
Delft University of Technology
Faculty of Electrical Engineering, Mathematics

and Computer Science
Delft Institute of Applied Mathematics

‘Modelling the movements of a counterweight
trebuchet while firing’

Report for the purpose of the
Delft Institute of Applied Mathematics

as part of obtaining the degree of

BACHELOR OF SCIENCE
in

APPLIED MATHEMATICS

by

ROBIN DE JONG

Delft, The Netherlands
January 2020

Copyright c© 2020 by Robin de Jong. All rights reserved.

BSc report APPLIED MATHEMATICS

“Modelling the movements of a counterweight trebuchet while firing”

ROBIN DE JONG

Delft University of Technology

Supervisor

Dr. B.J. Meulenbroek

Other committee members

Dr.ir. F.J. Vermolen

Dr. F.G. Spandaw

Dr. P.M. Visser

January, 2020 Delft

Contents

1 Introduction 2
1.1 Problem statement . 2
1.2 Historical background . 2
1.3 Literature review . 3
1.4 Methodology . 3
1.5 General problem . 4
1.6 Variables and parameters . 5

2 The one angle model 6
2.1 Mathematical model . 6
2.2 Analytic solution . 8
2.3 Numerical solution . 8
2.4 Firing . 11
2.5 Observations . 12

3 The two angle model 13
3.1 Mathematical model . 13
3.2 Checking the Lagrangian . 16
3.3 Limit to the last model . 16
3.4 Numerical solution . 17
3.5 Firing . 18
3.6 Observations . 19

4 The three angle model 20
4.1 Mathematical model . 20
4.2 Checking the Lagrangian . 23
4.3 Limit to the last model . 24
4.4 Numerical solution . 24
4.5 Firing . 25
4.6 Observations . 27

5 Conclusion and discussion 28

References 29

A Appendix 30
A.1 Reconstruction . 30
A.2 Python code . 34

1

1 Introduction

The counterweight trebuchet is a type of catapult from the late middle ages. This siege
engine uses a swinging arm with a sling attached to throw a projectile. After lifting the
heavy counterweight with manpower, all that potential energy can be released within a
second. This made it possible to fire a projectile with enormous force. In figure 1 we see a
drawing of a counterweight trebuchet.

Figure 1: In this drawing of a counterweight trebuchet we can see the counterweight m1,
the projectile m2, the throwing arm l2 and the sling l5. l1, l3 and l4 are given in figure 2.

1.1 Problem statement

In this project we are going to model the movements of a counterweight trebuchet while
firing. We want to develop a simple, yet realistic model.

1.2 Historical background

Late 12th century the counterweight trebuchet was invented in the Mediterranean area. It is
not clear when and were exactly. In part the counterweight trebuchet replaced the traction
trebuchet. With the traction trebuchet up to hundreds of people would pull on ropes as
hard as possible to launch a projectile. Because the range depended on how hard the men
would pull, it was not very consistent. The counterweight trebuchet on the other hand
was very precise. It could also shoot much heavier projectiles over a longer distance. The
counterweight trebuchet did however need an expert to operate. It was also a lot harder
to transport, because of this it was often build close to the target. The large forces on
the counterweight trebuchet meant that you also needed stronger materials that with the
traction trebuchet. Good timber for the main beam was hard to find. Also the projectile
stones needed to be strong enough. This all resulted in higher costs for the counterweight
trebuchet. The big advantage was that you could actually bring down defensive walls with
the counterweight trebuchet relative to the traction trebuchet which could not. However the
traction trebuchet was still widely used to attack personnel weaker defence like buildings
and to launch projectiles over walls. Around the 1500s the cannon replaced the trebuchet
[Purton, 2009].

2

1.3 Literature review

The first inspiration came from a project were they used the Euler-Lagrange method to
model a counterweight trebuchet and build it up angle by angle. They started with a see-
saw model, our one angle model, where both the counterweight and the projectile are fixed
to the rotating main beam. Then they went to the hinged counterweight model, our two
angle model, where they added an angle between the main beam and the counterweight.
Finally they ended with a trebuchet with a hinged counterweight and sling, our three angle
model, where they added the sling. We see the same method being used for this problem
in most other literature as well. In this project the Lagrangian for the one and three angle
models are the same as ours, but with the two angle model there is a small calculation error
when computing the speed of the counterweight [Rutan and Wieczorek, 2005]. Modeling
a counterweight trebuchet is done a few times, but often with small calculation errors or
by letting the computer do most of the calculations. We do not exactly know how this is
numerically implemented, so we call it a black box. We want to make sure our calculations
are correct and do as much as possible by hand. We also used a project that takes the
beam weight into account, but uses a lot of black boxes. We use the results to check our
equations, but we want to try and see if it is necessary to include the beam weight. Note
that there is a typo in the very last step of the one angle model. [Siano, 2013] Our two angle
model looks a good deal like a double pendulum. A double pendulum is done quite often,
so we can be fairly sure that these calculations are correct [Altic, 2008]. For the three angle
model we used a simulation to check the Lagrangian [Mahieu and Brandhuber, 2012]. From
a 1992 reconstruction of a counterweight trebuchet in Denmark we know how far it will
realistically shoot. We derived the dimensions from this reconstruction from the blueprint
and use these for our model. They released at 1

9π rad and the projectile went 80 meters
high and 168 meters far [Hansen, 1992]. Another reconstruction with the same blue prints
was build at Warwick Castle and is still in use for museum visitors.

1.4 Methodology

For this model we use the Euler-Lagrange method. This method is a reformulation of the
Newton’s equations of motion. The Euler-Lagrange method provides a systematic way to
determine the equations of motion in any coordinate system. For this method we use the
Euler-Lagrange equation

∂

∂t

(∂L
∂xi

)
− ∂L

∂ẋi
= 0

where L is the Lagrangian depending on x1, . . . , xn. In our case the xi’s are the angles
θ, φ and ψ. A Lagrangian for a certain system is not unique, but we can always find
a valid Lagrangian by using L(x1, . . . , xn) = Ek − Ep. Even though the Lagrangian is
not unique, every valid Lagrangian will result in the same set of equations of motion
[Barger and Olsson, 1995].

3

1.5 General problem

We have a stand l3, that we see as a line perpendicular to the ground. The stand does not
move in our model. The point where the stand touches the ground is our origin (0, 0). The
main beam is attached at the top of l3. The main beam can rotate around the top of l3
with angle θ. On one side there is a short part of the main beam, l1, on the other side is
a long part of the main beam, l2. At the end of l1, there is a counterweight beam l4. The
counterweight beam l4 can rotate around the end of l1 with angle φ. A large counterweight
m1 is attached to this counterweight beam l4. At the end of l2 there is a projectile beam
l5. The projectile beam l5 can rotate around the end of l2 with angle ψ. A projectile m2 is
connected to the projectile beam l5. This is all schematically laid out in figure 2 which is
based on figure 1. We neglect the loss of energy due to friction. This involves both friction

Figure 2: A schematic representation of the general model.

at the three rotation points and air resistance. We also neglect the weight and volume of
the device except m1 and m2. We expect this to be possible since we choose m1 quite
large. The ground does not play a role in our model. We see m1 and m2 as point masses
and we see l1, l2, l3, l4 and l5 as lines. We assume all the beams to be rigid. The units that
we work with are meters, seconds, kilos and radians.

4

1.6 Variables and parameters

Independent variable

t time s

Table 1: The independent variable of our model

Dependent variables

θ angle between the main beam and the stand rad
φ angle between the main beam and the counterweight beam rad
ψ angle between the main beam and the projectile beam rad

Table 2: The Dependent variables of our model are the angles, see figure 2.

Parameters

m1 mass of the counterweight 2000 kg
m2 mass of the projectile 15 kg
l1 short part of the main beam, between the θ-joint and the φ-joint 1.2m
l2 long part of the main beam, between the θ-joint and the ψ-joint 5.7m
l3 stand, between the ground and the θ-joint 3.2m
l4 counterweight beam, between the φ-joint and the counterweight 1.4m
l5 projectile beam, between the ψ-joint and the projectile 5m
g gravitation constant 9.81m/s2

θ0 θ at t = 0 0.7π rad

θ̇0 θ̇ at t = 0 0 rad/s
φ0 φ at t = 0 π − θ0 rad
φ̇0 φ̇ at t = 0 0 rad/s
ψ0 ψ at t = 0 θ0 − 0.5π rad

ψ̇0 ψ̇ at t = 0 0 rad/s

Table 3: The parameters of our model derived from the reconstruction in Denmark
[Hansen, 1992].

5

2 The one angle model

For the first model we take our general problem with l4 and l5 equal to zero. Only angle θ
plays a role in this model, so we call it the one angle model. This is shown schematically
in figure 3. For the next model we will add l4. This means that φ plays a role again, so
this is the two angle model.

Figure 3: Schematic representation of the one angle model

2.1 Mathematical model

The position of the counterweight is given by r1a and the position of the projectile is given
by r2a, see figure 4.

Figure 4: Vector representation of the one angle model

6

From figure 4 we observe

r1a =

[
0
l3

]
+

[
l1 cos(θ − 1

2π)
l1 sin(θ − 1

2π)

]
=

[
l1 sin(θ)

−l1 cos(θ) + l3

]
(1)

r2a =

[
0
l3

]
−
[
l2 cos(θ − 1

2π)
l2 sin(θ − 1

2π)

]
=

[
−l2 sin(θ)
l2 cos(θ) + l3

]
(2)

With the y coördinates of the masses we can compute the potential energy of the counter-
weight and projectile.

