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A B S T R A C T

Damage localization in civil infrastructure, such as large-scale reinforced concrete (RC) pedes-
trian bridges, is essential for conducting precise maintenance and avoiding catastrophic failures.
In this study, multiple one-dimensional convolutional neural networks (1-D CNNs) are developed
for automatically extracting implicit damage-sensitive features from the structural raw dynamic
responses to localize damage in the pile foundations of pedestrian bridges considering un-
certainties such as environmental and operational variations (EOVs) inherent in dynamic re-
sponses. For this purpose, transient dynamics numerical computation models are established to
simulate the multi-point dynamic response of the structure under different typical damage sce-
narios, forming the baseline dataset. Then, on-site vibration tests are conducted on the structural
prototype. Ambient vibrations of the real intact bridge are considered EOVs and integrated into
the baseline dataset, forming the test dataset. Additionally, the intact structural dynamic response
with measured EOVs replaces the simulated intact structural dynamic response in the baseline
dataset to form a reference dataset. The network architectures based on one-dimensional con-
volutional layers proposed in this paper are trained on the baseline dataset and reference datasets
to obtain baseline and reference models. Subsequently, model performance evaluation is con-
ducted on the test dataset, and the results indicate a significant decrease in the performance of
damage models based on a single deep learning when EOVs are present. However, integrating the
baseline and reference models achieves zero false negative/positive predictions which is safety-
oriented and an exemplary classification accuracy of up to 97.2 %.

1. Introduction

Pedestrian bridges, designed to facilitate pedestrian-vehicle diversion and ensure convenient passage, are extensively integrated
into global urban transportation systems. As large-scale complex spatial structural systems, these bridges are typically formed by an
upper girder-slab structure closely connected to the lower pile foundations through bridge piers. Whereas during the operational
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lifespan, pile foundations are prone to structural damage resulting from slope deformations, uneven settlement, and potential seismic
activities [1,2]. Moreover, the corrosion of internal steel bars within the pile foundations as they traverse diverse engineering media
[3], coupled with the development of loading-induced plastic hinge regions, results in a decreased global stiffness of structural
members, which ultimately jeopardizes the overall safety of pedestrian bridges. Notably, pile foundations are usually constructed as
concealed engineering components, making it challenging to localize damage promptly through conventional routine inspections.
Therefore, establishing a real-time damage localization framework for the pile foundations of large pedestrian bridges holds significant
engineering value [4].

Vibration-based structural damage detection (VSDD)methods [5,6], as one of the current mainstream Structural Health Monitoring
(SHM) techniques [7,8], operate on the principle that structural damage can be identified and quantified by analyzing changes in the
structure’s dynamic properties pre- and post-damage occurrence [9]. Numerous studies focusing on VSDD methods have been con-
ducted [10–14], broadly, which can be summarized into two major categories: parametric and nonparametric methods. Parametric
methods [15–17] utilize alterations in the dynamic parameters as indicators of the formation, location, and severity of structural
damage [18–21]. Despite the prevalent utilization, certain constraints endure as follows: (i) Subtle changes in dynamic properties
induced by local early-stage damage are only observable in higher-order modes, which are formidable to excite in the context of large-
scale structures; (ii) Various hand-crafted parameters, dependent on substantial expert knowledge while constrained to certain
structural types and necessitate stringent sensor placement, often exhibits poor applicability in complex and diverse structures; (iii)
The sensitivity of specific parameters extends beyond damage to encompass external influences, including ambient noise and tem-
perature variations. On the other hand, nonparametric methods, fundamentally entailing the application of anomaly detection al-
gorithms, aim to extract damage-sensitive features directly from measured signals [22–24], e.g., using time series modelling and
statistical classification. Similarly, the main drawbacks of these approaches are summarized as (i) The environmental and operational
variations (EOVs) contained in dynamic responses of large-scale infrastructures far exceed that of steady-state operation of mechanical
systems, those non-damage-related influences would significantly impede the efficacy of such methods; (ii) The need for high
computational complexity and an extensive number of sampling points poses challenges for real-time monitoring.

In light of the rapid evolution of computer hardware, which facilitates large-scale parallel computing, machine learning (ML) and
deep learning (DL) are introduced into SHM and have attained broad recognition [10,25,26]. In the early implementation of ML-based
VSDD methods, a prevalent paradigm was followed: non-linear mapping relationships between manually crafted damage-sensitive
features and structural states were typically established using shallow algorithms such as decision trees [27], support vector ma-
chines [28], and multi-layer perceptron [29,30]. This approach demonstrated significant effectiveness in scenarios characterized by
limited data and relatively straightforward tasks [31]. Nonetheless, the excellent performance critically hinges on the selection of
suitable damage-sensitive features as well as the classifiers. Additionally, it cannot be guaranteed that a particular feature/classifier set
represents the optimal choice for all instances of structural damage scenarios [32]. On the other hand, the DL-based VSDDmethods are
characterized by their outstanding automatic feature extraction [33], attributed to the utilization of deep artificial neural networks in
place of the shallow algorithms in ML. With the increase in hidden layers, the non-linear statistical modelling capacity of DL signif-
icantly improves, endowing it with the capability to handle complex patterns and objects in very large datasets. It is worth noting that,
due to the escalating number of training parameters in DL algorithms, overfitting is prone to occur in scenarios with small sample sizes,
leading to a degradation of the generalization ability in such damage recognition models. During this period, ML-based and DL-based
VSDD models have achieved positive achievements for small-scale infrastructures or simple industrial mechanical systems. But in the
realm of large-scale complex civil structures, where the variety and complexity of damage scenarios are more pronounced, the con-
struction or extraction of effective damage-sensitive features proves to be a formidable challenge.

Over the past decade, Convolutional Neural Networks (CNNs) and their variants have gained notable successes in numerous do-
mains, e.g., face recognition [34,35], and behaviour detection [36,37], attributing to the remarkable ability to automatically extract
implicitly hierarchical features with spatial invariance from raw data and the outstanding adaptability and model generalization [38].
Compared to the above models using fully connected layers, which completely lose spatial resolution during the statistical modelling
process, CNNs have an inherent advantage in addressing VSDD tasks considering the spatial correlations of measurement at different
points in the samemoment could be well captured [39–42]. Yet, solely relying on such spatial correlations of dynamic responses makes
it challenging to achieve the real-time localization target, in view of the structural health state is actually a time-dependent attribute
providing insights of changes in physical properties related to damage. Hence, 1D CNNs entailing both spatial and temporal resolution
with a more compact structure have gained great attention recently.

