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Summary for laypersons

The Navier-Stokes equations are the physical laws which describe the movement of fluids. For most practical
situations we don’t have exact solutions to them and therefore we use computer simulations to describe the
movements of fluids instead. These simulations are often made in a way were they divide space into smaller
parts and compute simpler equations in these smaller spaces. This report focuses on one specific way to sim-
ulate the Navier-Stokes equations. What separates this way of simulating from others is that the conservation
laws, which follow from the physical laws, are build into the underlying mathematics of this model in such a
way that they are not dependant on the way the space is divided into smaller parts. This means that physical
quantities, such as mass and energy, follow the physical laws for them no matter the way space is devided into
smaller parts. This allows for simpler way of modeling complex shapes, while still keeping physically reason-
able simulations. This is important, since for a lot of physical situations an extreme simplification is required,
because otherwise even the most advanced computers can not simulate the fluid flow in any reasonable time.
The conservation of these physical quantities should lead to a more physically realistic simulation in these
simplified models and the results do support this conclusion.

In this report we first discuss some of the math required for this simulation and after that we analyse and
discuss some results from this simulation.
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Summary for peers

In[? ] this report we implement and test a discretization for the 2D dimensionless incompressible Navier-
Stokes equations, as described by Zhang, Palha, Gerritsma and Yao [19]. This discretization conserves mass,
energy, enstrophy and vorticity. This discretization uses the finite element method. Which is a numerical
method, which solves the problem by dividing the spatial domain into smaller sections and approximating the
solution in these smaller parts using a linear combination of some chosen functions. One of these sections of
space, together with the functions used for the approximation defined in it is called an element. The function
spaces for these elements are picked in such a way as to preserve some structural characteristics of the differ-
ential equations. This is done by using a concept of differential geometry (and functional analysis) called the
De Rahm complex.

We implement this discretization for the Navier-Stokes equations and apply it to the lid driven cavity prob-
lem. The lid driven cavity problem consists of a square box with non slip boundaries that is filled with fluid
which is at rest. When suddenly the top of the box starts moving with a constant velocity to the left. For a suffi-
ciently small Reynolds number and after sufficient time this should produce a steady state vortex. We compare
the resulting steady state from this discretization against some highly resolved benchmarks and see that the
method performs well. We then compare the discretization against the Taylor-Hood method for some initial
times, before reaching a steady state and see that the discretization preforms better and importantly shows
significantly smaller nonphysical oscilations.
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1
Introduction

In this report we implement and test a discretization for the 2D dimensionless incompressible Navier-Stokes
equations, as described by Zhang, Palha, Gerritsma and Yao [19]. This discretization conserves mass, energy,
enstrophy and vorticity. It is constructed using the finite element method. The function spaces for these ele-
ments are picked in such a way as to preserve some structural characteristics of the differential equations. This
is done by using a concept of differential geometry (and functional analysis) called the De Rahm complex. We
first implemented this discretization in the programming language Julia [3], using the Gridap module [2] [18],
due to the early stages of development of Gridap and the specificity of this method, the resulting discretization
was slower than expected. We then implemented the discretization in Python, using the more mature Fire-
drake library [8], which resulted in computation times more in line with expectation.

The Navier-Stokes equations model the movement of fluids and have many important applications. In
meteorology they are used for weather prediction [13] and in engineering they are used for the study of aero-
dynamic designs [10]. Exact solutions for these equations have only been found for some very specific cases,
such as steady state flow in a cylinder or with specific periodic spatial conditions [6]. This means that in most
practical situations an exact solution is not known and a numerical approximation is necessary.

A challenge in numerical approximations for the Navier-Stokes equations is to compute an accurate sim-
ulation in practical times. A key ingredient for physical fidelity is to capture/reproduce the correct energy
spectrum and it’s cascade. If the numerical approximation is done incorrectly too much of the energy can dis-
sipate or the solution can blow up. Both of these situations create unphysical results. A discretization, which
conserves the relevant physical quantities should more accurately describe this energy spectrum, even for the
very under resolved case.

It has been suggested that secondary conservation properties, meaning conservation of derived quantities
which are not directly unknowns, could improve physical fidelity in numerical methods [16]. But numerical
methods, which include secondary conservation properties do not address all kinds of spurious solutions [16].
Numerical methods that satisfy fundamental mathematical identities e.g. the divergence of the curl is equal
to zero and the curl of the gradient is equal to zero can, however, exactly preserve physical properties, such as
divergence free properties or gradient free properties [16][1]. Also for the Navier-Stokes equations, there has
been written about secondary conservation properties leading to better results [5].

In this report we gradually build up to the discretization for the Navier-Stokes equation. We do so by in-
troducing the theory required alongside working out examples. These examples will be of the heat equation,
which is not related to the Navier-Stokes equation in the underlying physics. But with these examples we intro-
duce the mathematical building blocks required for the discretization of the Navier-Stokes equation. First we
introduce the weak form, along side an example for the primal form steady heat equation. Then we illustrate
the De Rahm complex and how to work with multiple unknowns with an example of the mixed form steady
heat equation. After this we introduce the finite element method and apply it to these two examples. Lastly we
explain how to solve a transient problem, using the primal form unsteady heat equation as an example.
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We will first briefly discuss the finite element method and the de Rahm complex in Chapter 2. We will
illustrate this theory by working out two examples, those of the Primal and the Mixed form heat equation.
We then apply the finite element method to the incompressible dimensionless Navier-Stokes equations and
discuss it’s conservation properties in chapter 3. In chapter 4 we discuss the results from implementing the
worked out examples in the Julia programming language[3], using the Gridap[2][18] module and the results
from implementing the Navier-Stokes equations in Python, using the Firedrake library[8].
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2
A brief introduction to the finite element

method

In this chapter we discuss the theoretical background for the conservative discretization of the Navier-Stokes
equations we are studying. We first introduce the types of problems we analyse, in Section 2.1. Following this
we introduce an alternative formulation for these problems, which is called the weak form in Section 2.2. Then
we briefly discuss the function spaces used in this report and introduce the de Rahm complex in Section 2.3.
Finally, we describe how to use the finite element method in Section 2.4.

2.1. Strong form
Boundary value problems are differential equations which are defined in a given region and are subject to
constraints on the boundary of that region. These problems can be expressed as follows:

Find u ∈U such that{
L [u] = 0 inΩ,

+ appropriate boundary conditions on ∂Ω.
(2.1)

Where L is a differential operator, Ω is the region in which the differential equation is defined, ∂Ω is the
boundary ofΩ, u is the solution to the problem, which can be either a vector or a scalar function, and U is the
solution function space with sufficient regularity such that the operator L is well defined and the solution u
exists. The differential equation (2.1) is called the strong form of the boundary value problem.

