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Abstract This study delves into the nonlinear dynam-
ics of metamaterials, exploring the dual objective
of enhancing power output and achieving vibration
suppression through piezoelectric energy harvesters
(PEHs). Our approach is structured into a sequence of
increasingly complex models that bridge mechanical
resonators with their electromechanical counterparts.
We initiate with (1) modeling mechanical resonators,
incorporating nonlinear behaviors that are often over-
looked in the linear domain. This lays the ground-
work for understanding the fundamental mechanisms
of vibration within metamaterials. Subsequently, we
progress to (2) electromechanical resonators, where
piezoelectric components are integrated, revealing a
richer dynamic landscape that is influenced by the inter-
play of mechanical and electrical energies. The latter
sections of our investigation introduce and examine (3)
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mechanical and (4) electromechanical internally cou-
pled resonators. These segments unveil the role of inter-
nal couplings in steering themetamaterial’s energy har-
vesting capabilities and its resilience to vibrational dis-
turbances. Through meticulous simulations and analy-
sis, the research brings to light the significant influ-
ence of specific PEH nonlinear parameters on the sys-
tem’s efficiency, offering insights for the optimization
of PEHs in practical applications.

Keywords Nonlinear dynamics · Piezoelectric
energy harvesting · Electromechanical nonlinearity ·
Internally coupled resonators · Vibration suppression ·
Lumped parameter model

1 Introduction

The advent ofmechanical metamaterials, characterized
by their unique ability to control vibrational energy, has
revolutionized the design and application of energy har-
vesting systems. For instance, the work by Jiao et al.
highlights how modern mechanical metamaterials can
interact with their environment and adapt to various
conditions, offering insights into the design and opti-
mization of these innovative materials [1]. Central to
this innovation are the piezoelectric energy harvesters
(PEHs) that form a chain of oscillators, each capable
of converting vibrational energy into electrical power.
This paper focuses on the detailed study and enhance-
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ment of such systems through the lens of nonlinear
dynamics, [2,3].

Our investigation begins by defining the mechanical
and electromechanical metamaterial system that forms
the basis of our theoretical models.We consider a chain
of mechanical oscillators, each linked to a piezoelec-
tric resonator, forming an electromechanical system
that spans both the mechanical and electrical domains.
This interconnected system not only offers the promise
of energy harvesting but also presents a platform for
vibration suppression-two objectives that are often at
odds in traditional materials.

The objective of this study is twofold: to explore the
underlying nonlinear dynamic behavior of the meta-
material/electromechanical system and to optimize the
design for maximum power output while minimizing
vibrational disturbances. To this end, we develop com-
prehensive theoretical models that capture the intricate
behaviors of the resonators and their electromechani-
cal interactions. These models are rigorously validated
through a series of numerical simulations that not only
ensure the theoretical models align with expected out-
comes but also establish comprehensive metrics for
evaluating the performance of the energy harvesters.

In summary, this research sets the stage for an in-
depth exploration of PEHs within the realm of meta-
materials. By addressing the nonlinear dynamics inher-
ent to these systems, we aim to unveil strategies for
enhanced energy harvesting and vibration mitigation.
The key contributions of this paper are summarized as
follows:

• Development of comprehensive theoretical mod-
els that integrate both mechanical and electrome-
chanical aspects of piezoelectric energy harvesters
within mechanical metamaterials, offering new
insights into their nonlinear dynamic behavior.

• A detailed analysis of the impact of various forms
of nonlinearity on the performance of energy har-
vesters, including mechanical and electromechan-
ical nonlinearities, thereby extending the under-
standing of their operation and optimization.

• Introduction of novel metrics for evaluating the
effectiveness of energy harvesters, bridging the gap
between theoretical analysis and practical applica-
tion, and paving the way for future research in opti-
mizing metamaterial-based energy harvesting sys-
tems.

• Validation of the theoretical models through rigor-
ous numerical simulations, ensuring their accuracy
and reliability, and providing a solid foundation for
future experimental investigations.

The structure of the remaining sections of this
paper is organized as follows: Sect. 2 delves into the
background and relevant literature, laying the ground-
work for understanding the current state of research in
piezoelectric energy harvesting. Section3 outlines the
methodology employed in this study, including mathe-
matical modeling and simulation approaches. Section4
presents the results and discussions, where the findings
from the application of the proposed models are ana-
lyzed and interpreted. Section5 details the contribu-
tions and findings related to nonlinear electromechan-
ical dynamics and their impact on piezoelectric energy
harvesters. Section6 introduces internally coupled res-
onators with a focus on electromechanical nonlinear-
ity, exploring their implications for energy harvesting.
Finally, Sect. 7 concludes the paper with a summary of
the findings, contributions to the field, and suggestions
for future research directions.

2 Background

The field of energy harvesting has seen significant
advancements with the integration of piezoelectric
materials into mechanical metamaterials. These mate-
rials, capable of converting mechanical vibrations into
electrical energy, have opened new avenues for creat-
ing efficient energy harvesters. Central to the design of
these systems are chain oscillators, which play a dual
role in energy conversion and vibration suppression
[4,5]. Chain oscillators are fundamental in mechanical
metamaterials, designed to control vibrational energy
flow through the system while maximizing energy
extraction from ambient sources [6].

2.1 The role of nonlinearities in energy harvesting

Nonlinear dynamics play a pivotal role in enhancing
the performance of energy harvesting systems [7]. Both
mechanical and electromechanical nonlinearities intro-
duce complex behaviors such as bifurcations and chaos,
extending the frequency range over which energy can
be efficiently harvested. Recent advancements have led
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to a deeper understanding and exploitation of nonlin-
earities within PEHs. Through resonators, the vibration
suppression and energy harvesting capabilities of non-
linearmodels for PEHs have been thoroughly analyzed.
These models highlight the role of nonlinear dynam-
ics in enhancing PEH performance, offering insights
for more efficient energy solutions. Daqaq et al. [8]
found that nonlinear vibratory energy harvesters are
more adaptable and efficient in varied environments
than their linear counterparts, due to their broader fre-
quency response. This makes them a potentially supe-
rior option for powering low-power devices. Further-
more, recent research by Daqaq [9] has extended the
nonlinear dynamics to practical applications, specifi-
cally focusing on how weakly nonlinear energy har-
vesters can effectively charge batteries under various
excitations, offering a balance between simplicity and
accuracy in their analytical models.

2.2 Chain oscillators in mechanical metamaterials

Chain oscillators form the backbone of mechanical
metamaterials used in energy harvesting applications.
Their primary function is to suppress undesirable
vibrations while facilitating the transfer of mechan-
ical energy to piezoelectric elements for conversion
into electrical energy. The integration of chain oscil-
lators with piezoelectric resonators exemplifies the
synergy between mechanical and electrical compo-
nents in metamaterials [10]. By designing the oscilla-
tors to exploit specific nonlinear dynamics, it is pos-
sible to achieve optimal conditions for energy har-
vesting, wherein the system’s natural frequency aligns
with prevalent ambient vibrations. Furthermore, the
suppression of vibrations through chain oscillators
enhances the lifespan and reliability of the harvesting
system [11].

In the quest for optimized energy harvesting sys-
tems, the exploration of nonlinear dynamics within
mechanical and electromechanical systemshas emerged
as a critical area of research. These nonlinearities,
whether inherent in the mechanical structure or intro-
duced through electromechanical coupling, signifi-
cantly influence the system’s ability to harvest energy
and suppress vibrations [12]. As such, understanding
and leveraging these nonlinear effects can lead to sub-
stantial improvements in PEH performance. This back-
drop of nonlinear dynamics sets the stage for an in-

depth examination of mechanical and electromechan-
ical nonlinearities in PEHs. The following sections
delve into the mechanical nonlinearity of resonators,
the electromechanical nonlinearity of resonators, and
the nuanced dynamics of internally coupled resonators
with bothmechanical and electromechanical nonlinear-
ities. Each area offers unique insights into the potential
for advancing energy harvesting technologies, under-
scoring the complex interplay between mechanical
structures and piezoelectric elements in metamaterials
designed for optimized energy conversion

2.3 Nonlinearity in energy harvesters
and metamaterial chains

The exploration of mechanical nonlinearities in energy
harvesters andmetamaterial chains reveals their signifi-
cant impact on enhancing energy conversion efficiency
and vibration control capabilities. This line of inquiry
delves into how the introduction of nonlinear proper-
ties to resonators, specifically those exhibiting mildly
cubic nonlinearities, influences the behavior of acous-
tic metamaterials and, consequently, the performance
of energy harvesting systems (see Fig. 1).

