
Adaptable Resource Generation Protocols For Quantum Networks
Reinforcement Learning For Fast Quantum Resource Generation Policies

Efe Aksel Tacettin1

Supervisors: Gayane Vardoyan1, Bethany Davies1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Efe Aksel Tacettin
Final project course: CSE3000 Research Project
Thesis committee: Gayane Vardoyan, Bethany Davies, Rihan Hai

An electronic version of this thesis is available at https://repository.tudelft.nl/.

Abstract

Quantum networks allow quantum processors to
communicate over large distances. These networks
often require simultaneously existing multiple en-
tangled pairs of quantum bits (entangled links) as
a fundamental resource for communication. Link
generation is a sequential and probabilistic process,
and successfully generated links are stored in a
quantum memory. Links in memory are subject to
noise that causes their quality to decay and become
unusable. This paper uses reinforcement learning
(RL) to investigate dynamic tuning of the entan-
glement generation protocol to minimise the time
to generate multiple links. By comparing a fixed
number of actions to a continuous action space,
we analyse the importance of finer-grained tunings
of the protocol. This is tested in simulated near-
term and medium-term network abstractions. The
results show that protocol tuning significantly re-
duces the mean time to generate entangled links,
with finer tuning providing greater benefits up to
a point. Furthermore, a heuristic is derived from
the RL policies which matches and exceeds their
performance. Future work can explore more ad-
vanced reinforcement learning algorithms to find
better policies, as well as using different noise mod-
els to make more generally applicable policies.

1 Introduction
Quantum networks, analogous to classical networks, allow
for the communication of quantum processors between phys-
ically large distances. They promise a wide variety of ap-
plications, many of which require entangled pairs of quantum
bits between the parties in the network. These entangled pairs
of quantum bits, or entangled links, can be seen as a type of
resource necessary for communication [1]. Entangled link
generation can be carried out by protocols which have a suc-
cess probability p, and generate links with some fidelity F
[2]. The fidelity is a measure of quality which indicates how
similar two quantum states are [3]. In this case, the fidelity
represents how similar the generated entangled pair of qubits
is to a perfect quality entangled qubit pair.

Entangled link generation attempts occur sequentially.
When multiple links are required, successfully generated
links are stored in a quantum memory so that further link
generation attempts can be made. Links that are stored in
memory are subject to noise, causing their fidelity to decay
over time. Links which have decayed below a certain fidelity
are no longer usable, and are therefore discarded. The fidelity
below which links are no longer useful is called the thresh-
old fidelity Fthresh, and it depends on the application which
requires the links. If links expire rapidly, simultaneously gen-
erating a desired number of links can take a very long time,
limiting the network throughput. This motivates the investi-
gation of fast generation procedures for multiple links. One
possible approach is to tune the generation protocol through-
out the generation process. By tuning a protocol, the success

probability of the protocol can be increased or decreased, at
the cost of decreasing or increasing the fidelity, respectively.

Previous work has been done by the authors of [2] to de-
velop the tools to analyse entanglement generation protocols
in a similar multiple link setup. The work focuses on static
protocols with a fixed link generation probability, that is,
without the tuning of the protocol parameters during gener-
ation. They derive analytical methods to understand the dis-
tribution of waiting times to achieve a desired amount of links
for a protocol.

Due to the dynamic nature of our problem, particularly
when scaling to many entangled links, reinforcement learn-
ing (RL) is well suited to find good policies. The authors
of [4] have previously demonstrated the potential of model-
based RL techniques in optimizing end-to-end entanglement
generation between multiple nodes in a quantum network In
this paper, we apply RL to investigate the use of dynamic
protocols in minimising the time taken to generate multiple
entangled links. To this aim, we analyse how beneficial fine-
grained tunings of the protocol throughout generation are.
We compare fixed numbers of generation probabilities ver-
sus a continuous tunable parameter. Additionally, we derive
a heuristic from the RL policies.

In Section 2, a mathematical modelling of the problem is
discussed. Section 3 introduces the reinforcement learning
algorithm and heuristic used. Section 4 describes the exper-
imental setup. Section 5 displays and interprets the results.
Section 6 briefly concludes the paper and discusses possible
future works. Section 7 describes ethical considerations in
this paper.