Ep1a = m1g(−l1 cos(θ) + l3) Ep2a = m2g(l2 cos(θ) + l3) (3)

Adding Ep1a and Ep2a we find

Epa = −g(m1l1 −m2l2)f cos(θ) + gl3(m1 +m2) (4)

To compute the kinetic energy of the masses we need the speed of the masses. Using (1)
and (2) we find

v21a = (l1 cos(θ)θ̇)2 + (l1 sin(θ)θ̇)2 = l1θ̇ v22a = (−l2 cos(θ)θ̇)2 + (−l2 sin(θ)θ̇)2 = l2θ̇

With these speeds we can compute the kinetic energy for the counterweight and the pro-
jectile.

Ek1a =
1

2
m1l

2
1θ̇

2 Ek2a =
1

2
m2l

2
2θ̇

2 (5)

Adding Ek1a and Ek2a gives us the total kinetic energy

Eka =
1

2
(m1l

2
1 +m2l

2
2)θ̇2 (6)

We find our Lagrangian, La = Eka − Epa, by using equation (4) and (6).

La =
1

2
(m1l

2
1 +m2l

2
2)θ̇2 + g(m1l1 −m2l2)f cos(θ)− gl3(m1 +m2) (7)

In order to use the Euler-Lagrange equation for θ, ∂La

∂θ −
∂
∂t

(
∂La

∂θ̇

)
= 0, we need to compute

∂La

∂θ and ∂
∂t

(
∂La

∂θ̇

)
. By differentiating the Lagrangian, equation (7), with respect to θ we

find

∂Lc
∂θ

= −g(m1l1 −m2l2) sin(θ) (8)

Differentiating the Lagrangian, equation (7), with respect to θ̇ yields

∂Lc

∂θ̇
= (m1l

2
1 +m2l

2
2) (9)

Differentiating equation (9) with respect to t, gives us

∂

∂t

(∂La
∂θ̇

)
= (m1l

2
1 +m2l

2
2)θ̈ (10)

By subtracting (10) from (8), we finally obtain

(m1l
2
1 +m2l

2
2)θ̈ + g(m1l1 −m2l2) sin(θ) = 0

7

Solving for θ̈ gives

θ̈ = −g(m1l1 −m2l2)

(m1l21 +m2l22)
sin(θ) (11)

Note that masses m1 and m2 and lengths l1 and l2 are nonzero by assumption, which means
that denominator never becomes zero. Furthermore we set

θ(t = 0) = θ0 θ̇(t = 0) = θ̇0 (12)

as initial conditions, which means that equations (11) and (12) fully specify our model.
In the literature we see the same equation for θ̈ [Rutan and Wieczorek, 2005, 8][Siano, 2013,
9].

2.2 Analytic solution

Our numerical solution is dependent on the time step size we take. To see how accurate our
numerical solution is, we can try to get an analytic solution and compare these solutions.
Since our expression for θ̈, equation (11), is quite simple in this case, we can try to express
θ̇ in terms of θ.

θ̈ = −g(m1l1 −m2l2)

(m1l21 +m2l22)
sin(θ)

Multiplying both sides with θ̇ yields

θ̈θ̇ = −g(m1l1 −m2l2)

(m1l21 +m2l22)
sin(θ)θ̇

Integrating both sides with respect to t gives

1

2
θ̇2 =

g(m1l1 −m2l2)

(m1l21 +m2l22)
cos(θ) + α (13)

We use the initial conditions, see equation (12), to solve for α.

α =
1

2
θ̇20 −

g(m1l1 −m2l2)

(m1l21 +m2l22)
cos(θ0) (14)

Combining equations (13) and (14) and solving for θ̇ we obtain

θ̇(θ) =

−
√

2 g(m1l1−m2l2)
(m1l21+m2l22)

[cos(θ)− cos(θ0)] + θ̇0 0 < θ < π

√
2 g(m1l1−m2l2)

(m1l21+m2l22)
[cos(θ)− cos(θ0)] + θ̇0 −π < θ < 0

(15)

If 0 < θ < π we get a negative sign, since our θ̈ is negative and vice versa for −π < θ < 0.

2.3 Numerical solution

We choose our θ0 = 0.8πrad and θ̇0 = 0rad/s. Together with equation (11) for θ̈ our model
is now fully specified, but we still have to find a method to compute the results. Because
we have an equation for θ̇, see equation (15), we can plot a phase space for different
methods. We do this for the most simplistic method, the Euler forward method, and the
most standard method when using Python, scipy.integrate.odeint. Taking 0 ≤ t ≤ 1 and
using the Euler forward method gives us

8

Figure 5: Phase spaces using the Euler forward method with different time steps sizes ∆t

To get accurate result with the Euler forward method, we should choose our time step
∆t at least 0.001. The Python function initially uses the Adams–Bashforth method, but
switches to the Backward differentiation formula if the differential equation turns out to
be stiff. Taking 0 ≤ t ≤ 2 and using the Python function gives us

Figure 6: Phase spaces using the Python function with different time steps sizes ∆t

With the Python function scipy.integrate.odeint, we get accurate results from step size
∆t = 0.01. This is a tenth of the step size of the Euler forward method. So we will use the
Python function cipy.integrate.odeint from now on. For the one angle model is time step
size ∆t = 0.01 enough, but when we make our model more complicated, we have to check
if this is small enough.

9

When we use this to plot our angle and angular velocity as functions of time, we get a
feeling for what our one angle trebuchet is doing.

Figure 7: In this plot we see θ and θ̇ as a function of time. We used the one angle model
with ∆t = 10−2 and T = 1. We see θ accelerating at first which is what we would expect
and what we need in order to fire something.

We can also look at at longer period of time.

Figure 8: In this plot we see θ and θ̇ as a function of time. We used the one angle model
with ∆t = 10−2 and T = 5. We see that the solution is periodic and looks like a cosine
function for θ(t), which is to be expected when we look at the analytic solution (15).

10

2.4 Firing

Figure 9: Schematic representation of the
one angle trebuchet at the release moment

We call the moment when we release the
projectile tR with corresponding release an-
gle θR. For t ≤ tR we know the position of
the projectile r2a, see equation (2).

r2a(t) =

[
−l2 sin(θ)
l2 cos(θ) + l3

]
(16)

We can differentiate r2a with respect to t.

ṙ2a(t) =

[
cos(θ) · (−θ̇l2)

sin(θ) · (−θ̇l2)

]
(17)

For t ≥ tR we know the acceleration of the
projectile. Since we don’t take friction into
account, r̈2(t) reduces to

r̈2(t) =

[
0
−g

]
We can integrate r̈2(t) with respect to t.

ṙ2(t) =

[
β

−g · (t− tR) + γ

]
(18)

We can again integrate ṙ2(t) with respect to t.

r2(t) =

[
β · (t− tR) + δ

− 1
2g · (t− tR)2 + γ · (t− tR) + ε

]
(19)

At t = tR we know that the speed and position of the projectile should be the same. So
ṙ2a(tR), see equation (17), and ṙ2(tR), see equation (19), should be equal to each other.
Also r2a(tR), see equation (16), and r2(tR), see equation (18), should be equal. From
ṙ2a(tR) = ṙ2(tR) follows

β(θR) = cos(θR) · (−θ̇Rl2)

γ(θR) = sin(θR) · (−θ̇Rl2)

From r2a(tR) = r2(tR) follows

δ(θR) = −l2 sin(θR)

ε(θR) = l2 cos(θR) + l3

We call the moment that the projectile hits the ground tE . At tE we know that the height
is zero, so we can calculate tE

tE(θR) =
γ(θR) +

√
γ(θR)2 + 2gε(θR)

g
+ tR (20)

With tE we can calculate the range and impact with a certain release angle.

s(θR) = β(θR)(tE(θR)− tR) (21)

E(θR) =
1

2
m2(β(θR)2 + (−gtE(θR)γ(θR))2) (22)

11

When we variate θR, the range and impact changes.

Figure 10: In this plot we see the path of the projectile after firing with the one angle
trebuchet and different release angles θR. Besides the range, we can see the impact on the
ground in the legend. A bigger circle at y = 0 means a bigger impact.

Now we compute the optimal θR for range and impact.

Figure 11: In this plot we see the range and impact of the one angle trebuchet with
different release angles θR. The optimal range of 68.7 m is reached with release angle
θR = 0.19π rad and the optimal impact of 45.5 · 105 J is reached with release angle
θR = 0.36π rad.

2.5 Observations

The optimal release angle for range and impact are very different. Depending on what your
goal is, we can adjust the model to optimize that. With the one angle trebuchet we can
shoot up to 68.6 meters and have a maximum impact of 45.5 · 105J .

12

3 The two angle model

For the second model we take our general problem with l5 equal to zero. Only the angles
θ and φ play a role in this model, so we call it the two angle model. This is shown
schematically in figure 12. For the next model we will add l5.This means that ψ plays a
role again, so this is the three angle model.

Figure 12: Schematic representation of the two angle model

3.1 Mathematical model

The position of the counterweight is given by r1b, see figure 13.

Figure 13: Vector representation of the two angle model

From figure 13 we observe

r1b = r1a +

[
l4 sin(θ + φ− π)
−l4 cos(θ + φ− π)

]
=

[
l1 sin(θ)− l4 sin(θ + φ)

−l1 cos(θ) + l3 + l4 cos(θ + φ)

]
(23)

where r1a is the position of the projectile from the one angle model, see equation (1). The
position of the projectile is denoted by r2b and is not changed with respect to r2a of the
one angle model, see equation (2).

r2b = r2a =

[
−l2 sin(θ)
l2 cos(θ) + l3

]

13

We have a new equation for the height of the counterweight, so our potential energy of the
counterweight changes as well.

