependently typed
programming language and interactive theorem prover [2]. Using Agda and the Curry-
Howard correspondence [3], it is possible to write a formal proof about the code in the
language itself, and to use the compiler to verify the correctness of the proof [4, 5]. The
compiler also verifies that the proof is still valid each time the code changes.

Agda2hs [6] is a program which identifies a common subset of Agda and Haskell, and
provides a tool that automatically translates code from this subset of Agda to Haskell. This
makes it possible to write a program in this subset, using the power of Agda to prove prop-
erties about it, and then translate the Agda code to readable Haskell code. An additional
advantage is that Agda developers can then also use the verified library. However, Agda2hs
is not completed yet, as it still lacks some Haskell features that it cannot compile from Agda.
It is also not yet known how much extra effort it takes to write code in this subset of Agda.

The goal of this paper is to investigate whether agda2hs can be used to produce a verified
implementation of the QuadTree library[7]. The following questions will be answered:

(i) Can the QuadTree library be implemented in the subset of Agda that can be compiled
by Agda2hs? (section 3)

(ii) What properties does the QuadTree library guarantee? (section 4.1-4.2)
(iii) How can the properties that the QuadTree library guarantees be proven? (section

4.3-4.6)
(iv) How can the time and effort required to verify the QuadTree library be reduced?

(section 5)

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

2 Preliminaries

2.1 Proofs using the Curry-Howard Correspondence
The Curry-Howard correspondence is a relationship that can be used to interpret typed
computer programs as mathematical proofs [3]. This is done by representing false statements
as empty types, and true statements as non-empty types. For example, take IsTrue b where
b is some boolean expression. The type is constructed in such a way that it is empty if b is
false, and non-empty if b is true. So if there exists a value of type IsTrue b, this value is a
proof that b must be true.

These proofs can be used as function arguments, constructor arguments or even as a
function result. Since Agda is dependently typed, the proof can also refer to other arguments
of a function. For example, this function may only be called when n is greater than 5:

takesGtFive : (n : Nat) -> IsTrue (n > 5) -> ?

2.2 Lenses
The QuadTree library makes extensive use of Lenses. Lenses are composable functional
references [8]. Using lenses, data in a data-structure can be accessed and modified. This
paper chooses to use the Van Laarhoven representation [9], since this is what the Haskell
implementation of the QuadTree library uses. It is defined as:

type Lens s a = forall f. Functor f => (a -> f a) -> s -> f s

Using this representation, Lens a b means that given an object of type a, we can view or
modify an inner object of type b. The functions to interact with lenses are:

-- Get the value at this lens
view :: Lens a b -> a -> b
-- Set the value at this lens
set :: Lens a b -> b -> a -> a
-- Map the value at this lens
over :: Lens a b -> (b -> b) -> a -> a
-- Compose two lenses (Note: This is actually just regular function composition!)
compose :: Lens a b -> Lens b c -> Lens a c

2.3 QuadTrees

Figure 1: An example
QuadTree

The QuadTree is a data structure that is used for storing two-
dimensional information in a functional way [10]. It is defined
as:

data Quadrant t = Leaf t | Node (Quadrant t)
(Quadrant t) (Quadrant t) (Quadrant t)

data QuadTree t = Wrapper (Nat, Nat) (Quadrant t)

A QuadTree consists of the size (width × height) of the
QuadTree, and the root quadrant. A quadrant is either a leaf
(in which case all the values inside the region of the quadrant

2

are the same), or four subquadrants. The four subquadrants are then called A (top left),
B (top right), C (bottom left), and D (bottom right). Notice that in Figure 1, space is
consistently split into four quadrants.

There are five functions that can be used to interact with QuadTrees:

-- Create a new QuadTree with the specified size
makeTree :: (Nat, Nat) -> t -> QuadTree t
-- Obtain a lens to the specified location
atLocation :: (Nat, Nat) -> Lens (QuadTree t) t
-- Get the value at the specified location
getLocation :: (Nat, Nat) -> QuadTree t -> t
-- Set the value at the specified location
setLocation :: (Nat, Nat) -> t -> QuadTree t -> QuadTree t
-- Map the value at the specified location
mapLocation :: (Nat, Nat) -> (t -> t) -> QuadTree t -> QuadTree t

3 Implementation
This section describes how the QuadTree library was implemented in Agda, and what chal-
lenges had to be overcome to do so. All the code for this project is available in the public do-
main. Each directory has a README.md which explains the purpose of all files and folders
inside of the directory. The code is available at: https://github.com/JonathanBrouwer/research-
project.