2 Problem Formulation
The following section provides a formal model of the system,
which is modelled as a Markov Decision Process (MDP).
An MDP consists of a state space, an action space, a tran-
sition probability function, and, for RL purposes, a reward
function [5]. There are two main reasons for choosing this
model. Firstly, we assume entanglement generation attempts
are done in constant time steps. This is important as MDPs
are discrete time processes. Secondly, the system is Marko-
vian, which means that the transition from one state s to an-
other state s′ depends only on s and not on any other previous
state [5]. The Markov property holds in our system because
the transition depends only on the success probability of gen-
erating a link, and the currently existing links in the state. We
detail how each component of the MDP is modelled below.

2.1 State Space
A state s uniquely characterises the relevant system informa-
tion at a point in time. The state space S is the set of all
possible states of the system. For entanglement generation,
the relevant information is the number of currently existing
links and their respective fidelities. As fidelity is a continu-
ous value, modelling the system in this way leads to an infi-
nite state space, which can make it computationally expensive
to use RL.

In order to deal with the infinite state space, it is useful to
consider a specific noise model by which the fidelity decays.

1

In this paper, we make the assumption that the noise model of
the memory is a depolarizing channel [2], and the fidelity F
of an entangled link undergoing depolarizing noise for t time
steps is:

F (t) = (F0 −
1

4
)e−tΓ +

1

4
, (1)

where F0 is the initial fidelity and Γ is the decay rate. The
number of time steps for which an entangled link with initial
fidelity F0 will exist is given by:

t =

⌈
1

Γ
ln

(
F0 − 1

4

Fthresh − 1
4

)⌉
, (2)

where ⌈.⌉ is the ceiling function and Fthresh is the threshold
fidelity for discarding a link. The ceiling function arises from
the fact that time step sizes are discrete. Entangled links with
fidelities that result in the same number of time steps to exist
can be grouped into bins. A state can then be represented as
the number of links in each fidelity bin. If Fthresh is larger
than 1

4 , only a finite number of bins are required to represent
a state, equal to the highest number of time steps for which
any generated link can survive. Thus, we can model the state
space as

S = {(ntmax
, . . . , n2, n1)|

tmax∑
i=1

ni ≤ Nlinks}. (3)

Here, ni represents the number of links in bin i, tmax is the
time to live of the highest fidelity bin, calculated by (2) for
the highest fidelity link that can be generated in the system,
and Nlinks is the desired number of links in the environment.
The starting state is a state where all fidelity bins contain zero
links. A terminating state is any state where the sum of all
bins equals the desired number of links.

As a note to the reader, in this paper we order a state such
that the leftmost entry represents the highest fidelity bin, and
the rightmost entry represents the lowest fidelity bin. As an
example, for an environment which can be represented by
four bins, the state (1, 0, 0, 0) represents a single link at the
highest fidelity bin, which will survive four time steps includ-
ing the time it was generated. We index the bins in descend-
ing order: bin four is the left-most bin, and bin one is the
rightmost bin.

2.2 Action Space
The action space A is the set of actions that can be taken in
the environment. In our system, the actions are represented
as the particular tuning of the protocol, characterised by its
success probability p and resulting fidelity F . Importantly,
we model the relationship between the fidelity and probability
as a linear trade-off where F = 1 − λp , for some parameter
λ > 0 [2]. This trade-off is motivated through a heralded
single-photon entanglement generation protocol [6].

We consider two cases for the action space: continuous
and discrete. A continuous action space is represented as a
parameter p ∈ (0,min(1−Fthresh

λ , 1)) signifying the success
probability of link generation. p cannot exceed 1−Fthresh

λ
as the fidelity would drop below the threshold fidelity. A
link generated with probability p would be placed in a bin

as calculated by (2). The second case is a discrete action
space, which can be represented as a finite list of fidelity-
probability pairs [(F1, p1), (F2, p2), ..., (Fn, pn)]. The rela-
tionship between every Fi and pi still obeys the linear trade-
off Fi = 1 − λpi . The discrete action space can be thought
of as points on the continuous action space.