A series of studies reported by Avci and Abdeljaber et al. focused on the 1D CNNs-based real-time VSDD method via raw accel-
eration signals from large-scale experiments conducted on a grandstand simulator [43], with an application on wireless sensor net-
works [44], and an enhanced version requiring only two measurement sets [45], these research highlighted the practical value of such
approach when applied to complex structures. Moreover, Zhou et al. first adopted a hybrid methodology for VSDD on typical high-pile
wharfs [46]. The results indicated the superior performance of the 1D CNNs in detecting structural damage directly from raw
displacement response data. Notably, traditional 2D CNNs can achieve spatial and temporal resolution simultaneously through data
reconstruction, but this introduces more parameters, leading to escalating overfitting risks and computational demands.

Currently, the primary emphasis of research on 1D CNNs-based VSDD for large-scale infrastructures lies in verifying the feasibility/
accuracy of their methodologies/algorithms [43,45–51]. Given the vast number of potential damage scenarios in large-scale structures
and the challenges associated with obtaining comprehensive real-world measurement, employing dynamic responses generated
through numerical simulations under various damaged scenarios for training data has become a prevailing approach. However, it is
crucial to recognize that uncertainties inherent in real-world monitoring data can substantially affect the robustness of the afore-
mentioned VSDD models. While some related studies have considered these uncertainties [52–55], it is noted that the EOVs addressed
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are artificially generated, typically using white noise signals. In-depth investigations into the model’s performance and robustness in
the presence of real ambient noises and actual EOVs remain limited and warrant further exploration [23,56]. Indeed, the decline in
performance of such models under high-level EOVs, which are common issues in actual engineering scenarios, is inevitable. The more
severe impact is the increased false-negative rate of predictions. In other words, the model may potentially misclassify a damaged state
as intact, and persisting in such ’trust’ in the worst-case scenario could lead to catastrophic accidents, which should be strongly
avoided. This study presents an ambient vibration measurement-aided damage localization framework in the manner of a multi-1D
CNNs ensemble for a large-scale Reinforced Concrete (RC) pedestrian bridge considering EOVs, which realizes exceptional safety-
oriented damage identification and provides enhanced performance of damage localization. The proposed methodology fuses simu-
lated acceleration responses from various Finite Element (FE) models with on-site ambient vibration measurement from an intact
structural prototype. The essence of this framework lies in its two-stage multi-model ensemble procedure. The first stage aims to
eliminate false negative/positive predictions, and the second stage enhances the localization performance for different damage sce-
narios. This approach provides novel insights into how fusion data can be better utilized for improving methodology performance
considering the factor of EOVs.

The paper is organized as follows. In Section 2, the significance and objectives of this study will be conveyed. In Section 3, the
workflow of the complete framework is presented with a formalized description. In Section 4, the simulation process of the RC
pedestrian bridge is further demonstrated, and the simulated acceleration response of different damagemodels and the on-site ambient
vibration measurements are both obtained. A concise description of the overall architecture and specific parameters of the established
1D CNNs is given in Section 5. Section 6 reveals the post-processing of the simulated andmeasured data and the training and validation
of 1D CNNs. In Section 7, the performance of baseline and reference models on different datasets are evaluated, and the novel multi-
model ensemble strategy for damage localization is proposed based on excellent results. Finally, conclusions are gathered in Section 8.

2. Research significance and objectives

Large pedestrian bridges often cross traffic arteries and are simultaneously subjected to various dynamic and environmental fac-
tors, including pedestrian loads, heavy vehicles passing under the bridge, and temperature changes. Consequently, their dynamic
responses contain a large amount of EOVs. Current damage identification/localization methods based on structural dynamic responses
within DL frameworks experience significant efficiency degradation when dealing with high-level EOVs. Therefore, introducing a one-
dimensional convolutional neural network with the ability to automatically construct features with time and space translation
invariance into the damage localization of the pile foundation in large pedestrian bridge structures holds broad application prospects.

This study aims to achieve the following two objectives: (i) Establish an intelligent damage localizationmethod framework for large
pedestrian bridge pile foundations using one-dimensional convolutional neural networks that integrate finite element simulation
dynamic responses and on-site measured ambient vibration responses of a structural prototype; (ii) Explore a safety-oriented damage
localization strategy for the pile foundations of large-scale RC pedestrian bridges based on the idea of multi-model ensemble.

3. Methodology

The presented framework aims to empower 1D CNNs-based damage localization models, developed within the data-driven vi-
bration-based structural health monitoring strategy, to deliver safety-oriented, enhanced-performance results for a RC pedestrian
bridge. The comprehensive framework is delineated in six steps:

(i) Selection of damage scenarios that have a high likelihood for the monitored structure. This can be achieved by traditional
methods like structural fragility analysis. For simplicity, we consider specific reductions in overall stiffness at various pile
foundations as typical damage scenarios in this research.

(ii) Construction of numerical models for all chosen damage scenarios. The accuracy of these models is further corroborated by
comparing the dynamic characteristics between the prototype structure and the numerical model of the undamaged state.

(iii) Execution of transient dynamic calculations for all scenarios, where the excitation is an impact unloading. The multi-point
dynamic responses for all scenarios are recorded and labelled synchronously with the corresponding damage scenario num-
ber, forming the baseline dataset.

(iv) Measurement of the on-situ vibration responses of the structure (in this study, the freshly inspected pedestrian bridge can be
considered an intact structure) under ambient excitation. The sensor layout corresponds with the locations of the sampling
points in step (iii).

(v) Construction of various datasets, including a simulated dataset and a fusion dataset. The simulated responses at corresponding
points of the numerical model for all damage scenarios form the simulated dataset. EOVs processed by on-site vibration
measurements are added to the relevant part of the simulated dataset to create the fusion dataset, which mimics more realistic
vibration responses.

(vi) Execution of damage detection tasks using 1D CNNsmodels trained on different datasets. The baseline models are trained on the
simulated dataset without samples of the intact scenario, while the reference model is trained on the fusion dataset. This two-
stage robust strategy employing both baseline and reference models yields safety-focused, superior-performance results for
damage detection.

The six steps described above will be formalized more specifically in the remainder of this section.
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Consider a structure equipped with a total of n acceleration sensors that record the multi-point vibration responses. Once a total of
m damaged scenarios (including the scenario of the structure is intact) are determined as follows:

Ds = {I0,D1,D2,⋯Dm− 1} (1)

Where Ds denote the set of selected damage scenarios. The term I0 and Di represent the structural intact state and damaged scenarios
with overall stiffness decay at structural components with serial number i# respectively.

