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Abstract

Road users still encounter unnecessary delays due to inefficient traffic control in urban traffic
networks. These unnecessary delays are ever increasing and have large environmental and
economic consequences. In order to reduce these delays, one of the lower cost alternatives
to constructing new roads is to use the current infrastructure more efficiently by employing
advanced traffic signal controllers at urban signalised intersections.
In the Netherlands, most intersections are controlled using actuated controllers, which respond
directly to the current traffic demand obtained from vehicle detections at the intersection.
This causes the signal timing to be myopic and coordination between intersections is limited.
These features also make the actuated control method not suited for implementation with
in-vehicle information services such as Green Light Optimised Speed Advice (GLOSA), where
the signal timings of the traffic controller need to be predictable. A control method such as
Model Predictive Control (MPC) is well suited to resolve the shortsightedness and limited
coordination of the actuated controller. MPC is a model-based optimal control method that
uses a prediction model and optimisation to compute the best current signals, while still
taking the future evolution of the traffic system into account. MPC also provides many
opportunities for coordination between multiple controllers in a network, since a great deal
of distributed and hierarchical MPC methods have been developed.
In this thesis, a new Mixed Logical Dynamical (MLD) model of a signalised intersection is
developed for controlling traffic signals in urban traffic networks with the goal of minimising
vehicle delays. In addition, constraints are modelled for on-street application. The developed
model and constraints are then used as the prediction model of a MPC controller and applied
decentralised at an urban arterial intersection. A distributed algorithm is also developed to
coordinate the signals of intersection controllers in urban traffic networks.
Simulation results show that the mean delay time per vehicle of the developed Decentralized
Model Predictive Controller (DeMPC) is 24% lower than the greedy control method of Yunex
and only 8% above the actuated controller. The DeMPC outperforms both actuated and
Yunex’s method in terms of the total number of stops by 10% and 26%, respectively . For
MPC, the vehicle delay time is mainly affected by the control time step, mismatches between
the MLD intersection model and the real-world traffic system, and the accuracy of the ar-
rival prediction methods. For future work, the distributed coordination algorithm should be
evaluated by simulation and the mismatches between both intersection and arrival models
and the traffic system should be reduced. Additionally, the DeMPC should be evaluated in
combination with GLOSA.
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Chapter 1

Introduction
Urban road traffic networks are frequently not used to their full capacity as road users still
encounter unnecessary delays due to inefficient traffic control [2]. These unnecessary delays
result in stop-and-go driving, which causes the majority of emissions during urban trips [3].
During 2019, the road transport sector accounted for 20% of all European greenhouse gas
emissions [4]. Next to the environmental impact, delays increase travel costs with congestion
resulting in nearly EUR 100 billion per year within the European Union (EU) or 1% of its
GDP [5]. In the Netherlands, traffic jams increased by 17% during 2019 and the number of
registered vehicles and trips is ever increasing [6, 7]. It is thus clear that measures should be
taken to reduce the unnecessary delays encountered in urban road traffic networks as these
have large environmental and economic consequences.
There are several strategies to reduce delays in road traffic networks: constructing or designing
new roads, introducing road tolls, and promoting other means of transport [8]. Yet another
strategy is to use the current infrastructure more efficiently by employing a range of advanced
traffic control measures. Variable speed limits, for example, are used to increase highway
traffic flow by adjusting the speed limit to the prevailing traffic conditions and traffic signals
at highway on-ramps to ensure that the traffic flow can stay longer below its capacity. On
a larger scale, route guidance control measures are used to direct traffic away from highly
congested roads and distribute the traffic over the road network more evenly [9]. In urban
areas, however, the major bottleneck is the impaired flow at signalised intersections, where
traffic from conflicting directions needs to be regulated by traffic signal controllers. These
controllers do not only regulate the traffic flow through a single intersection, but have a
profound impact on the traffic network as a whole.
Traditionally, traffic signal timings are determined using fixed-time or actuated controllers.
Fixed-time traffic signal controllers are optimised off-line based on historical traffic demand
data, whereas actuated controllers respond directly to the current traffic demand obtained
from detectors located at the intersection. However, this makes the actuated control method
also shortsighted and the coordination between intersections is limited. Most of the signalised
intersections in the Netherlands are operated by actuated controllers.
In 2017, Partnership Talking Traffic was initiated by the Dutch Ministry of Infrastructure
and Environment in order to improve the accessibility, flow and road safety of the Dutch
traffic infrastructure [10]. In this partnership 30 private companies, including Siemens Mo-
bility (now Yunex Traffic), develop services for connected transportation systems. These are
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2 Introduction

transportation systems in which infrastructure-to-infrastructure, vehicle-to-infrastructure and
infrastructure-to-vehicle communication is enabled. One application in such a connected sys-
tem is in-vehicle information services such as Time-to-Green/Red or Green Light Optimised
Speed Advice. These services inform the road user on the timing of the current and future
traffic signals or the corresponding advised speed. In this way, drivers can anticipate a signal
change resulting in faster queue discharge times, higher platoon ratios, and smoother vehicle
profiles on urban roads. All of which leads to decreased vehicle delays and emissions [11].

To implement such services, the timing of the traffic controller’s signals need to be known
in advance, i.e., the timings need to be predictable. This requirement makes the actuated
control method not suited for connected transportation systems as its signal timings vary
depending on the vehicle detections in the vicinity of the intersection [12]. Consequently,
there is a high demand in the Netherlands for traffic signal controllers which produce signal
timings that are predictable for connected services to be implementable and flexible to adapt
to the current traffic demand. Additionally, there is also a high demand for coordination of
traffic signals in a network of intersections, since this can create green waves in which vehicles
can drive through several intersections without stopping. This further decreases the delay
and enhances the performance of the connected services [13].

Model Predictive Control (MPC) [14] has proven to decrease delays in urban traffic networks
[15, 16]. MPC is an optimal model-based predictive control method that uses a model to
predict the future evolution of the (traffic) system and an optimisation algorithm to compute
the best sequence of control actions (signals) over a prediction horizon. Only the first control
action in this sequence is applied to the system. In this way, MPC makes the best current
control action while still taking the longer term effects into account. Next to that, this method
can handle a user-defined objective function and hard safety constraints. MPC is thus well-
suited to resolve the issue of providing in-vehicle information services posed above.
To control a network of intersections, not one controller (centralised control) but multiple
controllers (multi-agent control) are used. Centralised control is not easily scalable, since
it has reliability issues and other disadvantages involving unavailability of control and data
access due to legal or commercial constraints [17]. Therefore, hierarchical, distributed, and
decentralised multi-agent structures are used to control traffic networks.

This thesis focuses on the development and on-street implementation of a distributed model
predictive traffic signal controller to reduce delays in urban traffic networks. The next chap-
ter will start with a background on traffic signal control by explaining the used terminology,
current traffic infrastructure, and basic traffic dynamics on urban signalised roads. In chap-
ter 3, the related work is provided to understand the state-of-the art on optimal model-based
traffic signal control in urban traffic networks. The conclusion of the related work together
with the problem posed within industry sets the problem statement, objective and scope of
the thesis. In chapter 4, the intersection model is developed and reformulated into a mixed-
logical dynamical system. Additionally, the constraints are formulated to enable on-street
application of the controller. In chapter 5, a distributed MPC algorithm is developed in or-
der to coordinate multiple intersection controllers in urban traffic networks. Thereafter, in
chapter 6, both decentralised and distributed controllers are implemented and the simulation
within Yunex’s simulation environment is setup. Finally, the thesis is completed with the
results and discussion of the decentralised MPC simulations. After which the conclusions and
recommendations for future work are formulated.
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Chapter 2

Background

In this chapter, the terminology, infrastructure, and basic traffic dynamics relevant for Traffic
Signal Control (TSC) are explained to provide the necessary background for the traffic models
discussed in the literature review and the chapters thereafter. In section 2-1, the used termi-
nology and basic concepts are defined. Next, in section 2-2, the current traffic infrastructure
in the Netherlands is explained in order to describe the available measurements and commu-
nication possibilities for TSC. Lastly, in section 2-3, the basic traffic dynamics in signalised
urban links is presented.

2-1 Terminology

In a traffic network, an intersection connects a number of links from different directions. The
path that a vehicle takes when it crosses an intersection from one lane in an approaching link
to a leaving lane is called an Origin-Destination (OD) pair or movement. Traffic signals control
these movements to ensure safe and efficient passage of vehicles and other road users. The
most basic controlled element of a traffic signal controller is a signal group, which is defined
as a set of traffic signals that always display the same colour. In Figure 2-1, an example of
the Dutch signal group coding scheme is depicted. A signal group usually coincides with a
movement, but movements can be combined into one signal group. For example, signal group
six in Figure 2-1 combines a left-turn and through-going movement. A pair of signal groups
is called conflicting when the paths of their movements cross each other in the intersection
area. This crossing is then called the conflict area of these two movements. The other basic
controlled element is a phase group1, which consist of a set of nonconflicting signal groups.
For example, signal groups ten and twelve can be combined into a phase group, since their
movements do not contain any conflicts.

The locations of four conflict areas are shown in Figure 2-1 for signal group pairs (2, 12), (2, 10), (6, 12)
and (6, 10). To guarantee safety, protected conflicts prohibit two signal groups to display a
green signal at the same time, as opposed to permitted conflicts, where signals can be green

1The Dutch TSC terminology uses signal groups and phase groups, however in the literature, signal groups
and phase groups are called phases and stages, respectively. In this thesis, the Dutch terminology is used.
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concurrently. Signal group pairs, such as (6, 10) and (6, 12), for example, are considered per-
mitted conflicts as they contain a turn movement and a trough-going movement [13]. A signal

Figure 2-1: Dutch signal group coding scheme of signal group numbers from 1 to 12. The
dotted arrows indicate the movement paths, while the bold arrows indicate the arrows painted on
the road at the intersection. The red dots specify the protected conflicts and the amber dots the
permitted conflicts.

group can safely switch to a green signal if all vehicles from the conflicting signal groups have
cleared the intersection. In this way, it is ensured that vehicles can safely enter and cross the
intersection without any collisions with the last vehicle(s) from the conflicting signal group.
Formally, this is guaranteed by the minimum clearance time, which is defined as the time
between the start of red for the conflicting (exiting) signal group and the start of green of the
succeeding (entering) signal group.

Figure 2-2: Cyclic operation of intersection traffic signals.

Lastly, traffic signals can be scheduled in a cyclic way, where each phase group can be green
at most once per cycle. Then, the most basic controlled variable is the green split, which
describes the duration of a green signal as a portion of the total cycle time of the intersection.
The cycle time is defined as the sum of the duration of all green splits and the time between
phase changes due to amber and minimum clearance times. An illustration of the cyclic
operation of three phases is shown in Figure 2-2. Additionally, one can also opt to control
the cycle time and the offset, which is the time difference between the start of the cycle
and the start of a phase. Offsets are mostly used to enable coordination between between
neighbouring intersections. Traffic signals can also be scheduled in an acyclic way, where no
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2-2 Traffic Infrastructure 5

predefined cycle or signal sequence is set. Then, phase or signal groups switch to green at any
given moment in time (taking into account the constraints posed by conflicting movements).

2-2 Traffic Infrastructure

The road traffic infrastructure is well developed in the Netherlands, where urban roads are
thoroughly designed and maintained with many measurement detectors and communication
devices available. The measurement data used in this thesis are obtained from open loop
detectors and communication between intersection control applications is available through
Signal Phase and Timing (SPaT) messages. These available measurements and communica-
tion messages are described in subsection 2-2-1. In subsection 2-2-2, the connected traffic
infrastructure is briefly outlined together with its advantages and future available measure-
ments for TSC.

2-2-1 Measurements and Communication

Inductive loop detectors are embedded in the pavement and measure vehicle occupancy, which
denotes the state and duration of a vehicle detection. When a vehicle passes over a loop
detector, the inductance of the loop is briefly reduced and the state of the detector switches
from free to occupied to free. This sequence of states is then denoted as a detection of one
vehicle. When a vehicle stops within the area encompassed by the detector loop, the detector
state stays occupied. Next to vehicle occupancy, detectors can measure different vehicle types
and speeds depending on the size and configuration of the inductive loops [18]. The following
types of inductive loop detectors are used:

• The stop line detector is located at the stop line of an approaching intersection lane.

• The long queue detector is located 10 to 20 meters2 upstream of the stopline.

• The arrival line detector is located between 80 and 120 meters2 upstream of the in-
tersection. This detector is occasionally installed as a double loop detector, which can
detect speed. These detectors can be placed per lane or overlapping several lanes.

The location of the detectors can be seen in Figure 2-3, where a real-world intersection and its
detectors are depicted. Detector data is communicated through a binary Verkeerskundinge
Log (V-Log) protocol message [19]. SPaT messages are used to communicate the signal
timings, current state of the traffic signal controller, and info about the intersection [20]. The
message includes a great deal of information, but the most relevant for TSC is

• the intersection identification number, which is used to uniquely define each intersection
in a region,

• the status of the intersection controller, which indicates the operating mode of the inter-
section controller (e.g., fixed-time, actuated, flash amber signal or any other controller),

2 This is dependent on the speed limit and whether the signal group contains a turn or straight-ahead
movements.
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Figure 2-3: Location of stopline, queue, and arrival loop detectors (indicated by blue boxes) at
signalised intersection. Movements are indicated by the white arrows on the intersection area.

• the signal timings. This includes the current signal states accompanied by its minimum,
likely and maximum end time. It also includes the timings of the next signals. These
vary from the next three signals to the next cycle of phases depending on the type of
controller.

2-2-2 Connected Traffic System

As mentioned, the traffic infrastructure is already well developed in the Netherlands. For
example, most of the current traffic signal controllers are already capable of Infrastructure-
to-Infrastructure (I2I) communication of real-time data using the V-Log protocol.
Nevertheless, the Dutch government is transforming the current traffic light controllers to
intelligent traffic light controllers (iTLC)s, where Infrastructure-to-Vehicle (I2V) and Vehicle-
to-Infrastructure (V2I) communication is added [10]. In this new connected traffic system,
the intelligent Traffic Light Controller (iTLC) is connected to a cloud service via a telecom-
munication network and real-time data is exchanged on a national standardised platform.
Next to that, the hardware and software of iTLCs are decoupled, making software as a ser-
vice possible. Furthermore, all technology and communication protocols are standardised by
international ETSI standards and as a result identical for all suppliers of iTLCs, smartphones
and cars. This enables the use of more advanced traffic control methods, where commu-
nication is needed between intersections, and in-vehicle information services such as Green
Light Optimised Speed Advice (GLOSA). This is reflected in the iTLC’s supported use cases,
namely traffic flow optimisation via traffic signal control software and extra data, in-vehicle
information services (e.g., GLOSA), and prioritisation of special purpose groups such as public
transport and emergency vehicles.

The amount of active iTLCs in the Netherlands is currently around 550 of about 1000 ordered
[21]. However, another 1000 iTLCs are planned to be ordered [10]. In the Netherlands, there
are currently a total of around 5000 iTLCs. The location of the iTLCs can be seen in Figure 2-
4, where most of the controllers are located on provincial arterials.

It is expected that in the next few years, the availability of traffic data such as Floating Car
Data (FCD), which consists of GPS data obtained from smartphones, navigation systems,
and other GPS systems, will increase. This will provide opportunities to improve the perfor-
mance of traffic state detection and control greatly, even with low market penetration rates
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of connected devices [22, 23]. It is thus desirable to design a controller that is compatible or
extendable to deal with these extra measurements and services.

Figure 2-4: Location of active iTLCs on 15th of February 2022 in North- and South-Holland, the
Netherlands. Source [21].

2-3 Traffic Dynamics

In this section, a brief outline is given of the basic traffic dynamics in urban signalised links
to provide the necessary background for discussing the TSC methods. In subsection 2-3-
1, the basic microscopic and macroscopic traffic variables are described and the fundamental
relationship between traffic flow and density is explained. The different traffic conditions that
can occur in signalised links are discussed in subsection 2-3-2. Lastly, in subsection 2-3-3, the
queue dynamics at signalised intersections are explained together with the queue discharge
rate.

2-3-1 Fundamental Relationship

Traffic dynamics can be described on a microscopic and macroscopic level. On the microscopic
level, vehicles are described individually by basic variables such as speed, headway and space
headway. The space headway is defined as the distance between a vehicle and its leader,
including the length of the vehicle, i.e., the distance from the rear bumper of the leading
vehicle to the rear bumper of the following vehicle. The headway is defined as the time it
takes for the vehicle’s front bumper to reach the position of its leader’s rear bumper [13].
Variables on a macroscopic level do not describe individual vehicles, but describe aggregated
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variables, such as flow, density and average speed per road section. Naturally, there exists a
relationship between each of the macroscopic and microscopic variables, which is summarised
in Table 2-1.

Table 2-1: Microscopic and macroscopic variables and their relationship (Bar above a variable
indicates mean).

Microscopic Symbol Unit Macroscopic Symbol Unit Relation

Headway h s Flow µ veh/h µ = 3600
h̄

Spacing s m Density k veh/km k = 1000
s̄

Speed v m/s Average speed u km/h u = 3.6v̄

There also exists a relationship between the three macroscopic variables, namely, that the
flow, µ , is proportional to both the density k and the speed u: µ = ku. This relationship is
called the fundamental relationship and is depicted in the fundamental diagram of Figure 2-5.

Figure 2-5: Fundamental diagram.

From this figure, it can be derived that vehicles travel at free-flow speed at low densities.
When the density increases, the speed of the vehicles starts to decrease, increasing the den-
sity of the road segment. When the density reaches the critical density, the road segment
reaches its saturation capacity, which is the maximum flow rate that can be maintained on
that road segment. When the density further increases beyond the critical density, conges-
tion appears and the flow decreases with further increasing density. The jam density is equal
to the maximum number of vehicles that can be stored in a road segment. When the jam
density is reached, the speed is zero and the maximum holding capacity of the road segment
is attained.
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Since real traffic data is scattered, different approaches have been taken to represent the fun-
damental diagram. Over the years, many mathematical expressions have have been proposed
for the fundamental diagram. For example, there exist triangular shapes or shapes called
inverse lambda, which also take the capacity drop after a bottleneck into account [13].

2-3-2 Traffic Conditions

In an urban signalised link, three traffic conditions can be defined [24]. The traffic condition
in which a queue can still be emptied during one green signal is called the understurated
condition. Here, a coupling exists between upstream and downstream intersections as an
increase in the outflow of an upstream intersection can lead to a change in the outflow at
a downstream intersection [2]. This can result, depending on the traffic signal controller
employed, in the formation of green waves, where vehicles can progress through successive
intersections without stopping. In the saturated condition, queues cannot be fully emptied
during a green signal resulting in a residual queue, but queues do not propagate upstream.
Thus, in the saturated condition, the outflow of both upstream and downstream intersections
is the same. In oversaturated conditions, queues do propagate upstream and potentially spill
back and block the exiting vehicle at the upstream intersection. Here, a coupling between
downstream and upstream intersections exists as an increase in the outflow of a downstream
intersection leads to a change in the outflow at an upstream intersection.

Coordination of Traffic Signals

Coordination of traffic signals between intersections is a complex task. Traffic flows show
nonlinear and stochastic dynamics, which are coupled between intersections in an urban
network. Additionally, driving behaviour and traffic demand changes over time and depends
on a multitude of factors (e.g., weather, time, behaviour of other drivers, behaviour of the
traffic signal controller etc.).
Considering the above definition of traffic conditions, coordination between intersections is
most necessary in undersaturated and oversaturated conditions. However, when the traffic
demand is very low (e.g., at night), not much coordination is needed. When intersections are
located close to each other (within 800 meters), the signal timings of an upstream intersection
have a large influence on the downstream traffic state and vice versa [25]. This originates
from the fact that vehicles leaving an intersection travel in a platoon that slowly disperses
as it flows further downstream [13]. Lastly, the more flexible the control signals are to the
traffic demand, for example in acyclic operation, the more difficult coordination of these
signals between intersection becomes, because of the increased amount of decision variables
in acyclic operation.