With the use of fidelity bins to model the environment, an
insight can be made about the action space. Bins consist of
a range of fidelities, meaning multiple probabilities can cor-
respond to the same bin. Two protocols with different proba-
bilities which place a link in the same bin have the same out-
come, but one has a higher probability of success. Physically,
the entangled link with the lower probability (and thus higher
fidelity) will indeed survive longer than the other, but will
nevertheless decay below the threshold by the time the next
generation attempt is completed. If there are two protocols
with different probabilities but the resulting entangled links
are placed in the same bin, then a policy can be improved by
always choosing the higher of the two probabilities. Subse-
quently, policies in continuous and discrete action spaces may
be able to perform equally if the discrete actions are chosen
to be the highest probability that places a link in each bin.

2.3 Transition Function
A transition function Pa(s, s

′) gives the probability that a
given action a while in state s will lead to some other state s′.
In our MDP, taking an action (F, p) has one of two outcomes:
successful or unsuccessful generation of a link. With proba-
bility 1− p , generation is unsuccessful, and all existing links
in memory will decay by one time step. Any link that decays
below the threshold fidelity is discarded. With fidelity bins,
the state (ntmax

, . . . , n2, n1) will become (0, ntmax
, . . . , n2).

As an example, in the state (1, 0, 0, 1), the leftmost link with
the highest fidelity would move to the next bin, and the last
link would be discarded, leaving the state (0, 1, 0, 0). In the
case of successful generation with probability p, the same
process occurs, and a new link is added to the bin t as cal-
culated by (2).

2.4 Reward Function
The reward function R(s, a) assigns a value to a given state
and action pair. The RL agent uses the reward to calculate the
benefit of taking an action in a state. Therefore, the reward
function should be chosen such that it represents the objective
of the problem. In this case, the goal is to minimise the time to
deliver the desired number of links. Furthermore, all terminal
states are equally acceptable, hence we are not interested in
the specific configuration of the entangled links. Thus, the
reward function is modelled such that any non-terminal state
is given a reward of−1, and a terminal state is given a reward
of 0.

2.5 Policy
A policy is a function π(s) which maps a given state s to an
action a. The goal of this problem is to find a policy that min-
imizes the time to achieve the desired number of entangled
links. Methods such as value iteration can be used to find
the exact optimal policy [5], but with larger state and action

2

spaces, this method quickly becomes computationally infea-
sible. Thus, RL is a useful approach for finding approximate
solutions.

3 Methodology
This section contains a brief explanation of RL and the spe-
cific agents that were used in this paper, as well as the ex-
planation of our heuristic. Two RL algorithms were used,
one for a discrete action space, and one for a continuous ac-
tion space. The agents were implemented using TensorFlow’s
TF-Agents library, which provides customisable standard im-
plementations of the agents [7].

3.1 Reinforcement Learning
Many RL algorithms follow a common feedback loop. Un-
derstanding this process can help understand the differences
of the specific algorithms. In RL, there is an agent and an
environment. The agent chooses how to interact with the en-
vironment by picking actions, and the environment consists
of what the agent cannot control, such as the available states,
actions, transition probabilities, and rewards. The agent ob-
serves some initial starting state and picks an action based on
its policy. The action causes some change in the environment,
which gives feedback by outputting a new state and a reward.
The agent uses this feedback to improve the approximation of
some function, which depends on the type of algorithm. For
example, an agent can approximate the action-value function,
which assigns a value to taking an action in a state. The agent
quantifies how close this approximation is to a target (using
the environment feedback) with a distance metric. The agent
minimises this distance with an optimisation algorithm, up-
dating the parameters for its function approximation. With
the new function approximation, the agent derives a new pol-
icy, picks a new action, and repeats the loop [5].

3.2 Categorical Deep Q-Networks
For the discrete action space, a Categorical Deep Q-Network
(CDQN) was used [8]. CDQN works by estimating the
action-value distribution, which is the distribution of returns
from taking an action in a state. The return is the reward from
taking the action, as well as the sum of the future rewards
from the states that can be reached after taking the action.
Regular Deep Q-Networks only model the expectation of the
return, which may not account for actions whose value dis-
tributions are multimodal. We believe this is relevant in the
entanglement generation environment, where a successfully
generated link can immediately complete the environment, or
lead to all the links being discarded (if, for example, there is
only one link left to generate and the existing links will ex-
pire in two time steps). The optimisation algorithm used to
update the value distribution is Adam (Adaptive Moment Es-
timation) [9], which is a widely used algorithm in RL due to
its computational efficiency and robust performance.