Local resonatorswithin periodic chains,whenembed-
ded with nonlinearities, are shown to initiate a detailed
wave response, providing an intricate interactionwithin
the system. This interaction is pivotal, as it shapes
the system’s capability to adapt and respond to vibra-
tional energies more effectively [13,14]. The dynam-
ics of wave propagation in these metamaterials are
fundamentally altered by the integration of resonators
embedded with mildly cubic nonlinearities, leading to
modifications in the frequency domain where energy
harvesting and vibration suppression are optimized
[15,16]. The study of systems where periodic chains
integrate multiple local resonators, each exhibiting
nonlinear behavior, has highlighted the potential for
expanding the operational bandwidth of energy har-
vesters. Such systems are adept at adapting to a wider
range of vibrational frequencies, thereby enhancing
the efficiency of energy conversion. Additionally, the
incorporation of bistable systemswithin thesemetama-
terial chains introduces a dynamic range of wave con-
trol, extending the capabilities of these systems beyond
conventional linearmodels [17,18]. The chaotic behav-
ior induced by high-intensity excitations in bistable
systems allows for a broader attenuation of vibra-
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tions, showcasing the advanced potential of nonlin-
ear mechanical metamaterials in energy harvesting
and vibration suppression [19]. However, experimental
studies such as those by Khasawneh and Daqaq in [20],
have challenged theoretical predictions about bistabil-
ity in energy harvesters, showing that while bistable
systems can shift operational bandwidths to lower fre-
quencies, they may not always enhance the effective
bandwidth compared to linear systems.

Bridging the concepts from nonlinear mechani-
cal behaviors to electromechanical nonlinearities, it
becomes evident that the complexity of energy har-
vesters is magnified when electrical components are
introduced. This transition from purely mechanical to
electromechanical systems opens up a broader spec-
trum for energy conversion efficiency and dynamic
response control, setting the stage for a deeper explo-
ration into the multifaceted nature of piezoelectric
energy harvesters.

The exploration of electromechanical nonlinearity
in piezoelectric energy harvesters is fundamental for
advancing the efficiency and functionality of these
systems. The nonlinear interactions between mechan-
ical vibrations and electrical responses in PEHs, often
mediated by components such as diodes and piezoelec-
tric materials, play a crucial role in energy conversion
dynamics.

Diodes introduce a marked non-linearity in the
current–voltage relationship, significantly impacting
energy harvesting efficiency. This effect is critical in
rectifying the alternating current (AC) generated by
piezoelectric elements into direct current (DC), which
is more readily used by electronic devices [21–23].
Moreover, the interaction between mechanical struc-
tures and embedded piezoelectric materials leads to
nonlinear behaviors such as amplitude-dependent fre-
quency shifts, essential for enhancing the energy har-
vester’s bandwidth [24,25].

The integration of data-driven methods, particularly
neural networks, into PEH systems, has significantly
advanced their performance, [26,27]. By leveraging
smart electronic chips programmed based on these
models, these systems can dynamically adapt to vary-
ing operational conditions, optimizing energy conver-
sion efficiency in real-time. These chips, designed to
handle nonlinear dynamics, enhance the adaptability
and efficiency of PEHs, ensuring maximum energy
extraction from environmental vibrations. This innova-
tive approach, which combines the precision of empir-

ical data analysis with cutting-edge electronic technol-
ogy, marks a significant step forward in making energy
harvesting systems more effective, reliable, and versa-
tile.

2.4 Standard piezoelectric circuit for energy
harvesting

The primary goal when integrating metamaterials into
energy harvesting systems is to minimize vibrations
within the main chain of the device. This minimization
leads to the dissipation of the base or excitation energy
primarily through the resonators attached to the sys-
tem. In essence, reducing vibration in the main chain
results in increased vibrationwithin the resonators [28].
By effectively transferring energy from the main chain
to the resonators, metamaterials not only protect the
structural integrity of the system but also enhance the
resonator’s energy harvesting capabilities. This strate-
gic distribution of vibrational energy is foundational
to maximizing the efficiency of energy capture from
ambient vibrations, marking a significant advancement
in the development of sustainable energy solutions [29].

While metamaterials with resonators can enhance
the energy capture capability, the rectifier circuit plays a
pivotal role in processing this harvested energy,making
it suitable for practical applications. Traditional energy
harvesting circuits, characterized by their simplicity,
directly connect the load to the harvesting component
but often fall short in energy conversion efficiency.

Advanced circuit designs such as Synchronized
Switch Harvesting on Inductor (SSHI), Synchronous
Electric Charge Extraction (SECE), and Maximum
Power Point Tracking (MPPT) [30–32] have been
developed to address these limitations, substantially
improving energy conversion efficiency. These systems
not only surpass traditional models in efficiency but
also adapt dynamically to varying environmental con-
ditions to extract optimal energy. Recent progress in
this field has been comprehensively reviewed in stud-
ies such as the work by Wang et al. [33] highlighting
the evolution of interface circuits that significantly con-
tribute to the efficiency and adaptability of PEHs.

Transitioning from the exploration of energy har-
vesting circuits to the study of internally coupled
mechanical resonators, this shift underscores the inte-
gration of advanced energy conversion techniques
with strategic vibration management. Through this, the
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emphasis onmechanical nonlinearity within resonators
emerges as a critical factor in enhancing both energy
capture efficiency and system stability, signifying a
comprehensive approach to optimizing metamaterial-
based energy harvesting systems. Introducing nonlin-
earity into periodic chains with local resonators trig-
gers wave responses that are shaped by the interplay
of nonlinearity and local resonance effects. Studies on
linear chains with nonlinear resonators [13,15,34] and
nonlinear chains with linear resonators [15,35] have
demonstrated this phenomenon.

Internally coupled mechanical resonators have
emerged recently in modern dynamics and vibration
control research. By harnessing the intricate interac-
tions between internal structural elements, these res-
onators display a diverse range of vibrational behav-
iors. These characteristics offer unprecedented capabil-
ities inmanipulating and controllingwave propagation,
making them invaluable assets in areas like structural
health monitoring, acoustic metamaterials, and vibra-
tion mitigation. One of the pioneering research in this
domain, as exemplified by studies like that of Hu et al.
[36], has explored metastructures integrated with lin-
early coupled resonators. Their investigations reveal
the presence of an additional narrow bandgap com-
pared to conventional metastructures, highlighting the
intriguing prospects of this research area.

Building upon this foundation, recent advancements
have seen the development of metastructures incor-
porating coupled mechanical resonators with inher-
ent nonlinearities. Notably, work by Alimohammadi
et al. [37] delves into metastructures that employ a dis-
tributed parameter model for the main structure while
utilizing a chain or lumped model for resonators. This
approach introduces nonlinear internally coupled res-
onators, demonstrating enhanced wave manipulation
capabilities. Their findings, showcasing the frequency
response of such systems can affect the performance of
metastructures with nonlinear internally coupled res-
onators compared to their linear counterparts. Never-
theless, a significant research gap persists in the area
of nonlinear internally coupled resonators.

Transitioning frommechanical nonlinearity in inter-
nal coupled resonators, the focus shifts to electrome-
chanical systems, where piezoelectric elements reveal
intricate interactions between mechanical and electri-
cal energies. This area, rich with potential for advanc-
ing energy harvesting and vibration control, remains
largely unexplored, pointing to significant opportu-

nities for research. In electromechanical resonators,
the concept of internally coupled configurations, par-
ticularly when piezoelectric elements are intercon-
nected, introduces a captivating complexity. These
arrangements initiate a profound interaction between
themechanical and electrical domains, leading to unex-
pected wave propagation characteristics. Yet, despite
the potential they harbor, exploration into nonlinear,
internally coupled electromechanical systems remains
notably limited.

This gap in the research landscape underscores the
need for a comprehensive understanding of such sys-
tems, which promises to redefine the boundaries of
vibration control and energy harvesting. By leverag-
ing electromechanical nonlinearities, this design strat-
egy enhances the efficiency and adaptability of energy
harvesting systems. Studies such as those by Hu et al.
and Silva et al. [25,36] underline the potential of this
methodology inbroadening thebandwidth for vibration
suppression and energy harvesting. The integration of
piezoelectric shunt techniques not only facilitates the
adjustment of system dynamics but also aids in the cre-
ation of tunable band gaps.

3 Methodology

The lumped parameters model approach simplifies the
analysis of a complex physical system by assuming that
the system’s physical properties, such as inertia, elas-
ticity, and damping are concentrated at specific points
or elements. Each element is characterized by a set of
parameters, such as resistance, capacitance, and induc-
tance for electrical circuits, ormass, damping, and stiff-
ness for mechanical systems. These elements are inter-
connected in a network described by ordinary differ-
ential equations. Lumped parameter models are com-
monly employed when the wavelength of wave propa-
gation is significantly larger than the dimensions of the
structure, enabling the use of simplified assumptions.

3.1 Nonlinear mechanical resonators

The simplest lumpedmodel of a 1Dnonlinear phononic
medium repeating unit cell, as illustrated in Fig. 1, is
characterized as a linear atomic chain with embedded
nonlinear resonators. This chain comprises an infinite
series of uniform unit cells. Each of these unit cells
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Fig. 1 Foundational models of nonlinear phononic media: a
linear monoatomic chain with nonlinear resonators of masses,
spring, damping, and piezoelectric element, PZ. Dashed rectan-
gle is unit cell

consists of a mass, mm , pertaining to the monoatomic
chain, interconnected through linear springs. This pri-
mary linear chain is interfaced with nonlinear res-
onators, each identified by itsmass,mr . Both the damp-
ing element and the piezoelectric force of the resonators
are neglected for simplicity. The net force exerted by
the nonlinear spring connecting the resonators can be
represented as:

fr = krδ +
∑

γqδ
q , (1)

where δ is the relative displacement between the adja-
cent masses (chain mass and resonator). Subsequently,
the dynamics of the system can be expounded as fol-
lows:

mmüm + km (2um − um− − um+)

+
∑

γqm
(
(um − um−)q + (um − um+)q

)

+kr (um − ur ) +
∑

γqr (um − ur )
q = 0 (2)

mr ür − kr (um − ur ) −
∑

γqr (um − ur )
q = 0,

(3)

where for the last mass in the chain: um − um+ =
0, u̇m − u̇m+ = 0, and for the first mass in the chain:
um− = ub. Here, γqm , γqr denote the nonlinear stiff-
ness of the monoatomic chain and resonator, respec-
tively. Here, um denotes the displacement of the mth

mass, km represents the stiffness of that mass, kr is the
resonator’s stiffness, while um+ and um− indicate the
displacements of the succeeding and precedingmasses,
respectively, and ub signifies the displacement of the
excitation at the base or first mass chain.