3.1 Implementing QuadTree
The QuadTree library is implemented by composing lenses. The lens that is finally produced
is the atLocation lens, which takes a location and a QuadTree, and returns a lens to that
location in the QuadTree.

atLocation : (Nat x Nat) -> Lens (QuadTree t) t

atLocation is implemented by composing wrappedTree (which is a lens from a QuadTree to
its root quadrant) and go. The go function takes a location and a maximum depth, and re-
turns a lens from a quadrant to the specified location. In its implementation, if the maximum
depth is zero, it calls lensLeaf. Otherwise, it composes lensA/B/C/D with a recursive call to
itself, that does the rest of the lookup. For example, go (0 , 0) 5 = lensA ◦ go (0 , 0) 4.

lensWrappedTree : Lens (QuadTree t) (Quadrant t)
go : (Nat x Nat) -> (depth : Nat) -> Lens (Quadrant t) t

lensLeaf is a lens from a leaf quadrant to the value stored there. This function has as a
precondition that the quadrant has a depth of 0 (a leaf). lensA/B/C/D is a lens from a
quadrant to the A/B/C/D sub-quadrant. This function returns a lens from a quadrant with
a certain maximum depth to a quadrant with a maximum depth that is one lower.

lensLeaf : Lens (Quadrant t) t
lensA : Lens (Quadrant t) (Quadrant t)

get/set/mapLocation can then be defined using the atLocation lens, by composing them
with the lens functions. They are shortcut functions so users of the library do not have to
interact with lenses directly.

3

https://github.com/JonathanBrouwer/research-project
https://github.com/JonathanBrouwer/research-project

getLocation : (Nat x Nat) -> QuadTree t -> t
getLocation = view ◦ atLocation
setLocation : (Nat x Nat) -> t -> QuadTree t -> QuadTree t
setLocation = set ◦ atLocation
mapLocation : (Nat x Nat) -> (t -> t) -> QuadTree t -> t
mapLocation = over ◦ atLocation

Finally, makeTree makes a new QuadTree with the same value everywhere, simply by calling
the QuadTree constructor

makeTree : (size : Nat × Nat) -> (v : t) -> QuadTree t

Additionally, QuadTree implements Functor and Foldable. The implementation of func-
tor in the original library breaks one of the QuadTree invariants, so the implementation
given in this paper was changed slightly in this implementation to not break this invariant.

3.2 Issues when converting Haskell to Agda
A number of issues arise when converting Haskell to Agda, because Agda is a total language
and Haskell is not. Being a total language means that every function must terminate and
return a value without any run-time errors.

3.2.1 Termination

The first issue is encountered when a function in the library is actually non-terminating.
This would have to be solved by changing the function, or adding preconditions, such that
the function does always terminate. Luckily, all the functions in the QuadTree library do
always terminate, so this was not a problem for this paper.

Additionally, the totality of Agda can also be encountered when Agda is not able to
automatically prove that a function terminates, even though it does. This did actually
occur during the implementation of the QuadTree library in Agda. It was initially solved by
adding the {-# TERMINATING #-} pragma (which instructs the compiler that this function
is terminating) in front of the function, together with an explanation for why the function
is definitely terminating. Later on this was solved by expressing the function differently.

3.2.2 Error

Finally, while Haskell has some escape latches such as error, Agda does not. For example,
the get/set/mapLocation functions call error when the provided location is outside of the
QuadTree. This can be solved by adding a precondition to the function, which states that
the location must be inside the QuadTree.