Ep1b = gm1(−l1 cos(θ) + l4 cos(θ + φ) + l3) (24)

Since r2b is the same as r2a, the potential energy of the projectile is the same as that of
the one angle model, Ep2b = Ep2a = gm2(l2 cos(θ) + l3), see equation (3). Adding Ep1b and
Ep2b yields the total potential energy

Epb = −g(m1l1 −m2l2) cos(θ) + gm1l4 cos(θ + φ) + gl3(m1 +m2) (25)

The equation for the position of the counterweight has changed, so the speed of the coun-
terweight changes as well.

v21b = l21θ̇
2 + l24(θ̇ + φ̇)2 − 2l1l4θ̇(θ̇ + φ̇) cos(φ)

Hence the kinetic energy of the counterweight becomes

Ek1b =
1

2
m1(l21θ̇

2 + l24(θ̇ + φ̇)2 − 2l1l4θ̇(θ̇ + φ̇) cos(φ)) (26)

Since r2b did not change with respect to r2a, the speed of the counterweight will stay the
same as the one angle model, Ek2b = Ek2a = 1

2m2l
2
2θ̇

2, see equation (5). Adding Ek1b and
Ek2b equals the total kinetic energy

Ekb =
1

2
(m1l

2
1 +m2l

2
2)θ̇2 +

1

2
m1l

2
4(θ̇ + φ̇)2 −m1l1l4θ̇(θ̇ + φ̇) cos(φ) (27)

This means that we find our Lagrangian, Lb = Ekb−Epb, by using equation (25) and (27).

Lb =
1

2
(m1l

2
1 +m2l

2
2)θ̇2 +

1

2
m1l

2
4(θ̇ + φ̇)2 −m1l1l4θ̇(θ̇ + φ̇) cos(φ) (28)

+ g(m1l1 −m2l2) cos(θ)− gm1l4 cos(θ + φ)− gl3(m1 +m2) (29)

In order to use the Euler-Lagrange equation for θ, ∂Lb

∂θ −
∂
∂t

(
∂Lb

∂θ̇

)
= 0, we need to compute

∂Lb

∂θ and ∂
∂t

(
∂Lb

∂θ̇

)
. By differentiating the Lagrangian, equation (29), with respect to θ we

find

∂Lb
∂θ

= −g(m1l1 −m2l2) sin(θ) + gm1l4 sin(θ + φ) (30)

Differentiating the Lagrangian, equation (29), with respect to θ̇ yields

∂Lc

∂θ̇
= (m1l

2
1 +m2l

2
2)θ̇ +m1l

2
4(θ̇ + φ̇)−m1l1l4 cos(φ)(2θ̇ + φ̇) (31)

Differentiating equation (31) with respect to t, gives us

∂

∂t

(∂Lb
∂θ̇

)
= (m1l

2
1 +m2l

2
2)θ̈ +m1l

2
4(φ̈+ θ̈) +m1l1l4[sin(φ)(2θ̇ + φ̇)φ̇− cos(φ)(2θ̈ + φ̈)]

(32)

By subtracting (32) from (30), we finally obtain

b11θ̈ + b12φ̈− v1 = 0 (33)

14

where

b11(φ) = −l21m1 + 2l1l4m1 cos(φ)− l22m2 − l24m1

b12(φ) = l4m1(l1 cos(φ)− l4)

v1(θ, φ, θ̇, φ̇) = −g(l2m2 sin(θ)−m1(l1 sin(θ)− l4 sin(φ+ θ))) + l1l4m1(φ̇+ 2θ̇) sin(φ)φ̇

We added the angle φ, which means that we need to use the Euler-Lagrange equation for

φ as well, ∂Lb

∂φ −
∂
∂t

(
∂Lb

∂φ̇

)
= 0. First we differentiate the Lagrangian, equation (29), with

respect to φ.

∂Lb
∂φ

= −m1l1l4θ̇(θ̇ + φ̇) sin(φ) + gm1l4 sin(θ + φ) (34)

Differentiating equation (29) with respect to φ̇ gives us

∂Lb

∂φ̇
= m1l

2
4(θ̇ + φ̇) +m1l1l4θ̇ cos(φ) (35)

Differentiating equation (35) with respect to t yields

∂

∂t

(∂Lb
∂φ̇

)
= m1l

2
4(θ̈ + φ̈) +m1l1l4θ̈ cos(φ)−m1l1l4θ̇ sin(φ)φ̇ (36)

When we subtract (36) from (34), we obtain

b21θ̈ + b22φ̈− v2 = 0 (37)

where

b21(φ) = l4m1(l1 cos(φ)− l4)

= a12(φ)

b22 = −l24m1

v2(θ, φ, θ̇) = −gm1l4 sin(θ + φ)−m1l1l4θ̇
2 sin(φ)

We can rewrite equations (33) and (37) as a matrix equation

B

[
θ̈

φ̈

]
= ~v with B =

[
b11 b12
b21 b22

]
and ~v =

[
v1
v2

]
, in this case

[
b11(φ) b12(φ)
b12(φ) b22

] [
θ̈

φ̈

]
=

[
v1(θ, φ, θ̇, φ̇)

v2(θ, φ, θ̇)

]
(38)

We can then calculate θ̈ and φ̈ with [θ̈ φ̈]T = B−1~v provided B is invertible. Note that
masses m1 and m2 and lengths l1, l2 and l4 are nonzero by assumption. The determinant
of B becomes

det(B) = l24m1(l21m1 sin2(φ) + l22m2) 6= 0

which means that the inverse of B always exists.

15

3.2 Checking the Lagrangian

Since our model get a little more complicated and the literature makes a lot of calculation
errors as well, we use some checks to see if our Lagrangian is correct. First we see if
the energy stays constant in the system, second we look at the Lagrangian of a double
pendulum. To see if the energy stays constant we use the Hamiltonian.

E =
∂Lb

∂θ̇
θ̇ +

∂Lb

∂φ̇
φ̇− Lb

If we calculate the energy with every step, it stays indeed constant.

Since modeling a double pendulum is done quite often in the literature and is almost
always the same, we can assume that the Lagrangian of the double pendulum is correct
[Altic, 2008, 7]. We can translate the constants of the Lagrangian of a double pendulum
to our constants.

L =
1

2
(m1 +m3)l21θ̇

2 +
1

2
m1l

2
4(φ̇+ θ̇)2 −m1l1l4θ̇(θ̇ + φ̇) cos(φ)

+ (m1 +m3)gl1 cos(θ)−m1l4g cos(φ+ θ)

m3 is a mass at the φ-joint, we take m3 = 0 to get our model. If we take m2 = 0 and l2 = 0
in our Lagrangian, we are left with the Lagrangian of a double pendulum with m3 = 0.

L =
1

2
m1l

2
1θ̇

2 +
1

2
m1l

2
4(θ̇ + φ̇)2 −m1l1l4θ̇(θ̇ + φ̇) cos(φ)

+ gm1l1 cos(θ)− gm1l4 cos(θ + φ)− gl3m1

The only difference is the last part with the of the Lagrangian. Since this part does not
have any relation to θ or φ, we can ignore it. When we take the derivatives, that part will
be eliminated. In other literature we see the same set of equations as (38) [Siano, 2013,
11].

3.3 Limit to the last model

When we take l4 = 0 in our matrix B and vector ~v, we get the same equation for θ̈ from
the one angle model, see equation (11). This is exactly what we would expect. However
if we take the limit l4 → 0, we do not get the same result. This is because of singular
perturbation. The same thing happens with a double pendulum, what looks a lot like our
situation. With singular perturbation, we can not approximate what happens with a really
small value for the parameter, l4 in our case, by setting the parameter value to zero.

16

3.4 Numerical solution

To see if the time step is still small enough, we ran the model for different step sizes until we
observed no difference. To get smooth plots with the two angle model, we need ∆t = 10−3.

Figure 14: In this plot we see θ, φ, θ̇ and φ̇ as a function of time. We used the two angle
model with ∆t = 10−3 and T = 1. We see θ̇ has a negative peak, which is the optimal
moment to fire.

We can also see what happens if we look at a longer time period.

Figure 15: In this plot we see θ, φ, θ̇ and φ̇ as a function of time. We used the two angle
model with ∆t = 10−3 and T = 5. We see that the solution is not periodic. This is to be
expected since our two angle model is very similar to a double pendulum and a double
pendulum is known to be chaotic. Note that the high peaks are not singularities, see
figure 14.

17

3.5 Firing

Since the equations for the position of the projectile r2b is the same as that of the one angle
model r2a, see equation (2), we can use the same equations for firing, see section 2.4. The
position of the counterweight has changed, so the speed of the projectile at different release
angles θR has changed.

Figure 16: In this plot we see the path of the projectile after firing with the two angle
trebuchet and different release angles θR. Besides the range, we can see the impact on the
ground in the legend. A bigger circle at y = 0 means a bigger impact.

Now we compute the optimal θR for range and impact.

Figure 17: In this plot we see the range and impact of the two angle trebuchet with
different release angles θR. The optimal range of 321.6 m is reached with release angle
θR = 0.14π rad and the optimal impact of 19.4 · 106 J is reached with release angle
θR = 0.16π rad.