The first 3 mode shapes and modal frequencies of prototype structure in its intact state (or reference state) and the corresponding
numerical model (scenario of I0) could be obtained by in-situ vibration testing and calculation of structural transient dynamics
respectively, and represented as:

Φp = [ φ(1)
p , φ(2)

p , φ(3)
p ] (2)

ΦNM = [ φ(1)
NM, φ(2)

NM, φ(3)
NM ] (3)

Fp = [ f (1)p , f (2)p , f (3)p ] (4)

FNM = [ f (1)NM, f (2)NM, f (3)NM ] (5)

where Φp, Fp and ΦNM, FNM denote the first three mode shapes and modal frequencies of the prototype structure and corresponding
numerical model of intact monitored structure respectively. While the terms φ(i)

p ,φ
(i)
NM and f (i)p , f (i)NM represent the ith-order mode shapes

and natural frequency of prototype structure and corresponding numerical model of intact monitored structure respectively. It should
be noted that there is a one-to-one correspondence between the structural prototype and the sampling points of the dynamic response
of the corresponding numerical model.

Establishing a data-driven damage detection model in VSDD framework requires consistency between the structural dynamic
characteristics of the structural prototype and the corresponding numerical model. Based on the final damage identification results, it
is argued that the computational results of the numerical model are sufficient to train an efficient damage identification model by
imposing the following restrictions on the first three orders of mode shapes and modal frequencies of the structural prototype and the
corresponding numerical model:

Φp ∼ ΦNM (6)

where the symbol ‘~’ represents the similarity operator, which means only the consistency of general morphological characteristics of
mode shapes between the prototype structure and the numerical model was required. For example, if the prototype structure’s first
three mode shapes are lateral, longitudinal and plane torsional mode, the numerical model’s corresponding mode shapes were
required to be the same.

⎧
⎨

⎩

D
(
FNM Fp

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

|f (1)NM − f (1)p |
p
+ |f (2)NM − f (2)p |

p
+ |f (3)NM − f (3)p |

pp
√

D
(
FNM Fp

)
< ∊

(7)

where D
(
FNM Fp

)
represents the Minkowski distance between the first three modal frequencies vector of the prototype structure and its

numerical model. It should be noted that multiple influence factors such as monitoring precision, structural characteristics and
hardware facility are required to be considered comprehensively when determining the specific value of tolerance ∊ and parameter p.

Once the appropriate numerical model of the intact structure prototype, namely the benchmark model, which is confirmed by
constraints of equations of (6) and (7) has been established, the next step is to build a total of m numerical models for all damaged
scenarios Ds based on that benchmark model.

The raw acceleration time-series calculated by all numerical models could be represented as follows, it should be noted that all
transient dynamic simulations use the same excitation scheme.

⎧
⎨

⎩

I0 =
[
I0, IΔt , I2Δt ,⋯, It0

]T

Di = [D(i)
0 ,D(i)

Δt ,D
(i)
2Δt,⋯,D(i)

t0 ]
T (8)

Where the terms IkΔt and D
(i)
kΔt (0 ≤ k ≤ t0

Δt |k ∈ N) represent the calculated multi-point dynamic responses at kth time step at intervals of
Δt for the intact scenario and damaged scenario i#, respectively. The subscript t0 denotes the timespan of transient dynamic
computation.

Assuming that each calculated single-point dynamic response at the sampling point s# (s ≤ n|s ∈ N) consists of nl frames (nl =
t0/Δt), the next step is to align n single-point dynamic responses acquired at a total of n sampling points in time steps as follows:
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I0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

I1, 0 I2, 0 ⋯ In, 0
I1, Δt I2, Δt ⋯ In, Δt

⋮ ⋮ ⋱ ⋮
I1, t0 I2, t0 ⋯ In, t0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

nl×n

Di =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D(i)
1,0 D(i)

2,0 ⋯ D(i)
n,0

D(i)
1,Δt D(i)

2,Δt ⋯ D(i)
n,Δt

⋮ ⋮ ⋱ ⋮
D(i)
1,t0 D(i)

2,t0 ⋯ D(i)
n,t0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

nl×n

(9)

where the term Ii,j∊I0 (0 ≤ i ≤ n,0 ≤ j≤ nl|i, j ∈ N) represent the output acceleration of the sampling point i# at time step j# for the
intact scenario. While the term D(i)

j,k∊Di (0 ≤ i < m,0 ≤ j ≤ n,0 ≤ k≤ nl|i, j,k ∈ N) is the output acceleration of the sampling point j# at

time step k# for the damaged scenario i#.
In the field vibration test, the acceleration response under environmental excitation recorded at a total of n sampling points can be

expressed as follows:

Va =

⎡

⎢
⎢
⎢
⎢
⎣

v1, 0 v2, 0 ⋯ vn, 0
v1, ΔT v2, ΔT ⋯ vn, ΔT

⋮ ⋮ ⋱ ⋮
v1, T0 v2, T0 ⋯ vn, T0

⎤

⎥
⎥
⎥
⎥
⎦

q×n

(10)

where the term vi,j∊Va (0 ≤ i ≤ n,0 ≤ j≤ nl|i,j ∈ N) represent the recorded acceleration of the sampling point i# point at time step j# of
the structural prototype in its current state (in this study, the structural current state is equivalent to the intact state). The first subscript
of each element of the matrix Va denotes the sampling point serial number, and ΔT in the second subscript denotes the sampling
interval of the acceleration acquisition system. The sampling interval ΔT should be selected according to the field conditions and the
analysis accuracy and is not required to be equal to the calculation time step of the numerical model. The first dimension q of the matrix
Va represents the total amount of data at the test duration T0 and sampling interval ΔT.

Considering that the test duration and sampling interval of the field vibration test are different from the corresponding values in the

numerical model calculation, the field vibration test data must be cropped. Given a random integer i between 0 and
(

T0
ΔT −

t0
ΔT

)

, with i

as the starting point, a submatrix containing t0
ΔT rows is sequentially intercepted in the matrixVa. The newmatrix formed by resampling

this submatrix at Δt
ΔT row intervals is represented as follows:

Vʹ
a =

⎡

⎢
⎢
⎢
⎢
⎣

v1, i*Δt v2, i*Δt ⋯ vn, i*Δt
v1, 2i*Δt v2,2 i*Δt ⋯ vn, i*Δt

⋮ ⋮ ⋱ ⋮
v1, nl*Δt v2, nl*Δt ⋯ vn, nl*Δt

⎤

⎥
⎥
⎥
⎥
⎦

nl×n

(11)

The next step is to construct the dataset needed to train the 1D CNNs-based damage detection model. The calculated response of the
numerical model when the structure is in the intact state and the measured dynamic response in the field is element-wise summed to
obtain a new dataset (Vs) for simulating the dynamic response of the structural prototype under real operating conditions.