The parameter q can assume values (0, 1, 2, 3, . . .),
denoting the degree of system nonlinearity: linear (q =
0, 1), quadratic (q = 2), cubic (q = 3), and so forth.
Weakly and strongly nonlinear systems can be distin-
guished based on the relative magnitude of the non-
linear force term, expressed as

∑
γqδ

q . Essentially

nonlinear systems are characterized by vanishing lin-
ear forces (km,r → 0) but non-zero nonlinear forces
(γ > 0 for all q except q = 0 and q = 1).

Cubic nonlinearities can manifest as either purely
hardening (γ > 0) or softening (γ < 0), while
quadratic nonlinearities combine both softening and
hardening behaviors. The versatility of this elementary
discrete model extends to representing more intricate
media configurations. These adaptations empower dis-
crete modeling techniques to provide insights into the
complexities of nonlinear phenomena.

Considering wave propagation in a system and
applying boundary conditions with an input ub = eiωt ,
the transmittance of the system can be quantified as

τ =
∣∣∣ u

N
m

u1m

∣∣∣, where uNm represents the displacement of

um at the end of the chain sequence, while u1m denotes
the displacement of the mass at the first position in the
sequence or the base excitation or the displacement at
the initial position ub.

The Laplace transform of nonlinear terms, specifi-
cally γqr (um − ur )q , is not straightforward.While one
could approach this by linearizing around a specific
operating point, a more practical solution is often to
address it numerically. Essentially, due to the complexi-
ties introduced by nonlinearity, numerical methods fre-
quently provide themost feasible approach for analysis.

3.2 Dispersion curve

To elucidate the influence of the resonator’s mass
and spring within these configurations, the dispersion
curve is determined for linear mechanical resonators.
A streamlined model, where mechanical damping and
the effects of the piezoelectric transducer are neglected
(refer to Fig. 1), is employed. In this model, both the
stiffness of the monoatomic chain and the resonator
are treated as linear. Assuming a harmonic wave solu-
tion and incorporating Bloch’s theorem, the harmonic
displacements of the masses can be expressed as:

um = um0e
i(Gna−ωt) (4)

ur = ur0e
i(Gna−ωt), (5)

where um0 and ur0 are the initial displacements or
amplitudes for unit cell or main chain and resonator.
Substituting into linear form of Eq. (2) and Eq. (3)
results in:

mmmrω
4 − (2kmmr (1 − cos(Gna)) + krmm
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Fig. 2 Dispersion in the periodic structure with varying reso-
nance coupling, and mass ratio. The plots demonstrate the pro-
found influence of resonance conditions on the emergence and
width of band gaps, highlighting the potential for tuned wave
propagation control by adjusting the μ parameter

+ krmr )ω
2 − 2kmkr (cos (Gna) − 1) = 0 (6)

For wider scope and easy analysis, the normalized
dimensionless parameters are defined as follows:

ωL = 1

2

√
mm

km

kr
mr

, μ =
√

mr

mm
, ν =

√
kr
km

,

ω0 =
√
4km
mm

(7)

Solving the Eq. (6) produces four roots for ω, which
leads to Eqs. (8) and (9) for the individual derivatives
with respect to mass and stiffness ratios, μ and ν.

ω±(k) = ω0

√√√√√1

2

⎧
⎨

⎩
1

2
[1 − cos(Gn)] + ω2

L

(
1 + μ2

) ±
√

4
(
μω2

L

)2 +
[
1

2
[1 − cos(Gn)] + ω2

L

(
μ2 − 1

)]2
⎫
⎬

⎭ (8)

ω±(k) = ω0

√√√√√ 1

16

⎧
⎨

⎩sin

(
Gn

2

)2

+ 1

4
ν2 + ω2

L ±
√√√√

(
1

4
ν2 + ω2

L

)2

+
(

ν2

4
− 4ω2

L

)
sin

(
Gn

2

)2

+ 1

4
cos(Gn)2 − 1

4

}
(9)

Thedispersion relation inEq. (8) emphasizes the effects
of μ, profoundly affecting the value of ω at each wave
vector Gn . On the other hand, the dispersion relation
Eq. (9) focuses more on the stiffness ratio ν, playing a
critical role as well in determining the behavior of the
system.
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Fig. 3 Dispersion in the periodic structure with varying reso-
nance coupling, and stiffness ratio. The plots demonstrate the
profound influence of resonance conditions on the emergence
andwidth of band gaps, highlighting the potential for tuned wave
propagation control by adjusting the ν parameter

From Figs. 2 and 3, it becomes evident that the prop-
erties of the periodic structure are intricately linked
with the resonance conditions. One striking observa-
tion is that the emergence of a band gap isn’t directly
associated with a specific wave vector Gn . Instead,
it’s bound to certain conditions or parameters, possi-
bly hinting at the importance of resonator properties in
dictating wave propagation characteristics. This indi-
cates a more complex interplay between the system
parameters than just the wave vector, emphasizing the
significance of resonator configurations in the system’s
acoustic properties.

Another pivotal observation is how the width of
the band gap is influenced by ν. As the stiffness ratio

becomes more pronounced, the width of the band gap
enlarges. This suggests that by manipulating the stiff-
ness of the resonator, one could have a direct influence
on the system’s acoustic insulation or filtering capabil-
ities. The stronger the coupling, the more formidable
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the band gap, acting as a more robust barrier to certain
frequency components.

Figure 3 suggests that controlling the system by
adjusting ν is a valuable approach. Online tuning with
the mass ratio μ can be challenging and impracti-
cal, whereas tuning with ν is straightforward, even in
real-time scenarios. This holds significant importance
for real-time control applications. Changing the mass
ratio typically requires halting the operation to phys-
ically modify the system-a process that is both time-
consuming and may inadvertently alter other critical
parameters like the bandgap width. On the other hand,
stiffness can be dynamically altered by implementing
mechanisms such as actuators that adjust the position
of an attached mass on the resonator, facilitating on-
the-fly tuning of the bandgap frequency edges without
needing to stop the system. This method provides a
streamlined and practical solution for tuning the sys-
tem’s acoustic properties in real time, enhancing its
adaptability and effectiveness in various applications.

3.3 Linear electromechanical resonators

Electromechanical systems can incorporate piezoelec-
tric components that introduce additional nonlinearity
to the system dynamics. These piezoelectric elements
serve a dual purpose: they aid in attenuating vibra-
tions within the unit cell, while simultaneously captur-
ing and enhancing energy harvesting in the resonators.
With reference to Fig. 1, let’s take a scenario where
resonators are equipped with piezoelectric elements.
This incorporation couples the mechanical motion of
the resonators with electrical dynamics, enriching the
behavior and capabilities of the system but also com-
plicating its dynamics.

To derive the dynamic equations of the harvester, the
Lagrangian formulation for electromechanical systems
is employed. The Lagrangian L is defined as:

L = T −U + We − D (10)

Using Lagrange’s equation, the governing dynamics
are given by:

d

dt

∂L

∂q̇i
− ∂L

∂qi
+ ∂D

∂q̇i
= Qi (11)

Here, T represents the kinetic energy of the system, U
is the potential energy, We denotes the coenergy of the
piezoelectric module, and D is the dissipative function
capturing bothmechanical and electrical energy losses.