18

3.6 Observations

The optimal release angle for range and impact are closer together than with the one angle
model. With the two angle trebuchet we can shoot up to 321.6 meters, which is 4.7 times
the range of the one angle trebuchet. We have a maximum impact of 19.4 · 106J , which
is 4.3 times the one angle trebuchet. This is because the angular velocities have extreme
peaks.

19

4 The three angle model

For the third model we take our general problem, see section 1.5. All three angle play a
role in this model, so we call it the three angle model. This is shown schematically in figure
18.

Figure 18: Schematic representation of the three angle model

4.1 Mathematical model

The position of the projectile is given by r2c, see figure 19.

Figure 19: Vector representation of the three angle model

From figure 19 we observe

r2c = r2a −
[
l5 sin(ψ − θ)
l5 cos(ψ − θ)

]
=

[
−l2 sin(θ)− l5 sin(ψ − θ)

l2 cos(θ) + l3 − l5 cos(ψ − θ)

]
(39)

20

where r2a is the position of the projectile from the one angle model, see equation (2). The
position of the counterweight is denoted by r1c and is not changed with respect to r1b of
the two angle model, see equation (23).

r1c = r1b =

[
l1 sin(θ)− l4 sin(θ + φ)

−l1 cos(θ) + l3 + l4 cos(θ + φ)

]
We have a new equation for the height of the projectile, so our potential energy of the
projectile changes as well. Filling in the new height yields

Ep2c = gm2(l2 cos(θ) + l3 − l5 cos(ψ − θ))

Since r1c is the same as r1b, the potential energy of the counterweight is the same as that
of the two angle model, Ep1c = Ep1b = gm1(−l1 cos(θ) + l4 cos(θ + φ) + l3), see equation
(24). Adding Ep1c and Ep2c yields the total potential energy

Epc = −g(m1l1 −m2l2) cos(θ) + gl3(m1 +m2) + gm1l4 cos(θ + φ)− gm2l5 cos(ψ − θ)
(40)

The equation for the position of the projectile has changed, so the speed of the projectile
changes as well. The new speed of the projectile is given by

v22c = l22θ̇
2 + l25(ψ̇ − θ̇)2 + 2l2l5θ̇(ψ̇ − θ̇)cos(ψ)

Hence the kinetic energy of the projectile becomes

Ek2c =
1

2
m2(l22θ̇

2 + l25(ψ̇ − θ̇)2 + 2l2l5θ̇(ψ̇ − θ̇)cos(ψ))

Since r1c did not change with respect to r1b, the speed of the counterweight will stay the
same as the two angle model, Ek1c = Ek1b = 1

2m1(l21θ̇
2 + l24(θ̇+ φ̇)2 − 2l1l4θ̇(θ̇+ φ̇) cos(φ)),

see equation (26). Adding Ek1c and Ek2c yields the total kinetic energy

Ekc =
1

2
m1l

2
1θ̇

2 +
1

2
m1l

2
4(θ̇ + φ̇)2 −m1l1l4θ̇ cos(φ)(φ̇+ θ̇)

+
1

2
m2l

2
2θ̇

2 +
1

2
m2l

2
5(ψ̇ − θ̇)2 +m2l2l5θ̇ cos(ψ)(ψ̇ − θ̇) (41)

This means that we find our Lagrangian, Lc = Ekc−Epc, by using equation (40) and (41).

Lc =
1

2
(m1l

2
1 +m2l

2
2)θ̇2 − gl3(m1 +m2) + g(m1l1 −m2l2) cos(θ)

+
1

2
m1l

2
4(θ̇ + φ̇)2 −m1l1l4θ̇(θ̇ + φ̇) cos(φ)− gm1l4 cos(θ + φ) (42)

+
1

2
m2l

2
5(ψ̇ − θ̇)2 +m2l2l5θ̇(ψ̇ − θ̇) cos(ψ) + gm2l5 cos(ψ − θ)

In order to use the Euler-Lagrange equation for θ, ∂Lc

∂θ −
∂
∂t

(
∂Lc

∂θ̇

)
= 0, we need to compute

∂Lc

∂θ and ∂
∂t

(
∂Lc

∂θ̇

)
. By differentiating the Lagrangian, equation (42), with respect to θ we

find

∂Lc
∂θ

= −g(m1l1 −m2l2) sin(θ) + gm1l4 sin(θ + φ) + gm2l5 sin(ψ − θ) (43)

Differentiating the Lagrangian, equation (42), with respect to θ̇ yields

∂Lc

∂θ̇
= (m1l

2
1 +m2l

2
2)θ̇

+m1l
2
4(θ̇ + φ̇)−m1l1l4 cos(φ)(2θ̇ + φ̇) (44)

−m2l
2
5(ψ̇ − θ̇)−m2l2l5 cos(ψ)(2θ̇ − ψ̇)

21

Differentiating equation (44) with respect to t, gives us

∂

∂t

(∂Lc
∂θ̇

)
= (m1l

2
1 +m2l

2
2)θ̈

+m1l
2
4(θ̈ + φ̈) +m1l1l4

[
sin(φ)φ̇(2θ̇ + φ̇)− cos(φ)(2θ̈ + φ̈)

]
(45)

−m2l
2
5(ψ̈ − θ̈) +m2l2l5

[
sin(ψ)ψ̇(2θ̇ − ψ̇)− cos(ψ)(2θ̈ − ψ̈)

]
By subtracting (45) from (43), we finally obtain

c11θ̈ + c12φ̈+ c13ψ̈ − w1 = 0 (46)

where

c11(φ, ψ) = −l21m1 + 2l1l4m1 cos(φ)− l24m1 − l22m2 + 2l2l5m2 cos(ψ)− l25m2

c12(φ) = l4m1(l1 cos(φ)− l4)

c13(ψ) = −l5m2(l2 cos(ψ)− l5)

w1(θ, φ, ψ, θ̇, φ̇, ψ̇) = g(m1(l1 sin(θ)− l4 sin(φ+ θ))−m2(l2 sin(θ) + l5 sin(ψ − θ)))
+ l1l4m1(φ̇+ 2θ̇) sin(φ)φ̇+ l2l5m2(−ψ̇ + 2θ̇) sin(ψ)ψ̇

When we compare the Lagrangian of the two angle model, see equation (29), with the
Lagrangian of the three angle model, see equation (42), we see that there are no terms
with φ changed or added. Hence the Euler-Lagrange expression for φ stays the same, see
equation (37).

c21θ̈ + c22φ̈+ c23ψ̈ = w2 (47)

where

c21(φ) = b21 = l4m1(l1 cos(φ)− l4)

= c12(φ)

c22 = b22 = −l24m1

c23 = 0

w2(θ, φ, θ̇) = v2 = l4m1(g sin(φ− θ)− l1 sin(ψ)θ̇2)

We added the angle ψ, which means that we need to use the Euler-Lagrange equation for

ψ as well, ∂Lc

∂ψ −
∂
∂t

(
∂Lc

∂ψ̇

)
= 0. First we differentiate the Lagrangian, equation (42), with

respect to ψ.

∂Lc
∂ψ

= −gm2l5 sin(ψ − θ)−m2l2l5θ̇ sin(ψ)(ψ̇ − θ̇) (48)

Differentiating equation (42) with respect to ψ̇ gives us

∂Lc

∂ψ̇
= m2l

2
5(ψ̇ − θ̇) +m2l2l5θ̇ cos(ψ) (49)

Differentiating equation (49) with respect to t yields

∂

∂t

(∂Lc
∂ψ̇

)
= m2l

2
5(ψ̈ − θ̈) +m2l2l5(−θ̇ sin(ψ)ψ̇ + θ̈ cos(ψ)) (50)

When we subtract (50) from (49), we obtain

c31θ̈ + c32φ̈+ c33ψ̈ − w3 = 0 (51)

22

where

c31(ψ) = l5m2(−l2 cos(ψ) + l5)

= c13(ψ)

c32 = 0

c33 = −l25m2

w3(θ, ψ, θ̇) = l5m2(g sin(ψ − θ)− l2 sin(ψ)θ̇2)

Combining equations (46), (47) and (51) and rewriting them as a matrix equation reduces
the problem toc11(φ, ψ) c12(φ) c13(ψ)
c12(φ) c22 0
c13(ψ) 0 c33

 θ̈φ̈
ψ̈

 =

w1(θ, φ, ψ, θ̇, φ̇, ψ̇)

w2(θ, φ, θ̇)

w3(θ, ψ, θ̇)

where we can find our double derivatives by inverting the matrix C. To make sure that this is
always possible, we check that the determinant of C is nonzero. Assume that l1, l2, l4, l5,m1

and m2 are nonzero, then the determinant of C becomes

det(C) = −l24l25m1m2(l21m1 sin2(φ) + l22m2 sin2(ψ))

We see that we get a problem in the special case where sin(φ) and sin(ψ) are zero at the
exact same moment. We build in a check to tell us if l21m1 sin2(φ) + l22m2 sin2(ψ) < 0.1.
Since this never happens, we can assume that no problems occur with inverting the matrix
C.

4.2 Checking the Lagrangian

Our model gets even more complicated. So we again use some checks to see if our La-
grangian is correct. First we see if the energy stays constant in the system, second we
compare our Lagrangian to the literature. To see if the energy stays constant we use the
Hamiltonian.