2-3-3 Queue Dynamics

The traffic flow dynamics at signalised intersections are largely described by the dynamics
of its queues. Queuing dynamics and vehicle trajectories can be displayed in space-time and
flow-density diagrams displayed in Figure 2-6. In this figure the different queuing conditions
for vehicles are displayed by zones A to C, with the stopline indicated by the green-red-green
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Figure 2-6: Shockwave dynamics at signalised intersection. Space-time diagram (left) and flow-
density diagram (right).

bar, of which the colour represents the colour of the traffic signal. In zone A, the vehicles
approach the intersection at free-flow speed and in zone B, vehicles are standing still in the
queue, whereas in zone C the vehicles are released from the queue and accelerating to free-flow
speed. Intuitively, the formation of queues due to a red traffic signal, results in a growing
queue tail in the upstream direction. These temporal and spatial queuing dynamics can also
be described by using shockwave theory [26]. The stopping shock wave at tail of the queue is
formed by the interaction between the arriving traffic and the stopped traffic. It begins from
the stopline at the start of the red signal and moves upstream with speed wA,B. During queue
dissipation, when a green signal is shown and when vehicles discharge until the saturation flow
rate µmax, a starting shockwave is formed at the head of the queue that moves in upstream
direction with speed wB,C . The speed of the shockwaves is determined from the fundamental
relationship and is equal to the difference in flow rate between the two zones divided by the
difference in density of the corresponding zones.

wAB = µA − µB
kA − kB

(2-1)

It should be noted that in Figure 2-6, the trajectories of the vehicles are simplified. In
reality, vehicle trajectories have more variation in the acceleration and deceleration due to
the different driving behaviours and vehicles. For example, in Figure 2-6, the deceleration of
the vehicles from free-flow speed to stand still in a queue is immediate. In reality, a smoother,
slower deceleration occurs.

The departure process after a signal signal switches from red to green at a signalised intersec-
tion is displayed in Figure 2-7, where the headway measured at the stopline of an intersection
is depicted per vehicle position in the queue. The headway of the first vehicles is longer,
because of the driver’s reaction and the acceleration limits of the vehicle. It can be seen that
the headway becomes constant after the fifth vehicle crosses the stopline [27]. This constant
headway is the saturation headway, which is the average headway that can be achieved by
a saturated stable moving queue of vehicles passing over the stopline [27]. When the signal
turns to amber, some vehicles still cross the stopline, but not the whole amber time is effec-
tively used. There is still some amber time that could be used to cross the intersection, but
drivers stop in front of the stopline during the amber signal if they can safely stop. Thus, the
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Figure 2-7: Average headway when signal switch from red to green in saturated traffic condition.

Figure 2-8: Queue discharge in saturated traffic condition.

combination of the longer headways at the start of the green signal and the partially used
amber signal constitutes to the ineffective use of the green signal. The effective green time
accounts for the loss at the beginning of green and the gain during amber and is illustrated in
Figure 2-8. Again, it should be noted that this is a representation of driving behaviour and
vehicles. In reality, variation exists within drivers, vehicles, weather conditions, etc.
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Chapter 3

Related Work

First, in section 3-1, a taxonomy is provided on the different features of traffic signal controllers
in order to provide the positioning of Model Predictive Control (MPC) within other types of
traffic signal control methods. Next, a brief introduction to MPC and multi-agent MPC is
given in section 3-2. Thereafter, the related work on distributed model-based traffic signal
control methods in urban traffic networks is discussed in sections 3-3 and 3-4.
This chapter will only investigate methods that use the current infrastructure and its available
measurements covered in subsection 2-2-1. In section 3-5, the problem statement will combine
the insights learnt from the related work with the problem posed within industry. This sets the
scope, objective and research questions of the thesis in the problem statement in section 3-5.

3-1 Taxonomy

Traffic signal control methods mainly differ on their type, structure, and the used traffic
model. In subsection 3-1-1, the types of controller are divided on how adaptable the deter-
mined traffic signals are to the prevailing traffic demand. Next, in subsection 3-1-2, a brief
description of traffic flow models is given. The controller structure relates to the level hi-
erarchy and the communication level between controllers in a network of controllers and is
discussed in subsection 3-1-3. Finally, the road network topology and road type are described
in subsection 3-1-4. These are used to describe the environment for which the controller is
designed.

3-1-1 Type of Traffic Signal Controller

As mentioned, the type of controller is categorised based on the flexibility of the traffic signals
to the current traffic demand. Three types exist, namely fixed-time, actuated, and predictive
traffic signal controllers.
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Fixed-time

Fixed-time controllers use a traffic model and optimise the signal timings offline for a spe-
cific traffic condition (e.g., high traffic demand) based on historical traffic flows. The more
advanced versions select a signal schedule from a set of predetermined schedules for a partic-
ular time (e.g. time-of-day or weekend/weekdays). Fixed-time traffic controllers operate in a
cyclic way, where the cycle time, split and order of the phases are the control inputs. Once
the optimisation is done offline, the controller is deployed on the street and the signal timings
repeat the same signal sequence every cycle. The disadvantage of the fixed-time controller is
that it uses historical data for the determination of the signal schedules. Since traffic demand
changes over time, the delay performance of these controllers degrades by 3-5% each year
[28]. Therefore, fixed-time traffic controllers need to be calibrated on-site and are employed
at intersections where the traffic demand is predictable [13]. Additionally, they are not adap-
tive to an unexpected short-term traffic demand change [25]. It is, however, relatively easy to
coordinate the signal timings of intersections as the optimisation can be executed offline for
a specific scenario and few control input variables need to be determined (i.e. phase order,
split, offset and cycle time).
The implementation of Green Light Optimised Speed Advice (GLOSA) works well in combina-
tion with fixed-time controllers as the signal timings do not change. Therefore, these timings
can be communicated reliably to the road users in advance. Some well-known fixed-time
controllers in industry are SIGSET [29], MAXBAND, MUTLIBAND [30] and TRANSYT
[31].

Actuated

The traffic signal timings of actuated controllers react in real-time to vehicle detections.
Actuated controllers can be configured in such a way that the order of the signal groups
is still fixed, but the duration of the active green signal group can vary between lower and
upper bounds, based on vehicle detections. In the second type of configuration, the order of
these green signals can be changed to give a nonconflicting signal group with the most traffic
demand a green signal as soon as possible. The active green signal group is extended or
terminated to clear the queue based on the speed limit, clearance times, minimum headway,
and the distance of the detector to the stopline of the signal group. Actuated controllers are
placed at intersections with unpredictable traffic demand and/or in (under)saturated traffic
conditions. Actuated controllers require a small computation time for determining the signal
timings, so they can operate with a small control time step of around 0.1-0.2 seconds. This
small control time step results in more efficient operation of the signals due to the smaller
discretisation of time. This waists less green time and the controller can react faster to vehicle
detections.
The main disadvantage of actuated control is that it determines its signals in a very responsive
manner by basing its signal timings directly on detections. Therefore, it is shortsighted as it
does not take into account the longer-term effects of its determined signals. On top of that,
most actuated controllers only take vehicle detections close to the intersection into account
(see detectors in Figure 2-3). Actuated controllers do not perform well in (over)saturated
traffic conditions, because the extension of the active green signal group always reaches the
maximum green time and the controller then operates on a fixed schedule. Road managers
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then decide to switch to a predetermined fixed-time plan tailored for high traffic demand.
Coordination between traffic actuated controllers is achieved such that a specific coordinated
signal group can be scheduled in time and other noncritical (non-coordinated) signal groups
can be forced-off or terminated in time. The length of the non-coordinated signal group is
limited to the duration of the predetermined split such that the coordinated signal group can
be given a green signal in time.

Predictive

Predictive traffic signal controllers determine their signal timing online based upon measure-
ments from multiple intersections and use a traffic model that predicts the future evolution
of the traffic flow. Predictive controller can be designed to operate in a cyclic way where the
cycle time, split and offset are optimised every two to ten minutes based on real-time detector
data and its prediction model. The most well-known predictive controllers in industry are
SCOOT [32], SCATS [33, 34], UTOPIA/SPOT [35] and TUC [36, 37]. Predictive controllers
can also operate in an acyclic way, where the signal timings are optimised every few seconds.
By basing the signal timings on predictions from a traffic model, the controller can determine
the signals that anticipate the future traffic flow. Therefore, predictive controllers produce
signals that take into account longer-term effects, which resolves the shortsighted control of
the actuated approach. The disadvantages of predictive controllers are the larger computa-
tion times required, the complex implementation code that needs to be developed, and, in
the case of more advanced control methods, road managers that are unfamiliar with this type
of traffic control [38].

3-1-2 Traffic Flow Models

Traffic models can be divided according to their level of detail in which they represent the traf-
fic system [39, 40]. The most detailed level is described by microscopic traffic models, which
specify the trajectories of each individual vehicle and their interactions with other vehicles,
both in the longitudinal and in the lateral direction. As mentioned, microscopic models deal
with variables like headway, spacing and speed. On the other hand, macroscopic models do
not describe individual vehicles, but describe aggregated variables, such as flow, density and
average speed, per road section. In mesoscopic models, the characteristics of both levels of
description are combined. They describe the average speed microscopically of small individual
vehicle groups and vehicle flow in aggregate terms such as in probability distributions. Queue
models also fit into this group of mesoscopic models. Microscopic models are mostly used
to control vehicle trajectories for use in lane-changing or car-following controllers, whereas
macroscopic and mesoscopic models are used for traffic control.
For predictive traffic controllers that use optimisation to determine the traffic signals, a consid-
eration needs to be made between the level of detail the model provides and the computational
complexity of the optimisation method [38].

3-1-3 Control Structure

The control structure describes the way in which one or more controllers are organised to
control a traffic network. This affects the authority and communication relation between
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controllers and their access to detector measurements and the control of traffic signals. The
different structures can be categorised under a single-agent control structure, where only one
controller is used, and multi-agent control structure, where multiple controllers are deployed
in a network [17].

Single-agent Control Structure

A centralised control structure contains only one controller that is able to determine all traffic
signals in the network and has access to all detectors. This is illustrated in Figure 3-1, where
the control agent represents the traffic signal controller, control actions the signal timings and
measurements the detector data. The other parts of this MPC block scheme will be explained
in section 3-2.

Figure 3-1: Centralised control structure. Source [17].

Centralised control structures yield the best performance, since all information of the network
is included in the model, but it has several major disadvantages [17]. The centralised control
structure is not easily scalable, because each time a new intersection needs to be added to
the controller, the whole centralised structure needs to be adapted and the traffic model has
to be replaced with an extended version, accompanying the extra intersection. Additionally,
the computation time of the centralised structure increases with the number of intersections.
Furthermore, the centralised structure also has reliability issues. If an error or failure occurs
in the traffic control system, the operation of traffic control within the network stops. Other
disadvantages involve unavailable control access and detector measurements, due to legal or
commercial constraints [41].

Multi-agent Control Structure

Dividing the problem of controlling traffic signals in a network into multiple sub-problems can
alleviate the disadvantages related to the centralised control structure [17]. Such a division
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lowers the computational burden as each local controller solves a smaller sub-problem sepa-
rately. This multi-agent structure is also beneficial if there is restricted control access to traffic
signals or unavailable detector measurements in some parts of the network, since local con-
trollers only require measurements from their part of the network. This type of structure also
increases reliability, because if one controller fails, the other ones are still operational. On the
other hand, multi-agent structures have a lower performance than the centralised structure,
because they do not contain all information of the network into their local model. There exist
three multi-agent control structures, namely, decentralised, hierarchical, and distributed.
In the decentralised control structure, depicted in Figure 3-2 (without the dashed arrows),
each controller only has access to its own traffic signals and detector measurements in their
particular part of the network and they do not communicate or coordinate with other con-
trollers. In a distributed structure, also shown in Figure 3-2 (including the dashed arrows),
the local controllers are able to communicate and/or coordinate with each other. This natu-
rally increases the computational and communication requirements, but it also increases the
overall network performance. Additionally, decentralised and distributed control structures
are easily scalable. No model needs to be replaced, only extra controllers need to be added
with a different configuration from the other controllers due to the configuration of the in-
tersections and links. There is no need to replace the model, only additional controllers with
different configurations from other controllers are required because of the configuration of
intersections and links.

Figure 3-2: Distributed control structure with communication (dashed arrow) and decentralised
control structure (without dashed arrow). Source [17].

In the hierarchical structure, shown in Figure 3-3, a higher level controller has authority over
the lower level controllers, in a manner that they can inform or coordinate the lower lever
controllers [17]. Specifically a higher level controller typically determines the constraints or
reference points for the lower level controllers, which are typically organised in a decentralised
or distributed manner. A hierarchical structure offers the possibility to make a trade-off
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between the high computational requirements of centralised structures and overall network
performance. It should be noted that the communication and traffic model design is even more
complex in a hierarchical structure than in the distributed or centralised control structures.

Figure 3-3: Hierarchical control structure. Source [17].

3-1-4 Network Topology and Road Type

Although traffic signal control is only applicable to signalised urban and arterial roads, for
completeness, the road type is also included. There also exist methods which incorporate
both a highway and traffic signal control methods into one integrated controller. The most
significant topology factor is the network for which the control method is designed for. The
network topology can range from an isolated single intersection to a complete network. An
arterial network consists of multiple successive intersections on a main road, where the demand
is higher, to which minor roads with lower traffic demand are connected. A grid network
consists of intersections connected in a grid topology with equal or variable distances between
the intersections. Naturally, the most realistic network topology is a real road network.
Methods can be tested in a simulated (real) network or in a real-world case study.

3-2 Model Predictive Control

In this section, a brief introduction to MPC and its advantages relating to Traffic Signal Con-
trol (TSC) is given in subsection 3-2-1. Thereafter, in subsection 3-2-2, a brief introduction
to multi-agent MPC is described. This will set up the categorisation used for the reviewed
methods in section 3-3 and section 3-4.
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3-2-1 Introduction to MPC

MPC is a model-based predictive control method that uses a prediction model subject to
constraints and optimisation to minimise a certain objective. This is done to determine a
sequence of control actions over a prediction horizon. Only the first action in this sequence is
applied to the system. At the next time step, the optimisation is done again, but the horizon
is shifted one time step in the future, this is called the receding horizon policy. This policy
is illustrated in Figure 3-4, where the objective function minimises the error between the
reference and the predicted output. A schematic view of the an MPC controller in a control
block scheme is depicted in Figure 3-5. With regards to traffic control, MPC has several
advantages [17, 15]:

• A user-defined objective function can be defined. Herein, multiple objectives can be
weighted against each other, such as minimising the delay and the number of stops.

• MPC can handle hard constraints on control inputs, states and outputs. This is useful
for TSC as safety constraints need to be satisfied.

• The receding horizon procedure gives MPC built-in robustness properties: MPC can
quickly react to disturbances and mismatches between the model and the real system,
since at each time step the initial conditions of the model are set equal to the current
measurements of the system. Additionally, MPC also makes the best current control
action while still keeping in mind the longer term effects.

• The predictive model can easily be replaced or adapted and few parameters need to be
tuned [14].

Figure 3-4: Receding horizon policy where k indicated the current time step. Source [42].

The disadvantages are that a prediction model has to be specified, because sometimes accurate
models are not available [42]. Additionally, an efficient and tractable optimisation method has
to be available. Therefore, a trade-off between computational complexity and modelling ac-
curacy needs to be made [15]. Model predictive control methods mainly differ in their control
structure, coordination, traffic flow model, and solution methods for the optimisation prob-
lem. Therefore, the methods will be discussed under these characteristics in the next sections.
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Figure 3-5: Schematic view of model predictive control. Source [17].

3-2-2 Multi-agent MPC

In Figure 3-5, a centralised control structure is shown, but there also exist methods for
multi-agent MPC. The methods in multi-agent MPC can be divided into two categories,
namely top-down and bottom-up. The first uses a model of the whole traffic network and
then decomposes this central problem into smaller sub-problems. The bottom-up approach
starts with a model of the sub-problem (i.e., starting with a decentralised controller) and adds
coordination separately.
Distributed MPC methods can also differ in the coupling source between different controllers
in the network (which coupling makes the overall system nonseparable: inputs, outputs,
states, objective or constraints), local controller information (strictly local or partially global),
iterative or non-iterative computation, cooperative or non-cooperative behaviour, serial or
parallel communication, synchronous or asynchronous timing of communication. The most
important theoretical feature is whether the methods guarantee optimality. If the method is
optimal, then the distributed method yields the same result and performance as the centralised
controller, typically after several iterations or satisfying several theoretical conditions [41].

In the next sections, only methods using decentralised and distributed control structures are
covered, since centralised structures have several inherent drawbacks regarding scalability,
reliability, computational complexity, and control access (see subsection 3-1-3). Hierarchical
control structures are also less scalable and not preferred by Yunex, since this structure makes
the coordination layer more complex with more communication and two different models re-
quired (see subsection 3-1-3). Ease of deployment and robustness to communication shortages
are important goals for Yunex in their development of traffic signal control software.

3-3 Top-down Networked Control

In this section, the multi-agent or networked MPC methods using a top-down approach are
discussed. As already mentioned, these methods will be described in terms of the used
traffic model in subsection 3-3-1, control structure in subsection 3-3-2 and finally the used
optimisation methods in subsection 3-3-3.
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3-3-1 Traffic Models

Many traffic models for use in optimal model-based traffic signal controllers have been de-
veloped over the years. The most well-known models are the stage-and-forward model [43],
S-model [44] and the cell transmission model [45]. Next to that, models from hybrid systems
theory are also used. These are all macroscopic traffic models, since they model the whole
traffic network.

Stage-and-forward Model

The stage-and-forward model [46, 43] describes the queue discharge flow of an intersection as
a continuous flow and averages this flow over each cycle. This transforms the discontinuous
traffic flow at an intersection into a continuous one, where the switches of the traffic signals
are not taken into account. Thus, queue spillback and queue oscillations due to signal switches
cannot be described and control decisions can only be implemented every cycle, which varies
from 40 to 120 seconds. Due to the assumption of constant traffic demand, this model
performs well only in (over)saturated traffic conditions. The control inputs are the green
splits within a fixed cycle time [46].

S-model

To overcome the disadvantages posed by the stage-and-forward model, S. Lin proposed the
S-model [44], which is able to describe the traffic flow in all conditions. Here, the queue
discharge flow rate is taken as the minimum of the number of queued vehicles, the saturation
capacity, and the holding capacity of the downstream links. The S-model also describes
spatial extent of queues by multiplying the number of vehicles in a queue by the average
vehicle length. Queue shockwaves are not described by the S-model and traffic dynamics
are still averaged within each cycle, so queue spillback and oscillations within the cycle still
cannot be described. The S-model is part of a class of discrete-time urban traffic models that
are sampled spatially into road segments equal to the link length between intersections and
temporally into sampling times equal to the cycle time.

Cell Transmission Model

In the Cell Transmission Model (CTM), a road segment is spatially sampled into cells of equal
length, which is mostly set to the travel length of a vehicle at free-flow speed. The CTM [45]
is a discrete time approximation of the LWR model [47], where it is assumed that the flow
is only a function of the density in the fundamental diagram. The dynamics within each cell
only depend on the previous cell. Each cell receives a number of vehicles from the previous
cell and sends the number of vehicles to the next cell. The sending and receiving number of
vehicles are determined by taking into account the vehicles going into the cell, the holding
capacity of the cell, the maximum flow rate and the backward moving shockwave. The CTM
is thus able to describe the traffic flow in all conditions and also describes the spatial and
temporal dynamics of queues, i.e., the shockwave dynamics. To model an intersection, merge,
diverge and signalised cells are defined. Several modifications to the CTM exits, such as the
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link transmission model [2] and the node transmission model [48], which is used to model
freeway traffic. Most of the MPC methods using the CTM average the dynamics per cycle to
transform the model into a model with real-valued control inputs and states. Then, flow rates
are send between cells, instead of the number of vehicles. The CTM can also be reformulated
into a linear model with discrete variables for the signal inputs and real-valued states [49].

Hybrid Systems Modelling

Yet another way to model urban traffic networks is to use models from hybrid systems theory,
which studies the behaviour of systems, where the dynamics can be characterised by a hybrid
of continuous or discrete time and a time-driven or event-driven evolution of the system states
[50]. The traffic flow at signalised intersections can be conveniently modelled as a hybrid
system, where the traffic flow is described by means of a time-driven model with continuous
states and the traffic signal dynamics are represented by a discrete-event model and discrete
states.