Fig. 4 An equivalent circuit for piezoelectric device model with
internal electrode capacitance and load resistance

In this formulation, qi is the generalized displacement
corresponding to a specific degree of freedom in the
system. Qi represents the external force or input acting
on the respective degree of freedom. By applying this
equation, a set of differential equations governing the
behavior of the harvester can be derived, effectively
capturing its mechanical and electrical characteristics.
The mechanical damping, often referred to as Rayleigh
damping, is represented by the term

Dm = 1

2
cr (u̇r − u̇m)2 + 1

2
cm (u̇m− − u̇m)2

+1

2
cm (u̇m − u̇m+)2 (12)

Piezoelectric devices are often represented by a
model where a current source is in parallel with their
internal electrode capacitance cp, as depicted in Fig. 4.
Additionally, a simple resistance R is connected to the
load in this configuration. The electrical damping arises
from the piezoelectric coupling, and it represents the
energy dissipation due to electrical losses, denoted by
Dp:

Dp = 1

2

v2p

R
(13)

Thus, the total dissipation function for the elec-
tromechanical system is given by D = Dm +Dp. Con-
sidering the piezoelectric transducer integrated into the
resonator, the coenergyWe of the piezoelectric module
is given by:

We = 1

2
cpv

2
p − θvp (um − ur ) − 1

2
kp (um − ur )

2

(14)

where cp and kp denote the equivalent free-body capac-
itance and stiffness of the piezoelectric element, respec-
tively. θ represents the equivalent force-electric fac-
tor of the piezoelectric cantilever beam. The first term
corresponds to the electrical coenergy in the capaci-
tance cp. The second term represents the piezoelec-
tric coenergy. The third term signifies the elastic strain
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coenergy in a spring with stiffness kp. Equatins (11)
to (14) detail the electrical behavior of the piezoelec-
tric resonators within the system. It’s essential to note
that θ and kp must be experimentally determined to
ensure the proposed model aligns with the real setup.
In the total mechanical stiffness, kr + kp, the stiffness
contribution from the piezoelectric material, kp, is sig-
nificantly smaller in magnitude compared to the res-
onator’s mechanical stiffness, kr . Therefore, its contri-
bution to mechanical stiffness is often disregarded in
the analysis. The energy equations are characterized by
linear representations. Given these linear forms of the
energy equations, the associated governing equations
of motion in metastructure are as follows:

mmüm(t) + km (2um(t) − um−(t) − um+(t))

+cm (2u̇m(t) − u̇m−(t) + ṁm+(t)) + kr (um(t) − ur (t))

+cr (u̇m(t) − u̇r (t)) + θv(t) = 0 (15)

mr ür (t) − cr (u̇m(t) − u̇r (t))

−kr (um(t) − ur (t)) − θv(t) = 0 (16)

cp v̇p(t) + vp(t)

R
− θ(u̇m(t) − u̇r (t)) = 0 (17)

Equations (15) to (17) are included with multiple
parameters, adding to their complexity. For enhanced
clarity and broader applicability, themodel’s governing
equations are recast using the established normalized
parameters as follows:

üm(t) + 4ζmωmu̇m(t) − 2ζmωm (u̇m−(t) + u̇m+(t))

+ 2ω2
mum(t) − ω2

m(um−(t) + um+(t))

+ 2μζrωr (u̇m(t) − u̇r (t)) + ν2ω2
m (um(t) − ur (t))

+ k2e ν
2ω2

m v̄(t) = 0, (18)

where for the last mass um(t)−um+(t) = 0, u̇m(t)−
u̇m+(t) = 0, and for the firstmass um−(t) = ub(t). The
equation for the resonator becomes:

ür (t) − 2ζrωr (u̇m(t) − u̇r (t))

− ω2
r (um(t) − ur (t)) − k2eω

2
r v̄(t) = 0

(19)

Lastly, the equation representing the piezoelectric
effect is given as:

˙̄v(t) + ω ˙̄v(t)

rg
− (u̇m(t) − u̇r (t)) = 0 (20)

where k2e = θ2/
(
cpkr

)
indicates the electromechan-

ical coupling coefficient, v̄ = cpvp/θ is the scaled
piezoelectric output voltage, and rg = Rcpωr desig-
nates the proportion of the actual load R to its opti-
mal value Ropt . Additionally, ζm = cm/ (2mmωm)

and ζr = cr/ (2mrωr ) are the damping ratios of the
main chain and the resonator, respectively. Further-
more, v2 = kr/km represents the stiffness propor-
tion between the resonator and the chain mass, while

μ = mr/mm depicts the mass ratio between the res-
onator and the chain mass.

3.4 Analysis of power output of standard
piezoelectric circuit for energy harvesting

The primary objective of this research is to investigate
the inherent properties of various types of nonlinear-
ity in piezoelectric materials, rather than comparing
different circuit models. For a consistent evaluation,
every type of nonlinearity is paired with the same stan-
dard circuit, ensuring each nonlinearity is studied in
isolation and without the influence of varying circuit
efficiencies. A standard rectifier interface circuit with
no electrical losses for energy harvesting is explored
using a lumped parameter model. In design analysis
for energy harvesting, a simplified circuit is frequently
employed, as shown Fig. 5. In this configuration, the
regulation circuit and battery are substituted with an
equivalent resistor labeled as R, and the rectified volt-
age across it is denoted as ve. It is assumed, for the
purposes of this study, that the rectifying bridge is in
an ideal and faultless state. A rectifying bridge circuit
is integrated, targeting a stable output DC voltage ve,
which connects the load directly. It is assumed that
the filter capacitor ce is sufficiently large to render ve
essentially constant. In steady-state operation, the aver-
age rectified voltage and displacement are related.Gov-
erned by equations, the piezo voltage vp(t) is propor-
tional to the displacement u(t). Both variables aremod-
eled as u(t) = u0 sin(wt−θ) and vp(t) = vp0(wt−θ),
where u0 is the constant displacement magnitude, and
vp0(t) is a periodic function with |vp0(t)| ≤ ve.

During a semi-period T
2 , defined as T = 2π

w
, the

integral of the rate of change of vp(t) is 2ve. This yields∫ t2

t1
I (t)dt = T

2

ve

R
, (21)

delineating the relationship between the current and
average rectified voltage [38]. The integral

∫ t2
t1

v̇p(t)dt
represents the total change in the piezoelectric voltage
vp(t) from time t1 to t2. If vp(t) oscillates between−ve
and ve during this semi-period T

2 , then the total change
in vp(t) is ve − (−ve) = 2ve. If u(t) is oscillating from
its minimum −u0 to its maximum u0 during the semi-
period from time t1 to t2, then the change in u(t) during
this period is u0 − (−u0) = 2u0.

Assuming the standard linear form and rewriting Eq.
(17) yields to:

123



H. Alimohammadi et al.

Fig. 5 Classical energy harvesting circuit for the standard elec-
tronic interfaces

cp v̇p(t) + i p(t) = θ ż(t), (22)

where z(t) is the relative displacement of themass chain
with respect to the resonator in each unit cell. Integra-
tion of Eq. (22) from time t1 to t2 gives:

2cpve + T

2

ve

R
= 2θ z0 (23)

This equation correlates the changes in stored electric
charge, current, and mechanical displacement between
times a and b. Given T

2 = π
ω
, the equation for ve

expressed as:

ve = Rθω

Rcpω + π
2

z0 (24)

Furthermore, the average harvested power P can be
well-defined as:

P = v2e

R
= Rθ2ω2

(
Rcpω + π

2

)2 z
2
0 (25)

3.5 Nonlinear electromechanical resonators

The behavior of a linear piezoelectric element is
described by Eq. (17). While linearized models offer
simplicity and are often adequate for many applica-
tions, they may miss critical behaviors and limit our
understanding and predictive capabilities. The study
of nonlinearity provides a comprehensive and accurate
view of systems, essential for both practical applica-
tions and scientific inquiry. When introducing any of
these nonlinearities into the model, it is essential to
ensure that they are grounded in physical reality or
experimental observations relevant to the system.Mod-
eling choices should be justified based on the underly-
ing physics, empirical data, or both.

One common approach to introduce nonlinearity is
by using a polynomial expansion. When considering
the piezoelectric response, one possibility is a nonlinear
dependency of the voltage, denoted as v(t), on strain.

Adding a simple quadratic nonlinearity to the piezo-
electric equation, yields to:

cp v̇(t) + v(t)

R
− θ (u̇m(t) − u̇r (t))

−β (u̇m(t) − u̇r (t))
2 = 0 (26)

where β is a coefficient of the nonlinear term. In
this model, the piezoelectric response starts to deviate
from linearity as the strain (differential displacement)
increases. The term β dictates the strength of this non-
linearity. If β is zero, the system returns to the original
linear behavior. In electronic circuits, transistors, espe-
ciallyMOSFETs, can exhibit polynomial behaviorwith
respect to gate-source voltage and drain current, lead-
ing to nonlinear amplification.Moreover, the dynamics
of robotic arms can have nonlinear components due to
joint friction, and these can be represented as polyno-
mial functions of velocities.

Upon introducing nonlinearity, the system can be
numerically simulated using techniques tailored for
nonlinear differential equations, such as the Runge–
Kutta method. Software packages, like MATLAB’s
Simulink or COMSOL, can also be employed. Initial
conditions and boundary conditions need to be estab-
lished based on the specific study.

Apart from polynomial expansion, there are several
other types to introduce and study nonlinearity in a
piezoelectric energy harvester.

3.6 Theoretical models for the nonlinear energy
harvesting

The nonlinear behavior in energy harvesting can be
succinctly captured in a generalized equation which
encompasses multiple facets of nonlinearity. Consider
the following expression:

α
v(t)

R(ω)
+ cp

d

dt
[ f (v(t))]

− θ

[
g

(
d2

dt2
um(t) − d2

dt2
ur (t), v(t)

)]

− h

(∫
v(t)dt

)
= 0

(27)

Here: R(ω) introduces nonlinearity as a function of
frequency. Adjustable parameter, α can be varied
to explore different system behaviors and regimes.
f (v(t)) introduces nonlinearity as a function of the
voltage across the impedance.

123



Nonlinear dynamics in PEH for enhanced power output

The term g
(

d2

dt2
um(t) − d2

dt2
ur (t), v(t)

)
represents

a nonlinear function of the acceleration and voltage.
h

(∫
v(t)dt

)
is the nonlinearity introduced by an inte-

gral of voltage over time. It is important to note that this
is a completely abstract and generalized equation that
must be determined based on the system specifications
and the physics involved.