E =
∂Lc

∂θ̇
θ̇ +

∂Lc

∂φ̇
φ̇+

∂Lc

∂ψ̇
ψ̇ − Lc

If we calculate the energy with every step, it stays indeed constant.
In the literature we see the same Lagrangian [Rutan and Wieczorek, 2005, 27]. We also
compare our Lagrangian to that of a simulation [Mahieu and Brandhuber, 2012]. We use
this source because it is a blog like post, were a lot of people interested in this field com-
ment. So the chances for errors gone unnoticed are very slim. The Lagrangian used in the
simulation is

L =
1

2

[
2g
(
cos(θw)(L1M1 − L2M2) + L3M2cos(φw) + L4M1cos(ψw)

)
+ θ̇2w(L2

1M1 + L2
2M2)

+ θ̇w

(
2L1L4M1ψ̇wcos(θw − ψw)− 2L2L3M2φ̇wcos(θw − φw)

)
+ L2

3M2φ̇
2
w + L2

4M1ψ̇
2
w

]
We can translate the constants to our constants with L1 = l2, L2 = l1, L3 = l4, L4 =
l5,M1 = m2,M2 = m1, θw = θ + π, φw = θ + φ+ π and ψw = θ − ψ.

L =
1

2

[
2g
(
cos(θ + π)(l2m2 − l1m1)+l4m1cos(θ + φ+ π)+l5m2cos(θ − ψ)

)
+θ̇2(l22m2 + l21m1)

+ θ̇
(

2l2l5m2(θ̇ − ψ̇)cos(ψ + π)−2l1l4m1(θ̇ + φ̇)cos(−φ)
)

+l24m1(θ̇ + φ̇)2+l25m2(θ̇ − ψ̇)2
]

23

This is equal to our Lagrangian without the constant part, see equation (42). This is no
problem, since the constant part will be eliminated when we differentiate.

Lc =
1

2
(m1l

2
1 +m2l

2
2)θ̇2 + g(m1l1 −m2l2) cos(θ)

+
1

2
m1l

2
4(θ̇ + φ̇)2 −m1l1l4θ̇(θ̇ + φ̇) cos(φ)− gm1l4 cos(θ + φ)

+
1

2
m2l

2
5(ψ̇ − θ̇)2 +m2l2l5θ̇(ψ̇ − θ̇) cos(ψ) + gm2l5 cos(ψ − θ)

4.3 Limit to the last model

When we take l5 = 0 matrix C and vector ~w we get the matrix B and vector ~v from the
two angle model, see equation (38). However the same thing goes wrong when we take the
limit l5 → 0, see section 3.3.

4.4 Numerical solution

To see if the time step is still small enough, we ran the model for a smaller time step
∆t = 10−4. We observed no difference, so time step size ∆t = 10−3 is small enough for the
three angle model.

Figure 20: In this plot we see θ, φ, ψ, θ̇, φ̇ and ψ̇ as a function of time. We used the three
angle model with ∆t = 10−3 and T = 1. To fire as far as possible, a most negative θ̇ and
most positive ψ̇ are ideal. We see that θ̇ does not really have a negative peak this time,
but ψ̇ does have a big positive peak.

24

We can also see what happens if we look at a longer time period.

Figure 21: In this plot we see θ, φ, ψ, θ̇, ψ̇ and φ̇ as a function of time. We used the three
angle model with ∆t = 10−3 and T = 5. We see that the solution is not periodic. This is
to be expected since our three angle model is even more complicated than the two angle
model. Note that the high peaks are not singularities, see figure 20.

4.5 Firing

For t ≤ tR the position of the projectile r2c has changed, see equation (39).

r2c(t) =

[
−l2 sin(θ)− l5 sin(ψ − θ)

l2 cos(θ) + l3 − l5 cos(ψ − θ)

]
(52)

We can differentiate r2c with respect to t.

ṙ2c(t) =

[
−l2 cos(θR)θ̇R − l5 cos(ψR − θR)(ψ̇R − θ̇R)

−l2 sin(θR)θ̇R + l5 sin(ψR − θR)(ψ̇R − θ̇R)

]
(53)

For t ≥ tR the equations stay the same, see (18) and (19).

ṙ2(t) =

[
β

−g · (t− tR) + γ

]
r2(t) =

[
β · (t− tR) + δ

− 1
2g · (t− tR)2 + γ · (t− tR) + ε

]
(54)

At t = tR we know that the speed and position of the projectile should be the same. From
ṙ2c(tR) = ṙ2(tR) follows

β(θR) = −l2 cos(θR)θ̇R − l5 cos(ψR − θR)(ψ̇R − θ̇R)

γ(θR) = −l2 sin(θR)θ̇R + l5 sin(ψR − θR)(ψ̇R − θ̇R)

From r2c(tR) = r2(tR) follows

δ(θR) = −l2 sin(θR)− l5 sin(ψR − θR)

ε(θR) = l2 cos(θR) + l3 − l5 cos(ψR − θR)

The equations for tE(θR), s(θR) and E(θR) stay the same. Note that β(θR), γ(θR) and
ε(θR) did change.

25

Figure 22: In this plot we see the path of the projectile after firing with the three angle
trebuchet and different release angles θR. Besides the range, we can see the impact on the
ground in the legend. A bigger circle at y = 0 means a bigger impact.

Now we compute the optimal θR for range and impact.

Figure 23: In this plot we see the range and impact of the two angle trebuchet with
different release angles θR. The optimal range of 278.1 m is reached with release angle
θR = 0.16π rad and the optimal impact of 51.9 · 106 J is reached with release angle
θR = 0.12π rad. Note that we can have a same possible release angle on different times.
This is why we get multiple values at certain release angles. The negative blue line is not
interesting for us, since we want to shoot forward.

26

Figure 24: In this plot we see that the ψ0 we choose can make a big difference in range
and impact. We computed the optimum range and impact for 2500 different ψ0. The
optimum range of 431.0 m is reached with ψ0 = 1.31π and θR = 0.12π. The optimum
impact of 54.1 · 107 J is reached with ψ0 = 0.11π and θR = 0.12π.

4.6 Observations

The optimum impact with the three angle trebuchet is 51.9 ·106 J, which is 2.7 times better
compared to the two angle model. With the three angle trebuchet we can shoot up to 278.1
meters, which is a little less than the two angle trebuchet. However we have seen in figure
24 that how we choose our ψ0 results in a very different range and impact. When we choose
a optimal ψ0 we can shoot further than the two angle trebuchet.

27

5 Conclusion and discussion

With this project we wanted to model the movements of a counterweight trebuchet while
firing. We start with an oversimplified model and made the model more realistic in con-
secutive steps. We started with the one angle model, which has only angle θ, the angle
between the main beam and the stand. With the Euler-Lagrange method, we derived the
equation of motion for θ. We got a periodic solution for θ that keeps oscillating with the
same amplitude. This is what we expect, since we did not include friction in the model.

To get the two angle model, we added the angle φ to, the angle between the main beam
and the counterweight. The equations of motion got more complicated and we could not
calculate an analytic solution anymore, we needed to do it numerically. Since our φ̈ de-
pends on θ̈, we wrote our equations of motion as a matrix equation. Our solution was
not periodic anymore and had extreme peaks. Because the equations of motion of our two
angle model are similar to that of a double pendulum, which is known to exhibit chaotic
behavior, we expected these results. The extreme peaks make it harder to reach close to
the optimal range or impact in practice. Our optimal range and impact increased enor-
mously from the one angle to the two angle trebuchet. We went from 68.7 m and 45.5 · 105

J to 321.6 m and 19.4 · 106 J. We did not expect that it would have a large effect, since
the beam we added, l4, is quite small in comparison. Even though l4 is small, addition of
this beam may still have a noticeable effect because l4 is attached to the large counterweight.

Lastly we added the angle ψ to get our three angle model. The equations of motion got even
more complicated. Our model reduces to a matrix equation C~x = ~w, which means that
we have to carefully check det(C) 6= 0. With this model we could check our Lagrangian,
but not the equations of motion anymore since they got to complicated. We saw that the
starting angle φ0 we chose, had a big effect on our optimal range and impact. When we
choose the right φ0, we can shoot harder and a little further than the two angle trebuchet,
exact numbers are given in the caption of figure 24. We expected to be able to shoot a lot
further with the three angle model, then with the two angle model. The sling makes the
trebuchet a different kind of catapult, which is known to shoot further and harder than
other kinds of catapults.

With our three angle trebuchet, we can shoot a lot further (431 m) than in practice where
values around 165 m are reached. This is to be expected since we did not take friction or
the beam weight into account. The optimal release angles for impact and range with our
three angle model (θR = 0.12π) are very close to what is used in practice (θR = 0.11π).
This could mean that even though we can not predict the trajectory of the projectile cor-
rectly, we can determine a close to optimal release angle. However we have also seen that
small difference in choosing our ψ0 has a big effect on our results. So our model is not yet
sufficient enough to predict the movements of a counterweight trebuchet firing realistically.

In a follow up project, we would first take the ground into account. With the ground
there is less mobility for φ, so hopefully this will solve the problem that choosing a certain
φ0 has an big effect on the results. The second step would be taking the beam weight into
account, since it is a twelve ton structure. A lot of energy that now goes into the projectile
might be lost there.

28

References

[Altic, 2008] Altic, J. (2008). Double Pendulum.

[Barger and Olsson, 1995] Barger, V. D. and Olsson, M. G. (1995). CLASSICAL ME-
CHANICS: A Modern Perspective.

[Hansen, 1992] Hansen, D. P. V. (1992). Experimental Reconstruction of a Medieval
Trébuchet.