Recently, Di Liu et al. [51] formulated a multi-intersection traffic flow model as a switched
system, which allows the controller to operate in an acyclic way. Others used the hybrid petri
net formulation, where the vehicle flow is represented by a time-driven model and the influence
of the traffic signals as an event-driven model. Hybrid petri nets model the interplay between
these dynamics as an untimed, logical representation. This can be extended to a timed petri
net by requiring that the transition between the logical elements of the model has to be
executed within a certain time interval [50].
However, real-world implementation and performance of petri net models in traffic control has
been rated average [52]. Petri nets are more used for modelling, analysis, and simulation of
traffic systems and controllers. It is used, for example, to analyse behavioural properties, such
as liveliness, reversibility, reachability, and safeness, which assist in analysing and ensuring
safe and reliable traffic control [52].

3-3-2 Control Structure

In top-down networked control, MPC is first designed as a centralised control method where
the model describes the traffic flow dynamics of the whole traffic network. From this point of
view, centralised MPC can achieve optimal coordination on a network scale. This, however,
comes at a cost of longer computation times. Therefore, methods are developed that use a
distributed structure to make the traffic controller more scalable and less computationally
demanding.
The methods in top-down networked TSC all operate in a cyclic way, which is not preferred
as road users in the Netherlands are already used to the acyclic and flexible behaviour of the
traffic signal controller. Additionally, Yunex already has solutions that use cyclic operation.
Therefore, only distributed methods with potential for acyclic operation will be discussed.

In his PhD thesis, Negenborn developed an augmented Lagrangian-based distributed MPC
method where the overall network control problem for energy networks is modelled [53]. Since
the method can be applied to TSC, it is explained using traffic terminology. The overall
problem in Negenborn’s thesis is decomposed per intersection, where each local intersection
problem minimises its own delay and has interconnecting constraints with its neighbours, i.e.,
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the output flow of a neighbour must be equal to the input flow of the controlled intersection.
Then, the controller performs an iterative Lagrangian optimisation procedure, where the
local controllers have to agree on the value of the interconnecting variables (output and input
flow). More recently, Mendes [54] proposed a faster optimisation procedure using a binary
search algorithm for Negenborn’s method. This enabled it to be applied to systems with
binary control variables, in this case it could be used to model the traffic signals for TSC in
acylic operation. Opposite to the Lagrangian-based optimisation procedure, convergence to
the optimal solution is not guaranteed by Mendes’ method. Next to that, Lagrangian-based
distributed optimisation requires a lot of iterations and has slow convergence properties [54].
Additionally, there exist problems with non-convergence of the binary inputs [53].
If this method would be applied to TSC, the dynamics linking the sub-problems, i.e. link
dynamics between two intersections, become nonlinear, so the central problem becomes fairly
complicated to decouple. Specifically, the nonlinear link equation describing the arrivals at
a particular time step is based on the vehicles entering the link at that time step minus the
link delay. This link delay depends on the queue length, which in itself is again dependent
on the arriving and entering vehicles. This link equation has to be linear to decouple the
dynamics. One option is to make the link delay constant (based on a constant queue length),
another is to define different constant delays based on different constant queue lengths and
formulate a piecewise affine formulation of this equation [44]. Unfortunately, an extra binary
variable is introduced per specified delay in the piecewise affine formulation, which increases
the solution time.

The cell-transmission model [49, 45] can be directly formulated into a mixed-integer linear
programming problem, where the traffic signals are modelled as binary variables. This allows
for acyclic operation of the controller. To this end, Mehrabipour and Hajbaie [55], developed a
real-time distributed control method based on the cell-transmission model, where the resulting
optimisation problem can be solved within two seconds. This is done by decomposition of
the central Mixed-Integer Linear Programming (MILP), where most cells in the middle of
a link between intersections are omitted and replaced by dummy cells. This decomposition
results in a decentralised MILP problem per intersection. The central CTM model is used for
simulation in order to generate and pass critical information between intersections to account
for the omitted cells. In particular, the CTM simulation will generate information on the
number of vehicles passed between the omitted cells. This information will be passed to the
dummy cells of the decentralised problem to be used in the next optimisation step. Results
indicated the solutions found by the distributed approach where at most 1% different from
the solutions of the central problem and at most 5.7% below the theoretical upper bound
obtained by a relaxed MILP problem, where optimisation is done using real-valued inputs
which are then rounded to obtain discrete variables.

3-3-3 Solution Methods

When the models used are convex and quadratic, quadratic programming can be used. When
the models are nonlinear non-convex in nature, optimisation is done via multi-start local
optimisation methods such as sequential quadratic programming, interior point methods,
and evolutionary algorithms such as genetic algorithm [15, 56]. Solution methods of integer
optimisation problems will be discussed in ??
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3-4 Bottom-up Networked Control

In this section, the MPC methods using a bottom-up approach are discussed. These methods
start with the formulation of a decentralised controller and add communication separately in
order to obtain coordination. Therefore, only queue and vehicle arrival models are used, which
are discussed in subsection 3-4-1. Methods using decentralised and distributed structures are
covered in subsection 3-4-2

3-4-1 Traffic Models

In section 3-4-1, queue models are discussed, which model the effect of the traffic signals,
departures, and arrivals on the evolution of the queue. Thereafter, in section 3-4-1, the
arrival models are reviewed, which model the delay and platoon dispersion within a link
between two intersections.

Queue Models

Intersection queue models can be divided into two types, namely, vertical and horizontal
queue models. In the vertical queue model, arriving vehicles travel at free-flow speed until
the stopline, where they stop instantaneously and are added to a vertical queue. Vertical
queue models thus occupy no horizontal space. This is why they are often called point queue
models. A visual representation of vertical and horizontal queues can be seen in Figure 3-6.
Vertical queues can also be modelled in such a way that vehicles travel at free-flow speed until
the end of the queue then stop instantaneously and are added to the vertical queue. In this
case, the arrival prediction model needs to take into account the current queue length and
its dynamics. Vertical queue models thus cannot describe the shockwave dynamics of queues.
Horizontal queue models describe the spatio-temporal dynamics of queues, including the
schockwave dynamics, and have larger computational requirements [57]. Therefore, almost
all bottom-up MPC methods use a vertical queuing model instead of horizontal, which is
mostly relevant for modelling queue spillback and blocking effects (when a queue exceeds the
link length and blocks other traffic) in oversaturated conditions and to model the nonlinear
discharge dynamics of queues [57], described in subsection 2-3-3.

Figure 3-6: Vertical and horizontal queue models. Source[58].
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Arrival Prediction Models

Since bottom-up networked control methods start with a decentralised model, prediction
models are used to predict the arrivals at the intersection. This can be done using simple
rules such as dividing the free-flow speed by the distance between a far away arrival detector
and the stopline detector or by taking into account the shockwave speeds at the tail and head
of the queue. The latter has been developed in a recent paper by Chen and Sun [59]. Some
methods additionally use detector measurements and the signal timings of each upstream in-
tersection. These simple rules are chosen to make a trade-off between modelling accuracy and
computation time, since the models are included in the (distributed) optimisation methods.

Complex analytical models also exist in literature. The three most well-known are Lighthill
& Witham’s fluid dynamic traffic model [47], diffusion model of Pacey [60] and Robertson’s
platoon dispersion model [26]. These models all try to describe the progression of vehicle
platoons in links. An illustration of a platoon progressing through a link can be seen in Fig-
ure 3-7. Most of these complex analytical models are used in traffic controllers that optimise
the signals timings every 5 to 10 minutes. Robertson’s platoon model is the most recent
model and describes the progression of a platoon through a link by an empirical recursive
relationship. These models produce very accurate predictions, but a lot of parameters need
to be calibrated.

Figure 3-7: Platoon dispersion in a linke between two intersections in saturated traffic condition.
Source [61].

Recently, more complex arrival prediction models have been developed [62, 61]. These mod-
els range from stochastic arrival models or learnt prediction models using machine or deep
learning. To this end, Helmy [63], Van Senden [64] and Glastra [62], former Siemens Mobility
thesis interns, developed a short-term data-driven traffic flow progression model to predict
arrivals at the arrival loop detector of the controlled intersection. By using a data-driven
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model, no explicit assumptions have to be made on the link topography, driving behaviour,
number of exiting vehicles between links, etc. The method employs a type of recurrent neural
network, namely an Long Short-Term Memory (LSTM) network. This type of neural net-
work is often used in time-series forecasting applications, since conventional recurrent neural
networks have problems with exploding or vanishing gradients during back-propagation train-
ing on data with long-term dependencies [65]. Therefore, LSTM networks are designed with
different gates to decide which dependencies in the time series to keep and which to forget
or update. The LSTM method showed more accurate prediction performance, measured in
terms of the normalised root mean square error than Robertson’s model [63].

3-4-2 Control Structure

As mentioned, in the bottom-up networked control, the decentralised controller is first devel-
oped and then coordination is added separately. Therefore, in section 3-4-2, the decentralised
and distributed controllers are discussed and in the following section 3-4-2 only the coordi-
nation part of those controllers is covered.

Decentralized Structure

Most of the decentralised methods model the intersection with binary or integer control inputs
for the traffic signal colours and integer values for the queue, departure and arriving vehicle
variables. However, there exists some variation in terms of which switches are allowed to
reduce the number of variables that has to be taken into account during optimisation. The
controllers in OPAC [66] and PRODYN [67] both decide to either extend the current phase or
to go to the next phase. The cycle lengths and the sequences of the different phases remain
the same. These are the same decision variables used in actuated traffic signal control. The
only difference here is that a prediction model is used to anticipate arrivals more proactively
and that the optimal decision is made over a prediction horizon. COP [68] takes a different
approach by employing phase skipping. In this approach, the phases are still arranged in a
fixed sequence, but by allowing phase skipping, any phase sequence can be obtained. Van
Katwijk [57] took another approach, where a stage does not represent a single group but
a block of signal groups corresponding to the Dutch RWSC actuated control configuration.
Chen [59] uses a comparable NEMA [69] approach, which is used as a standard in the US.

Haddad et al. [70] formulated a steady- state control problem in which an isolated inter-
section is modelled as a discrete-event max-plus system. The optimal switching sequence,
which minimises the queue length, is obtained through solving a linear programming problem
analytically. For steady state control, it is assumed that the arrival and departure rates are
constant and so is the cycle length. De Schutter [71, 72] modelled the evolution of the queue
length at an isolated intersection as an extended linear complemantarity system. The authors
also derive suboptimal and relaxed problems which can be computed efficiently. Although
this formulation allows acyclic operation, constant average arrival and departure rates per
phase and continuous queue length were assumed. In general, the above methods by Haddad
and De Schutter focus on optimal control under (over)saturated traffic conditions at isolated
intersections. The authors do not provide a multi-intersection approach other than proposing
a complete decentralised control in traffic networks.
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Van Senden [64], a graduate intern at Siemens Mobility, developed a traffic signal controller
based on the self-organizing controller proposed by Lämmer [73, 74]. The controller is called
DIRECTOR, which stands for Data-driven Intersection and Road Environment Controller
for Traffic Optimisation in Real-time. The controller uses detector and signal data from
neighbouring intersections as an input to an LSTM neural network, which predicts the vehicle
arrivals at the arrival loop of the controlled intersection. These arrivals are added to a vertical
queuing model. The objective is to minimise the average delay per vehicle. Therefore, every
control time step, the controller gives a green signal to the phase group that has the maximum
cumulative predicted delay, taking into account the switching penalties for phase changes. In
essence, the controller can be said to be "greedy" in its determination of which signal to
schedule as only the phase with the maximum predicted delay is chosen. The controller thus
tends to allocate the green signal to the phase that has the longest queue length over the
prediction horizon. The controller does not use optimisation, but performs maximisation.
Therefore, not all possible signal timings are considered and an extension to a coordination
optimisation procedure is limited as the authors of the original paper intended the controller
to be solved decentralised. Strictly speaking, DIRECTOR is a distributed controller since it
receives information from its neighbours, but it is not designed to be extended to coordinate
with its neighbours. Further information about this method can be found in the thesis by
van Senden [64] or Glastra [62] and in Appendix A.

Distributed Structure

In the later stages of its development, PRODYN [67] adds communication exchange between
intersections to allow for coordination, thus resulting in a distributed structure. This is
achieved through the exchange of information regarding pending arrivals between the adjacent
controllers. The objective function of the local controller consists of a part that only depends
on the local states and an additional part that signifies the contribution of the outputs of
the local controller to the network. The variables in the second part are communicated by
a supervisor. The procedure is as follows. The current control actions are simulated by a
supervisor. This supervisor communicates the arrivals and additional variables to the local
controller. Then the local controller computes its optimal control signals and sends its outputs
to the supervisor. This is done iteratively until the control actions of the local controller do
not change any more.

Van Katwijk [57], proposed a microscopic coordination procedure for traffic signals and a
macroscopic coordination procedure for different traffic control instruments, such as ramp
metering and variable speed signs. The high-level coordination procedure is the following.
Upstream agents communicate their planned outflow to downstream agents, who calculate
the costs of the planned outflows on their performance. This cost is then communicated to the
upstream agents, who analyse if this cost outweighs their own locally optimised cost. If the
downstream cost is smaller then the own cost, the own performance of the upstream agents
can only be altered by regulating the inflow. This is done by incorporating the costs of the
downstream inflow into the cost of the upstream agents. The above procedure is iterative
until no changes in signal timings occur. The local controller developed by van Katwijk was
altered to not only incorporate predicted arrivals, but also information from downstream
agents. Simulations on an arterial road and a grid network found that the coordination
procedure is able to generate "green waves" and adapted to changing volumes and platoon
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ratios. Unfortunately, the exact microscopic coordination procedure, the addition of the
downstream cost into the local controller, and the specific results of the simulations are not
specified.

It should be noted that the methods described above were first developed 20 years ago and
only the first development of the controllers is shared in publicly available papers. Any further
developments were carried out internally within private companies. Therefore, not all other
distributed versions of the methods described in section 3-4-2, are discussed.

3-4-3 Solution Methods

In traffic signal control, the decision of which signals to implement can be formulated into a
general decision problem. This can be done to represent any integer optimisation problem.
The optimisation problem can then be represented by a search tree, where an optimal path of
decisions must be found over a prediction horizon. The most important approaches for finding
the (optimal) path of decisions in a decision tree are mixed integer (non)-linear programming,
constraint logic programming, dynamic programming, or heuristic search techniques [15].
Most of the bottom-up approaches use dynamic programming or mixed integer (non)-linear
programming. Heuristic search techniques include simulated annealing, random search, tabu
search, genetic algorithms, and neural networks [56]. These techniques obtain good near-
optimal solutions at reasonable computational costs. However, heuristic search techniques
cannot guarantee feasibility (i.e., satisfaction of constraints) nor optimality. The length of
the prediction horizon is one to two minutes. Most systems use an control time step of up to
5 seconds [75].
The main drawback of these integer optimisation problems is complexity, which is classified
as NP-hard. This means that the number of potential solutions of the integer optimisation
problem grows exponentially with the problem size and so does the computation time of the
optimisation. The problem size depends on the number of variables in the model, which in
turn depends on the level of detail of the model, the intersection topology, control time step,
control horizon, and the prediction horizon. However, the computational complexity is less of
an issue as optimisation solvers are getting faster and efficient as are processors. Nonetheless,
the computational complexity still grows exponential with the problem size.

3-5 Problem Statement

In this section, the insights from literature describe the opportunities within distributed
MPC for traffic signal control. This is combined with the problem of enabling in-vehicle
information services, described in subsection 3-5-2, in order to set the objective, scope and
research questions in subsection 3-5-3.

3-5-1 Insights From Literature

Coordination between intersections using actuated controllers is limited, due to its local in-
formation based on intersection detectors and its high flexibility to these detections [76].
MPC can resolve this issue by relying on prediction models and optimisation to take into

I.D.A. Seminck CONFIDENTIAL Master of Science Thesis



3-5 Problem Statement 29

account the predicted arrivals and the longer-term effects of the signal timings on the traffic
system. The performance and predictability of traffic signal controllers in a network of urban
intersections can be further extended by coordinating intersection controllers.

Most of the recent research regarding distributed MPC applied to traffic signal control is
focused on the top-down approach. Top-down networked MPC methods have a shown track
record of improving the traffic flow and delay compared to fixed-time controllers and perform
best in medium to (over)saturated traffic conditions [15]. The models used are macroscopic
models that are intended to represent not just one intersection, but the whole traffic network.
Coordination is achieved though various optimal distributed optimisation techniques. There-
fore, these methods provide good coordination between intersections (or areas) and some even
attain the same results as centralised MPC methods, after many iterations or when several
theoretical conditions are met. Top-down distributed MPC methods have a control time step
equal the cycle time and a prediction horizon of 5 to 15 minutes. Therefore, they are a less
predictable, but more flexible than the fixed-time controllers. This is illustrated in Figure 3-8,
where the discussed types of controllers are shown in terms of flexibility of the signal timings
to the traffic demand versus the predictability of these timings.
However, most of the methods use fixed cycle times and control the green splits within these
cycles, which is not preferred by road users and Yunex (see subsection 3-3-2). Additionally,
formulating a top-down distributed control problem with acyclic operation results in a dis-
tributed optimisation scheme with discrete inputs. This means that the optimisation problem
becomes an integer programming problem, further complicating the distributed optimisation
techniques.

Figure 3-8: Types of controllers compared in terms of flexibility to the current traffic demand
and predictability of the signal timings.

Decentralised MPCmethods are well developed for single intersections. They have comparable
performance to the actuated control approach in terms of delay and perform well in low
to (under)saturated traffic conditions. These methods operate in an acyclic way and use
queue and arrival prediction models. Coordination is mostly done through communication
of planned signals and coordination parameters. Bottom-up distributed MPC methods are
thus more predictable than actuated controllers, but also slightly less flexible to the traffic
demand.
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However, the bottom-up methods have been first developed 20 years ago and only the first
development of the controllers is shared in publicly available papers. Over the last decade,
however, a lot of new distributed bottom-up MPC methods have been developed [41]. This
provides opportunities to pursue the bottom-up approach with new distributed bottom-up
control methods.

3-5-2 Enabling In-vehicle Information Services

For the implementation of in-vehicle information services, such as GLOSA, the signal timings
need to be predictable for such services to perform well [63]. This predictability of the signal
timings only needs to be within a certain horizon, which is dependent on the speed of the
vehicle, the current state of the traffic signal and the distance to the intersection [77]. For
example, it was found that GLOSA was only effective when activated from a distance of
300 meters to the intersection at a speed limit of 50 km/h [77]. Most GLOSA methods
are implemented with fixed-time traffic controllers [63]. When implemented with actuated
controllers, GLOSA showed negligible effects on the number of stops and emmissions [12].
This originates from the frequently changing signal timings based on detections, which makes
it difficult to predict the signal timings in advance and communicate these timings to the
road users reliably [63].

When implemented correctly, GLOSA results in higher queue discharge flows as road users are
informed of the starting green signal. GLOSA also results in smoother vehicle speed profiles
along links as road users mostly follow the advised speed, depending on driver acceptance and
market penetration of drivers using GLOSA. This also results in lower platoon dispersion,
which further increases the efficiency of traffic signal control, as more vehicles can pass during
a green signal if platoons are denser. GLOSA therefore has more use in traffic conditions
from under-saturated to saturated demand, because drivers in oversaturated urban conditions
already drive slowly since the holding capacity of the road is almost reached. This can be
seen in the fundamental diagram of Figure 2-5, where the flow rate decreases once the critical
density is reached which corresponds to a saturated traffic condition.

3-5-3 Objective, Research Questions and Scope

In this subsection, the objective of the thesis is advocated after considering the findings
from literature and the implementation of in-vehicle information services. Then, the con-
trol problem with the optimisation objective and the hard and soft constraints for on-street
implementation is covered. Finally, the scope and research questions are discussed.