The Eq. (27) exemplifies a multi-faceted nonlin-
ear system that integrates various nonlinear dependen-
cies into a comprehensive framework. R(ω) denotes a
frequency-dependent nonlinearity, reflective of materi-
als like semiconductors or piezoelectric elements under
resonance. f (v(t)) embodies a voltage-dependent non-
linearity, typical in devices like diodes or transistors,
where shifting voltage can alter operational regimes.

The term g
(

d2

dt2
um(t) − d2

dt2
ur (t), v(t)

)
encapsulates

a coupled nonlinearity, hinting at a complex relation-
ship between the accelerations of two system com-
ponents and voltage. Lastly, h

(∫
v(t)dt

)
introduces a

memory effect, capturing historical influences on the
system, akin to hysteresis or capacitive responses.

To derive the standard linear form of a piezoelectric
equation, the resistance is considered as not frequency-
dependent, and the capacitance is assumed not to be
influenced by voltage variations, simplifying the term
cp

d
dt [ f (v(t))] to cp v̇(t) by setting f (v(t)) = v(t). The

electromechanical coupling is taken to be linear, mean-
ing the term with g(·) reduces to θ (u̇2(t) − u̇1(t)),
indicating the coupling coefficient isn’t influenced by
displacement, velocity, or acceleration. Lastly, the term
h

(∫
v(t)dt

)
is disregarded, signifying that the integral

of voltage over time does not significantly influence the
system dynamics. Under these assumptions and simpli-
fications, the generalized Eq. (27) reduces to Eq. (17),
which is the standard linear form of a rectifier circuit.

3.7 Internally coupled resonators with mechanical
nonlinearity

To clarify the dynamics within the mechanically inter-
nally coupled system, the analysis strategically simpli-
fies the system by focusing exclusively on the springs,
omitting damping effects and electromechanical ele-
ments. This approach allows for a concentrated exam-
ination of the system’s behavior under the influence
of linear springs in the primary chain and resonators,
alongside nonlinear springs that facilitate internal cou-
pling between resonators. As depicted in Fig. 6, the

Fig. 6 Nonlinear mechanical internally coupled chain. The
dashed rectangle is unit cell

system consists of a nonlinear mechanical internally
coupled chain, with the unit cell highlighted by the
dashed rectangle. Consequently, the dynamic behavior
of the system will be primarily dictated by this non-
linear internal coupling between resonators, even as
the rest of the system retains its linearity. This con-
figuration allows for a focused study on the impacts
and potential advantages of having a nonlinear inter-
resonator spring in an otherwise linear spring system.

The kinetic energy, denoted by T , encompasses the
motion of the main chain and the resonators and is
given by:

T = 1

2
mm

(
u̇2m + u̇2m+

)
+ 1

2
mr

(
u̇2r + u̇2r+

)
(28)

The potential energy, represented by U , captures the
energy stored in the main chain’s linear springs, the
coupling springs between the main chain and res-
onators, and the nonlinear internal coupling springs of
the resonators:

U =1

2
km

[
(um−−um)2+(um−um+)2 + (um+ − um++)2

]

+ 1

2
kr

[
(um − ur )

2 + (um+ − ur+)2
]

+ 1

2
kc1(ur − ur+)2 + 1

4
kc2 (ur − ur+)4 (29)

Here, kc1 and kc2 are the linear and nonlinear coupling
coefficients, respectively. The kc1 term introduces a lin-
ear coupling between resonators, while kc2 induces a
bistable nonlinearity due to its quartic nature between
resonators.When both kc1 and kc2 are positive

(
kc1 > 0

and kc2 > 0), a classic monostable state is achieved,
simplifying the system by avoiding the necessity to
find and linearize around a stable point. This selec-
tion, while ensuring straightforward and stable system
behavior, is often employed to eschew the complexities
that arise when dealing with bistable systems, particu-
larly when kc1 < 0 and kc2 > 0.
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Utilizing the Lagrangian formulation, the system’s
equations of motion are derived as:

mmüm(t) + km (2um(t) − um−(t) − um+(t))

+kr (um(t) − ur (t)) = 0 (30)

mr ür (t) − kr (um(t) − ur (t)) + kc1 (ur (t) − ur+(t))

+kc2 (ur (t) − ur+(t))3 = 0 (31)

mmüm+(t) + km (2um+(t) − um(t) − um++(t))

+kr (um+(t) − ur+(t)) = 0 (32)

mr ür+(t) − kr (um+(t) − ur+(t)) − kc1
× (ur (t) − ur+(t)) − kc2 (ur (t) − ur+(t))3 = 0 (33)

The superscript ’+’ indicates the two adjacent mass-
in-mass structures, where um++ denotes the displace-
ment of themass or unit that is two positions away from
massm. UtilizingBloch’s theorem, thewaveformof the
harmonic displacements ofmasses can be expressed as:

um = um0e
i(Gnx−ωt)

um+ = um1e
i(Gnx+Gna−ωt)

ur = ur0e
i(Gnx−ωt)

ur+ = ur1e
i(Gnx+Gna−ωt),

(34)

where Gn represents the wave number or spatial fre-
quency, dictating the spatial periodicity of the wave
over the unit cell with the dimension of a. The coef-
ficients um0 , um1 , ur0 , and ur1 represent the complex
wave amplitudes. Integrating these terms into the pro-
vided equations leads to the derivation of the disper-
sion relation. The associated matrix is determined for
this purpose, and by setting its determinant to zero, a
relationship between Gn and ω is established. For non-
linear scenarios, as presented in the above equations, a
numerical approach is typically employed. From four
inertias in a unit cell, an eighth-order dispersion equa-
tion arises when the determinant is zero. This results
in four curves with three band gaps on the positive real
axis, indicating that internally coupled metamaterials
offer additional band gaps over conventional ones.

In this study, we focus on a specific frequency range.
Acomprehensive analysis of the effects of piezoelectric
nonlinearities across the entire frequency spectrum is
beyond the scope of this work.

3.8 Electromchanical internally coupled resonators

In the previous sections, we explored metamaterials
with internal resonator coupling. Given the challenges

Fig. 7 Internally coupled with electrical shunt circuit. Forward
(dash) and reverse (solid) capacitance shunting configuration

associated with designing and implementing the inter-
nal spring, especially when targeting negative stiffness,
an alternative approach is to employ an electrical shunt
circuit. Specifically, a prototype capacitance canmimic
the behavior of a mechanically internally coupled res-
onator.

3.8.1 Internal coupling via shunt capacitance circuit
technique

In this section, the shunt capacitance circuit technique
is employed to model a two-degree-of-freedom elec-
trical system with internal coupling, as illustrated in
Fig. 7. In this scenario, capacitance is incorporated as a
key component instead of utilizing the previously for-
mulated resistance (R).

Figure 7 presents two different configurations of the
shunt circuit: the forward and the reverse. For the for-
ward setup, the top and bottom surfaces of the piezo-
electric transducer on the left align with the analogous
surfaces of its counterpart on the right. Conversely, the
reverse configuration has the top and bottom surfaces of
the two piezoelectric transducers connected in an oppo-
site fashion. In both setups, a capacitor is connected in
parallel to both piezoelectric transducers.

The analytical procedures for both configurations
are analogous, leading to comparable conclusions. The
distinction in circuit connectivity between these two
setups only results in a sign reversal in the ultimate
expression for equivalent coupling stiffness. Both for-
ward and reverse connections can achieve the same
functionality, albeit with differing capacitance tuning
strategies. This investigation primarily focuses on the
reverse connection configuration. In its absence of
external capacitance, it exhibits characteristics akin to
a standard spring with positive stiffness, simplifying its
interpretation in an equivalent mechanical context.
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Fig. 8 Equivalent electrical system representation of the unit cell
resonators with capacitance shunt circuit using the impedance
analogy

Capacitance typically relates the change in electric
charge to shifts in electric potential. With positive total
capacitance, a discharge of current leads to a voltage
decrease across the capacitor, whereas with negative
total capacitance, the voltage increases. Utilizing the
impedance analogy (current to velocity, charge to dis-
placement, voltage to force), the circuit segments LRC
and LRC+ correspond to the resonators mrcr kr and
(mrcr kr )+, respectively, as illustrated in Fig. 8. For
simplicity, the mechanical properties of the resonators
(mass, stiffness, and damping) are assumed to be iden-
tical.

The voltage across the total capacitance represents
the force interaction between these resonators. Addi-
tionally, the current through total capacitance, repre-
senting the difference in currents in the loops’ paths,
indicates the difference in velocity between the res-
onators. The charge variation in total capacitance indi-
cates the displacement difference between the res-
onators. Hence, the capacitor in the electrical system
canbe envisioned as a spring, ks coupling the resonators
in the mechanical domain, with positive total capaci-
tance acting as a positive-stiffness coupling spring and
negative total capacitance as a negative-stiffness spring.