[Vs] = [I0] +
[
Vʹ
a
]

(12)

Each time slice of the dynamic response of all sampling points in I0, Di and V*
a is labelled by the corresponding scenario serial

number. For example, in the damaged scenario i#, total nl rows ∊Di are labelled as category i. All labelled data and labels themselves
would then be normalized in intervals (− 1, 1) and one-hot encoded, respectively. The manipulated labelled data could be represented
as follows:

I*0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

NI1, 0 NI2, 0 ⋯ NIn, 0 1Column (n+1) 0 ⋯ 0Column (n+m)

NI1, Δt NI2, Δt ⋯ NIn, Δt 1Column (n+1) 0 ⋯ 0Column (n+m) 1

⋮ ⋮ ⋱ ⋮ ⋱

NI1, t0 NI2, t0 ⋯ NIn, t0 1Column (n+1) 0 ⋯ 0Column (n+m)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

nl×(n+m)

(13)

D*
i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ND(i)
1,0 ND(i)

2,0 ⋯ ND(i)
n,0 0Column(n+i) ⋯ 1Column(n+i) ⋯ 0Column(n+m)

ND(i)
1,Δt ND(i)

2,Δt ⋯ ND(i)
n,Δt 0Column(n+i) ⋯ 1Column(n+i) ⋯ 0Column(n+m)

⋮ ⋮ ⋱ ⋮ ⋱
ND(i)

1,t0 ND(i)
2,t0 ⋯ ND(i)

n,t0 0Column(n+i) ⋯ 1Column(n+i) ⋯ 0Column(n+m)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

nl×(n+m)

(14)
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Fig. 1. Workflow of the proposed safety-oriented damage localization framework combining simulated responses and on-site measured ambient
vibration responses.
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V*
s =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

nv1,i*Δt nv2,i*Δt ⋯ nvn,i*Δt 1Column(n+1) 1Column(n+2) ⋯ 0Column(n+m)

nv1,2i*Δt nv2,2i*Δt ⋯ nvn,2i*Δt 1Column(n+1) 1Column(n+2) ⋯ 0Column(n+m)

⋮ ⋮ ⋱ ⋮ ⋱

nv1, nl*Δt nv2, nl*Δt ⋯ nvn, nl*Δt 1Column(n+1) 1Column(n+2) ⋯ 0Column(n+m)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

nl×(n+m)

(15)

Total m − 1 damaged scenario datasets were spliced with datasets I*0 and V*
s along the vertical axis, named baseline and reference

dataset (Db&Dr), respectively. The 1D CNNs-based damage detection models that use these two data sets are referred to as the baseline
model and the reference model, respectively.

Db =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I*0
D*
1

D*
i

D*
m− 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

( nl*m)×(n+m)

Dr =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

V*
s

D*
1

D*
i

D*
m− 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

( nl*m)×(n+m)

(16)

In order to comprehensively evaluate the performance of the 1D CNNs-based damage detection model and optimize the model
architecture and corresponding hyperparameters, it is necessary to construct a test dataset containing the in-situ recorded ambient
vibrations and the results of numerical calculations for all scenarios, so as to simulate the real dynamic response of the Structural
prototype under the actual working conditions, and the construction process is as follows:

Da =
[
V*
s V*

s ⋯ V*
s

]T
( nl*m)×(n+m)

Dt = Db + Da
(17)

where Da represents stacking the matrix (V*
s ) m times along the vertical axis. The matrix Dt is the test dataset that incorporates the

numerically calculated dynamic response under the impact load excitation and the ambient vibration under the environmental
excitation.

Then, for the above-generated dataset, the Back Propagation (BP) algorithm is used to train the 1D CNNs-based SDD models.
Assuming that the baseline and reference models trained based on baseline and reference datasets, respectively, have different ac-
curacies in recognizing different damage scenarios, the final damage recognition results would be output as per the following equation:

Fig. 2. Geometrical details of the bridge with (a) a site photo and (b) the elevation map with cross-section views.
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

res = ω*f (b)out(xi) + (1 − ω) *f (r)out(xi)
ω = 1 for f (b)out(xi) ∊H
ω = 0 for f (r)out(xi) ∊L

(18)

where the term xi represents any input frame of measured dynamic responses. f (b)out and f
(r)
out represent the discriminant results of baseline

and reference models, respectively. The set H indicates that the baseline model performs more superior in this set of damaged sce-
narios than the reference model, and set L has the opposite meaning. The schematic diagram of the suggested methodology can be
illustrated in Fig. 1.

4. Case studies

In this section, a continuous beam pedestrian bridge located in Sanming City, Fujian Province was selected as the research object.
Firstly, the damage scenarios of the pile foundation were discretized into 10 typical single-pile damaged conditions and the intact
condition. Secondly, 11 FE. models for all damaged conditions were established by ANSYS software, respectively. Subsequently, the
natural frequencies and mode shapes obtained from the modal analysis will be used to verify the rationality of the pedestrian bridge’
FE models. Finally, the acceleration response of the measurement points, computed through transient dynamic calculation, will be
leveraged to analyze the impact of global structural damage of the pile foundation on the pedestrian bridge’s dynamic response.

4.1. Geometry of the pedestrian bridge

The superstructure of the continuous beam pedestrian bridge is a box girder made of concrete C50, and the substructure consists of
4 bridge piers, 5 bearing platforms, and 10 pile foundations, which are made of concrete C30, concrete C30, and concrete C40,
respectively. The box girder is 124.9 m long; the cross-section of bridge piers is 2 m long and 1.6 m wide; the bearing platforms have a
uniform size, 6.8 m long, 2.2 m wide, and 2 m high; the radius of pile foundations is 0.6 m. Details about the dimensions of the
pedestrian bridge can be found in Fig. 2.

4.2. Structural damage scheme

Structural damage will cause permanent, irreversible changes in physical properties, especially in the distribution of structural
stiffness, which can be utilized for damage identification. Predominantly, damage manifests as a reduction in the residual effective

Fig. 3. Pile foundation numbers of the pedestrian bridge from top view.

Table 1
Damage conditions setup.

Damage condition number Number of pile foundations with reduced stiffness

condition 0# none
condition i# PF i#

Remark: i in Table 1 represents an integer from 1 to 10, which corresponds to the pile foundation
number in Fig. 3.

Table 2
Summary of material parameters for numerical analysis.

Mass density, ρ (kg/m3) 2600
Elastic modulus of intact components, Ei (GPa) 40
Elastic modulus of damaged components, Ed (GPa) 10
Poisson’s ratio, ν 0.2
Damping ratio, ζ 0.05
Mass damping coefficient, α 0.031
Stiffness damping coefficient, β 0.078
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cross-sectional area, corresponding to a decline in structural stiffness. As such, following Saint-Venant’s principle, structural damage
can be modelled in numerical simulations by decreasing the elastic modulus of specific components. This approach is widely used in
the existing literature in the field of SHM [46,57–59].

In this study, the two pile foundations located at the end with a bridge pier (the left end) were set as PF 1# and PF 2#, the number of
pile foundations increased along the direction of the box girder, PF 9# and PF 10# were both located at the end without a bridge pier
(the right end). Other details about the settings were given in Fig. 3.