2.2. Weak form
In order to solve these problems with the finite element method (see Section 2.4), we first have to rewrite them
in their weak form [9, p. 4-6], which is a generalization of the problem.

Find u ∈U w , such that{
〈L [u], v〉Ω = 0, ∀v ∈V w ,

+appropriate boundary conditions on ∂Ω ,
(2.2)

where 〈a,b〉Ω := ∫
Ω a ·b dΩ and we pick the solution space U w and test space V w such that they have sufficient

regularity1 for these equations to be meaningful2.
For these equations to be meaningful, we need

|〈L [u], v〉Ω| <∞ , ∀v ∈V w and ∀u ∈U w . (2.3)

1With "regularity" we mean that the spaces contain functions that are differentiable, such that the differtial operator is well defined and
the required integrals overΩ converge.

2With "meaningful" we mean that the required integrals converge and that the solutions exist.
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By Schwartz’s inequality [17, p. 24],
|〈L [u], v〉Ω| ≤ ∥L [u]∥Ω ∥v∥Ω , (2.4)

where ∥a∥2
Ω := 〈a, a〉Ω. By equations (2.3) and (2.4) we have that for the integral present in our weak form to be

meaningful, we need to have
∥L [u]∥Ω <∞ and ∥v∥Ω <∞ . (2.5)

Therefore, we pick the spaces U w and V w such that

U w := {u : ∥L [u]∥ <∞} , and V w = L2(Ω) := {v : ∥v∥Ω <∞} . (2.6)

It is important to note that if a function u ∈U w satisfies equations (2.2), then, by the fundamental lemma
of the calculus of variations [11, p. 9], u satisfies equation (2.1). This gives us a different starting point to find
solutions to the problem (2.1).

The condition u ∈U w is quite restrictive for certain boundary value problems, particularly so in the con-
text of the finite element method. In order to loosen this restriction, and thus find approximate solutions, we
need to introduce the concept of weak differential operator L̃ . Where L̃ [u] = L [u] for u ∈U w . This allows
us to look for solutions in a wider space Ũ , for which L̃ [u] for u ∈ Ũ is still properly defined, while L [u] is no
longer properly defined. If the weak differential operator is properly chosen then U ⊂ Ũ . This weak differential
operator is obtained by using integration by parts on one or multiple high order differentials that make up the
differential operator.

In this project we focus on problems in two dimensions. Important differential operators in 2D are the
gradient, ∇u := ∂u

∂x e⃗x + ∂u
∂y e⃗y , the rotor, ∇×u⃗ := ∂

∂x (u⃗ · e⃗y )− ∂
∂y (u⃗ · e⃗x ), the divergence, ∇·u⃗ := ∂

∂x (u⃗ · e⃗x )+ ∂
∂y (u⃗ · e⃗y ),

and the curl, ∇⊥ := − ∂
∂y e⃗x + ∂

∂x e⃗x . Where e⃗x and e⃗y are the unit vectors pointing in in the x and y direction,
respectively and the arrow, ·⃗, means it is a vector in 2 dimensions. These differential operators are associated
with the following spaces:

H 1(Ω) =
{

u ∈ L2(Ω) :
∫
Ω
∇u ·∇u dΩ<∞

}
, (2.7)

H(rot,Ω) =
{

u⃗ ∈ [L2(Ω)]2 :
∫
Ω

(∇× u⃗) · (∇× u⃗)dΩ<∞
}

, (2.8)

H(div,Ω) =
{

u⃗ ∈ [L2(Ω)]2 :
∫
Ω

(∇· u⃗)(∇· u⃗)dΩ<∞
}

, (2.9)

H(curl,Ω) =
{

u : u ∈ L2(Ω),
∫
Ω

(∇⊥u) · (∇⊥u)dΩ<∞
}

. (2.10)

Note that for functions in H 1 it holds that these functions and their gradient are integrable, for functions in
H(rot,Ω) it holds that these functions and their rotor are integrable, etc. All the differential operators also have
an associated weak operator. They are defined as follows.

The weak gradient, ∇̃ : L2(Ω) 7→ H(div,Ω), acting on u ∈ L2(Ω), is defined as

〈∇̃u, v⃗〉Ω =−〈u,∇· v⃗〉Ω+
∫
∂Ω

u(v⃗ · n⃗)dΓ , ∀v⃗ ∈ H(div,Ω) . (2.11)

The weak divergence, ∇̃· : H(rot,Ω) 7→ H 1(Ω), acting on u⃗ ∈ H(rot,Ω), is defined as

〈∇̃·u⃗, v〉Ω =−〈u,∇v〉Ω+
∫
∂Ω

v(u⃗ · n⃗)dΓ , ∀v ∈ H 1(Ω) . (2.12)

The weak rotor, ∇̃× : H(div,Ω) 7→ H(curl,Ω), acting on u⃗ ∈ H(div,Ω), is defined as

〈∇̃×u⃗, v〉Ω = 〈u,∇⊥v〉Ω−
∫
∂Ω

v(u⃗ × n⃗)dΓ , ∀v ∈ H 1(Ω) . (2.13)

Finally, the weak curl, ∇̃⊥ : L2(Ω) 7→ H(rot,Ω), acting on u ∈ L2(Ω), is defined as

〈∇̃⊥u, v⃗〉Ω = 〈u,∇× v⃗〉Ω+
∫
∂Ω

u(v⃗ × n⃗)dΓ , ∀v⃗ ∈ H(rot,Ω) . (2.14)
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Where n⃗ is the outward pointing unit normal vector. Note that the function spaces used in the definitions
of the weak differential operators provide the necessary conditions for the integrals to converge. For further
discussion of these weak operators and that they are well posed see [7, p. 544].

These weak operators allow us to construct weak versions of our operator L and, in this way, relax the
regularity constraints on the solution space. An important point to highlight is that, as seen before, a reduction
in the regularity of the solution space U leads to a corresponding increase in the regularity of the test space V .
This is expected since integration by parts transfers the differentiation from one term of integral (the solution)
to the other term (the test function). If we apply these ideas to (2.2) we get


〈L̃ [u], v〉Ω = 0, ∀v ∈ Ṽ ,

u = gE , on ΓE ,

D[u] = gN , on ΓN ,

(2.15)

where u ∈ Ũ is a solution to our problem and Ũ is the solution functions space with sufficient regularity such
that the weak operator L̃ is well defined, ΓE is the part of the boundary where essential boundary conditions
are prescribed, ΓN is the part of the boundary where natural boundary conditions are prescribed, ΓE∪ΓN = ∂Ω,
ΓE ∩ΓN =; and D is some (differential) operator and gE and gN are known functions.