Objective

Predictability and flexibility of the signal timings are contradicting goals. To obtain the ideal
controller, as shown in Figure 3-8, the signal timings have to be predictable and adaptive
or flexible to the traffic demand. This controller would then use a highly accurate traffic
flow and intersection control model to describe the whole traffic network. Next to that, a
tractable optimisation method must be available to find the optimal signals in this highly
accurate model in real-time. To this day, this has not been the case. Therefore, methods
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have been developed for specific scenarios, however distributed MPC methods do make the
gap smaller to the ideal controller.

Considering the above discussed summaries from the literature and implementation of GLOSA,
the bottom-up distributed MPC method lends itself best for both goals of coordinating in-
tersections and enabling GLOSA. Bottom-up distributed MPC methods perform better in
(under)saturated conditions, which is also the best application use case of GLOSA. Next
to that, there exists a great deal of distributed MPC methods which enable coordination of
signal timings between intersections.
Therefore, the objective of the thesis is to develop, implement, and analyse a distributed
model predictive traffic signal controller to reduce vehicular delays in urban traffic networks.
This will be done using a bottom-up approach, where a decentralised version is first developed
and analysed and then communication and coordination is introduced to obtain a distributed
control structure.

The performance will be analysed in terms of delay, number of stops, and computation time
of the optimisation technique. Since the delay represents the difference between the free-flow
travel time and the actual travel time, it is a good measure to evaluate the performance of
the controller. Delays thus represent any effect the traffic signal controller has on the travel
time of vehicles. Number of stops is chosen as a performance indicator as more stops result
in more acceleration and deceleration, increased driver discomfort, and increased greenhouse
gas emissions on urban roads [63]. Lastly, since optimisation is used, it is useful to track the
computation time, since this gives an insight into how the method is extendable to different
kinds of intersection typologies and controller configurations, such as small time steps or
longer prediction horizons.

Control Problem Definition

The control objective of the thesis is to minimise the delay in an urban arterial network.
Next to the objective, several hard and soft constraints need to be satisfied in order for
the controller to be safe for on-street implementation and fair for all drivers. The first and
foremost hard safety constraint is that two conflicting signal groups cannot be given a green
signal at the same time. Next to that, a minimum intergreen time must be satisfied. The
minimum intergreen time is defined as the sum of the fixed amber time and the minimum
clearance time between conflicting signals groups. To ensure safety and that drivers have
enough time to react to a signal switch, a minimum duration of the red and green signal time
is also demanded for on-street implementation.

Next to safety constraints, fairness for the road users of the intersection must also be ad-
dressed. Ideally, to ensure fairness, the time each vehicle spends in a queue should be limited
such that drivers should not wait too long in a queue. This is called starvation and leads to
drivers violating the red signal. Therefore, vehicles cannot wait longer than the maximum
time without service, which represents the maximum wait time during red. Fairness can also
be incorporated into the objective function as soft constraints. However, road managers prefer
setting hard constraints on the minimum duration of the green and red signal times, and a
maximum duration on the wait time for each signal group [78]. The following control problem
summarises the objective, including the hard constraints posed by on-street implementation
of the controller. The delay is equal to the time difference between the time a vehicle takes
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to cross the intersection at free-flow speed and to the actual time it takes for the vehicle to
cross the section.

• Optimisation objective: Minimise delay

• Constraints:

– Minimum inter-green time
– Minimum green time
– Minimum red time
– Maximum time not served
– Signal group conflicts

Scope

This thesis focuses first on the development, on-street implementation, and analysis by sim-
ulation of a decentralised model predictive traffic signal controller to reduce vehicular delays
at urban intersections. Thereafter, the design of a distributed model predictive traffic signal
controller is developed for urban traffic networks and implemented for on-street application.
Unfortunately, due to issues with the simulation environment within Yunex Traffic, an anal-
ysis by simulation of the distributed version could not be carried out within the project time
frame. To make the project feasible within the time frame, only vehicular signal groups will
be used.

Research Questions

Since most of the distributed methods are older, a new intersection model is developed and a
distributed optimisation method is first adapted for use in TSC. The new intersection model
uses a vertical queuing model to compare the decentralised controller to DIRECTOR which
also uses a vertical queuing model. This will provide a fair comparison and an insight into
what the added benefit of optimisation is, which is valuable in industry as optimisation re-
quires complex modelling, optimisation solvers, and larger computing times than the actuated
control method. The decentralised controller will also be compared to the actuated controller,
currently most used in the Netherlands. This provides a well-known baseline of performance.
The first research question of this thesis can therefore be formulated as:

How does a decentralised model predictive traffic signal controller perform com-
pared to a greedy self-organising controller and an actuated controller deployed at
an urban arterial intersection in terms of average delay time per vehicle, number
of stops per vehicle and solution time of the used optimisation technique?

Moreover, several added features are investigated. Firstly, the decentralised controller is
simulated with the LSTM prediction method described in subsection 3-4-1. This is compared
to a linear arrival prediction model to assess if the linear prediction method, based on constant
link delay, achieves acceptable accuracy to be used as a link equation in top-down distributed
MPC methods. The second research question can be formulated as follows:
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What is the difference between a linear delay prediction arrival model and an
LSTM arrival prediction model when used in conjunction with a decentralised
MPC traffic signal controller in terms of average delay per vehicle, average number
of stops, and normalised root mean square error?

The decentralised controller is also simulated with two different control time steps to in-
vestigate the computation time if the model size grows. This also gives an insight into its
extendability to different intersection configurations and longer horizons.

What is the influence of using different control time steps in a decentralised MPC
traffic signal controller in terms of average delay per vehicle, average number of
stops, and solution time of the optimisation technique?
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Chapter 4

Decentralised Model Predictive
Control

This chapter starts in section 4-1 with modelling the dynamics of the queues, arrivals, and
constraints that are used in the prediction model of the model predictive controller. The de-
veloped model and constraints are then reformulated into a Mixed Logical Dynamical (MLD)
model. Thereafter, in section 4-2, the controller design is described in which the objective
function is formulated and the resulting control problem formulation including the optimisa-
tion objective, prediction model, and constraints is defined.

4-1 Modelling

First, the dynamics at urban intersections is formulated using a vertical queue model in
subsection 4-1-1. Then, in subsection 4-1-2, the used arrival prediction models are briefly ex-
plained. In subsection 4-1-3, the safety, fairness and initial condition constraints are modelled
in order to model the dynamics on the intersection area and enable on-street implementation
of the controller. In order to make the optimisation method more efficient, the queue model
and constraints are reformulated into an MLD system in subsection 4-1-4.

4-1-1 Queue Model

Since DIRECTOR uses a vertical queue model, the to be developed Decentralized Model Pre-
dictive Controller (DeMPC) will also employ such a vertical queue model. This is to provide a
fair comparison between the two methods and reveal the true benefit of optimisation by using
the same vertical queue model. A vertical queue model also has other benefits. As mentioned,
the prediction model used in Model Predictive Control (MPC) has to be formulated where
a trade-off has to be made between computational complexity of the optimisation technique
and the accuracy of the model in representing the real-world dynamics. The requirement of
acyclic operation of traffic signals requires modelling the signal switches at any time step over
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the prediction horizon, which leads to integer optimisation. Unfortunately, the computation
time of integer programming problems grows exponentially with the problem size. Therefore,
a vertical queue model is beneficial, because it has less variables than a horizontal queue
model [57]. Additionally, the decentralised intersection model should be designed to be com-
patible with coordination algorithms used in the distributed controller, which also adds extra
computation time due to a possibly larger model and/or iterations for seeking consensus.
However, it should be noted that computation time is not such a limiting problem anymore
due to faster solvers and processors [42].
When a signal group indicates a green signal, the number of leaving vehicles, i.e. departures,
can be modelled as the minimum of two terms, namely the sum of the number of cars waiting
in the queue plus the arrivals and the saturation holding capacity during the simulation
period. The departures leaving a queue, nd

s (k), during the simulation period [kTc, (k + 1)Tc),
where k indicates the control time step counter and Tc indicates the control time step, can
thus be described as

nd
s (k) =

{
0 if us(k) = 0
min

(
nq
s(k) + na

s(k), µsat
s Tc

)
if us(k) = 1, (4-1)

for all signal groups s in the set Si, which denotes the set of signal groups of intersection i.
The saturation flow rate (expressed in vehicles/second) is represented by µsat

s and the number
of queued vehicles is denoted as nq

s(k) with its number of arrivals as na
s(k). In Equation 4-1,

a traffic signal is modelled by a binary variable, us(k), where a green signal corresponds to
one and red to zero. The two terms in the min() operator correspond to undersaturated and
saturated traffic conditions respectively. Equation 4-1 is inspired on the BXL model by M.
van den Berg [79]. However, here, the dynamics are not averaged over the cycle time and
no oversaturated term is taken into account as the model is meant for undersaturated to
saturated traffic conditions. The queue is represented as a vertical queue and its evolution is
described by

nq
s(k + 1) = nq

s(k) + na
s(k)− nd

s (k). (4-2)
A graphical representation of the arrival, queue and departure variables at an intersection
can be seen in Figure 4-1.

Figure 4-1: Arrival, queue and departure variables for signal groups 2 and 3 at intersection.

The arrivals na
s are predicted at the location of the arrival loop detector by a Long Short-

Term Memory (LSTM) neural network. After the arrivals have been predicted, they are
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added to the queue. The vertical queue model is thus not placed at the stopline, but at the
the location of the arrivals loops. The LSTM neural network is trained to predict vehicle
arrivals at the arrival loop, since data of arrivals is only available at that location in the link
between intersections.

Several modelling assumptions are taken in the departure and queue modelling:

1. When in saturated traffic condition and a signal group switches from red to green,
vehicles depart immediately at the discharge saturation flow rate. The modelled flow
profile using the binary formulation for the traffic signal is illustrated for saturated the
traffic flow condition in Figure 4-2, where the actual flow profile is also shown.

2. Vehicles arriving at the end of a queue in simulation period [kTc, (k+ 1)Tc) are allowed
to depart in that same period, provided a green signal is indicated and the sum of the
arriving vehicles and the number of vehicles in the queue is smaller than the number of
vehicles that can leave during the saturated condition [44].

3. The arrivals are predicted at the location of the arrival loops after which they are added
to the queue.

Figure 4-2: Modelled and actual flow profile in saturated condition. Red, green and amber bars
indicate the signal group colour.

4-1-2 Arrival Prediction Models

In this subsection, the two arrival prediction methods will be explained. The first is an LSTM
neural network developed by previous interns and the second is the linear prediction method
based on a constant link delay.

LSTM Prediction Model

In this model, the arrivals are predicted by LSTM neural network first developed by N. Helmy
[63] and later improved upon by J.C. Van Senden [64] and T. Glastra [62]. The input matrix
of the LSTM model consists of the the following data: Day of week, time of day, number of
upstream departures from the neighbouring intersection, queue detections, number of arrivals
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arrivals and signal states. The input and the neural network architecture for one approaching
link to an intersection is depicted in Figure 4-4. The network consists of one LSTM layer
of 50 neurons, two fully connected layers of 50 and 100 neurons respectively and lastly an
output layer where the amount of neurons is dependent on the number of signal groups of
the approach. The fully connected layers have a tanh activation function and the output
layer has a linear activation function. The input data is gathered for the last 100 seconds,
i.e., from the previous time step (T = −1) up until T = −n, where n is the number of
time steps corresponding to 100 seconds. A neural network is trained per approaching link
and per prediction horizon. The location of the input detectors for one approaching link to

Figure 4-3: Location of detector inputs for arrival prediction. Source [62].

an intersection can be seen in Figure 4-3. For more information on the architecture of the
neural network, refer to the thesis by J.C. Van Senden [64]. For information regarding data
aggregation and preprocessing steps of the data, refer to the thesis by T. Glastra [62].

Figure 4-4: Input, output and LSTM architecture. Source [64].
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Linear Arrival Prediction Model

In the linear prediction model, the arrivals are calculated using a fixed link delay, based on
a constant free-flow speed which is set to the speed limit. This is done using the following
equation

na
s(k +Np) = pturn

s nd
ji(k −Dlink

j,i +Np) (4-3)

where pturn
s indicates the turning percentage of signal group s ∈ Si and nd

ji(k −Dlink
j,i + Np)

denotes the sum of the departures of neighbouring intersection j leading to intersection i at
time step k minus the link delay Dlink

j,i , which is defined as

Dlink
j,i =

⌊
Llink
j,i

vj,iTc

⌋
(4-4)

with link length Llink
j,i in meters and free-flow speed equal to the speed limit vi,j expressed in

meters per second. This arrival prediction model was chosen to investigate if it would obtain
an acceptable accuracy and performance for use in distributed optimisation techniques that
require decomposition of the link equation between two intersections. This link delay is also
used in the S-model for cyclic operation by S. Lin [44].

4-1-3 Constraint modelling

In order to represent the dynamics on the intersection area, several hard constraints need to
be defined on the timings of the binary variable us ∈ {0, 1}. These constraints are important
to guarantee safety and fairness for the road users and fulfil the on-street implementation
requirements. Unless specified otherwise, the following constraints all hold for time steps
k ∈ [0, Np − 1], where Np represents the prediction horizon of the model. Next to that, all
used symbols for signal groups belong the the set of signal groups of intersection i, i.e., signals
r, s ∈ Si.

Conflict Constraints

The first and foremost hard safety constraint ensures that two conflicting signal groups cannot
be given a green signal at the same time. This can formulated as∑

s∈Cn

us(k) ≤ 1 ∀ Cn ∈ C, (4-5)

where the conflict set C is composed of subsets Cn defined as

C := {Cn, n = 1, ...|C|}. (4-6)

It is important how this set of conflicts is defined. The set can be defined as containing all the
sets of pairs of conflicting signal groups. Using the intersection as illustrated in Figure 4-5a
and its corresponding conflicts in Figure 4-5b, the set C would then become

C = {{2, 5}1, {2, 6}2, {2, 11}3, {2, 12}4, {5, 8}5,
{5, 12}6, {6, 8}7, {6, 11}8, {8, 11}9, {8, 12}10} .

(4-7)
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However, there is a more efficient way to define the conflict subsets by combining the conflict
pairs into pairwise different subsets. Following the same example, the set would then become

C = {{2, 5, 12}1, {2, 6, 11}2, {5, 8, 12}3, {6, 8, 11}4} . (4-8)

This has the implication that fewer conflict constraints of Equation 4-6 need to be defined.
Additionally, it also has benefits when solving the optimisation problem using Mixed-Integer
Linear Programming (MILP). Using the formulation in Equation 4-8, the feasible region of the
relaxed linear programming problem in the branch-and-bound method is closer to the convex
hull of the original MILP. Then, integer feasible solutions are found at corners of the feasible
region. This leads to the reduction in branches as the solution of the linear programming
problem also satisfies MILP constraints. This is shown and proved by S. Göttlich et al. [80].

(a) Example intersection with numbers indicating sig-
nal groups.

(b) Symmetrical conflict matrix, where conflicts be-
tween signal groups are indicated with X and non-
conflicting signal groups with -.

Figure 4-5: Intersection and its corresponding conflict matrix

Minimum Green Time

The green signal must at least last longer than the minimum green time. If the green time is
too short, driver’s may violate the red signal. In more detail, if a signal switches from zero
at time step k to one at time step k + 1, then the next T gmin

s time steps should also be equal
to one. This can be represented by the following logical statement

[us(k) = 0 ∧ us(k + 1) = 1] =⇒ [us(k + 1) = . . . = us(k + T gmin
s ) = 1] (4-9)

The above can be ensured when the following constraints are satisfied

k+T gmin
s∑

τ=k+1
us(τ) ≥ T gmin

s (us(k + 1)− us(k)) ∀ k ∈ [0, Np − T gmin
s − 1] (4-10a)

Np−1∑
τ=k+1

us(τ) ≥ |T | (us(k + 1)− us(k)) ∀ k ∈ [Np − T gmin
s , Np − 1) (4-10b)
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with T = [k,Np − 1]. The minimum green constraints can be easily checked by filling in the
left side of Equation 4-9 and recalling that us ∈ {0, 1}. The minimum green constraints are
only implemented when the control time step Tc is smaller than than T gmin

s . The minimum
green time steps T gmin

s is defined as the minimum green time tgmin
s divided by the control time

step and then ceiled to the nearest integer. The minimum green time and control time steps
are both defined in seconds.

T gmin
s =

⌈
tgmin
s

Tc

⌉
(4-11)

Minimum Red Time

For the same reason as the minimum green time, the minimum red time is required. If the the
duration of a signal group is shorter than the minimum red time, drivers may think the traffic
signal is broken. The constraint can also be represented by the following logical statement

[us(k) = 1 ∧ us(k + 1) = 0] =⇒ [us(k + 1) = . . . = us(k + T rmin
s ) = 0], (4-12)

which can be modelled by the following constraints

k+T rmin
s∑

τ=k+1
us(τ) ≤ (T rmin

s + 1) (1− us(k) + us(k + 1)) ∀ k ∈ [0, Np − T rmin
s − 1] (4-13a)

Np−1∑
τ=k+1

us(τ) ≤ (|T |+ 1) (1− us(k) + us(k + 1)) , ∀ k ∈ [Np − T rmin
s , Np − 1) (4-13b)

with T = [k,Np − 1]. Again, the minimum red constraints can be easily checked by filling in
the left side of Equation 4-12 and recalling that us ∈ {0, 1}. The minimum red constraint is
only implemented when the control time step Tc is smaller than than T rmin

s . The minimum
red time steps T rmin

s is defined as the minimum red time trmin
s divided by the control time step

and then ceiled to the nearest integer.

T rmin
s =

⌈
trmin
s

Tc

⌉
(4-14)

Maximum Wait Time

Next to safety constraints, fairness for the road users of the intersection must also be ad-
dressed. Ideally, to ensure fairness, the time each vehicle spends in a queue should be limited
such that drivers should not wait too long in a queue. Unfair control can happen, for example,
when traffic demand is unbalanced such as on an arterial road, where the main road has a
high traffic demand and the minor road has a low demand. If in this case the objective is to
minimise the delay and there are no fairness constraints, then the vehicles on the minor road
will not receive a green signal and are kept waiting forever. This is called starvation and leads
to drivers violating the red signal. Therefore, vehicles cannot wait longer than the maximum
time without service or here described as maximum wait time. As mentioned, fairness can
also be incorporated into the objective function as soft constraints. However, road owners
prefer setting hard constraints on minimum duration on the green and red signal times and a
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maximum duration on the wait time. To avoid starvation a maximum wait time is imposed
and is implemented using the following constraints

k+Twmax
s +1∑

τ=k+1
us(τ) ≥ 1 ∀ k ∈ [0, Np − Twmax

s − 1] (4-15a)

Np−1∑
τ=k+1

us(τ) ≥ 1 ∀ k ∈ [Np − Twmax
s , Np − 1) (4-15b)

with T = [k,Np − 1] and where Twmax
s denotes the maximum time steps a vehicle can wait in

front of a red signal and is defined as

Twmax
s =

⌊
twmax
s

Tc

⌋
(4-16)

The constraint is thus only implemented if there is a red signal and there is at least one
vehicle waiting in the queue. Then the above maximum wait time constraint forces the signal
to be at least once set to one by the time the maximum wait time is passed.