According to the idea of orthogonal experiments, complex global structural damage scenarios that may exist for pile foundations

Fig. 4. Finite element model of the pedestrian bridge in different views.

Fig. 5. Several FE models corresponding to different damage conditions, with the purple-colored component indicating a 75 % reduction in
stiffness. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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were reasonably simplified into 10 different monopile damage conditions and the intact condition. The damage condition settings were
shown in Table 1. The intact condition (condition 0#) indicated that there was no global structural damage (stiffness degradation)
appearing in the pile foundations of the pedestrian bridge. Condition i# meant that global structural damage only occurs in PF i#,
structural stiffness of the corresponding pile foundation was reduced to 25 % of its initial stiffness.

4.3. Numerical simulation

4.3.1. Material properties and modelling process
In this study, a total of 11 FE models of the continuous beam pedestrian bridge was created using ANSYS 19.2, the material pa-

rameters used in this simulation are summarized in Table 2.
The SOLID186 element is utilized for constructing the FE model, which is developed using a bottom-up, direct modeling approach.

This process involves the following steps: (i) defining single-cell box girder nodes, (ii) creating the single-cell box girder cross-section,
(iii) generating a single-cell box girder body, (iv) forming thin-walled pier bodys, (v) constructing bearing platform bodys, and (vi)
establishing pile foundation bodys. After these steps, the degrees of freedom (DOFs) of common nodes on the contact surfaces of each
body are coupled, and each body is meshed. Each pile foundation, bearing platform, bridge pier, and box girder are divided into 500,
400, 400, and 500 elements, respectively.

The FE model was shown in Fig. 4. Several FE models under different damage conditions were demonstrated in Fig. 5, and the
purple elements represent damaged pile foundations.

Fig. 6. Four-step loading scheme applied at the left end of the pedestrian bridge.

Table 3
First 10 orders of natural frequencies of the intact FE model.

Order Natural frequency/Hz Order Natural frequency/Hz

1 0.655 6 2.091
2 0.867 7 2.111
3 0.983 8 2.154
4 1.457 9 2.900
5 1.872 10 3.078
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4.3.2. Boundary conditions and load scheme
The validity of simplifying the complex interaction between pile foundations and soil by applying fixed constraints to the base of

the pile foundations has been confirmed in the literature [46], an approach that is also adopted in this study.
Sudden unloading loads, which are applied at the root of the upper flange of the left end of the box girder, are utilized to excite the

pedestrian bridge. Briefly, the loading scheme is divided into 4 steps. Firstly, the loads increase from 0 to 25 KN within 0.1 s and 5
substeps. Secondly, the loads decrease to zero in a ramp-like fashion over 1 × 10− 6 s within 50 substeps, which is done to fulfill the
convergence criteria of numerical calculations. Next, the third load step divided into 1000 substeps has a duration of 0.001 s while the
load is 0. Finally, the fourth step, lasting 4.5 s with 0.01 s for each substep, still has no applied load and represents the free vibration
process of the FE model of the pedestrian bridge. The loading position and detailed procedure are further demonstrated in Fig. 6.

Fig. 7. Comparison of the natural frequencies between the intact FE model in this study and Zhang’s work including calculated and measured
natural frequencies.

Fig. 8. The first four modes of the FE model of the pedestrian bridge: (a) overall lateral vibration, (b) overall torsional vibration, (c) overall
longitudinal vibration, and (d) overall torsional vibration.
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4.3.3. Dynamic characteristics verification
To verify the rationality of the pedestrian bridge’ FE models, modal analysis was performed using the FE model under the intact

condition. It needed to be emphasized that the first 10 orders of natural frequencies and modes were utilized as primary indicators.

(1) Natural frequencies

The first 10 orders of natural frequencies calculated via numerical simulation are listed in Table 3. In a previous study, to
investigate the evaluation method of vibration comfort of pedestrian bridges, Zhang et al. [60] conducted a substantial amount of field
tests and finite element simulations for vibration characteristics of RC continuous beam pedestrian bridges (PB).

The contrasts between calculated values (CV) of the natural frequencies in this study and those derived from the above-mentioned
study, measured values (MV) and CV of the natural frequencies from two-span and three-span continuous beam PB, are demonstrated
in Fig. 7.

Fig. 9. The five sampling points located at the center of the bottom surface of the bearing platform.

Fig.10. Layout of the arranged accelerometers for on-site ambient vibration measurements.
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Through contrast analysis, it can be seen that the first three orders of natural frequencies of the FE model in this work were
reasonably close to those MV and CV in Zhang’s study. In fact, the first-order natural frequency is also known as the predominant
frequency, which is often used as an important parameter for evaluating the rationality and effectiveness of FE models [61–63].
Although a slight increase in the parameter gap between the two studies is observed in the higher orders, the discrepancy in the natural
frequencies, caused by differences in the local structure of the pedestrian bridges, remains within an acceptable range.

(2) Modes

The first 4 orders of modes obtained through numerical simulation are shown in Fig. 8 and the remaining modes in the first 10
orders are given in Appendix A.

Regarding the modes, the figures indicate that the first four modes of the pedestrian bridge are respectively manifested as the
overall lateral vibration, overall torsional vibration, overall longitudinal vibration, and overall torsional vibration, while the fifth and
higher modes are mainly represented as independent local vibration. Indeed, the results are highly consistent with the first several
orders of modes of pedestrian bridges reported in Zhang’s research [60]. Additionally, the changing trend of the modes of the
pedestrian bridge structure from global vibration at lower-order modes to local vibration at higher-order modes, is quite similar to the
previous study on the vibration characteristics of high-pile wharf, which is also a kind of structure with similar pile foundations [46].

Therefore, the FE model established in this study for the pedestrian bridge is reliable and valid based on its dynamic properties
including natural frequencies and modes.

4.3.4. Sampling scheme
While it is relatively straightforward to obtain dynamic response data from any node of the FE models at any given time, the

acceleration response acquisition scheme of the FE model in this paper is designed to accommodate the practicality and accessibility of
sensor deployment strategies for field monitoring. Five sampling points, located at the center of the bottom surface of the bearing
platform, were selected to gather the acceleration responses. The distribution map of all sampling points of the pedestrian bridge can
be viewed in Fig. 9. The transient dynamic calculation process, which spanned 4.6 s, ultimately produced a total of 1479 substeps of
acceleration responses, with each substep containing components projected onto the three major axis directions (X, Y, and Z, repre-
senting the longitudinal, vertical, and lateral directions of the pedestrian bridge, respectively).