As mentioned before, the boundary conditions can be of two types: essential or natural. Essential bound-
ary conditions are typically directly enforced on the solution space itself, while natural boundary conditions
are prescribed on the boundary integrals that appear when constructing the weak form of the equations. Note
that, as indicated before, u can have both natural and essential boundary conditions at different parts of the
boundary.

In order to clarify the ideas discussed so far, in the next subsection, we give a concrete example of how to
construct the weak form for the case of the steady heat equation.

2.2.1. The primal form steady heat equation
To clarify the concepts just introduced, we will use as an example the primal form steady heat equation. The
strong form of this is given by:

find u ∈U such that
−∇·κ∇u = f , inΩ ,

u = gE , on ΓE ,

κ∇u · n⃗ = gN , on ΓN ,

(2.16)

where u ∈U = C 2(Ω) (twice continuously differentiable functions) is the temperature, κ is the material’s heat
conductivity, f represents heat sources (or sinks), and as usual n⃗ represents the outwards unit normal vector.
At any point on the boundary either the temperature (u) or the heat flux (κ∇u · n⃗) is prescribed. The tempera-
ture is directly prescribed onto the unknown u and this condition is therefore an essential boundary condition.
The heat flux is prescribed onto u with a differential operator and is therefore a natural boundary condition.
Recall that these boundary conditions can not overlap, ΓE ∩ΓN = ;, and conditions need to be given for the
entire boundary, ΓE ∪ΓN = ∂Ω. For simplicity we will consider the case κ= 1.

Following the ideas presented before, these equations can be rewritten in the equivalent weak form

Find u ∈U w = H 2(Ω) such that
−〈∇·∇u, v〉Ω = 〈 f , v〉Ω , ∀v ∈V w = L2(Ω) ,

u = gE , on ΓE ,

∇u · n⃗ = gN , on ΓN ,

(2.17)

where

H 2(Ω) := {
u ∈ L2(Ω) : ∥∇u∥Ω <∞ and ∥∇·∇u∥Ω <∞}

. (2.18)

Since f andΩ are assumed to be finite, we have that ∥ f ∥Ω <∞. Additionally, note that in this case L [u] =
f +∇·∇u. By the triangle inequality [17, p. 24], ∥ f +∇·∇u∥Ω ≤ ∥ f ∥Ω+∥∇·∇u∥Ω. This means that the condition
∥L [u]∥Ω <∞ is satisfied, when u ∈ H 2(Ω). Therefore u ∈ H 2(Ω) =U w , as it is described previously.
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To loosen the requirement u ∈ H 2(Ω) we can employ the weak divergence operator ∇̃ (2.12), and rewrite
(2.17) as,

Find u ∈ ŨE , such that

〈∇u,∇v〉Ω−
∫
ΓN

gN v dΓN = 〈 f , v〉Ω ,∀v ∈ Ṽ0 , (2.19)

where
ŨE := {

u ∈ Ũ = H 1(Ω) : u|ΓE = gE
}

, (2.20)

and
Ṽ0 := {

v ∈ Ṽ = H 1(Ω) : v |ΓE = 0
}

. (2.21)

Using the notation introduced before, we can rewrite (2.19) in an alternative form

Find u ∈ ŨE , such that

−〈∇̃ ·∇u, v〉Ω = 〈 f , v〉Ω ,∀v ∈ Ṽ0 . (2.22)

Note three important aspects:
(i) By employing the weak divergence ∇̃· we were able to reduce the regularity requirements on the solution
space Ũ at the expense of an increased regularity on the test space Ṽ . H 1(Ω) is the space in which our weak
differential operator 3 is properly defined. And indeed H 1(Ω) ⊃ H 2(Ω).

(ii) We have directly imposed the essential boundary conditions (the ones over ΓE ) on the solution space
ŨE and correspondingly on the test space Ṽ0 and included the natural boundary conditions (the ones over ΓN )
on the boundary integral that appears from the definition of the weak divergence. This highlights the essential
and natural character of the two types of boundary conditions.

(iii) Note that 〈∇̃ ·∇u, v〉Ω = 〈∇ ·∇u, v〉Ω if u is sufficiently smooth. This can be shown through integration
by parts.

2.3. The de Rham complex
In equations (2.6) and (2.7) we introduced the function spaces used in this work. Typically, these spaces are
considered in isolation, i.e., without a direct relation between them. This is particularly the case when con-
sidering their discrete counterparts. Despite this usual approach, there is an underlying relation between the
different spaces. These relations have been identified as essential for the construction of stable numerical dis-
cretisations [1] [7]. In this section we will identify and discuss these relations and the structure they form, the
De Rham complex.

Note that that if u ∈ H(curl,Ω), then, by definition ∇⊥u ∈ [L2(Ω)]2 and ∇ · (∇⊥u⃗) = 0 ∈ L2(Ω). Therefore if
u ∈ H(curl,Ω), then ∇⊥u ∈ H(div,Ω) and ∇ · (∇⊥u) = 0. Also By definition of H(div,Ω), if u⃗ ∈ H(div,Ω), then
∇· u⃗ ∈ L2(Ω). This means that these spaces form a sequence, where a differential operator maps a space into
the next space, specifically in the nul space of the next differential operator. This sequence, together with the
operators, is called an exact sequence, which is a type of de Rahm complex.