Minimum Intergreen Time

When a signal group switches to green, the minimum intergreen time must be satisfied between
that signal group and all its conflicting signal groups. The minimum intergreen time is defined
as the sum of the fixed amber time and the minimum clearance time between every ordered
conflicting signals groups. The minimum clearance time and intergreen time are illustrated in
Figure 4-6. The minimum intergreen time is defined for each ordered pair of conflicting signal
groups, since the clearance time is dependent on the location where the movement paths of
the conflicting signal groups cross. The ordered conflict set Co is defined as all combinations
of two different conflicting signal group pairs. For example, in Figure 4-5b, every X in the
conflict matrix corresponds to one ordered conflicting signal group pair. The constraint on

Figure 4-6: Clearance time tcr,s and intergreen time tigr,s between two conflicting signals (r, s) ∈
Co. The green, amber and red bars indicate the signal group colours.

the intergreen time can be formulated as a logical statement as follows,

[ur(k) = 1 ∧ ur(k + 1) = 0] =⇒
[
us(k + 1) = · · · = us(k + T ig

r,s) = 0
]
∀ (r, s) ∈ Co (4-17)
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This can be modelled into the following two constraints

k+T ig
r,s∑

τ=k+1
us(τ) ≤

(
T ig
r,s + 1

)
(1− ur(k) + ur(k + 1)) ∀ k ∈

[
0, Np − T ig

r,s − 1
]

(4-18)

Np−1∑
τ=k+1

us(τ) ≤ (|T |+ 1) (1− ur(k) + ur(k + 1)) ∀ k ∈
[
Np − T ig

r,s, Np − 1
)

(4-19)

with T = [k,Np − 1] and where T ig
r,s denotes the minimum time steps that must pass between

the ending of conflicting signal r and the beginning of signal s. This is defined as

T ig
r,s =

⌈
tigr,s
Tc

⌉
(4-20)

Initial Conditions Constraints

The receding horizon policy of MPC, displayed in Figure 3-4, ignores past dynamics and only
takes the current initial conditions (obtained from measurements) and the prediction model
into account. However, in Traffic Signal Control (TSC), some information has to be known
about the past signal timings in order to ensure the minimum intergreen time, minimum
red, minimum green and maximum wait time are satisfied. Therefore, the initial condition
constraints take the last implemented signal timings into account and impose additional
constraints to the model dynamically. In order to maintain the minimum red time, the
difference in number of time steps between the current red time, trs, and the minimum red
time is defined as,

∆r
s =

⌈
trmin
s − trs
Tc

⌉
(4-21)

to formulate the following minimum red initial conditions constraint,

k+∆r
s∑

τ=0
us(τ) ≤ 0. (4-22)

The same can be done for maintaining the minimum green time using the difference in time
steps between the current green time tgs and the minimum green time in the following initial
condition constraint,

k+∆g
s∑

τ=0
us(τ) ≥ ∆g,i

s , (4-23)

where ∆g
s is defined as

∆g
s =

⌈
tgmin
s − tgs
Tc

⌉
(4-24)

Lastly and most importantly, the minimum intergreen time must be satisfied at all times.
Similarly to the previous constraints, this is done by tracking the time since the last green
(in seconds) of the conflicting signal tigr . This is then used in the following constraint

∆ig
r,s∑

τ=0
us(τ) ≤ 0, ∀ (r, s) ∈ Co, (4-25)
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where ∆ig
s is defined as

∆ig
s =

⌈
tigmin
s − tigs

Tc

⌉
(4-26)

Note that the initial condition constraints to maintain the minimum green and minimum red
time are only implemented when the control time step is larger then the minimum green and
red times.

4-1-4 Model Reformulation

If the previously developed queue model of Equations 4-1 and 4-2 and its constrains defined
in subsection 4-1-3 would be used as the prediction model in MPC, then the optimisation
problem would become nonlinear and non-convex. The min() operator of Equation 4-1 and
the dependency of this operator on the the traffic signal us ∈ {0, 1} introduce the nonconvex
and non-linear dynamics. Nonlinear and nonconvex optimisation problems can be solved
using nonlinear integer optimisation methods such as mixed-integer nonlinear programming,
genetic algorithms, simulated annealing, tabu search, or other heuristic algorithms [81]. These
optimisation methods all require a large number of evaluations of the model and the objective
function. This increases the solution time of the optimisation algorithm [82]. Nonlinear and
nonconcvex optimisation problems have an exponentially growing computational complexity
when the size of the model grows. The model size depends on its accuracy in describing the
real-world dynamics, the intersection topology, control time step, control horizon, and the
prediction horizon.
Therefore, the model is reformulated using the MLD framework introduced by Bemporad and
Morari [83]. This reformulation will result in a MILP programming optimisation problem,
where the complexity still grows exponentially with the problem size, but for these problems
very efficient solvers exist [56]. The MLD framework is developed by reformulating model
equations that combine physical dynamics, logical rules, and operating constraints [83]. This
fits the description of controlling traffic signals as the physical dynamics are here represented
by the traffic flow dynamics, logical rules by the traffic signal switches, and the operating
constraints on those signal switches.
The reformulation will be done by transforming the nonlinear nonconvex equations into mixed-
integer linear inequality constraints. The resulting model then constitutes of linear equations
subject to linear mixed-integer inequalities, in which both continuous and binary variables
are present. The formulation is inspired upon the reformulation of the by S. Lin [44], but
heavily adapted to fit this use case.

Used Rules for Reformulation

The following rules are used to reformulation logical statements into mixed-integer linear
inequalities involving both continuous variables x ∈ Rn and logical variables δ ∈ {0, 1}. The
explanation of the rules is entirely based upon the paper by Bemporad and Morari [83].

Consider the function f : Rn → R and assume that x ∈ X , where X is a finite set, and define,

M = max
x∈X

f(x), m = min
x∈X

f(x) (4-27)
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Theoretically, an over-estimate (under-estimate) of M (m) suffices for our purpose. However,
more realistic estimates provide computational benefits [84]. It is proven in [83] that the
following logical statement is equivalent to two mixed integer inequalities,

([f(x) ≤ 0]⇔ [δ = 1])⇐⇒
{
f(x) ≤M(1− δ)
f(x) ≥ ε+ (m− ε)δ (4-28)

where ε is a very small tolerance, typically the machine precision. Moreover, δf(x) can be
replaced by the auxiliary real variable z = δf(x), which satisfies [δ = 0] =⇒ [z = 0] and
[δ = 1] =⇒ [z = f(x)]. Then, z = δf(x) is equivalent to

z = δf(x)⇐⇒


z ≤Mδ
z ≥ mδ
z ≤ f(x)−m(1− δ)
z ≥ f(x)−M(1− δ)

(4-29)

Reformulation of Queue Model

Below, it is shown how the model can be reformulated as mixed-integer linear equations and
inequalities using the above equivalent reformulation rules. Recall, the number of departures
leaving a queue is defined as,

nd
s (k) =

{
0 if us(k) = 0
min (nq

s(k) + na
s(k), µs · Tc) if us(k) = 1, (4-30)

For readability, in the following reformulation, the dependence of the variables on the time
step k ∈ [0, Np − 1] and the signal s ∈ Si is not stated.
To start the reformulation define the following

a = nq + na

b = µTc

d = min(a, b)
(4-31)

and let
f1 = a− b. (4-32)

Next to f1, define the binary variable δ as

δ =
{

1 if f1 ≤ 0
0 if f1 > 0. (4-33)

where the undersaturated traffic condition corresponds with δ = 1 and the saturated traffic
condition with δ = 0. Then, d can be written as

d = b+ (a− b)δ = b+ f1δ (4-34)

Define the product in Equation 4-34 as

z = f1δ (4-35)
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According to the equivalent transformation rules of Equations 4-28 and 4-29, Equation 4-35
and Equation 4-33 are equivalent to the inequality constraints

f1 ≤M1 (1− δ)
f1 ≥ ε+ (m1 − ε) δ
z ≤M1δ
z ≥ m1δ
z ≤ f1 −m1 (1− δ)
z ≥ f1 −M1 (1− δ)

(4-36)

Then Equation 4-30 becomes,

nd =
{

0 if u = 0
b+ z if u = 1, (4-37)

The above equation can be written as

nd = (b+ z)u. (4-38)

Similarly to z = f1δ, the above equation can be reformulated into the following linear in-
equality constraints, where f2 = b+ z,

nd ≤M2u
nd ≥ m2u
nd ≤ f2 −m1 (1− u)
nd ≥ f2 −M1 (1− u) .

(4-39)

As defined in Equation 4-27, M1 and m1 are the maximum value and the minimum value of
f1, and M2 and m2 are the maximum value and the minimum value of f2. Since f1 = a − b
and f1 = b− z, to define maximum and minimum of these functions, the upper bounds and
lower bounds of a, b must first be clarified as

amin = 0 ≤ nq + na ≤ C = amax
bmin = 0 ≤ µ · Tc ≤ µTc = bmax

(4-40)

where all lower bounds are zero, since the traffic flow rate cannot be negative. The upper
bound for a is the maximum holding capacity of the approaching link, C. Naturally, the
upper bound for b is the saturation flow rate during the control time step. With the upper
bounds and lower bounds, the values for M and m can be derived as

M1 = max f1 = amax − bmin = C
m1 = min f1 = amin − bmax = −µTc
M2 = max f2 = bmax + zmax = µTc + C
m2 = min f2 = bmin − zmin = 0

(4-41)

Recall, the introduced variables are defined per signal s and dependent on time step k. For
clarification, the reformulated equations will be summarised in the formulation where they
are implemented. The min operator of Equation 4-30 is reformulated into

fs,1(k) ≤Ms,1(k) (1− δs(k))
fs,1(k) ≥ ε+ (ms,1 − ε) δs(k) (4-42)
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using the newly introduced auxiliary binary variable δs(k) and real variables fs,1 = nq
s(k) +

na
s(k)− µsat

s Tc, then zs(k) = fs(k)δs(k) is reformulated as

zs(k) ≤Ms,1δs,1(k)
zs(k) ≥ ms,1δs,1(k)
zs(k) ≤ fs(k)−ms,1 (1− δs(k))
zs(k) ≥ fs(k)−Ms,1 (1− δs(k)) .

(4-43)

Consequently, the dependency of the min operator on the binary traffic signal us(k) in the
departure model of Equation 4-30 is reformulated in

nd
s (k) ≤Ms,2us(k)
nd
s (k) ≥ ms,2us(k)
nd
s (k) ≤ fs,2(k)−ms,2 (1− us(k))
nd
s (k) ≥ fs,2(k)−Ms,2 (1− us(k))

(4-44)

using the newly introduced auxiliary real variable fs,2 = µsat
s Tc + zs and with Ms,1 = C,

ms,1 = −µsat
s Tc, Ms,2 = µsat

s Tc + C and ms,2 = 0.

Reformulation of Constraints

The constraints defined in subsection 4-1-3 can be directly integrated into an MLD formulation
as they are already formulated as linear inequalities.

4-1-5 Resulting MLD Model

In this section the general MLD prediction model description will be covered, after which this
description will be adapted to the developed reformulated model.

General MLD System

The general MLD system description is as follows,

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k)
y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k)
E1x(k) + E2u(k) + E3δ(k) + E4z(k) 6 g5

(4-45)

where the state vector x(k) is partitioned into a real-valued and binary component as,

x(k) =
[
xr(k)
xb(k)

]
, xr(k) ∈ Rnr , xb(k) ∈ {0, 1}nb , n = nr + nb. (4-46)

The controlled input is also similarly partitioned

y(k) =
[
yr(k)
yb(k)

]
, yr(k) ∈ Rnr , yb(k) ∈ {0, 1}nb , l = lr + lb, (4-47)
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as is the control input u(k)

u(k) =
[
uc(k)
ub(k)

]
, uc(k) ∈ Rmr , ub(k) ∈ {0, 1}mb ,m = mr +mb. (4-48)

The real-valued auxiliary variables are z(k) ∈ Rrr and binary auxiliary variables δ(k) ∈
{0, 1}rb . The matrices B2 B3, D2 and D3 are used to include the effects of the auxiliary
variables into the dynamics, while the inequality constraints are given through E1,E2,E3,E4
and the vector g5. All matrices are of appropriate dimension.

Reformulated MLD Model

In the case of the reformulated model of intersection i, the MLD system description is as
follows,

xi(k + 1) = Aixi(k) +B1,iui(k) +B2,iδi(k) +B3,izi(k) +B4,ivj,i(k) ∀ k (4-49)
E1,ixi(k) + E2,iui(k) + E3,iδi(k) + E4,izi(k) + E5,ivj,i(k) 6 E5,i ∀ k (4-50)
E6,iui(k) 6 E7,i (4-51)

The state vector is defined as
xi(k) =

[
nqi (k)
ndi (k)

]
(4-52)

with queue and departure vectors nqi (k), ndi (k) ∈ Rmi
+ and mi indicating the number of signals

of intersection i, mi = |Si|. The arrival state is here described as a separate exogenous
input variable vj,i = nai (k) ∈ Rmi

+ , since these are predicted by the LSTM neural network.
Subscript j indicates that the arrivals originated from neighbour j which is part of the set of
neighbouring intersections, j ∈ Ni. The binary control inputs are defined as u(k) ∈ {0, 1}mi

and auxiliary variables as δi(k) = δ(k) ∈ {0, 1}mi and zi(k) = z(k) ∈ Rmi
+ . The system

outputs the state of the intersection to the controller. This defines the output of the system
as y(k) = x(k). Equation 4-51 incorporates the safety and fairness constraints. These are
not defined per time step, but across the whole prediction horizon. Therefore the bold input
vector is defined over the whole horizon, ui(k) = [ui(0) . . . ui(Np − 1)]>. All matrices are of
appropriate dimension to the size of the vectors.

4-2 Controller Design

As mentioned, MPC can be formulated as an optimisation problem, where an objective func-
tion is defined subject to constraints. In subsection 4-2-1, the objective function will be
defined. Thereafter, in subsection 4-2-2,the optimisation problem is specified to give a formal
overview of the developed controller.

4-2-1 Objective Function

The objective function follows the objective of the controller defined in subsection 3-5-3,
which is to minimise the delay of the vehicles passing through the intersection. While the
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delay cannot be directly measured or calculated using the variables defined in the model, it
can easily be calculated by integrating the queue length over the prediction horizon. Since
vehicles incur most of their delay standing in a queue, minimising the queue length can be
used to approximate the delay. In Figure 4-7, the difference between the control delay and the
stopped or queue delay can be seen. The control delay is defined as is the difference between
the free-flow travel time and the actual incurred travel time. The queue delay only represents
the delay time incurred from standing in the queue.

With the prediction horizon length Np and discrete time step k ∈ [0, Np − 1], the objective
function of intersection i is given by,

Ji(k) =
Np−1∑
k=0

c>i n
q
i (k), (4-53)

where ci = [ ci,1 . . . ci,mi ]> and nq
i (k) = [ nq

i,1(k)) . . . nq
i,mi

(k) ]> denote the weight
and queue length vectors with mi the number of signals of intersection i. The objective
function of Equation 5-1 is a linear where every vehicle waiting within the queue is weighted
the same amount. A quadratic cost function can also be used, in which the longer queues
have a much higher cost than shorter ones, giving more priority to these longer queues. This
can be an alternative to setting hard constraints on the wait time to avoid starvation.

Figure 4-7: Space time diagram indicating control and queue delay. Figure adapted from [85].
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4-2-2 Decentralised MPC Problem

The developed prediction model, constraints and objective function is summarised in the
following optimisation problem of intersection i.

min
ui(k)

J(xi(k),ui(k)) =
Np−1∑
k=0

c>i n
q
i (k) (4-54a)

s.t. xi(k + 1) = Aixi(k) +B1,iui(k) +B2,iδi(k) +B3,izi(k) +B4,ivi,j(k), ∀ k (4-54b)
E1,ixi(k) + E2,iui(k) + E3,iδi(k) + E4,izi(k) + E5,ivj,i(k) 6 E5,i, ∀ k (4-54c)
E6,iui(k) 6 E7,i (4-54d)

with appropriately defined matrices and state variable xi(k) =
[
nqi (k), ndi (k)

]>
and ui(k), δi(k) ∈

{0, 1}|Si|, zi(k) ∈ R|Si|
+ , xi(k) ∈ R2|Si|

+ and control inputs ui(k) = [ui(0) . . . ui(Np − 1) ]>. All
other bold variable are also defined over the prediction horizon in the same manner as ui(k).
By combining the variables, the above problem formulated as an MILP problem with appro-
priately defined matrices,

min
ui(k)

c>i n
q
i (k) (4-55a)

s.t. Fiξi (k) ≤ Gi (4-55b)

with ξi(k) =
[

ui(k)︸ ︷︷ ︸
Control variables

,nqi (k),ndi (k)︸ ︷︷ ︸
State variables

, δi(k) zi(k)︸ ︷︷ ︸
Auxiliary variables

, n̂ai (k)︸ ︷︷ ︸
Exogenous inputs

]>
.
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Chapter 5

Distributed Model Predictive Control

This chapter directly starts in section 5-1 with the controller design, since the Distributed
Model Predictive Controller (DiMPC) is based on the bottom-up approach, no added mod-
elling step is required. In the controller design the objective function is formulated, in subsec-
tion 5-1-1. Thereafter, in subsection 5-1-2, the resulting distributed control problem formu-
lation including the optimisation objective, prediction model, and constraints is presented, as
well as the distributed coordination algorithm.

5-1 Controller Design

In subsection 5-1-1, the objective function of the Decentralized Model Predictive Controller
(DeMPC) is extended for use in a distributed controller. Next, subsection 5-1-2, the extended
objective function is used in the distributed Model Predictive Control (MPC) problem for-
mulation, together with the Mixed Logical Dynamical (MLD) and constraints developed in
chapter 4. The design of the DiMPC and its coordination algorithm is based upon the paper
by M. A. Müller et al. [86], where a cooperative controller is developed for dynamically de-
coupled systems with coupled cost or constraints. This fits the current use case, because the
DeMPC is not dynamically coupled to its neighbouring intersections. However, there is an im-
plicit coupling through the arrival predictions made by the Long Short-Term Memory (LSTM)
and linear arrival prediction methods.

5-1-1 Objective Function

If the DeMPC would be deployed at each intersection in a network, each controller would
minimise its own delay. However, in a network of intersections, the objective is to minimise the
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combined overall delay. This must be reflected in the design of the controller and therefore, the
objective function of the decentralised controller is extended. Recall, the objective function
of the decentralised controller for intersection i is given by

Ji (xi(k),ui(k)) =
Np−1∑
k=0

c>i n
q
i (k), (5-1)

with prediction horizon length Np, discrete time step k ∈ [0, Np−1], ci = [ ci,1 . . . ci,mi ]>

and nq
i (k) = [ nq

i,1(k)) . . . nq
i,mi

(k) ]> denote the weight and state variables with mi the
number of signals of intersection i. Notice that the objective function has subscript i meaning
that it takes into account the cost of its own state and signal variables. Therefore, the objective
function is dependent only on xi(k) and ui(k). This objective function is extended to include
more information of its neighbouring intersections as follows,

Jdist
i (xi(k),ui(k),xj(k),uj(k)) = Ji (xi(k),ui(k)) +

∑
j∈Ni

Jij (xj(k),uj(k)) (5-2)

The distributed objective function is depended not only on the states and signals from its
own intersection, but also on the states and signals from all its neighbours, i.e., xj(k),uj(k),
∀ j ∈ Ni, where Ni represents the set of neighbouring intersections of intersection i. The
extended objective function is comprised of the decentralised part, Ji (xi(k),ui(k)) and the
part belonging to the neighbours Jij (xj(k),uj(k)) which contains the states and inputs of
one of i’s neighbours j ∈ Ni

Ji (xi(k),ui(k)) =
Np−1∑
k=0

c>nqi (k) (5-3)

Jij (xj(k),uj(k)) =
Np−1∑
k=0

c>nqj(k) (5-4)

5-1-2 Distributed MPC Problem

Combining the objective function above with the model and constraint defined in chapter 4,
the distributed control problem Pdist

i becomes,

min
ui(k)

Jdist
i (xi(k),ui(k),xj(k),uj(k)) (5-5)

s.t. xi(k + 1) = Aixi(k) +B1,iui(k) +B2,iδi(k) +B3,izi(k) +B4,ivj,i(k), ∀ k (5-6)
E1,ixi(k) + E2,iui(k) + E3,iδi(k) + E4,izi(k) + E5,ivj,i(k) 6 E5,i, ∀ k (5-7)
E6,iui(k) 6 E7,i (5-8)

The distributed controller is thus not dynamically coupled, since the decentralised model is
used, but it is coupled through the objective function. The above problem will be solved
multiple times during each time step to achieve coordination between intersections. Below
the coordination algorithm is explained and summarised.
First, at the beginning of a new time step k ∈ [kTc, (k + 1)Tc), the initial conditions are
set for the states, xi(0), signals, ui(0), the exogenous inputs vji(k) ∀ k, which are the pre-
dicted arrivals over the prediction horizon, the number of iterations l and solution time of
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the distributed coordination algorithm tsol in (a). Then, in step (b), the extended part of the
cost function, Jij is calculated using the received queue lengths from all neighbours j ∈ Ni,
resulting from the most recent optimised signals and states of all neighbours. Next, all infor-
mation is obtained to solve the distributed problem Pdist

i in (c). After solving the optimisation
problem, the resulting planned queue lengths nq,li (k), obtained from the optimised signals,
are send to i’s neighbours in step (d). Thereafter, the iteration count is updated in (e) and
then step (b) is executed again.
These iterations are performed until the total solution time (including iterations) of the dis-
tributed controller, tsol is larger or equal than the limit on the solution time tlim or the
objective function of iteration l does not change compared to the previous iteration l − 1. If
one of these criteria is satisfied, the signals of the first time step of the last iteration u∗li (1)
are set to the desired signals of the traffic system usys

i (k). Finally, the time step counter is
updated and during the next time step the same coordination algorithm is performed. At
the same time the other controllers in the network also perform the distributed coordination
algorithm.
As mentioned, the coordination algorithm is inspired upon M. A. Müller et al. [86] and is here
first applied to Traffic Signal Control (TSC). The algorithm features iterative and parallel
computations with asynchronous timing of the communication. These types of multi-agent
features can be seen in Figure 5-1, where the arrows indicate the communication of variables
and the dotted lines indicate the implementation of the signal to the system. The black bold
line indicates that the agent is busy optimising.