This approach is different from the technique presented in [11, p. 16]. The technique
presented there is making sure that the error function may only be used with non-empty
types, thus ensuring that the language stays sound. The technique was chosen because it
allows for simpler automatic translation from Haskell. Since the translation in this paper
is fully manual anyways, this does not add any value. The technique does come with the
downside that the function can still be called with an incorrect input in Agda, resulting
in an error at runtime rather than compile-time. Adding a precondition to the function
prevents this, therefore this has been chosen.

4

3.3 Necessary modifications of Agda2hs
In order to make a working implementation, Agda2hs needed some changes.

• Add support for type synonyms (Fixed in PR #56)

• Insert parentheses where required in infix applications (Fixed in PR #57)

• Support for constructors with implicit arguments (Fixed in PR #60)

• Instance arguments fail to compile (Fixed in PR #66)

• Pattern matching on natural numbers does not compile correctly. (Fixed in custom
version)

The first 4 problems have been solved by the Agda2hs contributors in the official Agda2hs
version. The last has not been fixed in the official version, but has been fixed in a custom ver-
sion which is available at https://github.com/JonathanBrouwer/agda2hs. Since this makes
some breaking changes to Agda2hs, this has not been submitted as a PR.

4 Proving Techniques
The properties that have been proven can be divided into three types: Preconditions, In-
variants and Post-conditions [12]. Preconditions are properties that must be true before a
function is called, post-conditions must be true after a function is called, and invariants are
properties that must be true for all values of a certain type. In this section it will be shown
that these three types of properties each have their own way to be proven in Agda.

4.1 Finding properties to prove
[11] presents multiple techniques to find properties to prove from Haskell code. A few of
those techniques have been selected that were deemed useful for this paper:

1. Define an invariant property when there are types whose correctness depend on in-
variants [11, p. 7]

2. Define a post-condition property by deriving a definition directly from the test suite
[11, p. 9]

3. Define a precondition when there is a risk of numeric overflow, or switch to using
unbounded integers instead. [11, p. 9]

4. Define a post-condition when there are type classes which come with laws that all
instances of the type class should satisfy [11, p. 10]

Finally, one technique that was not mentioned in [11] was used:

5. Define a precondition if it is required to make the function total, as was described in
section 3.1

5

https://github.com/agda/agda2hs/pull/56/
https://github.com/agda/agda2hs/pull/57/
https://github.com/agda/agda2hs/pull/60/
https://github.com/agda/agda2hs/pull/66/
https://github.com/JonathanBrouwer/agda2hs

4.2 Properties to prove
Instead of defining a precondition when there is a risk of numeric overflow as described in
technique 3, we switch to using unbounded integers in this papers’ implementation of the
QuadTree library. This is the same decision that [11] made. Furthermore, the test suite of
the QuadTree library consists only of tests that test the type class laws, so no additional
properties could be derived from technique 2. Using technique 1, 4, and 5, the following
properties of the QuadTree library were derived:

Invariants of a QuadTree:

• Depth invariant: The depth of a QuadTree must be less than or equal to
dlog2(max(width, height))e. This is to ensure that there is exactly one value at each
location. (Technique 1)

• Compression invariant: No node can have four leaves that are identical. These need
to be fused into a single leaf quadrant. This is needed to keep the QuadTree fast and
space efficient. (Technique 1)

Preconditions of a QuadTree:

• When calling atLocation, getLocation, setLocation or mapLocation, the location
must be inside of the QuadTree. (Technique 5)

• When calling lensLeaf, the quadrant needs to have a depth of zero (i.e. it must be a
leaf) (Technique 5)

• When calling lensA/B/C/D, the quadrant needs to have a depth that is greater than
zero (i.e. it must not be a leaf) (Technique 5)

Post-conditions of a QuadTree:

• The lenses returned by all the lens functions satisfy the lens laws: [8] (Technique 4)

– view l (set l v s) = v (Setting and then getting returns the value)
– set l (view l s) s = s (Setting the value to what it already was doesn’t

change anything)
– set l v2 (set l v1 s) = set l v2 s (Setting a value twice is the same as

setting it once to the second value)

• The functor implementations for Quadrant and QuadTree satisfy the functor laws
(Technique 4)