R−→ H(curl,Ω)
∇⊥−−→ H(div,Ω)

∇·−→ L2(Ω) −→ 04. (2.23)

Furthermore if u ∈ H 1(Ω) then ∇u ∈ [L2(Ω)]2 and ∇×∇u = 0. Therefor if u ∈ H 1(Ω), then ∇u ∈ H(rot,Ω)
and ∇×∇u = 0 ∈ L2(Ω). Also, by definition, if u ∈ H(rot,Ω), then ∇×u ∈ L2(Ω). This means that these spaces
form a second exact sequence

R−→ H 1(Ω)
∇−→ H(rot,Ω)

∇×−−→ L2(Ω) −→ 0. (2.24)

3While ∇̃ is a weak operator, using the notation in section 2.2 our weak operator for this problem is L̃ [u] = ∇̃ ·∇[u]+ f .
4Where R −→ and −→ 0 are added to complete the exact sequence. R −→ H(curl,Ω) can be thaught of as being a mapping from the reals to

the function space with only constant functions. So that all these functions are in the null space of H(curl,Ω). L2(Ω) −→ 0 can be taught
of as adding an operator such that ∇· maps functions in H(div,Ω) to the nullspace in L2(Ω). For further explanation see [7]
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The weak differential operators defined in section 2.2 work similarly. By the definition of the weak gradient,
if u ∈ L2(Ω), then ∇̃u ∈ H(div,Ω). And if u⃗ ∈ H(div,Ω), then ∇̃×u⃗ ∈ H(curl,Ω). Furthermore, for homogeneous
boundary conditions, if u ∈ L2(Ω), then

〈∇̃×∇̃u, v〉Ω = 〈∇̃u,∇⊥v〉Ω−
∫
∂Ω

v((∇̃u)× n⃗)dΓ=−〈u,∇·∇⊥v〉Ω+
∫
∂Ω

u(∇⊥v · n̂)dΓ−
∫
∂Ω

v((∇̃u)× n⃗)dΓ= 0.

For a proof of this relationship with non-homogeneous boundary conditions see [7, p. 546]. Therefore these
weak operator also form an exact sequence

0 ←− H(curl,Ω)
∇̃×←−− H(div,Ω)

∇̃←− L2(Ω) ←−R. (2.25)

Similarly, if u ∈ L2(Ω), by definition, ∇⊥u ∈ H(rot,Ω). And if u ∈ H(rot,Ω), then ∇̃·u ∈ H 1(Ω). Furthermore,
if u ∈ L2(Ω), then

〈∇̃·∇̃⊥u, v〉Ω =−〈∇̃⊥u,∇v〉+
∫
∂Ω

v(∇̃⊥u · n⃗)dΓ=−〈u,∇×∇v〉−
∫
∂Ω

u(∇v × n⃗)dΓ+
∫
∂Ω

v(∇̃⊥u · n⃗)dΓ= 0

for homogeneous boundary conditions. Which means that these spaces form this last exact sequence

0 ←− H 1(Ω)
∇̃·←− H(rot,Ω)

∇̃⊥←−− L2(Ω) ←−R. (2.26)

These exact sequences give us a way to choose the solution and trial spaces to solve based on a given
boundary value problem. This process is explained in the next subsection, using the already introduced steady
heat equation.

2.3.1. The mixed form steady heat equation
As seen before (2.16), we look at the steady heat equation with κ= 1

find u ∈U such that
−∇·∇u = f , inΩ ,

u = gE , on ΓE ,

∇u · n⃗ = gN , on ΓN .

(2.27)

To further illustrate the usage of these complexes and to introduce the mixed form formulation, we first rewrite
this equation as a system of first order differential equations.

find u ∈Uu and q⃗ ∈Uq such that
−∇u = q⃗ , inΩ ,

∇· q⃗ = f , inΩ ,

u = gE , on ΓE ,

∇u · n⃗ =−q⃗ · n⃗ = gN , on ΓN ,

(2.28)

where now we have u ∈Uu =C 2(Ω) and q⃗ ∈Uq = [
C 1(Ω)

]2
.

We follow a similar approach as discussed before, and write these equations in weak form

Find u ∈U w
u and q⃗ ∈U w

q such that
−〈∇u, v⃗1〉Ω = 〈q⃗ , v⃗1〉Ω , ∀v⃗1 ∈V w

q ,

〈∇ · q⃗ , v2〉Ω = f , ∀v2 ∈V w
u ,

u = gE , on ΓE ,

∇u ·n = q⃗ · n⃗ = gN , on ΓN .

(2.29)

First note that, since q⃗ is a vector, q⃗ is either in H(div,Ω) or in H(rot,Ω). While u, since it is a scalar, is either in
L2(Ω) or H 1(Ω) (which is isomorphic to H(curl,Ω) in 2D). Further, we need to compute the divergence of q⃗ and
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the gradient of u. Both operations (divergence and gradient) can act either strongly or weakly, but not both at
the same time (otherwise we would required the intersection of spaces, which is complicated, especially so at
the discrete level). This gives us two different options, the first is equivalent to the primal form we discussed
before (2.19) and the second one is a new formulation, called the mixed form.

The first formulation is

Find u ∈ Ũu,E and q⃗ ∈ Ũq such that
〈∇u, v⃗1〉Ω = 〈q⃗ , v⃗1〉Ω , ∀v⃗1 ∈ Ṽq

−〈q⃗ ,∇v2〉Ω+
∫
ΓN

v2 gN︸︷︷︸
q⃗ ·n⃗|ΓN

dΓN = 〈 f , v2〉Ω , ∀v2 ∈ Ṽu,0 , (2.30)

where
Ũu,E := {

u ∈ Ũu = H 1(Ω) : u|ΓE = gE
}

, (2.31)

Ṽu,0 := {
v ∈ Ṽu = H 1(Ω) : v |ΓE = 0

}
, (2.32)

and Ũq = Ṽq = H(rot,Ω). As seen before, these equations can be expressed in compact notation as

Find u ∈ Ũu,E and q⃗ ∈ Ũq such that{〈∇u, v⃗1〉Ω = 〈q⃗ , v⃗1〉Ω , ∀v⃗1 ∈ Ṽq

〈∇̃ · q⃗ , v2〉Ω = 〈 f , v2〉Ω , ∀v2 ∈ Ṽu,0 .
(2.33)

The second formulation, the so called mixed form, is

Find u ∈ Ũu and q⃗ ∈ Ũq,N such that
〈u,∇· v⃗1〉−

∫
ΓE

gE︸︷︷︸
u|ΓE

v⃗1 · n⃗ dΓE = 〈q⃗ , v⃗1〉 , ∀v⃗1 ∈ Ṽq,0

〈∇ · q⃗ , v2〉 = 〈 f , vw 〉 , ∀v2 ∈ Ṽu ,

(2.34)

where
Ũq,N :=

{
q⃗ ∈ Ũq = H(div,Ω) : q⃗ · n⃗

∣∣
ΓN

= gN

}
, (2.35)

Ṽq,0 := {
v⃗ ∈ Ṽq = H(div,Ω) : v⃗ |ΓN = 0

}
, (2.36)

and Ũu = Ṽu = L2(Ω). As seen before, these equations can be expressed in compact notation as

Find u ∈ Ũu and q⃗ ∈ Ũq,N such that{〈∇̃u, v⃗1〉Ω = 〈q⃗ , v⃗1〉Ω , ∀v⃗1 ∈ Ṽq,0

〈∇ · q⃗ , v2〉Ω = 〈 f , v2〉Ω , ∀v2 ∈ Ṽu .
(2.37)

Note that, in any of the two formulations, only one of the two differential operators acts strongly and there-
fore only one of the equations is exactly satisfied. If the first system is chosen, this means that means that
∇p = u⃗ is exactly (strongly) satisfied and by substituting this into the system of equations we get exactly the
same equation as (2.19). We will discuss what these two situations mean for the boundary conditions in the
next section.