Considering the reversed configuration of the two
piezoelectric transducers, the voltages exhibit identi-
cal magnitudes but with opposite directions. Factoring
in the current passing through the parallel-connected
capacitance cs , the relationship between the voltages is
expressed as:

1

cs

∫ (
i p(t) − i p+(t)

)
dt = vp(t) (35)

The design employs an internal shunt capacitance cir-
cuit to optimize the band gap behavior in resonators.
When this capacitance acts as a negative capacitor
and is finely tuned, it can offset the capacitances of
linked piezoelectric transducers, enhancing the cou-
pling between adjacent resonator.

Considering damping in the resonators and assum-
ing identical stiffness, damping coefficients, andmasses
for all resonators, the governing equations for the
motion of the two resonators within a unit cell (refer to
Fig. 7) relative to the mass of the chain is as follows:

mr z̈r (t) + cr żr (t) + kr zr (t) + θrvp(t)

= mr üm(t) (36)

mr z̈r+(t) + cr żr+(t) + kr zr+(t) + θr+vp+(t)

= mr üm+(t) (37)

The relative displacements of these resonators with
respect to the main chain structure are denoted by
zr (t) and zr+(t). The electromechanical coupling coef-
ficients are θr and θr+ , and the voltages across the
corresponding piezoelectric transducers are vp(t) and
vp+(t). The excitation displacements are represented as
um(t) for the left and um+(t) for the right resonators.

The governing electrical domain equations for the
piezoelectric transducers are as follows:

cp v̇p(t) + i p(t) − θr żr (t) = 0 (38)

cp+ v̇p+(t) + i p+(t) − θr+ żr+(t) = 0 (39)

By substituting Eq. (35) into Eqs. (38) and (39), expres-
sions for currents i p(t) and i p+(t) in the loops are
derived as:

i p(t) = cp+θr żr + cpθr+ żr+ + csθr żr
cp + cp+ + cs

(40)

i p+(t) = cp+θr żr + cpθr+ żr+ + csθr+ żr+

cp + cp+ + cs
(41)

Substituting Eqs. (40) and (41) into Eq. (35) and inte-
grating with respect to time for zero initial condition
yields:

vp(t) = (θr zr − θr+ zr+)

cp + cp+ + cs
(42)

vp+(t) = − (θr zr − θr+ zr+)

cp + cp+ + cs
(43)

After substituting Eqs. (40) and (41) into Eq. (35) and
integrating with respect to time, assuming θr is equal
to θr+ , the equations of motion can be simplified as
follows

mr z̈r (t) + cr żr (t) + kr zr (t)

+ks (zr (t) − zr+(t)) = mr üm(t) (44)

mr z̈r+(t) + cr żr+(t) + kr zr+(t)

−ks (zr (t) − zr+(t)) = mr üm+(t), (45)
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where

ks = θ2r

cp + cp+ + cs
. (46)

Implementing coupling throughpiezoelectric transduc-
ers and a shunt capacitance circuit is practical, as it
serves as an equivalent spring that relates the motions
of two resonators via their relative displacements. This
coupling mechanism, resulting from local resonances,
creates additional band gaps in metamaterials by gen-
erating two resonant frequencies.

The piezoelectric transducers, when shunted, act as
an analogous internal coupling spring ks , similar to the
mechanical internal coupling that links the movement
of two resonators. However, it’s important to note that
using a negative shunt capacitor,which is a type of posi-
tive feedback in op-ampcircuits, can increase the risk of
system instability without the right parameter choices.
Despite this, the design’s strength is its tunability and
ability to generate multiple band gaps, offering robust
vibration suppression.

3.9 Stability analysis

The behavior of the system is largely determined by the
parameter ks , which characterizes the stiffness intro-
duced due to electromechanical coupling via the shunt
circuit. To introduce negative stiffness, assuming elec-
tromechanical coupling, θr is equal to θ+

r , it is requisite
that ks be negative. This can be expressed mathemati-
cally as:

ks = θ2r

cp + cp+ + cs
< 0 (47)

Given that θ2r will always be positive, the denominator
must be negative for ks to be negative. Thus, either cp
and/or cp+must be negative (which could signify neg-
ative capacitance introduced, for instance, by an active
circuit) while the magnitude of their sum should be
greater than cs .

Utilizing the Jacobian method and employing the
vector [zr (t), zr+(t)] for the linear matrix of the system
depicted by Eqs. (44) and (45), the eigenvalues are pro-

vided as λ1,2 = ±
√−krmr

mr
, and λ3,4 = ±

√−mr (kr+2ks )
mr

.
The stability of a system is contingent upon the real
parts of its eigenvalues. For the system at hand, when
kr + 2ks > 0, all eigenvalues are purely imaginary,
suggesting marginal stability. In this scenario, the sys-
tem, when perturbed, will oscillate indefinitely without

growing unbounded or decaying to zero. Conversely,
when kr + 2ks < 0, the system presents two positive
eigenvalues and two negative ones. The presence of
positive real eigenvalues clearly indicates an unstable
system. This underscores the paramountcy of the inter-
play between the resonator’s spring constant and the
feedback shunt capacitance stiffness (associated with
ks ). If the feedback’s influence is excessively robust
and negative, it could push the system into an unstable
regime. Therefore, for a stable system, the criterion for
cs is:

cs >
8mrθ

2
r

c2r − 4krmr
− cp − cp+ (48)

Formost practical applications, a strictly stable system,
where all disturbances decay, is more desirable than a
marginally stable one. Exploring stability in lumped
parameter systems reveals that maintaining a strictly
stable condition, preferable for practical applications,
hinges on a fine balance within the system’s parame-
ters, as indicated by the derived criterion. For a detailed
examination of stability analysis and energy harvesting
within lumped parameter systems, particularly those
incorporating internally coupled resonators, the study
in [39] extends the discussion to encompass a variety
of conditions.

4 Simulation analysis and discussion

The behavior of the proposed models is observed
through simulations using the case study parameters
outlined in Table 1. The system model was developed
by formulating a set of interconnected ordinary differ-
ential equations that encapsulate both the mechanical
and electrical dynamics of the piezoelectric harvesters.
Numerical solutions to this systemwere obtainedutiliz-
ing the fourth-order Runge–Kutta method with a care-
fully chosen time step to guarantee precision and stabil-
ity in the results. The simulation results explore various
aspects of the system’s dynamic response, including
vibration mitigation, energy harvesting, power output,
and robustness analysis.

4.1 Nonlinear mechanical resonators and internal
coupling dynamics

In Fig. 9, the band gap behaviors for various system
configurations are presented. The system’s natural fre-
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Table 1 Defined parameters for the piezoelectric model

Parameter Value

Mass of main chain (mm ) 0.056 kg

Mass of resonator (mr ) 0.0336 kg

Spring constant of main chain (km ) 150 N/m

Spring constant of resonator (kr ) 129.6 N/m

Damping coefficient of main chain (cm ) 0.0464 Ns/m

Damping coefficient of resonator (cr ) 0.0334 Ns/m

Piezoelectric capacitance (cp) 1.5 mF(C/m)

Electromechanical coupling coefficient (θ) 0.25 N/V

Nonlinear stiffnesses quadratic coefficient (γ2)−500 N/m2

Nonlinear stiffnesses cubic coefficient (γ3) 15000 N/m3

Linear coupling coefficient (kc1 ) 198(−20) N/m

Nonlinear coupling coefficient (kc2 ) 2386(880) N/m3

Shunt capacitance (cs ) −7.9 mF(C/m)

Internal resistance (R) 500 �
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Fig. 9 Comparative analysis of band gap behaviors in a 1-D
chain system: insights from linear, nonlinear, and internally cou-
pled resonator configurations

quencies are analyzed within a range from 6 to 17 Hz.
The introduction of locally resonating elements dis-
tinctly establishes a band gap, differentiating these con-
figurations from the conventional metastructure setup.
This band gap characteristic is attributed to the linear
local resonance, which undergoes out-of-phase motion
when subjected to an external excitation frequency near
its local resonance frequency.

The nonlinear analysis focuses primarily on con-
trasting linear systems with their nonlinear counter-
parts, in addition to examining internally coupled sys-
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Fig. 10 Displacement response of bistable nonlinear mechan-
ical internal coupling resonators. Linear coupling coefficient
kc1 = −20 N/m, and nonlinear coupling coefficient kc2 = 880
N/m3. Inset: Resonator’s potential energy profile for the specified
coupling parameters

tems. Effects arising from bifurcation and its influence
on frequency sweeps are not explored in this context.
Nonlinear resonators, both quadratic and cubic, exhibit
a more extensive band gap compared to their linear
counterparts. For the quadratic nonlinearity, a modified
relation is employed:

fr = kru + γr2u|u| (49)

This model facilitates numerical simulations and pro-
vides a comparative benchmark against cubic nonlin-
earities. Both linear and nonlinear internal coupling
serve to effectively increase the bandgap within the
main chain, as illustrated in Fig. 9. The analysis of
mechanical internal coupling reveals that linear and
nonlinear internal couplings may not necessarily boost
power and energy generation, even when the main
chain has a wider bandgap. Surprisingly, energy har-
vested with internal coupling is sometimes lower than
in a single-chain setup. This suggests that interactions
between resonators could hinder energy accumulation.