[Mahieu and Brandhuber, 2012] Mahieu, E. and Brandhuber, F. (2012). Optimizing the
counterweight trebuchet.

[Purton, 2009] Purton, P. (2009). A History of the Early Medieval Siege, c.450-1200.

[Rutan and Wieczorek, 2005] Rutan, S. and Wieczorek, B. (2005). Modern Siege Weapons:
Mechanics of the Trebuchet.

[Siano, 2013] Siano, D. B. (2013). Trebuchet Mechanics.

29

A Appendix

A.1 Reconstruction

Figure 25: The first blue print of the reconstruction in Denmark [Hansen, 1992]. From
this picture we can extract the values l1, l2 and l4 that were used in their setup.

30

Figure 26: The second blue print of the reconstruction in Denmark [Hansen, 1992]. From
this picture we can extract the value l3 that was used in their setup.

31

Figure 27: From this table we can extract the values m1, m2 and l5 for a certain shot that
was done with the reconstruction in Denmark [Hansen, 1992].

32

Figure 28: In this graph we can see that the optimal range of 168 meters was reached
with m1 = 2000 kg, m2 = 15 kg and l5 = 5 m [Hansen, 1992].

33

A.2 Python code

import numpy as np
import matp lo t l i b . pyplot as p l t
import s c ipy . i n t e g r a t e as i n t e g r a t e
import sympy as sp
import time
import matp lo t l i b . animation as animation

g = 9.81
t = sp . Symbol (’ t ’)
theta , phi , p s i = sp . symbols (’ theta phi p s i ’ , c l s=sp . Function)
th , ph , ps = theta (t) , phi (t) , p s i (t)

class t rebuchet :
def i n i t (s e l f , l 1 =1.2 , l 2 =5.7 , l 3 =3.2 , l 4 =1.4 , l 5 =5. , m1=2000. ,

m2=15. , theta0 =0.7∗np . pi , dtheta0 =0. , phi0 = None ,
dphi0 = 0 , p s i 0 = None , dps i0 = 0 , dt = 0 .001 , T=1 .) :

s e l f . l 1 = l 1
s e l f . l 2 = l 2
s e l f . l 3 = l 3
s e l f . l 4 = l 4
s e l f . l 5 = l 5
s e l f . m1 = m1
s e l f . m2 = m2
s e l f . the ta0 = theta0
s e l f . d theta0 = dtheta0
s e l f . ph i0 = phi0 i f phi0 != None else np . p i − theta0
s e l f . dphi0 = dphi0
s e l f . p s i 0 = ps i 0 i f ps i 0 != None else theta0 − 0 .5∗np . p i
s e l f . dp s i 0 = dps i0
s e l f . T = T
s e l f . d t = dt
s e l f . t = l i s t (np . arange (0 ,T, s e l f . d t))
s e l f . r1 , s e l f . r 2 = s e l f . r 1 2 ()
s e l f . A , s e l f . v = s e l f . Av (s e l f . L ())
s e l f . a n g l e s = 1 + (l 4 != 0) + (l 5 != 0)
s e l f . y = s e l f . s e t y ()
s e l f . d e l t a , s e l f . e p s i l o n = s e l f . r 2 [0] , s e l f . r 2 [1]
s e l f . beta , s e l f . gamma = s e l f . d e l t a . d i f f (t) , s e l f . e p s i l o n . d i f f (t)
s e l f . s l i s t , s e l f . E l i s t = s e l f . s h o o t i n g l i s t ()
s e l f . s opt , s e l f . E opt = s e l f . o p t i m a l a n g l e ()
s e l f . L = s e l f . L ()

###
#support methods

def r 1 2 (s e l f) :
a , b = th+ph , ps−th
rn1 = lambda x , y , z : y∗ sp . s i n (th)+z∗ sp . s i n (x)
rn2 = lambda x , y , z : y∗ sp . cos (th)+z∗ sp . cos (x)+ s e l f . l 3
r1 = [rn1 (a , s e l f . l 1 ,− s e l f . l 4) , rn2 (a,− s e l f . l 1 , s e l f . l 4)]
r2 = [rn1 (b,− s e l f . l 2 ,− s e l f . l 5) , rn2 (b , s e l f . l 2 ,− s e l f . l 5)]
return r1 , r2

34

def L (s e l f) :
[x1 , y1] , [x2 , y2] = s e l f . r 1 [: 2] , s e l f . r 2 [: 2]
vn sq = lambda x , y : (x . d i f f (t))∗∗2+(y . d i f f (t))∗∗2
v1 sq , v2 sq = vn sq (x1 , y1) , vn sq (x2 , y2)
m1, m2 = s e l f . m1 , s e l f . m2
return 0 . 5∗ (m1∗ v1 sq+m2∗ v2 sq)− g ∗(m1∗y1+m2∗y2)

def Av (s e l f , L) :
A, V = [] , []
ang l s = [th]
i f s e l f . l 4 != 0 : ang l s . append (ph)
i f s e l f . l 5 != 0 : ang l s . append (ps)
for ang le in ang l s :

f = L . d i f f (ang le)−L . d i f f (ang le . d i f f (t)) . d i f f (t)
v = f
for ang le in ang l s :

spd = sp . Der iva t ive (angle , (t , 2))
a = (f − f . subs (spd , 0))/ spd
A. append (sp . s i m p l i f y (a))
v = v . subs (spd , 0)

V. append (sp . s i m p l i f y (−v))
return A,V

def f i l l o u t m a t r i x (s e l f , C, s t a t u s) :
global t
global theta , phi , p s i
C = [c . subs (sp . Der iva t iv e (theta (t) , t) , s t a t u s [1]) for c in C]
C = [c . subs (theta (t) , s t a t u s [0]) for c in C]
C = [c . subs (sp . Der iva t iv e (phi (t) , t) , s t a t u s [3]) for c in C]
C = [c . subs (phi (t) , s t a t u s [2]) for c in C]
C = [c . subs (sp . Der iva t iv e (p s i (t) , t) , s t a t u s [5]) for c in C]
C = [c . subs (p s i (t) , s t a t u s [4]) for c in C]
return C

def d e r i v s (s e l f , s tatus , t) :
A = s e l f . f i l l o u t m a t r i x (s e l f . A , s t a t u s)
v = s e l f . f i l l o u t m a t r i x (s e l f . v , s t a t u s)
B = np . matrix (np . z e r o s (shape=(s e l f . ang l e s , s e l f . a n g l e s)))
W = np . matrix (np . z e r o s (shape=(s e l f . ang l e s , 1)))
for i in range (s e l f . a n g l e s ∗∗2) :

B. i t emset (i , f loat (A[i]))
for i in range (s e l f . a n g l e s) :

W. i t emset (i , f loat (v [i]))
det = np . l i n a l g . det (B)
i f s e l f . ang l e s == 3 :

t e s t = det/(− s e l f . l 4 ∗∗2∗ s e l f . l 5 ∗∗2∗ s e l f .m1∗ s e l f .m2)
i f abs (t e s t) < 0 . 1 :

print (’ det (A) = ’+str (det)+ ’ , i n v e r s e becomes : ’+str (B. g e t I ()))
M = B. g e t I ()∗W
ddth , ddph , ddps = f loat (M[0]) , 0 . , 0 .
i f s e l f . l 4 != 0 :

ddph = f loat (M[1])

35

i f s e l f . l 5 != 0 :
ddps = f loat (M[2])

return [s t a t u s [1] , ddth , s t a t u s [3] , ddph , s t a t u s [5] , ddps]

def s e t y (s e l f) :
s t a t e 0 = [s e l f . theta0 , s e l f . dtheta0 , s e l f . phi0 ,

s e l f . dphi0 , s e l f . ps i0 , s e l f . dps i0]
y = i n t e g r a t e . ode int (func = s e l f . d e r i v s , y0 = state0 , t = s e l f . t)
return y

def t e (s e l f , gamma, e p s i l o n) :
global g
w = gamma∗∗2 + 2∗g∗ e p s i l o n
i f w<0: return 0
else : return (gamma+w∗∗ (0 . 5)) / g

def s (s e l f , beta , gamma, e p s i l o n) :
return beta ∗ s e l f . t e (gamma, e p s i l o n)

def E (s e l f , beta , gamma, e p s i l o n) :
global g
return 0 .5∗ s e l f .m2∗(beta∗∗2+(−g∗ s e l f . t e (gamma, e p s i l o n)∗gamma)∗∗2)

def s h o o t i n g l i s t (s e l f) :
s l i s t , E l i s t = [] , []
for s t a t u s in s e l f . y :

be = s e l f . f i l l o u t f u n c t i o n (s e l f . beta , s t a t u s)
ga = s e l f . f i l l o u t f u n c t i o n (s e l f . gamma , s t a t u s)
ep = s e l f . f i l l o u t f u n c t i o n (s e l f . e p s i l o n , s t a t u s)
s l i s t . append (s e l f . s (be , ga , ep))
E l i s t . append (s e l f . E (be , ga , ep))

return s l i s t , E l i s t

def o p t i m a l a n g l e (s e l f) :
theta = [item [0] for item in s e l f . y]
s op t = theta [s e l f . s l i s t . index (max(s e l f . s l i s t))]
E opt = theta [s e l f . E l i s t . index (max(s e l f . E l i s t))]
return s opt , E opt

def f i l l o u t f u n c t i o n (s e l f , f , s t a t u s) :
global t
global theta , phi , p s i
f = f . subs (sp . Der iva t iv e (theta (t) , t) , s t a t u s [1])
f = f . subs (theta (t) , s t a t u s [0])
f = f . subs (sp . Der iva t iv e (phi (t) , t) , s t a t u s [3])
f = f . subs (phi (t) , s t a t u s [2])
f = f . subs (sp . Der iva t iv e (p s i (t) , t) , s t a t u s [5])
f = f . subs (p s i (t) , s t a t u s [4])
return f