2.4. Finite element method
In the previous sections we have introduced for a general boundary value problem its strong (2.1) and weak
(2.2) forms and used the steady heat equation to present concrete examples of the strong form, (2.16), and
weak form, (2.19). Additionally we have introduced the mixed form (2.34). Also we have introduced the weak
differential operators ∇̃ (2.11), ∇̃· (2.12), ∇̃× (2.13) and ∇̃⊥ (2.14), together with the weak function spaces that
guarantee that our equations in weak form are meaningful, (2.7). Additionally, we introduced and discussed
the De Rham complex and highlighted its importance.

The key idea of the finite element method is to setup a discrete version of the weak form of a boundary
value problem (e.g. (2.15), (2.19), or (2.34)). In order to do so, it is fundamental to construct discrete function
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spaces which, as a refinement parameter is increased, allows us to improve the approximation. Now, let us
consider the weak form for the general problem we discussed before (2.15),

find u ∈ Ũ such that

〈L̃ [u], v〉Ω = 0, ∀v ∈ Ṽ , (2.38)

u = gE , on ΓE , (2.39)

D[u] = gN , on ΓN , (2.40)

where u ∈ Ũ .
As we saw before, for the concrete case of the steady heat equation (2.22), we can rewrite (2.41) as{

Find u ∈ ŨE such that

〈L̃ [u], v〉Ω = 0, ∀v ∈ Ṽ0 ,
(2.41)

where
ŨE = {

u ∈ Ũ : u|ΓE = gE
}

, (2.42)

Ṽ0 =
{

v ∈ Ṽ : v |ΓE = 0
}

, (2.43)

as done before. Also note that, as before, we have included the natural boundary conditions (over ΓN ), into the
weak differential operator L̃ .

The (discrete) finite element formulation of this problem corresponds to{
Find uh

E ∈ Ũ h
E such that

〈L̃ [uh], vh〉Ω = 0, ∀vh ∈ Ṽ h
0 ,

(2.44)

with

Ũ h
E =

{
uh ∈ Ũ h : uh

∣∣∣
ΓE

= g h
E

}
, (2.45)

Ṽ h
0 =

{
vh ∈ Ṽ h : vh

∣∣∣
ΓE

= 0

}
, (2.46)

where
Ũ h ⊂ Ũ , Ṽ h ⊂ Ṽ , (2.47)

are discrete (finite dimensional) subsets, and h is the refinement parameter (e.g. a mesh size, or polynomial
degree). Note that, since the spaces are discrete, we can easily express them as the span of a finite dimensional
basis, Ni , with i = 1, . . . ,nŨ , i.e.,

Ũ h = span{Ni }
nŨ
i=1 . (2.48)

As a consequence, we can express any function of these finite dimensional spaces, including the (approximate)
solution, uh ∈ Ũ h , as a linear combination of the basis functions

uh =
nŨ∑
i=1

ui Ni . (2.49)

For the case uh
E ∈ Ũ h

E we need to separate the part that influences the values at the boundary ΓE and the
remaining of the domain

uh
E =

nŨE∑
i=1

ui Ni + g h
E , (2.50)

where g h
E approximates the boundary conditions over ΓE and the other term,

∑nŨE
i=1 ui Ni , is zero at ΓE , in order

not to perturb the boundary conditions.
The finite element method is obtained by substituting (2.50) into (2.44) and using the basis Ni instead of

vh as test functions

Find uh
E ∈ Ũ h

E such that

〈L̃ [

nŨE∑
i=1

ui Ni + g h
E ], N j 〉Ω = 0, j = 1, . . . ,nŨE

. (2.51)
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Note that the equation only needs to be satisfied for the basis functions of Ṽ h , since equation (2.44) is linear
with regards to the test functions and the test functions can be expressed as a linear combination of the basis
functions of the finite space. This means that the equation hols for all the basis functions, it holds for all
functions in Ṽ h .
If the operator L̃ is linear we can expand this expression as

Find uh
E ∈ Ũ h

E such that
nŨE∑
i=1

ui 〈L̃ [Ni ], N j 〉Ω =−〈L̃ [g h
E ], N j 〉Ω , j = 1, . . . ,nŨE

. (2.52)

Now we will first introduce and discuss the discrete function spaces we will use in this work and then setup the
finite element formulation for both the primal (2.22), and mixed form (2.37) of the steady heat equation (2.16).

2.4.1. Discrete de Rham complex
We choose our discrete spaces in such a way that they mirror the de Rham complexes as described in section
2.3. We pick discrete spaces Wh ⊂ H(curl,Ω), Vh ⊂ H(div,Ω), Qh ⊂ L2(Ω), Rh ⊂ H 1(Ω) and Kh ⊂ H(rot,Ω).
This way the relations between the spaces H(curl,Ω), H(div,Ω), L2(Ω), H 1(Ω) and H(rot,Ω) also hold for the
discrete spaces Wh , Vh , Qh , Rh and Kh .

R−→Wh
∇⊥−−→Vh

∇·−→Qh −→ 0 (2.53)

0 ←−Wh
∇̃×←−−Vh

∇̃←−Qh ←−R (2.54)

R−→ Rh
∇−→ Kh

∇×−−→Qh −→ 0 (2.55)

0 ←− Rh
∇̃·←− Kh

∇̃⊥←−−Qh ←−R (2.56)

We now choose a set of basis functions that are zero that are equal to zero every in the domain, except for some
closed subset of the domain. These basis functions are called elements. What this closed subset is depends on
how the domain is split into smaller parts. This partition of the domain is called the mesh. In this report Wh and
Rh are the continuous Lagrange elements [12, p. 94,95] of degree p, these elements are made up polynomial
functions of degree p of both the x and y spatial variable. Vh and Kh are the Raviart-Thomas elements [12,
p. 98] of degree p, which are made up of vector functions, where the x-component is a polynomial of order p
of the x variable and of order (p −1) of the y variable and the y-component is a polynomial of order (p −1) of
the x variable and order p of the y variable. Qh are the discontinuous Lagrange elements [12, p. 105] of degree
(p − 1), which are polynomials of order p − 1 of the x and y variables. These elements have been shown to
satisfy the properties to form these exact sequences [1]. For a further discussion of these elements see [12].
In this report we will use a triangular mesh for the Navier-Stokes equations, made up of squares separated into
two triangles by an edge from the top left to the bottom right of the square. A 2×2 example of such a mesh can
be seen in figure 2.1a. In figure 2.1b an example of a 1st order continuous Lagrange element on this mesh is
shown. In figure 2.1c a 1st order Raviart-Thomas element is shown and in figure 2.1d a 0th order discontinuous
Lagrange element is shown.