4.4. On-site ambient vibration measurement

The vibration response of the pedestrian bridge can be influenced by pedestrian movement, wind, and nearby traffic, which
significantly affects the model’s generalization ability in recognizing true cases. Hence, to capture the bridge’s response under ambient
vibrations, on-site measurements were taken using a configuration of five accelerometers, as depicted in Fig. 10. It is important to note
that in the prototype structure, the bearing platforms were buried beneath the foundation. However, due to the minimal response
difference between the simulated sampling locations and the junctions of the pier-bearing platform, which are considered a rigid body,
it is both effective and more convenient to position the accelerometers at the latter. For this study, 3D accelerometers DiViMeter
Env3.1 were utilized, and the installation of the five accelerometers is illustrated in Fig. 11. The acceleration response in the three
cardinal directions was recorded at a sampling frequency of 500 Hz over a total duration of four hours with the temperature variates
between 19℃ and 34℃, resulting in a raw data length of 7.2 × 106.

Fig.11. Demonstration of accelerometer installation with (a) the drilling process and (b) the installed accelerometer near the bearing platform.
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5. The adopted one-dimension convolutional neural network

5.1. A brief overview

Convolutional Neural Networks (CNNs) have emerged as powerful pattern analysis models, largely due to their unique parameter
sharing and automatic feature engineering capabilities. These networks have found widespread application in computer vision and
time series processing. In particular, 1D CNNs have demonstrated impressive performance in speech recognition, stock price pre-
diction, and text classification in natural language processing, among other areas. Essentially, these networks excel at capturing
temporal patterns and local features in sequential data.

It is observed that recent developments in DL have led to the emergence of numerous high-performance network architectures. In
unsupervised and semi-supervised learning, large-scale models like generative artificial intelligence have achieved remarkable
breakthroughs [64,65]. In supervised learning, traditional neural networks adapted with attention mechanisms have been widely
applied in damage recognition [66,67]. These successful applications rely on the accumulation of vast amounts of data and domain
knowledge. However, in the context of SHM and/or SDD of complex large-scale structures, obtaining structural responses of known
explicit damages is extremely costly or even unavailable in most cases, which results in a limited amount of data for training SDD
models. Given these constraints, the choice of 1D CNNs for SDD tasks is based on several factors. Firstly, 1D CNNs have demonstrated
promising results in analyzing sequential data, making themwell-suited for processing time-series sensor data. Additionally, compared
to more complex networks such as recurrent neural networks [68,69] or transformer-based networks [70,71], 1D CNNs offer a simpler
architecture and greater computational efficiency, which is advantageous for real-time or resource-constrained applications.

A typical 1D CNNs comprises an input layer, several hidden layers, and an output layer. The hidden layers are usually designed by
stacking various layers together, including convolutional layers, pooling layers, batch normalization layers, fully connected layers, and
dropout layers, among others.

5.2. Adopted architecture and hyperparameter optimization

In this study, the architecture with local convolutional blocks containing only one convolutional layer was tested, and the results
showed that this architecture’s model could hardly achieve accuracy beyond random guessing. Stacking multiple convolutional layers
can significantly enhance the network’s local feature engineering capability but also introduces a rapid increase in training weight
parameters, leading to model overfitting and reduced generalization ability. Based on these experiences, several candidate convolu-
tional units and overall network architectures are designed for comparison as demonstrated in Fig. A2 and Fig. A3 in the Appendix.
Finally, the overall architecture is determined by the best performance between them, as shown in Fig. 12. The currently employed
architecture, which features 10 hidden layers, is an optimized version of the one presented in our previous work [46], where we
describe the function of each type of layer in detail.

Fig. 12. Overall architecture of the established 1D CNNs trained by 1-timestep samples.

Table 4
Four datasets with different individual sample lengths.

Hyperparameter Lower limit Upper limit Granularity

Convolutional layer neurons 16 128 16
Kernel size 1 8 1
Learning rate 0.005 0.015 0.002
Momentum 0.5 1.0 0.1
Decay rate 0.0001 0.0005 0.0001
Dropout rate 0.1 0.5 0.1
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In addition, the impact of the structure of training samples on the performance of the models is also investigated. To this end, we
construct four datasets with different individual sample lengths, namely, 1-timestep, 2-timestep, 3-timestep, and 4-timestep. Each
timestep encapsulates acceleration components at five sampling points in three directions. It’s crucial to note that while the four
models share the same overall architecture, the parameters shown in Fig. 12 exclusively illustrate the model trained by 1-timestep
samples.

Besides, hyperparameters are optimized based on the model’s performance on the validation set. The main hyperparameters
include the number of neurons in convolutional layers, the size of convolutional kernels, learning rate, learning rate momentum,
learning rate decay, and the dropout rate of dropout layers. Specifically, the number of neurons in the convolutional layers is set to
decrease layer by layer from the input layer, then gradually increase after passing the middle layer, while the size of the convolutional
kernels is set to increase layer by layer. All hyperparameters are optimized using an orthogonal search strategy. The range of
hyperparameter optimization in this study is shown in the Table 4:

The training and validation processes are further elaborated in the following Section 6.3.

6. CNNs-based damage detection method

In this study, both simulated and measured acceleration responses are utilized to develop the proposed enhanced 1D CNNs-based
damage localization procedure.

Table 5
Four datasets with different individual sample lengths.

Group Forms of individual sample Number of samples Size of each sample

1 (ACCnspX, ACC
n
spY,ACC

n
spZ,⋯, i),n = 1 4950 15

2 (ACCnspX, ACC
n
spY,ACC

n
spZ,⋯, i),n = 1,2 2475 30

3 (ACCnspX, ACC
n
spY,ACC

n
spZ,⋯, i),n = 1,2,3 1650 45

4 (ACCnspX, ACC
n
spY,ACC

n
spZ,⋯, i),n = 1,2,3,4 1232 60

Remark: The left subscript sp represents the sampling points from 1 to 5, the right subscript (X, Y, Z) represent the direction of the acceleration
components, and the superscript n represents the number of the substeps in one sample.

Fig. 13. Detailed procedures of on-site measurement processing and the data fusion process: the yellow block shows the EOVs generated from the
raw measurement and the green block contains simulated responses at five sampling points under the intact condition, the red arrow means the
fusion operation. The fusion process of remaining damaged conditions has been omitted due to space constraints. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.)
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6.1. Different datasets construction

For the simulated data of each damage condition, the last 450 substeps of the total 1479 substeps of the time series have a more
significant change which corresponds to the free vibration stage after the sudden unloading. Next, these 450 substeps data within the
last 4.5 s are used to construct four different datasets demonstrated in Table 5 as Section 5 mentioned, for example, the individual
sample of group (1) consists of three acceleration components of all five sampling points in 1-timestep which result in a total of 4950
samples of the first dataset. The arrangement of each item in the individual sample has been illustrated in detail in Table 5.

