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The Flow of Information
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Uncertainty in Model-based Prediction
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Content

How can we make best use of the available data?

« Closing the Loop: A feed-back framework for Real-Time Resource Model
Updating
« A Kalman Filter Approach
« Using Online Data for Improved Production Control

 Illustrative Case Study: Coal
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Towards Closed-Loop Management
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% original information

— Updated block model
| based on exploration

Towards Closed-Loop Management
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Prior Model (s)
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Resource Model

Generation of Prior Models

Interpolation
(Kriging)
. Best local estimation,

. Minimization of error-variance estimate.
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Simulation Realisation 1&10
(Conditional Simulation)

Represent possible scenarios about the deposit,
Represent structural behavior of data (in-situ variability),
Modelled by many different realizations,

Differences between realizations capture uncertainty
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Closed-Loop Concept
True but un-
known deposit
Z(x)
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Closed-Loop Concept
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Sequential Updating
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Linking Model and Observation

12

e 1 mining blocks

e each of the blocks contributes
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to a blend, which is observed at

a sensor station at time t,

Production sequence — Matrix A
e /m measurements are taken
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Resource Model Updating

Sequential Model Updating - A Kalman Filter Approach

Z'(x) =Z"o(x) + K (v - AZ",(x))

Z*(x) ... updated short-term block model (a posteriori)

Z"y(x) ... prior block model based (without online sensor data)

Y ... vector of observations (sensor signal at different points in time t)

A ... design matrix representing the contribution of each block per time
Interval to the production observed at sensor station

K ... updating factor (Kalman-Gain)
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Resource Model Updating

Sequential Model Updating — A “BLUE”

Estimation error:
e(X)t41 = Z(X) 41 — Z°(X) 41

Estimation variance to be minimized:

Cit1t+1 = E[ e(x)t+1e(x)t+1T]

Updating factor:

K=C.A"(AC., A"+ C, )?!
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Resource Model Updating

Sequential Model Updating — The Integrative Character
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Resource Model Updating

Sequential Model Updating

Main challenges:
e Large grids
Industrial Case: 4,441,608 blocks

Non-linear relationships between model and observation
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Resource Model Updating

Sequential Model Updating
A Non-Linear Version — The Ensemble Kalman Filter

n realizations n updated realizations
(Ensamble) (updated Ensamble)

& Model based prediction 4Z,(x) L _ 1
Observations [ ;
= Difference (I — AZy(x)) >

Z'(x) = Zo (x) + K(1— AZy(x))

(Reproduced after Geir Evensen 1993)
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Resource Model Updating

Sequential Model Updating
To handle Non-Gaussian Data... N-Score-Ensemble Kalman Filter*

— State Vector Observation
2 W) ) )
| Transformed Normal Score Transformed !
i State Vector Transfarms Observation |
t = t+1 Ensemble Kalman Filter
W
Updated
Transformed State
Bagh
H H Franssen, L Li. 2011. An

approach to handling non-
Gaussianity of parameters and
B o e . state variables. Advances in Water
Resources, 844-864.
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Illustrative Case Study

Updating the Calorific Value in a Large Coa

Case St“dy: Walker Lake Data Set Real data (16mx 16m reblock) Concentration [ppr]
(Exhaustive “true” data are available)

Model based prediction:

Morth [m]

« Estimated block model (5200t/block)

« Capacity Excavator 1: 500 t/h

- Capacity Excavator 2: 1.000 t/h East ]
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Illustrative Case Study

Updating the Calorific Value in a Large Coal Mine

Sensor Observations:

- Artificial sensor data for a 10 minute average (representing 250 t)
» Relative sensor error is varied between 1%, 5% and 10%

» Sensor data obtained:
» Model based prediction + dispersion variance + sensor error

10 -

O
I

—True Block Grade

CV in MJ/kg

—True Block Grade + Dispesion Variance

——True Block Grade + Dispesion Variance + Sensor Error
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Prior Block Model
based on Exploration Data

Updated Block Model
Integrating Sensor Data

Differences

Illustrative Case Study

Priar Estimated Block Madel
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Difference Between the Prior Estimation and Updated Estimation Maps (%)
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MSE relative to Prior

Illustrative Case Study

Comparison to Reality

Kalman-Filter: 2 Excavators

MSE-mined MSE- adjacent blocks
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Illustrative Case Study

Rejection Sampling

1000 (Realizations) Prior Models

Implementation of
Real-Time Update
Framework

Implem entation of
Rejection Sampling

290 accepted 1000 updated

Posterior Posterior

Model Model
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Illustrative Case Study

Rejection Sampling

Posterior Mean from Rejection Sampling

4 i 2 Posterior Mean from Real-Time Update Framework
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Average mean and variance maps of 290 posterior realizations accepted according to Average mean & variance maps of 1000 posterior realizations updated with EnKE framework
rejection sampling method =
The Difference Between
The Accepted Posterior Realizations Mean (from Rejection Sampling) and
Thea Updated Posterior Realizations Mean (from Real-Time Update Framework)
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Difference map between the accepted posterior realizations from rejection sampling and
updated posterior realizations from real-time update framework

%
TUDelft Challenge the future 26




Illustrative Case Study - Results

« Significant improvement in prediction

» Increased confidence in dispatch decisions

» Less miss-classified blocks (ore/waste)

» Less shipped train loads out of spec
 Increased customer satisfaction and revenue

« Magnitude of improvement depends on level of exploration,
variability and sensor error
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Research Fund
for Coal & Steel

Current Work

- EU - RFCS funded project RTRO-Coal
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Conclusions

« Modern ICT provides online data, which can be the basis for (near-)
continuous process monitoring at different stages of the mining value
chain

« Utilizing these data for (near-) real-time decision making offers huge
potential for more sustainable extraction of mineral resource

e Closed Loop Concepts offer:
« Integration of prediction and process models with data gathering

« Interdisciplinary and transparent project communication (breaking
the silos)

« More complex use of data for increased resource efficiency
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