2.4.2. The discrete primal form steady heat equation
The weak form of the steady heat equation (2.19) is our starting point

Find uE ∈ ŨE , such that

〈∇u,∇v〉Ω−
∫
ΓN

gN v dΓN = 〈 f , v〉Ω ,∀v ∈ Ṽ0 , (2.57)

where
ŨE := {

u ∈ Ũ = H 1(Ω) : u|ΓE = gE
}

, (2.58)

and
Ṽ0 := {

v ∈ Ṽ = H 1(Ω) : v |ΓE = 0
}

. (2.59)

As discussed before, in the finite element method we rewrite this weak form as a discrete weak form using
discrete spaces. We have already introduced the discrete function spaces, see section 2.4.1, therefore we can
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just make the substitution H 1(Ω) →Wh , which enables us to construct Ũ h and Ṽ h and, consequently, Ũ h
E and

Ṽ h
0 . We can then write down the discrete weak form

Find uh
E ∈ Ũ h

E , such that

〈∇uh ,∇vh〉Ω−
∫
ΓN

g h
N vh dΓN = 〈 f , vh〉Ω ,∀vh ∈ Ṽ0 . (2.60)

If we now substitute vh by each of the basis functions in ŨE and uh by its expansion uh =∑nŨE
i=1 ui Ni + g h

E , we
get

Find uh =
nŨE∑
i=1

ui Ni + g h
E ∈ Ũ h

E , such that

nŨE∑
i=1

ui 〈∇Ni ,∇N j 〉Ω︸ ︷︷ ︸
Si j

+〈∇g h
E ,∇N j 〉Ω︸ ︷︷ ︸
bE , j

−
∫
ΓN

g h
N N j dΓN︸ ︷︷ ︸
bN , j

= 〈 f , N j 〉Ω︸ ︷︷ ︸
f j

, j = 1, . . . ,nŨE
. (2.61)

We can then rewrite this expression in a compact matrix form,

Find u =


u1

u2

. . .
unŨE

 ∈ span{Ni }
nŨE
i=1 such that

Su= f+bN −bE .

2.4.3. The discrete mixed form steady heat equation
Now the weak form of the mixed form heat equation, (2.34), is our starting point.


Find u ∈ Ũu and q⃗ ∈ Ũq,N such that

〈u,∇· v⃗1〉−
∫
ΓE

gE v⃗1 · n⃗ dΓE = 〈q⃗ , v⃗1〉 , ∀v⃗1 ∈ Ṽq,0

〈∇ · q⃗ , v2〉 = 〈 f , v2〉 , ∀v2 ∈ Ṽu ,

where

Ũq,N :=
{

q⃗ ∈ Ũq = H(div,Ω) : q⃗ · n⃗
∣∣
ΓN

= gN

}
,

Ṽq,0 := {
v⃗ ∈ Ṽq = H(div,Ω) : v⃗ |ΓN = 0

}
,

and Ũu = Ṽu = L2(Ω). As before we substitute the continuous function spaces for their discrete counterparts.
H(div,Ω) −→ Vh and L2(Ω) −→ Qh , which allows us to construct Ũ h

u , Ṽ h
u , Ũ h

q and Ṽ h
q . Consequently we can

construct Ũ h
q,N and Ṽq,0, note that this step is not necessary for the spaces for u, since there are no essential

boundary conditions prescribed to u. This allows us to write down the discrete weak form.


Find uh ∈ Ũ h and q⃗h ∈ Ũ h

q,N such that

〈uh ,∇· v⃗h
1 〉Ω−

∫
ΓE

gE v⃗h
1 · n⃗ dΓE = 〈q⃗h , v⃗h

1 〉Ω , ∀v⃗h
1 ∈ Ṽ h

q,0

〈∇ · q⃗h , vh
2 〉Ω = 〈 f , v2〉Ω , ∀vh

2 ∈ Ṽ h
u ,

For q⃗h ∈ Ũ h
q,N we substitute q⃗h =∑nŨq,N

i=1 qi M⃗i +g h
N and for uh we substitute uh =∑nŨu

i=1 ui Ni , where g h
N approx-

imates the boundary condition for p over ΓN , {M⃗i }
nŨu
i=1 are the remaining basis functions of Ũq,N and {Ni }

nŨu
i=1
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are the basis functions of Ũu . This results in

Find uh =
nŨu∑
i=1

ui Ni ∈ Ũu and q⃗h =
nŨq,N∑

i=1
qi M⃗i + g h

N ∈ Ũq,N such that

nŨu∑
i=1

ui 〈Ni ,∇· M⃗ j 〉Ω︸ ︷︷ ︸
Ai j

−
∫
ΓE

gE M⃗ j · n⃗ dΓE︸ ︷︷ ︸
bE , j

=
nŨq,N∑

i=1
qi 〈M⃗i , M⃗ j 〉Ω︸ ︷︷ ︸

Mi j

+〈g h
N , M⃗ j 〉Ω︸ ︷︷ ︸

bN , j

, j = 1, . . . ,nŨq,N
,

nŨq,N∑
i=1

qi 〈∇ · M⃗i , N j 〉Ω︸ ︷︷ ︸
Bi j

+〈∇· g⃗ h
N , N j 〉Ω︸ ︷︷ ︸
c j

= 〈 f , N j 〉Ω︸ ︷︷ ︸
f j

, j = 1, . . .Ũu
.

(2.62)

Where we have again used the fact that if these equations hold for all the basis functions, then they hold for all
functions in Ṽ h

q,0 and Ṽ h
u .