6.2. Details of the data fusion process

The details of the data fusion process will be elaborately described in this section. Indeed, the acceleration response caused by
ambient vibration is usually two orders of magnitude smaller than those resulting from loading. However, ambient vibration is one of

Fig. 14. An example of the simulated response-EOVs fusion process: (a) EOVs of accelerometer 1# at three directions and (b) simulated responses of
sampling point 1# in the longitudinal direction and (c) fusion responses in the longitudinal direction.
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the most influential factors for the robustness and generalization of most DL models, especially those trained solely on simulated data.
This is crucial when these models are applied to real-world scenarios where EOVs must be considered [4,72,73]. To eliminate
drawbacks in previous work [46], the on-site measured acceleration response of intact prototype structure with ambient vibration is
processed as EOVs superimposed into the simulated acceleration, the processing procedures are summarized in Fig. 13. It should be
noted that the different levels of EOVs will undoubtedly affect the performance of the SDD model, however, due to budget constraints,
this study only utilizes short-term on-site measurements to account for the EOVs induced by ambient vibration.

The following describes the procedure for the simulated acceleration of SP SP 1# under condition 0#, although the remaining
operations are similar. Initially, the raw measured acceleration in the X direction from accelerometer 1#, subsequently denoted as
‘measured_acc1x’, is truncated at a random starting point to a sequence length of 22,500 (50 × 450). Next, ‘ambient_vibration1x’ is
derived by resampling the truncated fragment with a spacing of 50 and averaging it over five repetitions. Finally, this ‘ambient_vi-
bration1x’ is superimposed onto the ‘simulated_acc1x’, and the process is repeated for the three directions of all five sampling points. It
is crucial to emphasize that the 15 EOVs sequences differ within a single condition but are reused across different conditions.

For clarity, a specific example is provided in Fig. 14 to illustrate the fusion process of the simulated response with EOVs. Due to
space constraints, the remaining figures related to this operation are not included in this paper but are available upon request.

Fig. 15. Schematic of the K-Fold cross-validation.

Fig. 16. Training and validation accuracy curves of four baseline 1D CNN models in 100 epochs trained by simulated training sets with varying
sample lengths: (a) 1-timestep samples, (b) 2-timestep samples, (c) 3-timestep samples, (d) 4-timestep samples.
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6.3. The training and validation processes

As the schematic diagram shows in Section 3, the baseline model is trained by pure simulated data while the reference model is
trained by the fusion of simulated acceleration and ambient vibration with EOVs. Therefore, the following demonstration will be
divided into two parts:

(1) the baseline model based on pure simulated data

The total samples of all conditions are randomly split into 90 % and 10 %, as the training set and the testing set, respectively. The
entire training set is continually randomly divided into 90 % and 10 % as the training set and validation set during each iteration. In
this study, the initial value of the learning rate is set at 0.0001, then it is updated simultaneously within the training process. The batch
of the training sample is set as 128 and the training epochs are set as 100. The K-Fold cross-validation [74] is utilized in this process
with the brief illustration shown in Fig. 15. Moreover, the aforementioned processes are the same for the four datasets with different
individual sample lengths.

Fig. 17. Confusion matrixes of four baseline 1D CNN models tested on simulated testing sets with varying sample lengths: (a) 1-timestep samples,
(b) 2-timestep samples, (c) 3-timestep samples, (d) 4-timestep samples.
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(2) the reference model based on part-fusion data

Before proceeding with a detailed introduction, it is crucial to clarify that measuring the ambient vibration of intact structures is
relatively straightforward in engineering practice. For example, newly constructed structures are often regarded as intact objects.
Conversely, obtaining ambient vibration from structures with deterministic damage is considerably more challenging. Therefore, to
enhance the practicality of the proposed damage detection method, EOVs are only added to the samples of condition 0# (intact
condition) during the training and validation process. However, all categories of samples with EOVs are used in the testing process to
further validate the model’s performance in identifying damage, considering the interference factor of EOVs.

It is noted that the introduction of measured EOVs during the training phase essentially serves as a physical guide to the training
process for the SDD model, enhancing the model’s generalization ability during actual application.

Fig. 18. Confusion matrixes of four baseline 1D CNN models tested on fusion testing sets with varying sample lengths: (a) 1-timestep samples, (b) 2-
timestep samples, (c) 3-timestep samples, (d) 4-timestep samples.
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7. Results and discussions

7.1. Performance of baseline model on simulated data

The training and validation history curves of the four baseline 1D CNN models based on samples with varying lengths and the
corresponding confusionmatrixes on the testing sets are shown in Fig. 16 and Fig. 17, respectively. It can be observed in Fig. 16 that (a)
the first two baseline models perform better on the validation accuracy than the other two models within 100 epochs, in turn, 92.1 %,
91.3 %, 85.9 % and 86.2 %; (b) the first two models achieve relatively high accuracy within 10 epochs which faster than the other two
models and the over-fitting occurs during training of the last baseline model due to fewer samples shown in Table 4. On the other hand,
the confusionmatrixes indicate that the second baseline model shows excellent classification accuracy (95.09%) on the testing set than
the others (90.10 %, 87.73 %, 83.81 %). However, there are still some samples of damage conditions predicted as the intact condition,
this phenomenon called a false negative is a risk for SHM/SDD in engineering practice.

7.2. Performance of baseline model on fusion data

To further verify the robustness and generalization of the four baseline models, all fusion data introduced in Fig. 13 is used as the
testing set to obtain the following fusion matrixes listed in Fig. 18. It can be found that the overall testing accuracies of four baseline
model on fusion data are 54.10 %, 94.27 %, 91.73 % and 92.09 %, respectively. Except for the first baseline model which performs
poorly, the other three baseline models all behave well which indicates they are highly robust in identifying damage with EOVs.
However, the issue of false negative predictions persists.

7.3. Performance of reference model on part-fusion data

To optimally utilize the fusion data, four new reference 1D CNN models are established with the same architecture. These models
are trained on the partial fusion dataset, which comprises fusion data from the intact condition and simulated data from 10 damage
conditions. The rationale behind this approach is explained in Section 6.3. Similarly, the history curves and corresponding confusion
matrices for the partial fusion dataset are shown in Fig. 19 and Fig. 20, respectively. The training processes closely resemble those of
the baseline models, except for the last reference model, which exhibits severe overfitting leading to poor training and validation
accuracy.

Fig. 19. Training and validation accuracy curves of four reference 1D CNN models in 100 epochs trained by part-fusion training sets with varying
sample lengths: (a) 1-timestep samples, (b) 2-timestep samples, (c) 3-timestep samples, (d) 4-timestep samples.
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According to the confusion matrices, the overall testing accuracies of the four reference models on the partial fusion data are 90.73
%, 88.18%, 93.36%, and 19.18%, respectively. The performances of the first two reference models closely match those of the first two
baseline models. The third reference model performs significantly better in overall classification accuracy, but is prone to predicting
intact samples as damaged ones, resulting in a false positive rate of 23 %.