3.3 REINFORCE
For the continuous action space RL algorithm, we use REIN-
FORCE [10]. This algorithm was selected due to its ease of
implementation within the project’s time constraints. While

we attempted to implement more advanced algorithms, such
as Soft Actor Critic [11] and Proximal Policy Optimisation
[12], we faced challenges preventing them from being used.

REINFORCE is a policy gradient algorithm, meaning the
policy is not calculated using an action-value function, as is
the case in CDQN. Instead, REINFORCE uses a neural net-
work to directly approximate the policy function. This allows
REINFORCE to operate on continuous action spaces, since it
does not have to estimate the value of actions in every state.
The policy function is updated by minimising the distance
from a target. Like CDQN, the optimising algorithm that
was chosen for the agent is Adam. TF-Agents implements
episodic REINFORCE, which means that the agent requires
every time step from the starting state to the terminating state
to update, rather than every few steps like CDQN. The pseu-
docode can be seen in Algorithm 1 [5].

Algorithm 1 REINFORCE Algorithm

1: input: γ ∈ [0, 1], α > 0
2: Initialize policy parameters θ randomly
3: for n = 0 to Niterations do
4: Collect episode τ = s0, a0, r1, ..., sT−1, aT−1, rT

using policy πθ

5: for t = 0 to T − 1 do
6: Gt =

∑T−1
k=t γk−trk+1

7: θ ← AdamUpdate(θ)

8: end for
9: end for

3.4 Heuristic Policy
One of the aims of this paper is to use the RL policies to cre-
ate a general heuristic that can be applied to a wider set of pa-
rameters without the need to run intensive training. Since our
heuristic is tested alongside the RL policies and other base-
lines, an explanation is provided in this subsection, while we
relate it to the RL policies in Section 5. We first give an in-
tuition for the heuristic and then explain the details of how it
works.

The heuristic can be motivated by thinking about the out-
comes for links. Either a link has a possibility of surviving
until the end of the generation process, or it will be discarded
beforehand. The second case is simpler than the first; if we
do not expect a link to survive, we can treat the state as if
that link does not exist. A trivial example would be the state
(0, 0, 0, 3) when four links are desired. No matter which ac-
tion is picked, the three links in the last bin will decay below
the threshold fidelity and be discarded. There is no possibility
of the links existing until four links are generated. Thus, the
policy can ignore these links and treat this state the same way
it would treat the (0, 0, 0, 0) state.

If a link has a possibility to survive, then we have three
cases for generating the next link. We can generate at a
higher, lower, or equal fidelity bin as the first link. The heuris-
tic policy is to generate the new link at the equal fidelity bin
as the previous link, except for the last link, which it gener-
ates with the highest possible probability. The reason for not

3

generating at a higher fidelity bin is that since we already ex-
pect the previous link to survive, the next link does not need
to survive longer. The reason for not generating at a lower
fidelity bin is that this does not make use of the extra time
steps that the previous link will survive for. When there is
only one link left to generate, the environment ends as soon
as the link is generated, so the heuristic generates it at the
highest probability possible.

In order to determine whether an entangled link has a pos-
sibility of surviving, it must survive at least as many time
steps t as the number of links left to generate Nleft, calcu-
lated as Nleft = Ntotal −Ncurrent . Here, Ntotal is the total
number of desired links, and Ncurrent is the current number
of links that survive at least t time steps. Ncurrent can be cal-
culated as Ncurrent =

∑tmax

i=t ni , where ni is the number of
links at bin i, and tmax is the highest fidelity bin’s time steps.
For a heuristic that can work on any given state, we need to
find the lowest fidelity bin which contains links that meet the
condition t ≥ Nleft + 1, which we do by iterating from the
lowest fidelity bin to the highest fidelity bin. Once we find
the bin t that meets the condition, we pick the action with the
highest probability p that will generate an entangled link at
bin t−1. The reason for picking one bin lower is that the link
currently at t will decay to t− 1 once our generation attempt
is completed. For a continuous action space, we can use (1)
to find the probability p as

Fthresh = (F − 1

4
)e−(t−1)Γ +

1

4
,

F = (Fthresh −
1

4
)e(t−1)Γ +

1

4
.

Using the probability-fidelity trade-off F = 1− λp yields

p =
1

λ
(
3

4
− (Fthresh −

1

4
)e(t−1)Γ).