###
#p rop er ty ’ s

36

@property
def A(s e l f) :

return s e l f . A

@property
def v (s e l f) :

return s e l f . v

@property
def l 1 (s e l f) :

return s e l f . l 1

@property
def l 2 (s e l f) :

return s e l f . l 2

@property
def l 3 (s e l f) :

return s e l f . l 3

@property
def l 4 (s e l f) :

return s e l f . l 4

@property
def l 5 (s e l f) :

return s e l f . l 5

@property
def m1(s e l f) :

return s e l f . m1

@property
def m2(s e l f) :

return s e l f . m2

@property
def theta0 (s e l f) :

return s e l f . the ta0

@property
def dtheta0 (s e l f) :

return s e l f . d theta0

@property
def phi0 (s e l f) :

return s e l f . ph i0

@property
def dphi0 (s e l f) :

return s e l f . dphi0

@property

37

def ps i 0 (s e l f) :
return s e l f . p s i 0

@property
def dps i0 (s e l f) :

return s e l f . dp s i 0

@property
def T(s e l f) :

return s e l f . T

@property
def dt (s e l f) :

return s e l f . d t

@property
def t (s e l f) :

return s e l f . t

@property
def ang l e s (s e l f) :

return s e l f . a n g l e s

@property
def r1 (s e l f) :

return s e l f . r 1

@property
def r2 (s e l f) :

return s e l f . r 2

@property
def y (s e l f) :

return s e l f . y

@property
def beta (s e l f) :

return s e l f . be ta

@property
def gamma(s e l f) :

return s e l f . gamma

@property
def d e l t a (s e l f) :

return s e l f . d e l t a

@property
def e p s i l o n (s e l f) :

return s e l f . e p s i l o n

@property
def s l i s t (s e l f) :

38

return s e l f . s l i s t

@property
def E l i s t (s e l f) :

return s e l f . E l i s t

@property
def s op t (s e l f) :

return s e l f . s o p t

@property
def E opt (s e l f) :

return s e l f . E opt

@property
def L(s e l f) :

return s e l f . L

###

def num pic (t reb) :
num, ax1 = p l t . subp lo t s (f i g s i z e = (1 4 , 7))
ax2 = ax1 . twinx ()
p l t . r c (’ f ont ’ , s i z e = 20)
s t a t e = treb . y
ax2 . p l o t ([0 , t r eb .T] , [0 , 0] , c o l o r=’ l i g h t g r e y ’ , l i n ew id th = 1)
ax2 . p l o t (t reb . t , [item [1] for item in s t a t e] ,

c o l o r=’ pink ’ , l a b e l=r ’ $\dot {\ theta }$ ’ , l i n ew id th =3)
ax1 . p l o t (t reb . t , [item [0] for item in s t a t e] ,

c o l o r=’ red ’ , l a b e l=r ’ $\ theta$ ’ , l i n ew id th =3)
i f t reb . l 4 != 0 :

ax2 . p l o t (t reb . t , [item [3] for item in s t a t e] ,
c o l o r=’ l i g h t g r e e n ’ , l a b e l=r ’ $\dot {\ phi }$ ’ , l i n ew id th =3)

ax1 . p l o t (t reb . t , [item [2] for item in s t a t e] ,
c o l o r=’ darkgreen ’ , l a b e l=r ’ ϕ ’ , l i n ew id th =3)

i f t reb . l 5 != 0 :
ax2 . p l o t (t reb . t , [item [5] for item in s t a t e] ,

c o l o r=’ l i g h t s k y b l u e ’ , l a b e l=r ’ $\dot {\ p s i }$ ’ , l i n ew id th =3)
ax1 . p l o t (t reb . t , [item [4] for item in s t a t e] ,

c o l o r=’ blue ’ , l a b e l=r ’ $\ ps i $ ’ , l i n ew id th =3)
ax1 . l egend (l o c=’ upper l e f t ’)
ax2 . l egend (l o c=’ upper r i g h t ’)
ax1 . s e t x l a b e l (’ t (s) ’)
ax1 . s e t y l a b e l (’ ang le (rad) ’)
ax2 . s e t y l a b e l (’ v e l o c i t y (rad/ s) ’)
i f t reb . ang l e s == 1 and t reb .T<=2.:

ax1 . s e t y l i m (−1 ,3)
ax2 . s e t y l i m (−10 ,30)

e l i f t reb . ang l e s == 2 and t reb .T<=2.:
ax1 . s e t y l i m (−2 ,6)
ax2 . s e t y l i m (−20 ,60)

e l i f t reb . ang l e s == 3 and t reb .T<=2.:
ax1 . s e t y l i m (−4 ,6)

39

ax2 . s e t y l i m (−40 ,60)
i f t reb . ang l e s == 3 and t reb . l 4 <= 0.01 and t reb . l 5 <= 0 . 0 1 :

name = ’ num small ’
i f t reb . ang l e s == 2 and t reb . l 4 <= 0 . 0 1 :

name = ’ num small ’
e l i f t reb .T<4:

name = ’ num short ’
else :

name = ’ num long ’
name = name + str (t reb . ang l e s) + ’ . png ’
num. s a v e f i g (name)

###

def path p lo t (treb , n , focus , c l r=’ l i g h t g r e y ’) :
global g
be = f loat (t reb . f i l l o u t f u n c t i o n (t reb . beta , t reb . y [n]))
ga = f loat (t reb . f i l l o u t f u n c t i o n (t reb . gamma, t reb . y [n]))
ep = f loat (t reb . f i l l o u t f u n c t i o n (t reb . ep s i l on , t reb . y [n]))
de = f loat (t reb . f i l l o u t f u n c t i o n (t reb . de l ta , t reb . y [n]))
w = ga∗∗2 + 2∗g∗ep
i f w<0: te = 0
else : t e = (ga+w∗∗ (0 . 5)) / g
z = np . l i n s p a c e (0 , te , 100)
x = be∗z + de
y = −0.5∗g∗z ∗∗2 + ga∗z + ep
p l t . p l o t (x , y , c o l o r=c l r)
s1 = treb . E l i s t [n] /max(t reb . E l i s t)
p l t . s c a t t e r (x [−1] , 0 , c o l o r=c l r , s=f loat (abs (s1 ∗ 4 0 0 .)))
l b l , s2= ’ ’ , t r eb . E l i s t [n]
i f t reb . ang l e s == 1 :

s2 = s2 /(10∗∗4)
l b l = str (round(s2))+ r ’ $\ cdot 10ˆ4$ J ’

e l i f t reb . ang l e s == 2 :
s2 = s2 /(10∗∗5)
l b l = str (round(s2))+ r ’ $\ cdot 10ˆ5$ J ’

e l i f t reb . ang l e s == 3 :
s2 = s2 /(10∗∗5)
l b l = str (round(s2))+ r ’ $\ cdot 10ˆ5$ J ’

p l t . s c a t t e r (x [−1] , 0 , c o l o r=c l r , s =60. , l a b e l=l b l)

def p i c t u r e (treb , k = 6 , f o cus=’ J ’) :
c o l o r s = [’ tab : b lue ’ , ’ tab : orange ’ , ’ tab : green ’ , ’ tab : red ’ , ’ tab : purple ’ ,

’ tab : brown ’ , ’ tab : pink ’ , ’ tab : gray ’ , ’ tab : o l i v e ’ , ’ tab : cyan ’ ,
’ b ’ , ’ r ’]

theta = [round(item [0] , 1) for item in t reb . y]
i f t reb . ang l e s == 3 :

R = [674 , 750 , 655 , 760 , 765 , 780]
else :

a = theta . index (min(theta , key=lambda x : abs (x−0 .2)))
b = theta . index (min(theta , key=lambda x : abs (x−1 .)))
R = np . l i n s p a c e (a , b , k)

shoot ing = p l t . f i g u r e (f i g s i z e = (1 4 , 7))

40

for i in range (min(k , len (c o l o r s))) :
pa th p lo t (treb , int (R[i]) , focus , c l r = c o l o r s [i])

p l t . l egend (l o c=’ upper r i g h t ’)
p l t . x l a b e l (’ x (m) ’)
p l t . y l a b e l (’ y (m) ’)
p l t . yl im (0)
naam = ’ shoot ing ’ + str (t reb . ang l e s) + ’ . png ’
shoot ing . s a v e f i g (naam)

###

def opt i (t reb) :
theta = [item [0] / np . p i for item in t reb . y]
theta . r e v e r s e ()
s l i s t = treb . s l i s t
s l i s t . r e v e r s e ()
opt i , ax3 = p l t . subp lo t s (f i g s i z e = (1 4 , 7))
ax4 = ax3 . twinx ()
ax3 . s e t x l a b e l (r ’ $\ theta R (\ pi$ rad) ’)
ax3 . s e t y l a b e l (r ’ s (m) ’)
i f t reb . ang l e s ==1:

ax4 . s e t y l a b e l (r ’E($10 ˆ5$J) ’)
E l i s t = [E∗10∗∗(−5) for E in t reb . E l i s t]

e l i f t reb . ang l e s ==2:
ax4 . s e t y l a b e l (r ’E($10 ˆ5$J) ’)
E l i s t = [E∗10∗∗(−5) for E in t reb . E l i s t]

e l i f t reb . ang l e s ==3:
ax4 . s e t y l a b e l (r ’E($10 ˆ6$J) ’)
E l i s t = [E∗10∗∗(−6) for E in t reb . E l i s t]