– fmap id = id (Identity law)
– fmap (f . g) == fmap f . fmap g (Composition law)

• The foldable implementation returns an output of the correct length (Technique 4)

– length quadtreeFoldable vqt = width * height

• The foldable implementation satisfies the foldable-functor law (Technique 4)

– foldMap f = fold . fmap f

6

4.3 Techniques to prove invariants
Invariants are proven by creating a new datatype with one constructor, which takes the
original datatype and a proof for all the invariants. As a simple example, this datatype
represents a natural number with the invariant that it is greater than 5.

data GreaterThanFive : Set where
CGreaterThanFive : (n : Nat) -> { .(IsTrue (n > 5)) } -> GreaterThanFive

The proof is marked as implicit {} so that it is removed when compiled to Haskell, and it is
marked as as irrelevant .() so that will not interfere when proving post-conditions later. An
irrelevant value means that the actual value of the proof does not matter, only its existence
does.

Using this technique, the datatype for a compressed quadrant with a certain maximum
depth is:

data VQuadrant (t : Set) {depth : Nat} : Set where
CVQuadrant : (qd : Quadrant t)

-> {.(IsTrue (depth qd <= depth && isCompressed qd))}
-> VQuadrant t {depth}

The datatype for a valid QuadTree is defined very similarly. Agda2hs flawlessly compiles
this to the following Haskell code, where the proof is erased:

data VQuadrant t = CVQuadrant (Quadrant t)

The advantage of making a new wrapper datatype over adding the proofs to the original
datatype is that if the original datatype has multiple constructors, functions that use the
proof do not need to be split into multiple cases (one for each constructor). The disadvantage
is that this additional wrapper type is visible when compiled to Haskell. To avoid this, it is
possible to create an additional function for all public functions. This function then takes
the invariance proof as a precondition, and calls the original function with the wrapper type.

4.4 Techniques to prove preconditions
In this section, two techniques to prove preconditions are presented.

4.4.1 Using an implicit argument

When using the implicit argument technique, preconditions are proven by adding the proofs
as implicit arguments to the function. As a simple example, this function takes a natural
number that must be greater than 5.

takesGtFive : (n : Nat) -> { .(IsTrue (n > 5)) } -> ?

As with invariants, the proof is marked as implicit and irrelevant.
Using this technique, a precondition can be used to ensure that the location given to the

getLocation function must be inside the QuadTree:

-- Function that checks if a location is inside a given QuadTree
isInsideQuadTree : (Nat × Nat) -> QuadTree t -> Bool
isInsideQuadTree (x , y) (Wrapper (w , h) _) = x < w && y < h

getLocation : (loc : Nat × Nat) -> (qt : QuadTree t)
-> {.(IsTrue (isInsideQuadTree loc qt))} -> t

7

After being compiled with Agda2hs, the precondition is removed from the function, just like
with invariants.

getLocation :: (Nat, Nat) -> QuadTree t -> t

4.4.2 Using a datatype with invariants

Another technique to prove preconditions is by passing in a datatype with an invariant, as
was used in section 4.3. The simple example from 4.4.1 would then be written like this,
using the type defined in section 4.3:

takesGtFive : (n : GreaterThanFive) -> ?

For the QuadTree verification, this technique was used to encode the maximum depth
properties of the lens functions, using the same datatype that was defined for the invariants.

lensLeaf : Lens (VQuadrant t {0}) t
lensA : {dep : Nat}

-> Lens (VQuadrant t {S dep}) (VQuadrant t {dep})

4.4.3 Comparison

The advantages of using implicit arguments is that it is not necessary to define a separate
datatype, and that the precondition can be dependent on more than one parameter of the
function. On the other hand, the advantages of using a datatype with an invariant is that
the defined function are cleaner and more compact. It is then also possible to use the type
as a parameter for another type, like it is used in lensLeaf and lensA. It also allows for
cleaner reuse of the property, as it does not need to be repeated each time it is used.