Our heuristic is described here for a continuous action
space, although it can be adapted to any set of actions where
there is an action corresponding to each fidelity bin. Instead
of calculating the highest probability to place a link in a bin,
the heuristic can choose the action corresponding to bin t−1.

For the starting state with no links, or any state without
a link satisfying the remaining link condition, the heuristic
picks the generation probability pin , the initial probability,
which is a parameter of the heuristic and is defined by the
user. The pseudocode can be seen in Algorithm 2.

As an example, the state (1, 0, 0, 0) has a link in bin four,
and Nleft = 3. Then, π((1, 0, 0, 0)) will output a probability
for a link that will go in the third bin.

4 Experimental Setup
In this section, we discuss the experimental setup of the sim-
ulation as well as presenting and discussing the results. The
simulation has many parameters, and it is difficult to individ-
ually motivate each parameter, especially for future networks
with low decay rates. Thus, experiments have been carried
out in two parameter regimes of the simulation. The first is a
high decay environment with a small amount of required en-
tangled links. This simulates a closer to near term network,

Algorithm 2 Heuristic Policy

1: input: s ∈ S, pin, pmax ∈ R
2: a← pin
3: for i = 1 to tmax do
4: Nleft ← Ntotal −

∑tmax

j=i nj

5: if ni > 0 and i ≥ Nleft + 1 then
6: if Nleft == 1 then
7: a← pmax

8: return
9: end if

10: a← min
(

0.75−(Fthresh−0.25)eΓ(i−1)

λ , pmax

)
11: return
12: end if
13: end for

where large applications cannot be carried out due to noise.
The second is a lower decay environment with a medium
number of links required. The idea behind this regime is to al-
low more actions which can benefit from longer decay times
to explore the trade-off between the fidelity and probability
of success.

Two policies are used as baselines, a random policy and a
single action policy. The random policy chooses a random
probability at every state as the action. The single action pol-
icy chooses the same probability for every state. The prob-
ability is chosen as the action which leads to the smallest
average time to achieve the desired links out of all possible
actions. This is determined by evaluating the single action
protocol with probabilities at each bin.

An aim of this paper is to find the effect of having more
available actions. An important concern is how those actions
are chosen. One possible method is sampling equally spaced
points from the continuous action space. However, this runs
into the limitation of placing multiple actions in the same bin,
or picking actions that have low probabilities in their respec-
tive bins. In Subsection 2.1, we identified that the action
space can be reduced to the largest probability in each bin.
Even with this, there are still many ways to pick some actions
in some number of bins.

In this paper, we have opted to pick actions in decreasing
order of bins. If the network has four bins, decreasing order
would mean picking the highest probability action in bin four,
then bin three, then bin two, etc. This allows for picking be-
tween one and four actions. This method of picking actions
ensures that all policies have the highest fidelity action avail-
able. If this were not the case, there might not be an action
that can generate links which can last long enough to generate
the desired number of links. For example, for an environment
with four bins and four desired links, a policy requires at least
one action which can generate a link that can survive for four
time steps. Additionally, with this order of picking actions,
we guarantee that a policy can be at least as good as a policy
with fewer actions. For example, a four action policy has one
additional action as compared to a three action policy. If this
additional action turns out to not be useful, the four action
policy can perform equally to the three action policy by pick-
ing the same policy. This allows us to have a better idea of

4

how useful each additional action is.
Additionally, since it is possible for the policy to repeat-

edly pick infeasible actions that cannot lead to the desired
number of entangled links (i.e. a policy generating links that
expire immediately after generation cannot possibly generate
two or more links simultaneously), a time step limit is set in
the environment. If the agent is not able to achieve the de-
sired number of links by the time step limit, the environment
is terminated. This time step limit was set to be much larger
than the single action baseline so that it would not interfere
with finding the optimal policy.

5 Results
5.1 Near-Term Network with Four Links
The first environment is a network with high decay. In this
environment, the highest fidelity link is able to exist for four
time steps. Since we need four links, a link needs to be gen-
erated every time step. The parameters of this environment
are Ntotal = 4,Γ = 0.2, Fthresh = 0.5, λ = 0.7, pmin =
0.4, pmax = 0.7. pmin and pmax are the minimum and maxi-
mum probabilities of any action possible in the environment.
The maximum number of time steps for this environment was
500.