Distributed coordination algorithm of intersection i

1. While tsol < tlim or Jdist,l
i 6= Jdist,l−1

i :

(a) Set xi(0), ui(0), vj,i(k) ∀ k, l = 0, tsol = 0

(b) Receive J lij

(
xlj(k),ulj(k)

)
= nq,lj (k) ∀ j ∈ Ni

(c) Solve Pdist
i → x∗li (k),u∗li (k)

(d) Send J lj

(
x∗li (k),u∗li (k)

)
= nq,li (k) ∀ j ∈ Ni

(e) Set l = l + 1 and go to (b).

2. Set usys
i (k) = u∗li (1)

3. Set k = k + 1 and go to 1.

The limit on the solution time should be set such that after that there is enough time to
implement the signal. A good starting point for this is 0.3 seconds, since this is the time it
takes to implement a signal to the traffic system in the worst case scenario [78]. The imple-
mentation of the DiMPC will be discussed in section 6-2.
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Figure 5-1: Computation, communication and implementation types between two agents. Source
[53].
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Chapter 6

Simulation Experiments

The simulation experiments will first describe the simulation design, implementation, and
parameter settings of the decentralised controller for a single arterial intersection in section 6-
1. In section 6-2, the same topics will be covered for the simulation of the distributed and
decentralised controllers applied to an arterial network.

6-1 Arterial Intersection

First, in subsection 6-1-1, the intersection, simulation scenarios, and control system will be
discussed. Thereafter, in subsection 6-1-2, the parameters of the controller are determined.
Finally an overview of the simulated scenarios is given in subsection 6-1-3.

6-1-1 Simulation Setup and Implementation

The design of the simulation experiments entails the modelling of the intersection in a simu-
lation network, determining the simulation scenario and traffic input demand, as well as the
implementation of the control system.

Simulated Network

Since the controller is developed for on-street application, it will be evaluated in a simulation
network that models a real-world network. The chosen intersection, named 201234, is located
in an arterial with multiple intersections between ’Drie Merenweg’ and the provincial highway
N201 in North-Holland. Intersection 201234 has three neighbouring intersections, namely,
201231, 201239, and 201295, located 315, 340, and 580 meters from intersection 201234,
respectively. The simulated network of the intersection and its neighbours can be seen in
Figure 6-1. The configuration and topology of the intersections were provided by the province
of North-Holland. The controlled intersection 201234 is depicted in more detail in Figure 6-
2, where the topology of the intersection including the vehicle signal group identification
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Figure 6-1: Simulation network of intersection 201234 and neighbouring intersections 201231,
201239 and 201295 on N201 in North-Holland.

numbers, and detector locations are also shown. The bike lanes and pedestrian crossings are
also modelled, but these are not used during the performed simulations. It should be noted
that intersection 201234 has double lane arrival detectors for all signal groups. These detect
around 10% less vehicles, because when two vehicles pass the double lane detector next to
each other, only one vehicle instead of two is detected by the inductive loop covering two lanes
[62]. More information about the modelling of the network and the parameter calibration of
the microscopic simulation model can be found in the thesis of T. Glastra [62].

Simulation Scenario and Traffic Demand

To reduce the difference between the real-world and the simulation even more, the date and
time of the simulation scenario and the input traffic flow demand will be based on real-world
data. Data sets were provided by the province of North-Holland, which contain detector
measurements and signal timings in V-Log protocol recorded in 2019 [19]. The simulation
control system is run in real-time. Therefore, it is not achievable within the project time
frame to simulate for multiple days or longer periods. For that reason, only one simulation
date will be selected. The chosen date of the simulation scenario is Tuesday 15th of October
2019. Firstly, a weekday is selected as the traffic flow during the week includes every traffic
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Figure 6-2: Topology, vehicle signal groups identification numbers and detectors of real-world
intersection in North-Holland modelled in Aimsun [87].

condition, whereas during the weekends traffic flow is much lower. Next to that, the date is
chosen such that the traffic flow at intersection 201234 is representative for most weekdays.
This can be seen in Figure 6-3, where the mean and 95% confidence interval of the traffic flow
at the stopline detectors of intersection 201234 is shown during the weekdays of the three
weeks after 15/10/2015. It can be seen that the simulation date is thus representative of
the traffic flow during the period of October 2019. Each simulation will be run from 4 am
until 10 am. During this period the traffic condition transitions from undersaturated up until
saturated, including the morning peak. The traffic input flow to intersection 201234 can be
seen in Figure 6-4 for every signal group.

Figure 6-3: Traffic flow at stopline detectors of intersection 201234 for 15/10/2019 and mean
and 95% confidence interval of the workdays three weeks thereafter in local time (UTC+2).
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The traffic demand sets the input flow for the simulation scenario. This can be done via
estimation of Origin-Destination (OD)-matrices for larger networks with scattered detector
data or via traffic states obtained from detector measurements [38]. Since the network is small
with no traffic sinks or sources present and detector data is made available by the province
of North-Holland, real-world upstream detections will be used as input for the simulation.
In this case, vehicles will be generated at the speed limit of 80 km/h at the location of
the stoplines of the neighbouring intersection’s signal groups leading to intersection 201234.
The generated vehicles are given a destination, which is determined using historical detector
data at the controlled intersection 201234.1 For example, when a vehicle is generated at
intersection 201231, the future arrival detections from the real-world data set are evaluated
to see if that vehicle arrives at signal group 7 or 8. The vehicle is then given a right turn
or a straight ahead destination, respectively. If the destination cannot be determined, then
the destination is based on a random choice function with a probability equal to the turning
percentage, which is calculated as a moving average during the simulation.

Figure 6-4: Traffic demand input of intersection 201234 on 15/10/2019 in local time (UTC+2).

Simulation Control System

A simplified schematic overview of the control system used for simulation is shown in Fig-
ure 6-5. In this scheme, all blocks are separate collections of programs that receive and send
messages via a cloud messaging broker, named RabbitMQ, and CVNIP communication. Both
communication tools are explained in Appendix B. The dashed arrows indicate these commu-
nicated messages and are also labelled by a qualitative description of the important variables
in the message sent between two blocks.
As mentioned, the input detections are played back in real-time from a historical data set.

1It should be noted that in the used simulation program, called Aimsun, the implementation of the traffic
demand input from real-world detections is not done via traffic states, but via OD-matrices, where every entry
from origin to destination is initialised with 1 vehicle input. Vehicles are put into the simulation at the correct
time via an external Aismun API. However, using the OD-matrices, the destination of each vehicle must also
be known. Therefore, during vehicle generation, an origin and a destination must be assigned to each vehicle.
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Based upon these detections, vehicles are generated in the simulation at the location of sto-
plines of the neighbouring intersections. The raw detections of these vehicles in the simulation
network are communicated to the intelligent Traffic Light Controller (iTLC). The raw de-
parture, arrival, and queue detections are aggregated per control time step, meaning these
detections are gathered by the aggregation program and released at the time of the next
control time step. Using this new detector information, the input matrix of the Long Short-
Term Memory (LSTM) neural network is updated and future arrivals na(k) for k ∈ [0, Np]
are predicted. At the same time, the number of vehicles in the queues is estimated using a
rule-based approach. The arrivals, queues and the actual current signal, received form the
iTLC, are then all set as initial conditions of the optimisation problem. Once these initial
conditions are set, the optimisation process is executed. When the optimisation is finished,
the optimised inputs of the first time step u(1) are sent to a finite state machine that handles
the switching of the signals and checks the safety of these desired signals. Once the signals
are released at the correct time by the finite state machine, these desired signals are sent to
the iTLC.

Figure 6-5: Simulation control system.

The iTLC consists of the Traffic Light Controller (TLC) hardware rack shown in Appendix C
in Figure C-1 and also a virtual machine, called mobility data broker, which receives, refor-
mulates, and sends all the detection and Signal Phase and Timing (SPaT) messages. The
traffic light control hardware rack contains a real on-street traffic light control interface, which
has a safeguard mechanism that checks and monitors the signals and the state of the active
control software, i.e., the control method that is in control of the intersection. If an unsafe
signal is sent to the TLC, it responds by sending an error message and throwing the current
active control software out of control. This means that the TLC returns to controlling the
intersection using the backup actuated control method.

The control system is run in real-time, meaning that each 6 hour simulation takes the same
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amount to run. Communication via RabbitMQ takes on average 10 milliseconds and the
implementation of a desired signal sent to the TLC takes between 200 and 300 milliseconds.
The simulation control system is developed by colleagues at Yunex Traffic and previous in-
terns. However, to switch the control method, many other programs needed to be changed
or reconfigured. For a more detailed view of the control system, refer to Appendix B and for
more information about the queue estimation and data aggregation, refer to the thesis of T.
Glastra [62]

6-1-2 Controller Parameters

In this subsection, the conflict matrix, clearance times, and other parameters of the intersec-
tion are set. Thereafter, the control time step, prediction horizon, and model paratmers of
the controller are also determined.

Intersection Parameters

The intersection parameters corresponding to intersection 201234 are provided by the province
of North-Holland. Firstly, the minimum clearance time tcr,s for every ordered pair of conflicting
signal groups (r, s) ∈ Co is set to the values summarised in the conflict matrix of Figure 6-6.
The maximum wait time is set to 120 seconds and the minimum red and green times are set
to 2 seconds and 4 seconds, respectively. Lastly, for signal groups 2 and 8, the amber time is
equal to 4 seconds, while for signal groups 3, 4, 6, and 7 the amber time is 3 seconds.

Figure 6-6: Conflict matrix of intersection 201234, including clearance times in deciseconds.

Control Time Step and Prediction Horizon

The control parameters that need to be set are the control time step kc, the prediction horizon
of the MLD model Np and the weights ci of the objective function. The objective function
weights are all set to one and thus every queue is weighted equally. The control time step
must be small enough to grant fast responsiveness to changing situations and mismatches
between the prediction model and the real world. At the same time, the control time step
must be large enough for the overall computation time that is needed for communication,
optimisation, and implementation of the signals. In general, the prediction horizon should
be long enough to capture the effects of the optimised signal timings on the traffic network.
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Specifically, it is recommended that the value of the prediction horizon should be equal to
the time it takes for a vehicle to cross the network [38]. Additionally, the control time step
and the prediction horizon are linked. By decreasing the control time step or increasing the
prediction horizon, the size of the to be optimised model grows, as does the computation time
of the optimisation algorithm.
In this case, the distance that a vehicle needs to travel to cross the network is equal to the
distance from the stopline of the preceding intersection to the point it leaves the simulation
just after the controlled intersection. Additionally, the LSTM network predicts on the basis
of detections at the neighbouring intersection from 100 seconds ago up until the current time
step. Therefore, it can only predict with acceptable accuracy for a horizon that is equal to
the average travel time of a vehicle on the link connecting the preceding intersection and the
controlled intersection. Considering the above, the prediction horizon is set to the free-flow
travel time of the longest link plus the average delay of the intersection,

Np = TT free
link +Daverage

Tc
, (6-1)

where TT free
link is the link free-flow travel time based on the speed limit of 80 km/h and Daverage

is the average vehicle delay, obtained from previous experiments by T. Glastra [62]. In the
simulation network of Figure 6-1, the longest link is the link between intersections 201295 and
201234. The resulting prediction horizon is 40 seconds, determined from a free-flow travel
time equal to 26,1 seconds and average delay equal to 15 seconds per vehicle [62]. This should
be long enough enough to incorporate all the accurate predictions made by the LSTM and
the affects of the signal timings on traffic network. The prediction horizon is long enough for
Green Light Optimised Speed Advice (GLOSA) implementation, since GLOSA has an effect
on the stop time and traffic flow from a distance of 300 meters [77].

The shorter the control time step, the faster the controller can react to mismatches between
the model and the real world. More importantly, the operation of scheduling traffic signals
becomes more efficient as the signals can switch sooner to green and red when necessary,
saving time that would otherwise be lost with a larger control time step. Therefore, the
control time step of 5 and 2 seconds is chosen. A control time step of 5 seconds is frequently
used in literature and allows for enough room for the iterations needed in the coordination
of the Distributed Model Predictive Controller (DiMPC) [88]. A control of two seconds is
mainly chosen to investigate the effect of a larger model on the computation time. The effect
of a smaller control time step on the delay performance was already investigated by Katwijk
[57].

Lastly, it should be noted that in a formal controller design process, the control time step
and the prediction horizon should be tuned for several values to make a trade-off between
computation time, prediction horizon, and responsiveness of the controller. However, as
mentioned above, the maximum prediction horizon is chosen and in this case the computation
time is not large enough to be of importance in this trade-off. More importantly, when tuning
these parameters, a lot of simulations need to be made, i.e., for every combination of the
control time step and prediction horizon. Since the simulation system runs in real-time and
simulation scenarios can only be simulated during the day, formal tuning is not feasible within
the project time frame.
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Saturation Flow Rate

The only parameter that needs to be set in the queue model is the discharge saturation flow
rate µsat

s , which is the maximum flow rate that can be achieved by a saturated stable moving
queue of vehicles passing over the stopline. The fact that only one parameter needs to be set
is beneficial for the deployment of the traffic controller, because road owners already know
the value of this well-known parameter. If not, an estimation via stopline detector data can
be carried out.
Parameters in a model can be set by using optimal parameter estimation methods, where
the optimal parameters minimise the difference between the measured departures and the
departures predicted by the model [38]. In literature, the saturation flow rate for calculating
departures on a small time step scale (seconds) is mostly set to a standard value obtained from
a table, a simple formula from the Highway Capacity Manual (HCM) [89] or is assumed to be
known [13, 59]. For larger time step scales, optimal parameter estimation is used. Therefore,
since detector and signal data are available, the discharge saturation flow rate is set to be
equal to the average discharge saturation headway rate corresponding to the fifth position in
the queue [13]. Then, the discharge saturation flow rate is calculated using the conversion
relation between headway and flow rate in Table 2-1. In Figure 6-7, a box plot is shown
of the discharge headway per queue position for the two stopline detectors of signal group
6 at intersection 201234. This is based on data gathered from workdays three weeks after
15/10/2019. The headways are calculated from detection data where only detections during
green signals are taken into account and where there were at least 5 vehicles standing in the
queue of the signal group. The discharge headway of the other signal groups of intersection
201234 is presented in Appendix C. The determined average saturation headway per lane
hsat and its corresponding discharge saturation flow rate µsat

s for all singal groups are shown
in Table 6-1.

Figure 6-7: Discharge headways at stopline detectors of signal group 6. Based on data from the
workdays three weeks after 15/10/2019.
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Table 6-1: Average discharge saturation headway hsat per lane and discharge saturation flow
rate µsat

s per signal group s of intersection 201234.

Signal group hsat [s] µsat
s [veh/h]

2 2.12 3396
3 2.63 2738
4 2.37 1518
6 2.75 2618
7 2.7 2667
8 2.61 2759

Turning Percentage

In the definition of the arrival prediction model in Equation 4-3, the turning percentage is
used to assign arrivals to a signal group. These turning percentages pturn

s are dynamically set
every 15 minutes to the average turning percentage during the three weeks after the chosen
simulation date. The turning percentages can be seen in Figure 6-8 where the mean over
this period is shown together with the 95% confidence and turning percentages during the
simulation date. From this figure, it can be seen that the turning percentages vary greatly
from midnight until around 06:00. From then on, the turning percentages are fairly close to
each other between different days.

Figure 6-8: Turning percentage at stopline of intersection 201234 on 15/10/2019 and mean and
95% confidence interval of the workdays three weeks thereafter in local time (UTC+2).
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6-1-3 Overview of Simulated Scenarios and Control Parameters

In Table 6-2, all the simulated scenarios are shown with their configured time step and pre-
diction horizon, which is expressed in the number of time steps.
The first scenario of the arterial intersection network is simulated with the actuated controller,
formally called CCOL, which is the standard traffic controller in the Netherlands. The con-
trol method is explained in section 3-1-1 and in greater detail in the appendix of the thesis
by N. Helmy [63]. DIRECTOR is Yunex’s current method developed by J.C. Van Senden
[64] and based upon the self-organising controller from literature [73, 74]. DIRECTOR is
briefly explained in section 3-4-2 and in Appendix A. The Decentralized Model Predictive
Controller (DeMPC) is the control method developed in chapter 4. Since not all combina-
tions of control methods, prediction methods and time steps could be simulated due to time
constraints, it is opted to simulated the DeMPC with LSTM and linear arrival prediction
methods and with a 5 second control time step. Next to that, to give an insight into the
solution time of the optimisation problem, the DeMPC was also simulated with a 2 second
control time step and LSTM prediction, because the LSTM prediction method yielded vastly
better performance in the prediction method comparison.
All the LSTM models were trained on the detection and signal data from workdays three
weeks after 21/10/2019 with a 20-80 test and training data set split. The simulation date
and time of all scenarios is 15/10/2019 from 4 am to 10 am. The used data sets for training
and testing of the prediction model and for generating the simulation input demand do not
contain any detector faults. Five replications or iterations were run per simulation scenario,
each having a different random seed for car/driver parameters, to achieve representative re-
sults. As mentioned, the control system and simulation were run in real-time, thus each
replication of a scenario took 6 hours to run. The simulations were performed using Aimsun
simulation software [87]. The Mixed Logical Dynamical (MLD) model was implemented in
Python using the optimisation modelling language Pyomo [90] and the Mixed-Integer Linear
Programming (MILP) optimisation problem was solved using CPLEX, where the branch-
and-bound solution algorithm is used in combination with dynamic heuristic tree searching
strategies [91]. The simulation control system (simulation, optimisation, controller, aggrega-
tion and prediction programs) were run on a laptop with CPU Inter(R) Core(TM) i5-8365u
CPU @ 1.60 GHz with 4 cores and 8 logical processors.

Table 6-2: Simulation scenarios for arterial intersection 201234.

Scenario name Prediction method kc Np

Actuated - 0.1 -
DIRECTOR LSTM 5 8
DeMPC LSTM 5 8
DeMPC Linear 5 8
DeMPC LSTM 2 20

I.D.A. Seminck CONFIDENTIAL Master of Science Thesis



6-1 Arterial Intersection 65

(a) Location of arterial network on N201 in North-Holland, The Netherlands. Source [21].

(b) Arterial network and intersection identification numbers. Source [78]

Figure 6-9: Location of arterial network and its intersections.
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6-2 Arterial Network

In this section, the simulation network will be extended to an arterial network with multiple
intersections. In subsection 6-2-1, the simulated arterial network is set up. This entails the
modelling of the traffic demand and the implementation into the simulation control system.
Thereafter, in subsection 6-2-2, the controller parameters are discussed. In the end, an
overview of the proposed simulations is given in subsection 6-2-3.

6-2-1 Simulation Setup and Implementation

The design of the simulation experiments requires the modelling of the arterial network, de-
termining the simulation scenario and traffic input demand, along with extending the control
system.