4.5 Techniques to prove post-conditions
Post-conditions are proven as separate functions. As a simple example, this is a proof that
this function returns a number greater than 5.

gt5 : Bool -> Nat
gt5 _ = 42

gt5-is-gt5 : (b : Bool) -> IsTrue (gt5 b > 5)
gt5-is-gt5 b = IsTrue.itsTrue

For the QuadTree verification, this technique was used to verify the lens laws of all the
lenses defined in the implementation. For example, this is the proof that the ViewSet law
holds for lensLeaf.

ValidLens-Leaf-ViewSet :
-> (v : t) (s : VQuadrant t {0})
-> view (lensLeaf {t}) (set (lensLeaf {t}) v s) ≡ v

ValidLens-Leaf-ViewSet v (CVQuadrant (Leaf x)) = refl

When proving preconditions and invariants, these properties have to be marked as irrel-
evant. This is to ensure that when proving that two function calls are equal, one does not
need to show that the proofs of the preconditions and invariants are equal, since the actual
value of the proofs is irrelevant.

8

4.6 Results
All of the properties mentioned in section 4.2 have been successfully proven. Most of these
proofs have not been shown in the paper, since they are available in the source code. The
amount of lines of code that this took is shown in figure 2. This counts all non-empty lines.
The verification took about 3 times more lines of code than the implementation. While
this comparison is an indication, this should not be taken to mean that the verification
took 3 times as much effort, as the information density of the implementation and proofs is
different.

In reality, the implementation took approximately one full-time week, while the verifi-
cation took approximately five full-time weeks. This too should not be taken to mean the
verification took 5 times as much effort, as this number may be biased by the fact that the
implementation was just a translation from Haskell.

During the verification phase, one bug was found in this papers implementation of
QuadTree that was accidentally introduced during the translation to Agda. This was not
caught by the tests, though this may be because the tests on the foldable implementation
are very limited.

Whether the verification is worth the time spent, depends on the situation. For example,
in a situation where even one small error could bring down an airplane, this is clearly worth
it. However, in many common situations, this verification may not be worth it.

Implementation

757

General Proofs

545

Foldable Proofs
789

Lens Proofs

809
Functor Proofs

215

Figure 2: Division of lines of code

5 Reducing the time required for verification
These are some techniques to reduce the time required for verification:

• Postulate theorems about libraries. For example, proving that the following 3 state-
ments about lenses are true, turned out to be difficult. Intuitively these are clearly
true, but proving this in Agda takes a lot of time which depending on the situation
may not be worth doing.

view (l1 ◦ l2) ≡ view l2 ◦ view l1
set (l1 ◦ l2) ≡ over l1 (set l2 t) v
over l ≡ set l (view l v) v

9

• Use Agda automatic proof search. Automatic proof search often does not find a solu-
tion. But when it does it can save time. Searching is quick so it is worth trying the
automatic search.

• First prove invariants and preconditions, then prove post-conditions. Invariants and
preconditions change the signature of the function, so when any of them are changed,
the proofs for post-conditions have to be updated. To prevent the extra work of doing
this, one should prove invariants and preconditions first.

6 Reproducibility and Integrity
In this paper the QuadTree library is implemented and verified, and the techniques (method)
used to do so are presented. These techniques are written with the goal that a reader who
is trying to implement and verify their own library, can do so using these techniques, and
try to reproduce the results. When there are doubts on how these techniques are actually
applied, the code for this project is released on GitHub, so anyone who wants to verify that
the techniques really work can see how they were applied in this project. It is also important
that other research which aims to improve on the ideas presented in this paper, can do so.
This is why the code is released to the public domain, so other researchers can use it and
improve on it in their research.

All the conclusions made in this paper are specific to the implementation and verification
of the QuadTree library. Since these techniques have not been applied to other libraries, no
general conclusions can be made, and this has been made clear in the conclusions.

7 Future work
The techniques presented have only been used to verify this library, it is possible that other
libraries cannot be verified using these techniques, so more research should be done to obtain
general conclusions by trying to use these techniques with other libraries.

Additionally, there are some long-term recommendations to improve the process of veri-
fying code in Agda:

• A better interface to search for common proofs. It is difficult for a novice Agda pro-
grammer to find and use the proofs that are already in the standard library. For
example, associativity and commutativity of addition and multiplication do not have
"associativity" or "commutativity" in their name. Though even if they did, there is
no easy way to search the names of proofs.