Which we can again compactly write in matrix form,

Find q ∈ span{Mi }
nŨq,N

i=1 and u ∈ span{Mi }
nŨu
i=1 such that{

Au −bE = M q +bN

B q +c = f .
(2.63)

Or equivalently,

Find

[
q
u

]
∈ span{Mi }

nŨq,N

i=1 × span{Mi }
nŨu
i=1 such that[−M A

B 0

][
q
u

]
=

[
bE +bN

cN + f

]
. (2.64)

Where the matrices and vectors from the equations before should now be seen as submatrices and subvectors.

2.5. Finite element method for transient problems: the unsteady heat equa-
tion

As a last building block to the navier stokes equation we explain how to work out transient problem, again by
working out the primal and mixed heat equations. The transient heat equation is given by:

−∇2u = ∂u

∂t
u = gE , on ΓE

∇u · n̂ =GN , on ΓN .

(2.65)

Where now we have u needs to be twice continuous differentiable in space and once in time.

2.5.1. Primal form unsteady heat equation
All the steps for the transient problem are completely analogous to those in section 2.4.2, with f = ∂u

∂t . There-

fore we take equation 2.61 as starting point and substitute ∂uh

∂t for f .

Find uh =
nŨE∑
i=1

ui Ni + g h
E ∈ Ũ h

E , such that

nŨE∑
i=1

ui 〈∇Ni ,∇N j 〉Ω+〈∇g h
E ,∇N j 〉Ω−

∫
ΓN

g h
N N j dΓN = 〈∂uh

∂t
, N j 〉Ω , j = 1, . . . ,nŨE

.
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Now substituting uh =∑nŨE
i=1 ui Ni + g h

E into the equation results in

Find uh =
nŨE∑
i=1

ui Ni + g h
E ∈ Ũ h

E , such that

nŨE∑
i=1

ui 〈∇Ni ,∇N j 〉Ω+〈∇g h
E ,∇N j 〉Ω−

∫
ΓN

g h
N N j dΓN =

nŨE∑
i=1

dui

d t
〈Ni , N j 〉Ω+〈∂g h

E

∂t
, N j 〉Ω , j = 1, . . . ,nŨE

.

(2.66)

Here the basis functions,Ni are a function of only space and the combination scalars ui are functions of only
time, therefore the partial derivative changes to a full derivative.
Using the midpoint method and the midpoint rule to evaluate the time derivative yields.

nŨE∑
i=1

uk+1
i +uk

i

2
〈∇Ni ,∇N j 〉Ω︸ ︷︷ ︸

Si j

+〈∇g h
E ,∇N j 〉Ω︸ ︷︷ ︸

bE , j

−
∫
ΓN

g h
N N j dΓN︸ ︷︷ ︸
bN , j

=
nŨE∑
i=1

uk+1
i −uk

i

∆t
〈Ni , N j 〉Ω︸ ︷︷ ︸

Ni j

+〈 (g h
E )k+1 − (g h

E )k

∆t
, N j 〉Ω︸ ︷︷ ︸

g j

, j = 1, . . . ,nŨE
.

Where∆t is our chosen time step, uk
i is ui evaluated at time (k∆t ). We can also write this in the compact vector

notation.

1

2
Suk+1 + 1

2
Suk +bE −bN = 1

∆t
Nuk+1 − 1

∆t
Nuk +g j (2.67)

Where uk = [uk
1 ,uk

2 , . . .uk
nŨE

]. Thus given u0 we can calculate u1 and through iteration any uk .
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(a) a 2 by 2 example of the mesh used in this paper (b) Order 1 continuous Lagrange element over vertex V.

(c) Order 1 Raviart-Thomas element over the edge E. (d) Order 0 discontinuous Lagrange element over the plane P

Figure 2.1: Figure showing an example of the type of mesh and the three types of basis functions used in this paper.
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3
A mass, energy, vorticity and enstrophy

conservative discretization for the
Navier-Stokes equation

3.1. Strong form
The Navier-Stokes equation is an equation which describes the movement of viscous fluids. We will look
specifically at the dimensionless, 2D, incompressible Navier-Stockes equations in the rotational form [19]:

∂u⃗

∂t
+ω× u⃗ +Re−1∇⊥ω+∇P = f⃗ , inΩ× (0,T ] (3.1)

ω−∇× u⃗ = 0, inΩ× (0,T ] (3.2)

∇· u⃗ = 0, inΩ× (0,T ] (3.3)

u⃗ · n̂ = u⊥, on Γ× (0,T ] (3.4)

u⃗ × n̂ = u∥, on Γ× (0,T ]. (3.5)

Where u⃗ is the velocity, ω is the vorticity, P := p + 1
2 u⃗ · u⃗ is the total pressure, with p the static pressure, f⃗ is the

total body force and a × b⃗ =−aby e⃗x +abx e⃗y .

3.2. Conservation properties
The incompressible Navier-Stokes equations as given in (3.1-3.5) has the following conservation properties.

3.2.1. mass conservation
Since we assume no mass is being created, the change of mass inside the boundary can be described com-
pletely by the flow over the boundary.

∂M

∂t
+

∫
∂Ω
ρu⃗ · n⃗dΓ= 0 (3.6)

Where M is the total mass inside the boundary, ρ is the density and n⃗ is the outward pointing unit normal
vector. Then, by the divergence theorem[cite it],

∂M

∂t
+

∫
Ω
∇· (ρu⃗)dΩ= 0. (3.7)

Since we are looking at the incompressible Navier-Stokes, ρ will be constant in space.

∂M

∂t
+ρ

∫
Ω
∇· u⃗dΩ= 0. (3.8)

Using equation (3.3), this means mass is conserved.
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3.2.2. Kinetic energy
The kinetic energy in the fluid in dimensionless form is given by the equation,

K = 1

2

∫
Ω

u⃗ · u⃗dΩ. (3.9)

Therefor the time derivative is,

dK

d t
= d

d t

1

2

∫
Ω

u⃗ · u⃗dΩ=
∫
Ω

∂u⃗

∂t
· u⃗dΩ= 〈∂u⃗

∂t
, u⃗〉Ω (3.10)

Where the full derivative becomes a partial derivative, because u⃗ is a function of space, while
∫
Ω u⃗ · u⃗dΩ is not.