Model Hyperparameters
For the sake of reproducibility, the hyperparameters of both
reinforcement learning algorithms are disclosed. Addition-
ally, the code is made publicly available and can be found in
Section 7.

For the near-term network, the CDQN algorithm was run
for 20000 iterations, with 2000 initial randomly collected
samples, a replay buffer size of 2000, two fully connected
hidden layers of size 256, a batch size of 128, an optimiser
learning rate of 3 · 10−4, a discount rate of 1, with 81 atoms
for the support of the value distribution, with atom minimum
and maximum values being −500 and 0 respectively.

The REINFORCE algorithm was run for 2000 iterations,
with a replay buffer capacity of 10000, two fully connected
hidden layers of size 256, an optimiser learning rate of 3 ·
10−4, and a discount rate of 1.

Results and Discussion
Figure 1 plots the number of available actions against the ex-
pected time to generate the desired number of links. We ob-
serve that increasing the number of actions reduces the mean
time to achieve the desired state.

Figure 2 compares the different policies in generating up
to four links. We see that the difference between policies
becomes especially significant at higher numbers of desired
links. Unexpectedly, the continuous action RL policy per-
forms worse than the discrete action space RL policy. In the-
ory, we expect it to perform at least as well as the discrete
policy (as it has the same actions available). However, in
practice, there are a number of reasons which may cause it
to perform worse. A fundamental reason why the continu-
ous agent may perform worse is that the infinite action space
introduces challenges for exploration. There are far more ac-
tions in every state, and the agent might fail to accurately
evaluate which actions perform best. Other reasons could be

Figure 1: Action probabilities are chosen in decreasing order of bin
number. The numbers in the figure are the success probability of the
additional action compared to the previous number of actions. The
one action policy is the single action heuristic, while the remaining
policies come from the discrete action space RL agent. The values
are averages over 2000 runs of the environment with a confidence
interval of 99.7%.

limitations of the research method, such as insufficient hy-
perparameter tuning or unsuitable choice of algorithm. These
reasons are addressed in Section 6. Notably, the heuristic
seems to perform equally well as the discrete RL policy.

Figure 2: The y-axis uses a log scale. The single action probabil-
ities for 1, 2, 3, 4 desired links are 0.70, 0.63, 0.53, 0.42, respec-
tively. The heuristic initial probabilities are 0.70, 0.53, 0.42, 0.42.
For both single action and heuristic, the probabilities were chosen
as the lowest mean time for the respective number of links. The
values are averages over 2000 runs of the environment with a con-
fidence interval of 99.7%. The confidence intervals are present, but
too small to be seen.

Figure 3 visualises the RL policy for four available ac-
tions. We notice that the policy assigns higher probabilities
to certain states. For example, all states which are assigned
the highest probability action already have three out of four
links. However, not all states with three links are assigned
the highest probability. The states (0, 1, 1, 1) and (0, 0, 0, 3)

5

have three links, but the policy chooses the same action for
these states as for the starting state, (0, 0, 0, 0). This indicates
that the policy considers certain links redundant. This is also
applicable for states assigned higher probabilities, for exam-
ple, states (1, 0, 0, 2) and (1, 0, 0, 0) are assigned the same
action. Two general rules are highlighted by this policy: ig-
noring redundant links, and choosing higher probability ac-
tions when there are valuable links. These two ideas have
been used as motivations for the heuristic. It is observed that
the policy does not always follow these rules, such as the state
(1, 0, 1, 1) which seems to share the same valuable first link
as the previous two states, but is assigned the lowest proba-
bility action instead.

Figure 3: The x-axis is the state represented as a string. The state
(1, 0, 2, 0) is written as 1020. The y-axis is the probability that the
policy chooses given the state. The states are ordered by chosen
probability for easy comparison of states that have the same proba-
bility.

5.2 Medium-Term Network with Six Links
The second environment is a network which requires six
links. In this environment, the highest fidelity link is able
to exist for ten time steps. Compared to the previous envi-
ronment, a link can exist longer than the number of mini-
mum time steps required to achieve six links. This allows
for policies which lower probability but longer lasting links.
The parameters of this environment are Ntotal = 6,Γ =
0.08, Fthresh = 0.5, λ = 1, pmin = 0.2, pmax = 0.5. The
maximum number of time steps for this environment was
1200.