Figure 10 shows the transmission response of a
metastructure equippedwith a nonlinear bi-stable inter-
nal coupling resonator. The observed bifurcation is
shaped by linear (kc1 = −20 N/m) and nonlinear
(kc2 = 880 N/m3) coupling coefficients, with the con-
tinuous sweep offering a detailed system response. The
main graph underlines the system’s potential energy
dynamics, with an unstable origin indicating negative
stiffness. This complexity is further highlighted by
bifurcations between 14–16 Hz. The inset reveals var-
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ious energy states the system can attain. Multiple local
minima suggest system multi-stability, especially dur-
ing large fluctuations. Hysteresis is evident from dis-
crepancies in sweep traces, particularly in lower fre-
quencies from 6 Hz and 10 Hz. However, it’s vital
to understand the intent behind the choice of param-
eters in this study. The deliberate restriction to a spe-
cific frequency range serves tomimic negative stiffness
phenomenaobserved in specific electromechanical sys-
tems.

Cubic nonlinearities, with their symmetric proper-
ties, are observed to manifest either pure hardening or
softening behaviors. This stands in contrast to the dual
behavior inherent to asymmetric quadratic nonlinear-
ities. The significance of optimal impedance match-
ing is underscored, highlighting its role in achieving
enhanced vibration suppression and energy harvesting.
However, as theoretical constructs transition to tangi-
ble systems, certain compromises are often necessary
to accommodate weakly and strongly coupled systems
[34,40].

Setting both kc1 and kc2 to be positive (see Table
1) induces a classic monostable state, simplifying the
systemand avoiding the complications inherent inman-
aging bistable systems, particularly when kc1 < 0 and
kc2 > 0.

Furthermore,when evaluatingmechanically internal
coupling configurations, there is a discernible decrease
in efficiency for energy harvesting.While band gaps are
inherent features of these systems, theymay sometimes
present challenges, especially in terms of wave prop-
agation. The compounded presence of a band gap and
internal coupling appears to negatively impact overall
energy output. Detailed investigations into the dynam-
ics of these coupled resonators could provide deeper
insights into the underlying mechanisms that result in
reduced efficiency.

Nonetheless, simulating internally coupled
resonators with bistable nonlinearity to observe bifur-
cation effects was considered valuable. However, due
to the inherent complexity and the desire to avoid sim-
ulating rapid transitions, this approach was ultimately
avoided.

Figure 11 shows the nonlinear spring force-
displacement relation for cubic nonlinearities, and
transmittance of this nonlinearity. It shows the influ-
ence of cubic nonlinearity in the system. Distinctly,
the nonlinearity is characterized by the coefficient γ3,
where its sign determines the hardening or softening
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Fig. 11 Nonlinear characteristics of the 1-D chain system: a
Transmittance response influenced by cubic nonlinearity, and b
nonlinear spring force-displacement relationship for cubic non-
linearities

nature of the system. For the resonator’s equation force:

fr = kru + γr3u
3, (50)

The value of γr3 has been varied as ±15000 N/m3,
pointing to two contrasting behaviors. When γr3 > 0,
the system exhibits hardening nonlinearity. This means
as the amplitude of excitation increases, the natural fre-
quency of the system also escalates. Conversely, for
γr3 < 0, we observe a softening nonlinearity. Here, an
increase in the excitation amplitude leads to a decrease
in the system’s natural frequency. To reduce the com-
plexity of the system, bistable nonlinearity is deliber-
ately avoided, eliminating the need to perform up and
down-frequency simulations. In the broader context,
the introduction of diatomic chains, incorporation of
nonlinear local resonators (as depicted in Figs. 6, 7), or
a transition to 2D setups, allows for deeper exploration
and comprehension of the intricate nonlinear phenom-
ena in advanced systems. Building on the findings from
the frequency domain analysis, it becomes evident in
the time domain that systems with cubic nonlinearity
commence vibration suppression earlier compared to
thosewith linear resonators. The duration duringwhich
effective suppression occurs depends on multiple fac-
tors, including the natural frequency of the system and
its inherent physical properties.
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Fig. 12 Band gap illustration for a monochain featuring lin-
ear local resonators with n = 8 mass chains, demonstrating the
influence of ke on band gap and metastructure response

4.2 Investigation on energy harvesting performance in
linear electromechanical metamaterial

In Fig. 12, the transmittance for various values of
ke, representing the piezoelectric coupling coefficient
(Eq. 20), is depicted. For the analysis, the stiffness of
the piezoelectric element, represented by kp, is consid-
ered negligible compared to the significantly greater
stiffness of the resonator, denoted by kr . This simplifi-
cation enables a focus on the effects of other parameters
without the interference of kp.

A noticeable broadening of the band gap is observed
as the electromechanical coupling coefficient ke is
increased, indicating an enhanced capacity of the sys-
tem to suppress vibrations. The peaks of the trans-
mittance adjacent to this band gap are notably sensi-
tive to variations in ke, while those further from the
band gap show minimal alternations. This observation
emphasizes the crucial role played by ke in modulating
the system’s response when using piezoelectric materi-
als, highlighting its significant contribution to vibration
control in complex systems. Additionally, the param-
eter rg , defined as rg = ωr cp R, can be adjusted to
achieve minimal transmittance at each frequency.

As depicted in Fig. 13, the electromechanical cou-
pling coefficient ke, plays a pivotal role in the energy
harvesting performance of a system comprising eight
unit cells. This parameter ke, essentially governs how
efficiently piezoelectric materials convert mechanical
energy to electrical energy and vice versa, exerting a

Fig. 13 Electromechanical coupling’s impact on energy harvest-
ing: illustration of the power harvested across varying ke in an
n = 8 unit cell monochain, showcasing the pivotal role of the
electromechanical coupling coefficient in optimizing energy con-
version and system dynamics

significant influence on the outcomes of energy har-
vesting. In scenarios characterized by weak coupling,
an increase in ke results in a notable increase in power
output. Conversely, in situations involving strong cou-
pling, an increase in ke leads to a power level that
remains constant, preventing any additional improve-
ments. For our subsequent analysis, a weak coupling
value of ke = 0.567

(
cp = 1.5mF

)
is selected to

avoid the complex power response patterns observed in
strong coupling situations. To comprehensively assess
overall energy harvesting performance, we uniformly
adjust the resistors R, connected to the piezoelectric
transducers, and consolidate power outputs from these
resistors. High-capacitance (millifarad-level) piezo-
electric materials have a wide range of applications,
from energy-harvesting floor tiles in busy areas to
vibration damping inmachinery, structural monitoring,
energy recapture in vehicle suspensions, self-charging
personal electronics, and power sources for wearable
health monitors. To enhance the capacitance of these
materials, strategies include selecting materials with
higher dielectric constants, optimizing element geom-
etry, using multi-layer structures, and parallel capaci-
tor configurations, aiming to boost energy harvesting
capabilities and efficiency in diverse applications.

5 Nonlinear electromechanical models

This section examines the dynamics of nonlinear elec-
tromechanical models, essential for advancing energy
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harvesting systems. Various nonlinear phenomena are
examined to reveal their significant impact on the per-
formance of piezoelectric devices. By elucidating the
interactions betweenmechanical and electrical compo-
nents, these nonlinearmodels demonstrate potential for
optimizing energy conversion.

5.1 Model NL: 1-polynomial nonlinearity in
resonators

Polynomial nonlinearity finds practical applications
in electronic circuits with diodes and in thermostats
or temperature controllers. In diodes, the voltage-
dependent behavior transitions from an open switch
to a closed switch as voltage crosses a threshold, using
piecewise linear approximations. In temperature con-
trollers, piecewise linear models are employed to con-
trol heaters based on temperature thresholds, resulting
in distinct on-off behavior points in the response curve.
Introducing polynomial nonlinearity in resonators by
adding a term with coefficient β fundamentally alters
the voltage-strain relationship within the piezoelectric
equation, encapsulating the nonlinear disposition of
the piezoelectric material under substantial strains. The
primary system equations for mm and mr persistently
portray the dynamics of the masses along with their
reciprocal interactions, which remain unaffected by the
inherent nonlinearity of the piezoelectric element. This
incorporation of a nonlinearity parameter, β, facilitates
a discernable softening behavior when it is positive and
a hardening behavior when negative, each having dis-
tinct implications on resonance frequency and ampli-
tude of vibration. Optimization of the nonlinear poly-
nomial parameters can be a viable strategy for maxi-
mizing energy harvesting within the outlined system.
This can be achieved by defining a cost function, an
integration of power across a desired frequency span,
thereby quantifying the performance. Utilizing compu-
tational tools, such as MATLAB, enables optimization
of this function concerning the nonlinear coefficient.
By examining the system’s eigenvalues to extract infor-
mation about the bandgap, a thorough combination of
analytical and numerical methods is used to enhance
the system’s performance to achieve optimal results.

Figure 14 shows the relationship between the non-
linearity coefficient β and the harvested power in a
monochain system. The n = 8 mass chain model is
instrumental in depicting this correlation, serving as
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Fig. 14 Harvested power from a monochain with polynomial
nonlinear local resonators in an eight-mass chain configuration.
The graph highlights the impact of varying the nonlinearity coef-
ficient β on the piezoelectric response and the resultant band gap
behavior
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Fig. 15 Temporal Evolution of Harvested Energy: A depiction
of energy harvested from piezoelectric elements over time in a
monochain with polynomial nonlinear local resonators, utilizing
n = 8 mass chains. This visualization underscores the profound
influence of polynomial nonlinearity on the system’s energy-
harvesting trajectory, revealing a substantial enhancement in
energy accumulation even in the absence of notable bandgap
alterations

a concise yet representative framework to showcase
the trends. Although a larger number of chains could
enhance the metamaterial characteristic, the chosen
size suffices to capture the essential dynamics for this
analysis, aligning with the findings from Eq. (25).