Simulated Arterial Network

The network is the arterial where intersection 201234 is situated. It is located in Hoofddorp,
which lies South-West of Amsterdam, close to Schiphol Airport. The exact location and
intersection identification numbers within the arterial network can be seen in Figure 6-9. The
simulated network in Figure 6-1 already contained most of the intersections in the arterial,
except intersection 201225. This intersection was added using overlay DWG mapping files
provided by the province of North-Holland. The detectors of all intersections were also placed
in the simulation model together with their corresponding identification number. In addition,
the signal group configuration, intersection IDs and adaptible signal plans of all intersections
were also configured. The resulting simulation network can be seen in Figure 6-11 and a
schematic view of the intersections and their signal groups is presented in Figure 6-12.

Traffic Scenario and Traffic Demand

The same date and time scenario is chosen as in the arterial intersection simulation described
in section 6-1-1. Similarly to the arterial intersection, the input detections of the arterial
network are also played back from a historical data set via an external Aimsun API program.
The generated vehicles are put into the simulation at the arrival detectors of the approaches
at the edge of the network. All vehicles are generated at the speed limit of the specific
approach. However, for some approaches at the edge of the network, no arrival detectors are
available. In Figure 6-12, the approaches for which no arrival detectors are available can be
seen by the absence of a white triangle. In these cases, the input flow is determined by using
the detections of the stopline. Specifically, the flow rate at the stopline is aggregated per 15
minutes and set as the input traffic flow in the traffic state of the approach. Vehicles are then
generated at the start of the modelled approach.
Therefore, instead of OD-matrices in the arterial intersection simulation model, the input
traffic demand is modelled using traffic states in the arterial network simulation. A traffic
state is composed of a set of flows at an input approach of the network and a set of turn
percentages at every intersection. Traffic states are most often used for small area intersection
design or arterial networks where there is comprehensive data available and the emphasis is
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laid upon flow optimisation and detailed road design, with no traveller reaction to the traffic
conditions [87]. With traffic states, individual vehicles do not have a destination, they choose
each turn-based on the turning percentages at the next intersection and traverse the network
until they find an exit section.
The turning percentages at each intersection are entered directly into the simulation model
via these traffic states. However, these turning percentages vary across the simulation time.
Therefore, the turning percentages are analysed at each intersection and aggregated per 15
minutes. These aggregated turning percentages at the stopline detectors, shown in Figure 6-
10, are then configured as the turning proportions of the traffic states. The stopline detectors
are chosen to determine the turning percentages, because vehicles sometimes decide closer to
the intersection in which direction they want to go.

The white triangles in Figure 6-12 indicate that the LSTM model is trained for the input
approach. For intersections 201234 and 201249.1, these triangles are accompanied by an
intersection number. This means that the approach has a preceding intersection from which
the detections can be used as an input to the LSTM in order to predict the future arrivals.
Regarding the other input approaches, without preceding intersections, the LSTM is trained
only on the time, detection and signal data from the input approach. This is done to predict
arrivals for longer-term trends based on the time of day and day of week data, since traffic
flow is highly cyclical from day to day.

Figure 6-10: Turning percentages at arrival and stopline detectors of intersection 201234 on
15/09/2019.
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Figure 6-11: Aimsun simulation network of arterial network N201 in North-Holland.

Figure 6-12: Schematic view of intersections and their last two ID numbers in arterial network. The white triangles with intersection ID
numbers beside them indicate that at those approaches the arrivals are predicted by the LSTM model based on detections from the preceding
intersection. The white triangles without any ID numbers indicate that the LSTM model is trained only on the detections from that approach
(see section 6-2-1). The bold arrows indicate signal groups that have two or more lanes, while the other arrows indicate the signal groups with
one lane.
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Simulation Control System

In Figure 6-13, the distributed control system for simulation is shown, where state and signal
variables are send and received to and from the neighbouring intersections. These variables
of each intersection are published on one RabbitMQ exchange with the intersection IDs as
keys. For a more detailed view of the control system, refer to Appendix B.
To control multiple intersections, different instances with intersection-specific configuration
of data aggregation, LSTM prediction and queue estimation, and controller programs are run
on a virtual machine. Since these programs were only tested on one simulated intersection
before, the prediction program was not robust to different intersection and controller con-
figurations. This was adapted such the control system can now deal with all intersection
configurations and the programs within can run with different time steps and prediction hori-
zons. For example, the prediction horizon of the LSTM prediction program can differ from
the controller’s prediction horizon.
The XML configuration files of all intersections were provided by the province of North-
Holland and a program was written to convert these XML configuration files to the Json
configuration files used as input of the data aggregation, LSTM prediction, and controller
programs. This would further increase the ease of deployment of the controller. The province
of North-Holland also provided two extra data sets for intersections 201245 and 201249 con-
taining detection and signal data in V-Log protocol [19]. These files were preprocessed for
the input data of the LSTM neural network, which is trained for each intersection in the
arterial network. On the simulation side, the configurations of the Playback and Aimsun
programs were also reconfigured to input the correct detections for the input approaches of
the network. The Aimsun block in Figure 6-13, consist of the Aimsun simulation program
and also the Aimsun API program. This API program was also adapted to handle the com-
munication of detections and SPaT messages of multiple intersections. Lastly, since only one
hardware rack of the TLC is available, the TLC was simulated using an already developed
program within Yunex, called TLCSim. This simulated TLC was adapted and reconfigured
for simulation with multiple intersections.

6-2-2 Controller Parameters

The intersection parameters were set in the same way as in section 6-1-2. Similarly, the
saturation flow rates of the model are also determined by the approach defined in section 6-1-
2. The control time step of the controller is set at 5 seconds. This yields a trade-off between
the iterations needed for the distributed coordination algorithm and the responsiveness of the
controller. The prediction horizon is set at double the amount decided in section 6-1-2, which
is 80 seconds. Since the neighbouring intersection controllers are predictive, the variables, i.e.,
departures, queues, signals, and arrivals, can be used to predict the arrivals further into the
future at the controlled intersection. Therefore, the prediction horizon is set to two times the
predicting horizon of the decentralised controller deployed at one intersection of the arterial.

6-2-3 Proposed Simulations

In Table 6-3, the proposed simulation scenarios are presented with their configured time
step and prediction horizon, which is expressed in number of time steps. It is not possible
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Figure 6-13: Distributed control system for simulation.

to simulate the actuated controller, named CCOL, for multiple intersections, because only
one hardware rack (depicted in Figure C-1) is available. The proposed simulations do entail
Yunex’s current control method DIRECTOR, the newly developed DeMPC as well as DiMPC,
developed in chapter 5. All the LSTM models were trained on the detection and signal data
from workdays three weeks after 21/09/2019 with a 20-80 test and training data set split.
The simulation date and time of all scenarios is 15/10/2019 from 4 am to 10 am.

Unfortunately, the simulation of the arterial network could not be carried out. This is caused
by the implementation of the simulation environment. Specifically, the mobility data broker
program, depicted in Figure B-1, could not be adapted within the project time frame to
receive and send data to multiple intersections in combination with the simulated TLC. The
controller also could not be tested offline, since all programs run in real-time, consuming and
publishing in real-time from and to specific communication channels.

Table 6-3: Simulation scenarios for arterial network

Scenario name Prediction method kc Np

DIRECTOR LSTM 5 16
DeMPC LSTM 5 16
DiMPC LSTM 5 8
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Chapter 7

Results

This chapter covers the results of the prediction models and the simulation experiments
proposed in subsection 6-1-3. In section 7-1, the prediction accuracy of the arrival prediction
models is shown. Thereafter, the focus is laid upon the results from the simulation scenarios
in section 7-2.

7-1 Arrival Prediction Models

First, the used performance metric will be explained in subsection 7-1-1. Then, the perfor-
mance of the prediction models will be evaluated for each approach and signal group over
the prediction horizon. The considered models for this evaluation are the Long Short-Term
Memory (LSTM) model with 2 and 5 second time steps and the linear delay prediction model
with a 5 second time step. The evaluated models all have the same prediction length discussed
in subsection 6-1-2.

7-1-1 Performance Indicator

The performance of the arrival prediction models is evaluated using the Normalised Root
Mean Square Error (NRMSE) defined as

RMSE =

√∑n
k=1 (y(k)− ŷ(k))2

n
(7-1)

NRMSE = RMSE
σ

, (7-2)

where y represents the test data, ŷ the output of the prediction model, n the number of
data points in the test data set and σ the variance of the test data set. The NRMSE is
chosen, because test data sets differ per approach to the intersection and each data set has
its own variance. Using the NRMSE, different data sets can be accurately compared. As
mentioned, the models are trained for three weeks (only weekdays) after 20/09/2015 with a
80-20 train-test split.
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7-1-2 LSTM Model with Different Time Steps

In Figure 7-1, the NRMSE is shown for all three approaching links of intersection 201234.
Approach 0 contains signal groups 2 and 3, while approach 1 contains signal groups 4 and
6, and, approach 2 includes signal groups 7 and 8. The configuration of the signal groups
is illustrated in Figure 6-2. It can be seen that the prediction model of approach 1 shows a
significantly higher NRMSE than the other two approaches. Recall, approach 1 connects in-
tersection 201234 to its furthest away neighbour, namely 20195 with a distance of 580 meters,
compared to around 320 meters for the other two approaches. Secondly, the performance of
approaches 0 and 2 starts to deteriorate from time step 3, from a NRMSE of 0.93 and 0.91 at
time step 2 to around 1.21 and 1.1 at time step 7, respectively. The performance of approach
1 starts to deteriorate from time step 5, with a NRMSE around 1.5 at time step 4 and 1.58
at time step 7, respectively. Analysing the NRMSE per signal group, in Figure 7-2, it can

Figure 7-1: NRMSE per approach of LSTM prediction model with a time step of 5 seconds and
a prediction horizon of 8 time steps.

be seen that straight-ahead moving signal groups with the highest demand, namely signal
groups 2 and 8, perform best. This is followed by left-turn signal group 6 and right-turn
signal group 7. Signal groups 3 and 4 have the lowest performance. With regards to the
prediction horizon, the same trend can be seen as in Figure 7-1.
Looking closer at the predictions and actual arrival detections during simulation, in Figure 7-
3, it can be seen that the LSTM predicts the arrival trends quite well, however, it suffers from
noise when no arrivals are detected. This effect is less present in higher traffic demand shown
in Figure 7-4.
Inspecting the LSTM prediction model with a time step of 2 seconds in Figure 7-5, it can
be seen that the same phenomenon occurs as with the 5 seconds prediction model, namely
that approach 1 performs the worst and approach 0 has a slightly inferior accuracy than
approach 2. The performance gap between approaches 0 and 2 increases over the prediction
horizon. With regards to the prediction horizon, the NRMSE starts to rise from time step
7 for approach 0, and around 8 for approach 2, and, in the case of approach 1 only around
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Figure 7-2: NRMSE per signal group of LSTM prediction model with a time step of 5 seconds
and a prediction horizon of 8 time steps.

Figure 7-3: Predicted arrivals by LSTM and detected arrivals during simulation in low traffic
demand.

time step 12. Comparing the overall performance to the 5 second LSTM model, the 2 second
time step model’s accuracy is considerably lower. In terms of signal groups, again, the same
pattern can be seen as the 5 second time step LSTM model, meaning that signal groups 2
and 8 have the highest accuracy, followed by signal groups 6 and 7. The lowest accuracy is
shown by signal groups 3 and 4.
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Figure 7-4: Predicted arrivals by LSTM and detected arrivals during simulation in high traffic
demand.

Figure 7-5: NRMSE per approach of LSTM prediction model with a time step of 2 seconds and
a prediction horizon of 15 time steps.
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Figure 7-6: NRMSE per signal group of LSTM prediction model with a time step of 2 seconds
and a prediction horizon of the first 15 time steps.

Master of Science Thesis CONFIDENTIAL I.D.A. Seminck



76 Results

7-1-3 Linear Model

In general, the performance of the linear prediction model is less accurate for all approaches
and prediction horizons, compared to the LSTM. As can be seen in Figure 7-7, the NRMSE
is around one point mark higher than the LSTM model for all signal groups and prediction
horizons. However, the performance does not deteriorate over the prediction horizon. Exam-
ining the signal groups individually, in Figure 7-8, turning movements perform the worst and
straight-ahead signal groups 2 and 8 perform best.

Figure 7-7: NRMSE per approach of linear delay prediction model with a time step of 5 seconds
and a prediction horizon of 8 time steps.

Figure 7-8: NRMSE per signal group of linear delay prediction model with a time step of 5
seconds and a prediction horizon of 8 time steps.
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7-2 Simulation Experiments

The results of the simulation runs will be covered in comparative sections. In subsection 7-2-
1, the actuated CCOL controller will be compared to Yunex’s current DIRECTOR method
and the newly developed Decentralized Model Predictive Controller (DeMPC). Next, in
subsection 7-2-2, the solution time of the optimisation algorithm used in the DeMPC will
be compared between 2 and 5 seconds time step Mixed Logical Dynamical (MLD) models.
Thereafter, the results of the DeMPC using linear and LSTM prediction models will be
covered in subsection 7-2-3. Lastly, in subsection 7-2-5, an overview of all simulation results
will be presented. All simulation results are aggregated per 15 minutes.

7-2-1 Comparison of Actuated, DIRECTOR and Decentralised MPC Control
Methods

In Figure 7-9, the mean delay time per vehicle over all simulation runs is depicted. DIRECTOR
has a considerably higher delay time than the actuated control method and the DeMPC, both
in low and high traffic demand. The delay time of the actuated controller is slightly lower
than the DeMPC during the whole duration of the simulation. Regarding the mean Highway

Figure 7-9: Mean delay time per vehicle of DeMPC, actuated and DIRECTOR methods

Capacity Manual (HCM) number of stops per vehicle during the simulation, shown in Fig-
ure 7-10, all methods have around 1,6 stops in high traffic demand. In low traffic demand,
the actuated control method has the lowest number of stops, followed by the DeMPC and
lastly DIRECTOR. In very low traffic demand, between 4:00 and 4:30, the gap between the
number of stops of DeMPC and actuated controller is closer than between 4:30 and 6:00. In
Figure 7-11, the mean queue length at the intersection displayed. The number of queued
vehicle is highly similar between the actuated and the DeMPC during all traffic conditions.
In very low traffic demand, from 4:00 to 5:00, the queue lengths at the intersection controlled
by DIRECTOR are similar to the other two methods. From 5:00, the queue lengths for
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Figure 7-10: Mean number of stops per vehicle of DeMPC, actuated and DIRECTOR methods.

DIRECTOR start to raise slightly and from 06:30, there is a considerable difference between
the DIRECTOR method and the other two methods in terms of mean queue length at the
intersection.

Figure 7-11: Mean intersection queue length of DeMPC, actuated and DIRECTOR methods.
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7-2-2 Solution Time

The mean solver solution time over one simulation run is show in Figure 7-12. The solver
solution time of the DeMPC with time step of 2 seconds is around double the time of the
DeMPC with 5 second control time step. The optimisation problem of the 2 second model is
on average 2,5 times larger than the optimisation problem with a 5 second control time step.
In Figure 7-13, it can be seen that the solution time is comparable in very low traffic demand

Figure 7-12: Mean and standard deviation of solver solution time between 5 and 2 second control
time steps.

between 4:15 and 5:00. As the traffic demand increases, the solution time of the larger control
time step optimisation problem increases to around 0.12 seconds, from 0.08 seconds in very
low traffic demand. The same phenomenon happens to the smaller time step optimisation
model, only the solution time increases to a greater extend, from around 0.1 seconds in very
low traffic conditions to around 0.25 seconds in high traffic demand.

Figure 7-13: Solver solution time during simulation.
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7-2-3 DeMPC with Different Arrival Prediction Models

The DeMPC with a 5 second time step is tested with a linear arrival prediction model and
an LSTM neural network model. In Figure 7-14, the model comparison can be seen in terms
of mean delay time per vehicle over all simulation runs. The mean delay is similar in low to
medium traffic demands, from 04:00 to 6:30. In higher traffic demands, the DeMPC method
with the arrivals predicted by the LSTM model considerably outperforms the linear prediction
method.
Considering the HCM mean number of stops per vehicle over the simulation time, depicted in
Figure 7-15, the linear prediction method results in slightly less number of stops per vehicle
than the LSTM prediction method during all traffic conditions.
The mean number of queued vehicles at the intersections follows the same trend as the delay
time in Figure 7-14. The two arrival prediction models coupled to the DeMPC result in similar
queue lengths, shown in Figure 7-16, in low traffic demand conditions from 04:00 until 06:00.
After 06:00, the queue lengths of the controller with the linear prediction method moves away
from the controller with the LSTM prediction method.

Figure 7-14: Mean delay time per vehicle of DeMPC with 5 second control time step with LSTM
and linear arrival prediction methods.
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Figure 7-15: Mean number of stops per vehicle for the DeMPC with LSTM and linear arrival
prediction methods.

Figure 7-16: Mean intersection queue length for the DeMPC method with LSTM and linear
arrival prediction methods.
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7-2-4 DeMPC with Different Time Steps

The DeMPC was also simulated with two different time steps. In Figure 7-17, this comparison
can be seen in terms of mean delay time per vehicle over all simulation runs. The mean delay
is similar in low to medium traffic demand, from 04:00 to 6:30. In higher traffic demand, the
DeMPC with a 5 second time step outperforms the same controller with a 2 second time step.
For the 2 second time step, the mean HCM number of stops per vehicle over the simulation
time, depicted in Figure 7-18, is slightly less than for the 5 second time step in the lower
traffic demand from 04:00 to 06:00. In higher traffic demand, the number of stops per vehicle
is similar between the two time steps.
The mean number of queued vehicles at the intersection follows the same trend as the delay
time in Figure 7-14. The two time steps have similar queue lengths in low traffic demand
conditions from 04:00 until 06:00. After 06:00, a gap in the queue length starts to arise
between the two time step controllers.

Figure 7-17: Mean delay time per vehicle for the DeMPC with 2 and 5 seconds control time
steps.
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Figure 7-18: Mean number of stops per vehicle for the DeMPC with 2 and 5 seconds control
time steps.

Figure 7-19: Mean intersection queue length for the DeMPC method with linear and LSTM
prediction arrival models.
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7-2-5 Overview

In Table 7-1 and Figure 7-20, all simulation results are presented for all performance indi-
cators. These are presented as the mean and standard deviation over all replication runs.
The number of stops indicate the total number of stops during the simulation. This is chosen
instead of the average number of stops per vehicle as it is more indicative. Since the actuated
controller and DIRECTOR do not use optimisation, the solver solution time is not shown for
these methods. In terms of mean delay time per vehicle, the actuated methods performs best
at 12.86 seconds per vehicle followed by the DeMPC with LSTM prediction and 5 second
control time step at 13.95 seconds per vehicles. The DeMPC with linear prediction and 5
second control time step has an average delay of 17.44 second per vehicle, close to the 17.25 of
DIRECTOR controller. All in all, the newly developed controller performs 24% better than
DIRECTOR and only 8% behind the actuated controller in terms of mean delay time per
vehicle. The DeMPC with linear arrival prediction and 5 second control time step performs
comparable to the DIRECTOR method with LSTM prediction and a similar time step. The
DeMPC with a 2 second time step has a 12% worse mean delay time and 13% lower total
number of stops compared to the simulations with a 2 second time step.

Considering the total number of stops, the DeMPC with a time step of 5 seconds and LSTM
arrival prediction outperforms the actuated controller by around 10% and DIRECTOR by
26%. The DeMPC with linear prediction and 5 seconds time step still achieves a 17% lower
total number of stops than the DIRECTOR. As mentioned, the solution time doubles, from
0.095 seconds to 0.21, on average by increasing the model size by 2.5 times. The mean
number of queued vehicles at the intersection is lowest in the actuated scenario. However,
this is followed by the DeMPC LSTM with 5 seconds time step, which is only 5.3% off the
actuated scenario in terms of the mean queue, but this is still 45% lower than DIRECTOR.

Table 7-1: Overview of simulation results.