Model Hyperparameters
For the near-term network, the CDQN algorithm was run for
100000 iterations, with 10000 initial randomly collected sam-
ples, a replay buffer size of 12000, two fully connected hid-
den layers of size 256, a batch size of 256, an optimiser learn-
ing rate of 3 · 10−4, a discount rate of 1, with 81 atoms for
the support of the value distribution, with atom minimum and
maximum values being −1200 and 0 respectively.

The REINFORCE algorithm was run for 5000 iterations,
with a replay buffer capacity of 10000, two fully connected

hidden layers of size 256, an optimiser learning rate of 3 ·
10−4, and a discount rate of 1.

Results and Discussion
Figure 4 plots the number of available actions versus the
mean time to completion. Unlike Figure 1, we see that the
mean time to achieve the desired links does not decrease with
every additional action. While it still trends down, the addi-
tional action can sometimes increase the mean time to com-
pletion, such as between actions eight to nine. As actions
were picked in decreasing order of bins, the nine action pol-
icy is able to pick the same actions as the eight action policy,
and so should be able to perform equally well. The discrete
agent may be suffering from the same issues as the continu-
ous agent in the near-term network setup.

Figure 4: Action probabilities are chosen in decreasing order of bin
number. The numbers in the figure are the success probability of the
additional action compared to the previous number of actions. The
one action policy is the single action heuristic, while the remaining
policies come from the discrete action space RL agent. The values
are averages over 2000 runs of the environment with a confidence
interval is 99.7%.

Figure 5 plots the different policies against the baselines
in generating between one and six links. Here we notice a
similar order of performance as in the near-term setup. The
heuristic outperforms the other policies.

Figures 6 and 7 visualise the policies from the eight action
RL policy and the heuristic. The eight action RL policy is
chosen as it is the fastest of all the RL policies, which we
believe will allow for more meaningful comparisons with the
heuristic. We observe that some trends are common to both
policies. For example, both policies tend to prioritise high
fidelity links rather than high probability links when the av-
erage fidelity is low. At higher average fidelities, the policies
typically choose higher probability actions as the number of
links increases. The RL policy is typically less structured. For
example, for states with two links and an average fidelity of
0.54, the policy chooses the action with a success probability
of 0.43. However, the time to live of this link is less than the
number of links remaining, indicating this link will not sur-
vive. Thus, we see that the RL policy can make suboptimal
decisions in certain states.

6

Figure 5: The y-axis uses a log scale. The single action
probabilities for the six desired links in increasing order are
0.49, 0.40, 0.37, 0.34, 0.31, and 0.27. The heuristic initial probabil-
ities are 0.49, 0.40, 0.34, 0.31, 0.23, and 0.23. For both single ac-
tion and heuristic, the probabilities were chosen as the lowest mean
time for the respective number of links. The values are averages over
2000 runs of the environment with a confidence interval is 99.7%.
The confidence intervals are present, but too small to be seen.

Figure 6: Heatmap of eight action policy with respect to number of
links and the average fidelity of the state. The probability is the most
commonly chosen probability for the average fidelity and number
of links. States with average fidelities in between two labels were
grouped into the closest average fidelity.

6 Conclusion and Future Work
In this paper, we have demonstrated how tuning entanglement
generation protocols affects the time taken for resource gen-
eration in quantum networks. In particular, we show how
much impact finer tuning of the protocols have. We evalu-
ate the policies on two parameter regimes of the simulation,
one representing a near term network with four desired entan-
gled links, and one representing a medium term network with
six desired entangled links. Thus, we conclude that tuning

Figure 7: Heatmap of the heuristic policy with respect to number of
links and the average fidelity of the state. The probability is the most
commonly chosen probability for the average fidelity and number
of links. States with average fidelities in between two labels were
grouped into the closest average fidelity.

protocols is beneficial to significantly reduce the mean time
to generate desired numbers of entangled links. Furthermore,
finer tuning of the protocols can lead to faster times, up to
a limit determined by the model. We have also presented a
heuristic that matches the performance of the reinforcement
learning policies.