Finally, it is noteworthy that the false negative/positive rates of the last reference model are both 0. This suggests that it could be a
potent model for differentiating between intact and damaged conditions. Its notably low overall performance is attributed to over-
fitting, caused by a relatively small number of training samples.

7.4. Performance of reference model on full-fusion data

As the testing carried out in Section 7.2, the above four reference models are also tested using the full-fusion dataset, the confusion
matrixes are shown in Fig. 21. It is clear that the overall performance is unsatisfactory which could be explained by the fact that, only
the samples of intact condition fused with EOVs while the other samples are all pure simulated response, which results in the increasing
of the false negative results and more broadly dispersed wrong predictions.

However, a silver lining can be found in Fig. 21(d). The false negative/positive rates of the last reference model tested on the full-

Fig. 20. Confusion matrixes of four reference 1D CNN models tested on part-fusion testing sets with varying sample lengths: (a) 1-timestep samples,
(b) 2-timestep samples, (c) 3-timestep samples, (d) 4-timestep samples.
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fusion dataset are still 0, which confirms its competence in playing the role of a binary (intact/damage) indicator for the damage
identification task. Taking this into account, a novel two-stage robust strategy that combines simulated responses and on-site mea-
surements for damage detection in the RC pedestrian bridge is proposed in the subsequent section.

7.5. Proposed novel two-stage robust strategy for damage localization

As the schematic diagram indicates in Fig. 22, the entire process can be bifurcated into two stages. The initial stage detects the
presence of damage, while the subsequent stage identifies the damage location by classifying the damage conditions.

Firstly, independent fusion samples, each of a length of four timesteps, are utilized as input for the second reference 1D CNNmodel.
This model essentially functions as a binary indicator, segregating the samples into two categories: intact and damaged. As inferred
from the previous results, the presence of damage can be accurately determined due to the zero false negative/positive rate. This not
only mitigates the potential risks of erroneously assessing damaged structures as intact but also reduces the maintenance costs
associated with repairing structures wrongly evaluated as damaged. Subsequently, each damaged sample is divided into two equally
long samples, which are then evaluated by the updated baseline model sequentially. It is important to note that the updated baseline
model, which is a retrained version of the previous second baseline model, is based on a partially simulated dataset that only contains

Fig. 21. Confusion matrixes of four reference 1D CNN models tested on full-fusion testing sets with varying sample lengths: (a) 1-timestep samples,
(b) 2-timestep samples, (c) 3-timestep samples, (d) 4-timestep samples.
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samples of 10 damage conditions. The confusion matrix of the updated 1D CNN model, shown in Fig. 23, demonstrates an exceptional
overall classification accuracy of 97.2 %, marking a significant improvement over the results displayed in Fig. 18b.

Notably, most current research related to ML/DL-based VSDD for large-scale infrastructures focuses on validating the effectiveness
of the algorithms [39,41–45], while insufficient consideration has been given to the impact of EOVs from the real environment on such
approaches. The above results of this study indicate that the presence of EOVs significantly affects the performance of models trained
solely on simulated data, particularly in large-scale infrastructure structures. Furthermore, while a previous study [23] has taken into
account the impact of EOVs on damage detection performance, a crucial issue has been overlooked: this influence is not only reflected
in a decrease in identification accuracy, but also manifests in a significant increase in the false negative rate. Such an increase in the
false negative rate is unacceptable in practical engineering scenarios as it may lead to outcomes biased towards risk.

In conclusion, the proposed novel two-stage robust strategy for damage localization optimizes the use of on-site measurements,
effectively eliminates false negative/positive predictions, and significantly enhances the accuracy of damage condition identification.
Furthermore, the updated baseline 1D CNN model demonstrates substantial robustness and generalization ability when transitioning
from a pure simulated dataset to a fusion dataset with EOVs. It should be noted that this study only utilizes short-term on-site mea-
surements to account for the EOVs induced by ambient vibration due to budget constraints. The influence of different levels of EOVs on
the performance of the SDD model will be further investigated based on long-term on-site monitoring data in near future.

Fig. 22. Schematic diagram of the proposed novel two-stage model ensemble damage localization procedure.

Fig. 23. Confusion matrixes of updated 1D CNN for enhanced damage classification tested on full-fusion testing set.
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8. Conclusions

This paper introduces a hybrid damage localization framework based on 1D CNN for a reinforced concrete (RC) pedestrian bridge.
It combines simulated acceleration responses from validated finite element (FE) models under 11 orthogonal damage scenarios and
short-term ambient vibration measurements containing EOVs of an intact structural prototype. Following an intricate data fusion
process, four baseline/reference 1D CNNs models are trained and validated on both purely simulated and partially fused datasets
comprising samples of varying lengths. The framework culminates in a two-stage multi-model ensemble strategy for damage locali-
zation, with emphasis on safety-oriented, enhanced identification capabilities, and high robustness. The key conclusions are as follows:

(1) This study presents a 1D CNNs-based approach for the damage localization of a typical large-scale RC pedestrian bridge. The
results validated the feasibility of the 1D CNNs to automatically learn damage-sensitive features directly from the raw accel-
eration response data with short-term measured EOVs. Consequently, the proposed framework holds considerable promise for
the real-time SHM of civil infrastructures.

(2) The short-term ambient vibration measurements from an intact structural prototype could effectively enhance the performance
of the 1D CNNs-based damage localization models trained on simulated responses.

(3) Two-timestep and four-timestep, serving as the individual sample length of the baseline/reference model, exhibit the best
performance in damage localization and identification, respectively. Notably, the optimal length of individual samples in
different cases needs to be further explored.

(4) The baseline/reference 1D CNNsmodels demonstrate superior performance on their specific test sets but are less effective on the
comprehensive fusion dataset, highlighting the limitations of using a single 1D CNN model for damage detection in real en-
gineering environments with short-term measured EOVs.

(5) The proposed multi-1D CNNs ensemble strategy for damage localization represents a novel and judicious approach, enhancing
the use of on-site vibration measurements in two significant ways:
(i) Safety-oriented Identification: It effectively eliminates false negative/positive predictions, reducing the risk of incorrect

evaluations and saving costs on unnecessary maintenance of intact structures;
(ii) Enhanced Damage Localization: It significantly improves the accuracy of localizing damage conditions, achieving up to

97.2 % accuracy, and the updated baseline 1D CNNs model demonstrates high robustness and adaptability when tran-
sitioning from a purely simulated dataset to a fusion dataset that includes short-termmeasured EOVs, effectively accounting
for real engineering environments.
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Fig. A1. The fifth to tenth order modes of pedestrian bridge.
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Fig. A2. The five candidate convolutional units.

Fig. A3. The four candidate overall architectures of the 1D CNNs.
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