Scenario Delay time [s/veh] Number of stops Solution time [s] Queue [veh]
Mean ± STD Mean ± STD Mean ±STD Mean ±STD

Actuated 12.86 0.70 5861 1165 - - 3.59 0.86

DIRECTOR LSTM Tc = 5 17.25 0.81 6689 156 - - 5.5 0.85

DeMPC LSTM Tc = 5 13.95 0.46 5309 806 0.095 0.06 3.78 0.97

DeMPC Linear Tc = 5 17.44 0.35 5732 79 0.094 0.05 5.64 0.16

DeMPC LSTM Tc = 2 15.6 0.80 6025 616 0.21 0.09 4.94 0.47
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Figure 7-20: Overview simulation results.
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Chapter 8

Discussion

The discussion of the results presented in the previous chapter will be divided in terms of
the arrival prediction models in section 8-1 and the results obtained from the performed
simulation experiments in section 8-2.

8-1 Prediction Models

Within each of the evaluated prediction models, approach 1 exhibits the most inferior Normalised
Root Mean Square Error (NRMSE), because the departures originate from the furthest neigh-
bour of intersection 201234, namely 20195 with 580 meters, while the other two intersection
are located around 320 meters from intersection 201234. The platoon dispersion over longer
links is thus more difficult to predict due to different driver and car characteristics. Regarding
the prediction accuracy per approach over the horizon. For the LSTM prediction models, the
accuracy deteriorates for all approaches from the time step that corresponds to the free-flow
travel time of the link. This is due to the fact that the most up-to-date information the Long
Short-Term Memory (LSTM) has, is the latest implemented signals and detections from the
neighbouring intersections. Concerning the accuracy per signal group, signal groups 2 and
8 perform best. These are the straight-ahead signal groups with the highest traffic demand.
Arrivals for signal groups that have turning movements are the most difficult to predict, due
to the extra uncertainty in the turning percentage and added increased behaviour variety in
braking for a turn during green [13].
Predicting arrivals with high accuracy in a 2 second time step is more difficult, since the pre-
diction accuracy must increase further within a smaller precision of 2 seconds time step. The
accuracy of the linear model was tested to see if it would obtain an acceptable accuracy for
use in distributed optimisation techniques that requires decomposition of the link equation
between two intersections. The linear prediction model performs poorly, since it does not
take into account platoon dispersion and variability in the driving behaviour. However, the
accuracy does not deteriorate over the prediction horizon, because the linear delay is based
on a constant free-flow travel time.
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8-2 Simulation Experiments

The discussion of the simulation experiments will be carried out per performance indicator,
namely, delay time, number of stops and solution time. The discussion will be divided per
traffic condition, since this has the most influence on the behaviour of the different controllers.

8-2-1 Delay Time

In low traffic conditions, the actuated controller outperforms both the Decentralized Model
Predictive Controller (DeMPC) and DIRECTOR. In these low traffic conditions, the actuated
controller can react fast to detections due to its short controller time step. Next to that, the
signals always stay red when there are no vehicles arriving. In this way, the actuated control
method can react even quicker to vehicle detections as it does not have to handle the clearance
and amber times for the previously scheduled signal groups if a conflicting vehicle arrives.
The signal timings of the DeMPC are dependent on the predictions made by the LSTM
neural network, queue estimation and the developed queue model. The predictions made by
the LSTM suffer from noise, meaning that when there are no arrivals, the LSTM predicts
low arrival values of around 0.05 to 0.15. This is due to the fact that the LSTM is trained
using the root-mean-square error loss function and the output is allowed to be real valued.
The predicted noise allows for better root-mean-square error loss function, since this function
penalises larger errors quadratically more than smaller errors. This comes to the forefront
when the number of arrivals is small, i.e., one or zero arrivals in one time step. All this
causes the signals of the DeMPC to give green to signal groups with no arrivals in low traffic
demand. When a vehicle does arrive from a conflicting direction, the controller needs to
switch the green signal and take into account the clearance times. This results in vehicles
waiting or stopping in front of a red signal in low traffic conditions. With a 5 second control
time step, the reaction time and efficiency of the implementing the signals is slower then the
actuated method. The effect of the noise in the LSTM is further exemplified by comparing it
to the linear prediction method. Even though the accuracy of the linear prediction method is
poor, the delay performance of the DeMPC with linear prediction method is still comparable
to the controller with LSTM predictions in low traffic conditions.

It was expected from previous research [57], that the DeMPC with a smaller time step would
outperform one with a larger time step, because of the faster reaction time between mis-
matches between the model and the traffic system and more efficient control of the signals
due to the smaller discretisation of time. However, this is not the case for the performed sim-
ulations. The 2 second controller has longer delay time per vehicle as the 5 second controller
in low traffic conditions. From a detailed observation of the logging file of the control sys-
tem, it was observed that the function evaluation of the learnt prediction models took more
time than the control time step. Note that one prediction model is trained per approach
and per time step in the prediction horizon. The predictions are obtained by looping serially
through all prediction models. Since the smaller time step has a larger number of time bins
this process takes between 2 and sometimes 5 seconds to complete. Therefore, the controller
sometimes receives information about the arrivals and initial conditions from 2 time steps
ago, because the results of the queue estimation and prediction models are communicated in
one message to the controller once all prediction functions are evaluated. Therefore, in low
traffic conditions, the delay performance between the DeMPC with a two second time step is

I.D.A. Seminck CONFIDENTIAL Master of Science Thesis



8-2 Simulation Experiments 89

similar to 5 second time step, because the miscommunication is offset by the better efficiency
of implementing the signals.

The assumption that the vertical queue is placed at the arrival detector and that vehicles
arriving are allowed to depart in the undersaturated condition has its consequences. The
DeMPC method switches to green too early and switches to red too soon in low traffic
demand, resulting in vehicles waiting in front of the red signal. Then, in the next time step,
the controller needs to correct by giving green again for the same signal group.
The DIRECTOR control method also suffers from the above during low traffic flow. In
addition, it schedules the signal group with the maximum delay at the end of the prediction
horizon. This method is thus even more reliant on the predictions made by the LSTM model
and does not perform an optimisation but a maximisation procedure, while DeMPC takes all
the possible combinations of signal timings into account as well as the affect of the control
signals on the next time steps is incorporated into the optimisation.

In medium to saturated traffic demand, the effect of noise in the predictions of the LSTM
is less pronounced as more than zero or one vehicle is predicted per time step. The impact
of the modelling assumptions is also less noticeable, since the the tail of the queue in higher
traffic demand is closer to the location of the modelled vertical queue at the arrival detectors.
Additionally, the impact of a larger control time step of the DeMPC, compared to the actuated
controller, on the delay performance is less pronounced, because longer signal timings are
scheduled during higher traffic conditions, compared to short green times for only one or
two vehicle in lower demand conditions. Therefore, in medium to saturated traffic demand
conditions, the performance of the DeMPC with 5 second time step is more comparable to
the actuated controller, although it has slightly better delay performance. The DIRECTOR
method performs worse than both DeMPC and actuated methods. Concerning the DeMPC
with a shorter time step, the efficiency benefit of implementing the traffic signals disappears
and the controller with the 2 seconds control time step performs worse in terms of delay in
medium to high traffic demand. From observation, it can be seen that the DeMPC sometimes
schedules signal groups with less demand first, such that afterwards the signal group with
a larger demand can be scheduled for a longer time. It then schedules the higher demand
signal groups together with predicted arrivals. This is not the case for DIRECTOR method
with its greedy maximisation procedure, it can not take the longer term effect into account.
Concerning the comparison of the linear and LSTM prediction modes, the DeMPC with linear
prediction has a higher delay time in high traffic demand due to the fact that the noise in the
arrivals is less pronounced than in low traffic demand.

Since the DeMPC minimises the queue length over the whole prediction horizon, the queue
length is more comparable to the actuated method then would be expected from the difference
in delay performance.

8-2-2 Number of Stops

In low traffic conditions, i.e., from 04:00 to 06:30, the number of stops of the DeMPC is
significantly more than the actuated controller. Normally, the DeMPC should perform at
least similar to the actuated method, since DeMPC has more information about future arrivals
[57]. However, due to the noise in the predicted arrivals, the larger control time step of 5
seconds and modelling assumptions, this is not the case. In higher traffic conditions, the
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number of stops is very similar between the three methods, since vehicles have to stop in the
queue anyway. The difference here is terminating the green time not too soon, so that vehicles
do not have to stop twice. In these high conditions, the number of stops of the DeMPC is
slightly less compared to the actuated method. It can be observed that the DeMPC waits to
schedule a signal group until new arrivals are coming and keeps serving green longer, since the
LSTM arrival predictions are more stochastic and predicted over multiple time steps, instead
of one time step. These features reduce the number of stops, however it deteriorates the delay
performance. The number of stops in high traffic conditions for DeMPC method is better
than the actuated method, while the mean delay is lower for the actuated method in these
conditions.

8-2-3 Solution Time

The solution time of the optimisation algorithm depends on the difficulty of finding the
minimal queues over the prediction horizon. In lower traffic conditions this is fairly easy to
find, since only the signal with an arriving vehicle needs to be green on the predicted time
step of the arrival. Here, the optimal solution is found more easily as less branches in the
branch-and-bound optimisation technique need to be explored. In high traffic demand, a
more fine-grained weight-off needs to be made and more branches need to be explored. This
is even more true for the problem with two second time step, containing a model that is 2.5
times larger than the 5 second optimisation problem. All thing considered, the problem of a
too large solution time is not present here as a 0.2 seconds solution time still leaves enough
room for the iterations of the coordination algorithm.
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Chapter 9

Conclusions and Recommendations
In this thesis, a decentralised and distributed model predictive traffic signal controllers are
developed to reduce delays in urban arterial networks. A Mixed Logical Dynamical (MLD)
intersection model is formulated which includes operating constraints on the signal timings to
make the controller on-street applicable for urban intersections. A distributed coordination al-
gorithm is also developed to coordinate the signals of intersections in an urban traffic network.
The project is undertaken in collaboration with Delft University of Technology (TU Delft)
and Yunex Traffic. In the following, conclusions from the preformed simulation experiments
are drawn and recommendations are formulated for future work.

The developed Decentralized Model Predictive Controller (DeMPC) with, an MLD intersec-
tion model with a 5 second time step and vehicle arrivals predicted by a Long Short-Term
Memory (LSTM) netural network outperforms Yunex’s DIRECTOR controller by 24% in
terms of mean delay time per vehicle and by 26% in terms of total number of stops. Com-
pared to the Dutch actuated controller, the DeMPC achieves just 8% more mean delay time
per vehicle, while producing 10% less stops. Road owners that want to implement in-vehicle
information services such as Green Light Optimised Speed Advice (GLOSA) are willing to
trade-off the slightly higher delay time for the added predictability that the DeMPC offers.

Several assumptions were made in the modelling of the traffic system. The first places the
vertical queue model at the arrival detector and the second models that arriving vehicles can
depart in the same time step as their arrival, taking into account the saturation capacity is not
met. These two assumptions deteriorate the delay performance most in low traffic demand,
but decrease the total number of stops. The DeMPC minimises the queue length over the
prediction horizon and is therefore more effective in reducing the queue length than the delay
at the intersection. This is exemplified by a mean intersection queue of 5.1% above the mean
queue of the actuated controller. This gap is larger than the delay performance gap.

The DeMPC with a linear arrival prediction method, based upon a constant link delay, was
also simulated to investigate if it would obtain an acceptable accuracy for use in distributed
optimisation techniques that require decomposition of the link equation between two inter-
sections. It is concluded that this is not achieved as the delay time per vehicle is comparable
to Yunex’s greedy controller. This means that for modelling a traffic network to be used in
a traffic signal controller, the link dynamics should be nonlinear to achieve acceptable per-
formance. The accuracy of the LSTM arrival prediction method depends on the length of
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the link and its corresponding free-flow travel time. Straight-ahead signal groups with the
highest demand have the highest accuracy and signal groups with lower demands and turning
movements have the lowest Normalised Root Mean Square Error (NRMSE) accuracy.

To investigate the solution time, the DeMPC was simulated with a 5 and 2 second time
step while keeping the prediction horizon for both methods at 40 seconds. This yielded a
2.5 fold increase in the MLD model size, while the solution time only increased by a factor
of 2 to 0.21 seconds on average during a simulation of 6 hours. The solution time of the
optimisation algorithm also depends on the traffic demand. During high traffic demand, the
solution time of the 2 second model is around 0.25 seconds larger than in low traffic demand.
For the 5 second model, this difference is 0.04 seconds. It is thus concluded that the solution
time of the DeMPC is small enough for the controller to be extended to larger intersection
models containing more traffic signals. The mean delay, total number of stops and mean
queue length of the performed simulations with the 2 second time step are not included in
this conclusion, because these results are not indicative, meaning the performance of the
controller was influenced by the implementation of the LSTM predictions (see subsection 8-
2-1).

For future work, it is first recommended that the proposed simulations of the DeMPC and
Distributed Model Predictive Controller (DiMPC) for the arterial network should be carried
out. Next, the DeMPC should be tested in combination with GLOSA. This firstly entails
investigating the predictability of the signal timings and tuning the number of time steps
that the signals are fixed ahead. Currently, the first time step of the optimised signals is
implemented into the system at each control time step.
Next, it is recommended that the mismatch between the used models and the traffic system
should be reduced. For the LSTM prediction models, this entails reducing the noise during
low traffic volumes caused by training the model using the Root Mean Square Error (RMSE).
Additionally, for the implementation of the LSTM, the function evaluations of the models
should be done in parallel through multi-threading and not by looping through the models
in a serial manner. For the intersection model, the arrivals should be added to the queue at
the tail of the queue and not at the arrival loop. The mismatch can be further reduced by
using a horizontal queue model that models the queue, arrival and departure dynamics more
closely. Then, the variables used in the horizontal queue model can be utilised in the objective
function to approximate the delay at intersection more accurately than approximating the
delay by integrating the queue length over the prediction horizon. Furthermore, a formal
tuning of the DeMPC should be performed to find the ideal trade-off between the control
time step and the prediction horizon.

It is also recommended that the current intersection model should be tested in a MPC con-
troller with multi-modal signals for pedestrians, cyclists, and public transportation. This can
be easily done by adding departure and queue equations for new signals. For road owners,
it is also desirable to choose the objective that fits their own preferences. Therefore, multi-
objective optimisation, which combines multiple objectives into one objective function, is also
desirable. In addition, the weights of the current objective function are all set to a value of
one, meaning that each signal group is weighted the same amount. An investigation into the
effect of varying these weights could also be performed. In this way, road owners can express
their preferences for specific signal groups or modalities.
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Traffic Signal Controller Yunex

The current traffic signal controller is based on the self-organising controller proposed by
Lämmer et al. in [73, 74, 92, 93, 94], but adapted from the ground-up in the thesis of
J.C van Senden’s [64]. The controller is called DIRECTOR, which stands for Data-driven
Intersection and Road Environment Controller for Traffic Optimisation in Real-time. The
controller is implemented using the Python programming language and tested using VISSIM
and AIMSUM traffic simulators.

The controller’s inputs are the predicted vehicle arrival times at the upstream detector (see
section A) and the measurements from the upstream, queue and stop line detectors. The
control objective is to minimise the average travel time delay per vehicle. Therefore, every
ten seconds, the controller gives a green signal to the phase group that has the most cumulative
predicted travel time delay. The cumulative travel time delay is the sum of travel time delays
of all vehicles within a phase group. This is calculated by summing the number of queued
vehicles for each lane over a 10 second time interval. The cumulative predicted travel time
delay is described by the last rule of Equation A-1, where the phase group (PG) with the
maximum delay (Dod) over two time bins, zero and one, is selected. The term σPG(to) denotes
the switching penalty, which accounts for the added delay caused by a signal switch (due to
clearance time and amber time). In essence, the controller can be said to be "greedy" in its
determination of which signal to schedule as only the phase with the maximum predicted
delay is chosen. The controller thus tends to allocate the green signal to the phase that has
a longer queue length.

χ (t0) =


head{Ψ} if Ψ 6= ∅
head{Ω} if Ω 6= ∅
arg maxPG∈PGs {(

∑
OD∈PGDOD[0] +DOD[1])− σPG (t0)} otherwise

(A-1)

Network stability is guaranteed by bounding the queues at all times. When the tail of a queue
spills backwards to permanently cover the upstream detector, the phase group corresponding
to that queue is added to the FIFO (First-In-First-Out) set Ω. This is an ordered set,
according to a stable, cyclic, fixed-time schedule. Whenever this set is not empty, the next
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phase group to be serviced is the next entry of Ω. This also holds for FIFO set Ψ, where
a phase group is added when it has exceeded the maximum time without service. This is
necessary to ensure that there is no negation of red lights by drivers. Phase groups from Ψ
are preferred over other scheduling decisions to ensure safety. It should be noted that for the
phase sequence to be stable (i.e., no oscillation of phases), when operating in the back-up
fixed-time schedule mode, the maximum time without service is at least as large as the cycle
time (tmax ≥ tcycle). Otherwise, the phase sequence will not be able to complete a full cycle.

Prediction method

The prediction method comprises of a machine learning technique, called Long Short-Term
Memory (LSTM) network developed by N. Helmy [63] and further improved upon by J.C.
Van Senden [64] and T. Glastra [62]. This technique uses historical detector and signal state
data to learn the predicted vehicle arrival times. The input features are the following:

• The day of the week and time of day

• Preceding intersection’s departures, queues, arrivals (measurements of stop line, queue
and upstream detectors, respectively) and signal states.

• Controlled intersection’s departures, queues and arrivals and predicted signal states.

These inputs can be seen in Figure 2-3, which depicts the preceding intersection on the left
side and the controlled intersection on the right side. The outputs of the network are the
vehicle arrivals at the location of the upstream detectors with turning percentages, predicted
queue presence, and predicted signal states. Only the predicted vehicle arrivals are used as
inputs to the controller. For vehicle detections closer or more downstream to the intersection,
the controller relies on the actual measurement from the queue and stop-line detectors. This
can be seen in the Figure A-1 below, where T stands for the sampling time of 10 seconds.
This method can predict arrivals with reasonable accuracy up to 50 seconds horizon. It
should be noted that this is based on signal states that are not known in advance. When the
neighbouring intersection is operated using a predictive controller, the signal timing can be
known in advance and the prediction horizon could be extended.

Figure A-1: Vehicle predictions and detections.Source [62].
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Appendix B

Control System

In this appendix, the simulation control system is shown in detail. In Figure B-1, a detailed
control system is depicted. In Figure B-2, an overview of all configuration files is presented
together with the needed variables to be configured. The mobility data broker is a protocol
converter that receives messages, reformulates messages into another protocol, for example,
from Json format to binary Contactgroep Verkeersregeltechnici Nederland Internet Protocol
(CVNIP) format. This is needed since the Traffic Light Controller (TLC) communicates
using binary CVNIP messages and the rest of the communication is done via RabbitMQ
using Json format. CVNIP is thus a standardised interface for communicating with TLCs
made in the C programming language. RabbitMQ is an open source message broker [95] that
enables application components to be decoupled and run separately while sending information
between them.
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Figure B-1: Detailed control system.
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Figure B-2: Detailed configuration of control system
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Appendix C

Additional Figures

In this appendix, additional figures are placed. These contain the Traffic Light Controller
(TLC) hardware rack and saturation headway per queue position.

Figure C-1: TLC hardware rack.
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Figure C-2: Discharge headways at stopline detectors of signal group 2, filtered on queue presence
and during green. The data is averaged over the 5 workdays the week before 15/10/2019.

Figure C-3: Discharge headways at stopline detectors of signal group 3, filtered on queue presence
and during green. The data is averaged over the 5 workdays the week before 15/10/2019.
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Figure C-4: Discharge headways at stopline detectors of signal group 4, filtered on queue presence
and during green. The data is averaged over the 5 workdays the week before 15/10/2019.

Figure C-5: Discharge headways at stopline detectors of signal group 7, filtered on queue presence
and during green. The data is averaged over the 5 workdays the week before 15/10/2019.
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Figure C-6: Discharge headways at stopline detectors of signal group 8, filtered on queue presence
and during green. The data is averaged over the 5 workdays the week before 15/10/2019.
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