For future research, improvements can be made to alle-
viate the limitations of the experimental setup in this paper.
Some limitations are discussed below. Firstly, the continu-
ous action space reinforcement learning algorithm used was
REINFORCE. This is a simple algorithm for continuous ac-
tion spaces, and was chosen due to practical limitations of the
project regarding time and ease of implementation. The al-
gorithm performs worse than the discrete action space, which
in theory should serve as a lower bound for its performance.
Future work can use state-of-the-art algorithms such as PPO,
SAC, or TD3 which work in continuous action spaces to find
better results. This would help verify whether the discrete
and continuous action spaces are equivalent in this model, as
well as work on other noise models where binning ranges of
fidelities cannot be done.

Another limitation of this project lies in the method by
which actions were sampled for the discrete action space. The
selection of actions could have been worse than another par-
ticular selection. Then, it could be possible that fewer actions
could perform almost as well as a higher number of actions.
If a more appropriate method of selecting actions were ex-
plored, this could improve the computational efficiency of
using reinforcement learning for different configurations of
networks.

7

7 Responsible Research
In order to do research responsibly, it is crucial that the results
in this paper are reproducible. Furthermore, it is important
that all data is available and support the conclusions made.

To this end, all environment parameters and model hy-
perparameters have been stated in the paper. Furthermore,
all the code used, and all trained models can be found at
https://github.com/atacettin/entangled-link-generation.

Due to the stochastic nature of the simulation, results may
vary. To amend this, all simulation statistics have been aver-
aged over 2000 runs, and confidence intervals of 3 standard
deviations are included. Thus, we believe we have represen-
tative results to make our conclusions with.

References
[1] Stephanie Wehner, David Elkouss, and Ronald Hanson.

Quantum internet: A vision for the road ahead. Science,
362(6412):eaam9288, October 2018.

[2] Bethany Davies, Thomas Beauchamp, Gayane Var-
doyan, and Stephanie Wehner. Tools for the analysis
of quantum protocols requiring state generation within
a time window, April 2023. arXiv:2304.12673 [quant-
ph].

[3] Michael A. Nielsen and Isaac L. Chuang. Quantum
Computation and Quantum Information: 10th Anniver-
sary Edition. Cambridge University Press, 1 edition,
June 2012.

[4] Álvaro G. Iñesta, Gayane Vardoyan, Lara Scavuzzo, and
Stephanie Wehner. Optimal entanglement distribution
policies in homogeneous repeater chains with cutoffs.
npj Quantum Information, 9(1):46, May 2023.

[5] Richard S. Sutton and Andrew Barto. Reinforcement
learning: an introduction. Adaptive computation and
machine learning. The MIT Press, Cambridge, Mas-
sachusetts London, England, second edition edition,
2020.

[6] Sophie L. N. Hermans, Matteo Pompili, Laura D. S.
Martins, Alejandro R.-P. Montblanch, Hans K. C. Beuk-
ers, Simon Baier, Johannes Borregaard, and Ronald
Hanson. Entangling remote qubits using the single-
photon protocol: an in-depth theoretical and experimen-
tal study. New Journal of Physics, 25(1):013011, Jan-
uary 2023. arXiv:2208.07449 [quant-ph].

[7] Danijar Hafner, James Davidson, and Vincent Van-
houcke. TensorFlow Agents: Efficient Batched Rein-
forcement Learning in TensorFlow, 2017. Version Num-
ber: 2.

[8] Marc G. Bellemare, Will Dabney, and Rémi Munos. A
Distributional Perspective on Reinforcement Learning,
July 2017. arXiv:1707.06887 [cs, stat].

[9] Diederik P. Kingma and Jimmy Ba. Adam: A Method
for Stochastic Optimization, 2014. Version Number: 9.

[10] Ronald J Williams. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning.

[11] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft Actor-Critic: Off-Policy Maximum
Entropy Deep Reinforcement Learning with a Stochas-
tic Actor, August 2018. arXiv:1801.01290 [cs, stat].

[12] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal Policy Optimiza-
tion Algorithms, August 2017. arXiv:1707.06347 [cs].

8

https://github.com/atacettin/entangled-link-generation

	Introduction
	Problem Formulation
	State Space
	Action Space
	Transition Function
	Reward Function
	Policy

	Methodology
	Reinforcement Learning
	Categorical Deep Q-Networks
	REINFORCE
	Heuristic Policy

	Experimental Setup
	Results
	Near-Term Network with Four Links
	Model Hyperparameters
	Results and Discussion

	Medium-Term Network with Six Links
	Model Hyperparameters
	Results and Discussion

	Conclusion and Future Work
	Responsible Research