• Improvements to automatic proof search. The automatic proof search often doesn’t
find a solution, even if the proof is relatively simple. For example, it cannot find a
relatively simple proof such as (a + b) + c ≡ a + (b + c). This is because the
proof requires the cong function and case splitting, which the automatic proof
search is not allowed to use by default. Giving it the options -c cong allows automatic
proof search to find the proof quickly, but the options required may be different for
other proofs.

10

8 Conclusions
In this paper, the QuadTree library is implemented and verified in the subset of Agda
that Agda2hs supports to determine whether Agda2hs can be used to produce a verified
implementation of a Haskell library.

With some minor modifications to Agda2hs, the implementation of the library in Agda
was successful. Some issues that were encountered in the process and solutions to those
issues were presented. Next, the properties that the library guarantees were determined by
using techniques from [11]. These properties were verified by using techniques developed
for invariants, preconditions and post-conditions. Using these techniques, all the properties
that were attempted to be verified, have been verified. Finally, it has been shown that the
time required for verification can be reduced by postulating theorems about libraries, using
automatic proof search and carefully considering the order in which properties are proven.

References
[1] Haskell language. https://www.haskell.org/, June 2021.

[2] Agda. https://github.com/agda/agda, June 2021.

[3] Curry-howard correspondence. https://www.cs.cornell.edu/courses/cs3110/
2021sp/textbook/adv/curry-howard.html, June 2021.

[4] Christopher Schwaab and Jeremy G. Siek. Modular type-safety proofs in agda. Pro-
ceedings of the 7th workshop on Programming languages meets program verification -
PLPV ’13, 2013.

[5] Paul van der Walt and Wouter Swierstra. Engineering proof by reflection in agda.
Implementation and Application of Functional Languages, pages 157–173, 2013.

[6] Agda2hs. https://github.com/agda/agda2hs, June 2021.

[7] Ashley Moni. Quadtree. https://hackage.haskell.org/package/QuadTree-0.11.0,
June 2021.

[8] Edward Kmett. Lens wiki. https://github.com/ekmett/lens/wiki/Overview, June
2021.

[9] Twan van Laarhoven. Cps based functional references. https://www.twanvl.nl/blog/
haskell/cps-functional-references, Jul 2009.

[10] R. A. Finkel and J. L. Bentley. Quad trees a data structure for retrieval on composite
keys. Acta Informatica, 4(1):1–9, Mar 1974.

[11] Joachim Breitnet, Antal Spector-Zabusky, Yao Li, Christine Rizkallah, John Wiegley,
Joshua Cohen, and Stephanie Weirich. Ready, set, verify! applying hs-to-coq to real-
world haskell code. Journal of Functional Programming, 31, 2021.

[12] B. Meyer. Applying design by contract. Computer, 25(10):40–51, 1992.

11

https://www.haskell.org/
https://github.com/agda/agda
https://www.cs.cornell.edu/courses/cs3110/2021sp/textbook/adv/curry-howard.html
https://www.cs.cornell.edu/courses/cs3110/2021sp/textbook/adv/curry-howard.html
https://github.com/agda/agda2hs
https://hackage.haskell.org/package/QuadTree-0.11.0
https://github.com/ekmett/lens/wiki/Overview
https://www.twanvl.nl/blog/haskell/cps-functional-references
https://www.twanvl.nl/blog/haskell/cps-functional-references

	Introduction
	Preliminaries
	Proofs using the Curry-Howard Correspondence
	Lenses
	QuadTrees

	Implementation
	Implementing QuadTree
	Issues when converting Haskell to Agda
	Termination
	Error

	Necessary modifications of Agda2hs

	Proving Techniques
	Finding properties to prove
	Properties to prove
	Techniques to prove invariants
	Techniques to prove preconditions
	Using an implicit argument
	Using a datatype with invariants
	Comparison

	Techniques to prove post-conditions
	Results

	Reducing the time required for verification
	Reproducibility and Integrity
	Future work
	Conclusions