E l i s t . r e v e r s e ()
ax3 . p l o t ([min(theta) ,max(theta)] , [0 , 0] , c o l o r= ’ l i g h t g r e y ’)
ax3 . p l o t ([t r eb . s op t /np . pi , t r eb . s opt /np . p i] , [0 ,max(s l i s t)] ,

c o l o r= ’ tab : b lue ’ , l i n e s t y l e=’ : ’ , l i n ew id th =3)
print (t reb . s opt /np . p i)
print (max(s l i s t))
ax4 . p l o t ([t r eb . E opt/np . pi , t r eb . E opt/np . p i] , [0 ,max(E l i s t)] ,

c o l o r= ’ tab : red ’ , l i n e s t y l e=’ : ’ , l i n ew id th =3)
print (t reb . E opt/np . p i)
print (max(E l i s t))
ax3 . p l o t (theta , s l i s t , c o l o r= ’ tab : b lue ’ , l a b e l=’ Range ’ , l i n ew id th =3)
ax4 . p l o t (theta , E l i s t , c o l o r= ’ tab : red ’ , l a b e l=’ Impact ’ , l i n ew id th =3)
ax3 . s e t x l i m (min(theta) ,max(theta))
i f t reb . ang l e s == 1 :

ax3 . s e t y l i m (−20 ,100)
ax4 . s e t y l i m (−20 ,100)

e l i f t reb . ang l e s == 2 :
ax3 . s e t y l i m (−50 ,400)
ax4 . s e t y l i m (−50 ,400)

e l i f t reb . ang l e s == 3 :
ax3 . s e t y l i m (−50 ,600)
ax4 . s e t y l i m (−50 ,600)

ax3 . l egend (l o c=’ upper l e f t ’)
ax4 . l egend (l o c=’ upper r i g h t ’)

41

naam = ’ opt i ’ + str (t reb . ang l e s) + ’ . png ’
op t i . s a v e f i g (naam)

###

def check (t reb) :
global t , th , ph , ps
f = treb . L . d i f f (th . d i f f (t))∗ th . d i f f (t) − t reb . L
i f t reb . l 4 != 0 : f = f + treb . L . d i f f (ph . d i f f (t))∗ph . d i f f (t)
i f t reb . l 5 != 0 : f = f + treb . L . d i f f (ps . d i f f (t))∗ ps . d i f f (t)
E l s t = []
E l s t . append (t reb . f i l l o u t f u n c t i o n (f , t r eb . y))
i f max(E l s t)−min(E l s t) != 0 :

print (max(E l s t)−min(E l s t))

###

def p1 (n) :
x , x1 , x2 , y1 , y2 = [] , [] , [] , [] , []
for i in range (n) :

p s i 0 = (f loat (i)/n)∗2
x . append (ps i 0)
t reb = trebuchet (p s i 0 = ps i 0 ∗np . pi , dt = 0 . 01)
check (t reb)
x1 . append (t reb . s opt /np . p i)
y1 . append (max(t reb . s l i s t))
x2 . append (t reb . E opt/np . p i)
y2 . append (max(t reb . E l i s t)/ (10∗∗7))
print (x)
print (y1)
print (y2)
print (time . s t r f t i m e (”%M%S” , time . l o c a l t i m e ()))

x . append (2 .)
x1 . append (x1 [0])
y1 . append (y1 [0])
x2 . append (x2 [0])
y2 . append (y2 [0])
return x , x1 , x2 , y1 , y2

def p2 (n , x , y1 , y2) :
p0 , ax5 = p l t . subp lo t s (f i g s i z e = (1 4 , 7))
ax6 = ax5 . twinx ()
ax5 . s e t x l a b e l (r ’ $\ p s i 0 (\ pi$ rad) ’)
ax6 . s e t y l a b e l (r ’ $E {opt }(10ˆ7 $J) ’ , c o l o r= ’ tab : red ’)
ax5 . s e t y l a b e l (r ’ $ s {opt }(m) $ ’ , c o l o r= ’ tab : b lue ’)
ax5 . p l o t ([x [y1 . index (max(y1))] , x [y1 . index (max(y1))]] , [0 ,max(y1)] ,

c o l o r= ’ tab : b lue ’ , l i n e s t y l e=’ : ’)
ax6 . p l o t ([x [y2 . index (max(y2))] , x [y2 . index (max(y2))]] , [0 ,max(y2)] ,

c o l o r= ’ tab : red ’ , l i n e s t y l e=’ : ’)
ax5 . p l o t (x , y1 , c o l o r= ’ tab : b lue ’ , l a b e l=’ optimal d i s t anc e ’)
ax6 . p l o t (x , y2 , c o l o r= ’ tab : red ’ , l a b e l=’ optimal impact ’)
ax5 . s e t x l i m (x [0] , x [−1])
naam = ’ p s i ’ + str (n) + ’ . png ’

42

p0 . s a v e f i g (naam)

###

print (time . s t r f t i m e (”%M%S” , time . l o c a l t i m e ()))
t reb1 = trebuchet (l 4 = 0 , l 5 =0)
num pic (t reb1)
opt i (t reb1)
p i c t u r e (t reb1)
check (treb1)
print (time . s t r f t i m e (”%M%S” , time . l o c a l t i m e ()))
t reb2 = trebuchet (l 5 =0)
num pic (t reb2)
opt i (t reb2)
p i c t u r e (t reb2)
check (treb2)
print (time . s t r f t i m e (”%M%S” , time . l o c a l t i m e ()))
t reb3 = trebuchet ()
num pic (t reb3)
opt i (t reb3)
p i c t u r e (t reb3)
check (treb3)
print (time . s t r f t i m e (”%M%S” , time . l o c a l t i m e ()))
t reb4 = trebuchet (l 4 = 0 , l 5 =0, T=5.)
num pic (t reb4)
check (treb4)
print (time . s t r f t i m e (”%M%S” , time . l o c a l t i m e ()))
t reb5 = trebuchet (l 5 =0, T=5.)
num pic (t reb5)
check (treb5)
print (time . s t r f t i m e (”%M%S” , time . l o c a l t i m e ()))
t reb6 = trebuchet (T=5.)
num pic (t reb6)
check (treb6)
print (time . s t r f t i m e (”%M%S” , time . l o c a l t i m e ()))

###

print (time . s t r f t i m e (”%H%M%S” , time . l o c a l t i m e ()))
n = 2500
x , x1 , x2 , y1 , y2 = p1 (n)
p2 (n , x , y1 , y2)
print (time . s t r f t i m e (”%H%M%S” , time . l o c a l t i m e ()))

###

print (time . s t r f t i m e (”%M%S” , time . l o c a l t i m e ()))
t reb = trebuchet ()
y = treb . y

x1a = treb . l 1 ∗np . s i n (y [: , 0])
y1a = −t reb . l 1 ∗np . cos (y [: , 0])+ treb . l 3
x2a = −t reb . l 2 ∗np . s i n (y [: , 0])

43

y2a = treb . l 2 ∗np . cos (y [: , 0]) + treb . l 3
x1b = x1a − t reb . l 4 ∗np . s i n (y [: , 0]+y [: , 2])
y1b = y1a + treb . l 4 ∗np . cos (y [: , 0]+y [: , 2])
x2b = x2a − t reb . l 5 ∗np . s i n (y [: , 4]−y [: , 0])
y2b = y2a − t reb . l 5 ∗np . cos (y [: , 4]−y [: , 0])
f i g = p l t . f i g u r e ()
s = treb . l 2+treb . l 5
ax = f i g . add subplot (111 , au to s ca l e on=False , xl im=(−s , s) , yl im=(−s , s))
ax . g r id ()
l i n e , = ax . p l o t ([] , [] , ’ o− ’ , lw=2)
t ime template = ’ time = %.1 f s ’
t ime t ex t = ax . t ex t (0 . 0 5 , 0 . 9 , ’ ’ , t rans form=ax . transAxes)
def i n i t () :

l i n e . s e t d a t a ([] , [])
t ime t ex t . s e t t e x t (’ ’)
return l i n e , t ime t ex t

def animate (i) :
dt = 0 .01
t h i s x = [0 , 0 , x1a [i] , x1b [i] , x1a [i] , x2a [i] , x2b [i]]
t h i s y = [0 , t reb . l3 , y1a [i] , y1b [i] , y1a [i] , y2a [i] , y2b [i]]
l i n e . s e t d a t a (th i sx , t h i s y)
t ime t ex t . s e t t e x t (t ime template % (i ∗dt))
return l i n e , t ime t ex t

ani = animation . FuncAnimation (f i g , animate , np . arange (1 , len (y)) ,
i n t e r v a l =1, b l i t=True , i n i t f u n c=i n i t)

ang l e s = 3
i f t reb . l 4 == 0 :

ang l e s −= 1
i f t reb . l 5 == 0 :

ang l e s −= 1
naam = ’ ani ’ + str (ang l e s) + ’ ’ + str (t reb .T) + ’ ’ + str (t reb . dt) + ’ ’ + ’ . mp4 ’
ani . save (naam)
p l t . show ()

print (time . s t r f t i m e (”%M%S” , time . l o c a l t i m e ()))

44