The interaction among β, vibration dynamics, and
energy conversion can provide insights for enhanc-
ing energy collection in similar systems. Figure 15
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delves into this concept, demonstrating how energy
harvested from piezoelectric elements evolves over
time. Although the introduction of polynomial non-
linearity doesn’t significantly alter the formation of
bandgaps, it noticeably impacts power and energy har-
vesting because of the increasedmotion in the presence
of nonlinearity.

5.2 Model NL: 2-nonlinear capacitance in
voltage-dependent scenarios

Starting with the general nonlinear equation in Eq. (27)
and making a few simplifications, such as assuming
consistent resistance, introducing voltage-dependent
capacitance, transitioning from acceleration nonlinear-
ity to velocity differences, and disregarding memory
effects, the following model is derived to describe the
nonlinear capacitance in the piezoelectric equation:

v(t)

R
+ cp(v(t))

dv(t)

dt
− θ

(
dum(t)

dt
− dur (t)

dt

)
= 0

(51)

Here, cp(v(t)) represents the voltage-dependent capac-
itance, mathematically representing scenarios where
capacitance shifts with applied voltage.

In practical applications, encountering nonlinear
capacitance isn’t rare and can be observed in vari-
ous electronic components and systems like varactors,
ferroelectric materials, and memristors. These systems
showcase a capacitance that isn’t static but modulates
with the voltage applied, thereby exhibiting diverse
behaviors across assorted operating regimes.

When simulating scenarios where capacitance non-
linearly shifts with voltage, an example relationship
might be expressed as:

cp(v(t)) = cp0 + kv · v2(t), (52)

where kv serves as a proportionality constant, illu-
minating and predicting how systems respond when
capacitance dynamically interactswith applied voltage.
In Fig. 16, a specific relationship between capacitance
and voltage under the parameters cp = 1.5 mF (base
capacitance). The figure, composed of four subplots
detailing Transmitance, Power, and Harvested Energy
in relation to excitation frequency, and an illustration
of the quadratic term coefficient of cp piezo capaci-
tance, provides a detailed overview of key data points.
Notably, there’s an evident increase in power when
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Fig. 16 Influence of quadratic nonlinear piezo capacitance, cp
on transmittance and harvested energy

dealing with nonlinear capacitance compared to linear
piezo capacitance. This observation is corroborated by
the energy acquired during the simulation time, which
is 3.67 Joules, in contrast to the 2.82 Joules observed
in a linear framework.

Thus, in this scenario, not only is more energy har-
vested from the resonators, but there is also an expan-
sion in the transmittance bandgap. The dual advan-
tages of vibration suppression in the main chain and
enhanced energy harvesting from the resonator open
the door to potentially more effective approaches for
optimizing energy extraction in comparable systems.

5.3 Model NL: 3-cubic nonlinearities

Cubic nonlinearities can be found in electromechanical
systems, such as sensors and actuators. In micro elec-
tromechanical systems (MEMS ), such as accelerome-
ters or gyroscopes, cubic nonlinearities can arise due to
the miniaturized mechanical components. For nonlin-
ear electromechanical coupling, the piezoelectric equa-
tion can be represented as:

v(t)

R
+ cp

dv(t)

dt
− θ

(
dum(t)

dt
− dur (t)

dt

)3

= 0

(53)

In Fig. 17, the relation between voltage v(t) and
relative displacement z is exploredwithin the context of
cubic nonlinearity. The subplot detailing the v(t)−z(t)
relationship illustrates that the equation simplifies to:
v(t)

R
− θ z(t)n = 0 (54)
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Fig. 17 Illustrating the Interplay of v(t) and z(t) in the Pres-
ence of Cubic Nonlinearities. The figure demonstrates how cubic
nonlinearity affects electromechanical coupling in a piezoelec-
tric system, utilizing specific resistances for standard and cubic
terms (R = 500 � and R = 192 k�, respectively) to maintain
consistent saturation characteristics across scenarios

To maintain comparable saturation characteristics
between a conventional linear resonator and one with
a cubic term, resistances of R = 500� and 192 k� are
utilized, respectively.

The case study demonstrates that introducing cubic
nonlinear terms, linked to the relative velocities of the
primary chain and resonator, significantly affects both
harvested energy and transmittance. Specifically, the
observed cubic nonlinearity contributes to a decline
in harvested energy, posing noteworthy implications
for optimization in energy-harvesting contexts, where
strategies to circumvent or offset this reduction are cru-
cial. Simultaneously, the incidence of these nonlinear
terms provokes a contraction of the transmittance band
gap, which could potentially affect the system’s effi-
cacy, inviting further exploration and mitigation strat-
egy development.

6 Internally coupled resonators with
electromechanical nonlinearity

Figure 18 visualizes the derived relationship of Eq. (48)
and its implications for system stability. Based on the
analysis, the threshold value of the equivalent internally
coupled stiffness ks for stability is given by ks > − kr

2 .
The relationship between ks and shunt capacitance cs
is clearly illustrated, with the light gray region rep-
resenting system stability and the dark gray region
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Fig. 18 Stability area of the electromechanical internally cou-
pled lumped-mass system: Exploring the interplay between
equivalent stiffness ks and Shunt Capacitance cs . Parameters:
n = 4, mm = 56 g, mr = 33.6 g, km = 150 N/m, kr = 129.6
N/m, θ = 0.25 N/V, R = 500 �, cp = 1.5 × 10−3 F
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Fig. 19 Transmittance comparison of electrical internally cou-
pling with shunt circuit for θ = 0.25 and cp = 1.5mF, demon-
strating the impact of an equivalent negative stiffness

indicating system instability. The dividing threshold
between these regions is represented by the line at
ks = − kr

2 . For the provided parameters, the system
remains stable for cs values ranging from negative
infinity to approximately −0.004 Farad and resumes
stability from around −0.003 Farad (ks = −3468 to
5203 N/m) to positive infinity, with a brief interval of
instability between these ranges. The magnified view
offers a closer perspective on the critical transition
points, emphasizing the pivotal cs values at which the
system’s dynamical response alternates.
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Fig. 20 Harvested power and energy across different shunt
capacitances for θ = 0.25 and cp = 1.5mF

Figure 20 presents the harvested power and energy
across a range of shunt capacitances. It clearly under-
scores the influential role of shunt capacitance on the
system’s overall efficiency. An observation made from
the results is the superiority of electrical internal cou-
pling via shunt circuits in terms of tunability. Specifi-
cally, electrical coupling seems to allow for easier tun-
ing of the band gap compared to itsmechanical counter-
part. This is evident in Figs. 19 and 20, where the cho-
sen shunt capacitor facilitates a band gap at a notably
lower frequency in comparison to amechanically inter-
nally coupled system, as illustrated in Fig. 9. Choosing
a shunt capacitance of cs = −5.08mF results in an
equivalent stiffness of ks = -30. This specific choice
not only introduces an equivalent negative stiffness into
the system, enhancing energy harvesting capabilities
across varied frequency spectrums and enabling the
creation of a lower-frequency band gap (see Fig. 19).
Compared to mechanical internal coupling, this pro-
vides more flexibility in tuning the band gap across
different frequencies.

7 Conclusion

This study utilized advanced mathematical modeling
to analyze piezoelectric energy harvesters, delving into
their mechanical and electrical dynamics. It elucidated
the generalized formula for electromechanical non-
linearity and its impact on system performance. The
insights gained from examining the interplay between
nonlinear dynamics and energy harvesting efficiency

have potential implications for optimizing such sys-
tems in future practical applications. The main contri-
butions of this research include:

• The development and analysis of a comprehensive
theoretical model for electromechanical nonlinear-
ity, elucidating its significant impact on the perfor-
mance of piezoelectric energy harvesters.

• A detailed examination of the band gap phe-
nomenon in piezoelectric systems, revealing the
significant impact of electromechanical parameters
such as ke and γ3 on the energy harvesting process.

• An investigation into various models of nonlinear-
ity within piezoelectric resonators, shedding light
on the correlation between nonlinearity coefficients
like β and the system’s energy output.

• Insights into the benefits of employing nonlin-
ear mechanical resonators within a mass chain,
demonstrating an expansion of the band gap and
an increase in energy harvesting potential.

• Observations on the effects of shunt capacitance
and its role in internal resonator coupling, with
implications for enhancing the energy harvesting
capabilities of metamaterials.

The results underscore the intricate balance required
between nonlinearity parameters and systemefficiency,
opening avenues for the optimization of energy har-
vesters in practical applications. Future studies are
anticipated to delve deeper into electromechanical
nonlinearity models, with an emphasis on scalabil-
ity, parameter-specific impacts, and the development
of feedback circuits for adaptive systems. The transi-
tion to distributed parameter models also stands out
as a promising direction for achieving a closer repre-
sentation of physical systems in piezoelectric energy
harvesting research.
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