If take the dot product of equation (3.1) and integrate overΩwe get,

〈∂u⃗

∂t
, u⃗〉Ω+〈ω× u⃗, u⃗〉Ω+Re−1〈∇⊥ω, u⃗〉Ω+〈∇P, u⃗〉Ω = 〈 f⃗ , u⃗〉Ω. (3.11)

Here the first term is equal to ∂K
∂t and therefor,

dK

d t
=−〈ω× u⃗, u⃗〉Ω−Re−1〈∇⊥ω, u⃗〉Ω−〈∇P, u⃗〉Ω+〈 f⃗ , u⃗〉Ω (3.12)

We will analyse this equation term by term. The first term is 0, since ω× u⃗ ⊥ u⃗. Applying integration by parts
on the second term results in,

〈∇⊥ω, u⃗〉Ω = 〈ω,∇× u⃗〉Ω+
∫
∂Ω
ω(u⃗ × n⃗)dΓ= 〈ω,ω〉Ω+

∫
∂Ω
ω(u⃗ × n⃗)dΓ (3.13)

Since, by equation (3.3), ∇× u⃗ =ω. Similarly, integration by parts on the third term results in,

〈∇P, u⃗〉Ω =−〈P,∇· u⃗〉Ω+
∫
∂Ω

Pu⃗ · n⃗dΓ=
∫
∂Ω

Pu⃗ · n⃗dΓ (3.14)

Since ∇· u⃗ = 0. Putting all of this together results in,

dK

d t
=−Re−1〈ω,ω〉Ω−Re−1

∫
∂Ω
ωu∥dΓ−

∫
∂Ω

Pu⊥dΓ+〈 f⃗ , u⃗〉Ω (3.15)

Where we have used the boundary conditions (3.4-3.5). We will again analyse this result term by term. The first
term is twice the total enstrophy, E . The second term will be zero if u∥ = 0. The third term will be zero if u⊥ = 0.
The final term will be zero if f⃗ is conservative and u⊥ = 0. This can be shown as follows. If f⃗ is conservative,
then there exist some potential φ such that f⃗ =∇φ. Plugging this into the fourth term and using integration by
parts results in,

〈∇φ, u⃗〉Ω =−〈φ,∇· u⃗〉Ω+
∫
∂Ω
φu⃗ · n⃗dΓ=

∫
∂Ω
φu⊥dΓ (3.16)

Where we used that ∇· u⃗ = 0 and u⃗ · n⃗ = u⊥. Which is zero if u⊥ = 0

3.2.3. vorticity
The equation for total vorticity is given by,

V =
∫
Ω
ωdω=

∫
Ω
∇× u⃗dω. (3.17)

where equation (3.2) was used. Therefore the change of the total vorticity is given by,

dV

d t
=

∫
Ω
∇× ∂u⃗

∂t
dΩ. (3.18)

By taking the curl of equation (3.1) and integrating overΩ, we see that

dV

d t
=

∫
Ω
∇× (ω× u⃗)dΩ+Re−1

∫
Ω
∇×∇⊥ωdΩ+

∫
Ω
∇×∇PdΩ=

∫
Ω
∇× f dΩ (3.19)
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For the first term it holds that,∫
Ω
∇× (ω× u⃗)dΩ=

∫
Ω
∇×

[−ωuy

ωux

]
dΩ=

∫
Ω

∂(ωux )

∂x
+ ∂(ωuy )

∂y
dΩ=

∫
Ω
∇· (ωu⃗)dΩ=

∫
∂Ω
ω(u⃗ · n⃗)dΓ (3.20)

=
∫
∂Ω
ωu⊥dΓ

Where in the first step we used that a × b⃗ = −aby e⃗x + abx e⃗y . In the second step the definition of the rotor,
given in chapter 2.2, is used. For the third step the definition of the divergence is used. For the forth step
the divergence theorem was used. This results is equal to zero, when u⊥ = 0. For the second term, by stokes’
theorem, ∫

Ω
∇×∇⊥ωdΩ=

∫
∂Ω

∇⊥ω · t⃗dΓ (3.21)

where t⃗ is the unit vector tangent to the boundary. The third term is zero, since ∇×∇(·) = 0. And the forth term
is zero if f⃗ is conservative, since then we can again write f⃗ =∇φ and therefor ∇×∇φ= 0.

3.2.4. Enstrophy
For incompressible flow, the enstrophy is given by,

E = 1

2

∫
Ω
ω2dΩ (3.22)

Taking the curl of equation (3.1), multiplying by ω and integrating overΩ yields,

〈∇× ∂u⃗

∂t
,ω〉Ω+〈∇× (ω× u⃗),ω〉Ω+Re−1〈∇×∇⊥ω,ω〉Ω+〈∇×∇P,ω〉Ω = 〈∇× f⃗ ,ω〉Ω (3.23)

Here the first term is the total enstrophy. Using integration by parts on the second term yields,

〈∇× (ω× u⃗),ω〉Ω = 〈ω× u⃗,∇⊥ω〉Ω−
∫
∂Ω
ω(ω× u⃗ × n⃗)dΓ (3.24)

Where the boundary term is zero for homogeneous boundary conditions and for the other term will be shown
to be zero. Since ∇·u⃗ we are able to write u⃗ =∇⊥φ, were for someφ. This means that we can rewrite the second
equation as,

〈ω× u⃗,∇⊥ω〉Ω = 〈∇· (ωφ),∇⊥ω〉Ω−〈φ×∇⊥ω,∇⊥ω〉Ω = 〈ωφ,∇·∇⊥ω〉Ω−〈φ×∇⊥ω,∇⊥ω〉Ω (3.25)

Where integration by parts and the homogeneous boundary conditions were used. This is equal to zero, since
∇·∇⊥(·) = 0 and φ×∇⊥ω⊥∇⊥ω. Using integration by parts on the third term of equation (3.23) yields,

〈∇×∇⊥ω,ω〉Ω = 〈∇⊥ω,∇⊥ω〉Ω−
∫
∂Ω
ω(∇⊥ω× n⃗) (3.26)

The first term is twice the total palinstrophy, P = 1
2 〈∇⊥ωh ,∇⊥ωh〉Ω and the boundary term is zero for homoge-

neous boundary conditions. Thus withou8t an external force this yields the conservation equation,

∂E

∂t
=−2Re−1P (3.27)

Where we have used the relation ∇×∇(·) = 0 for the pressure term.

3.3. weak form
We can write equations (3.1-3.5) into the weak form,

Find u⃗ ∈ H(div,Ω)∩H(rot,Ω), ω ∈ H(curl,Ω) = H 1(Ω) and P ∈ H 1(Ω) (3.28)

〈 ∂u⃗
∂t , v⃗〉Ω+〈ω× u⃗, v⃗〉Ω+Re−1〈∇⊥ω, v⃗〉Ω+〈∇P, v⃗〉Ω = 〈 f⃗ , v⃗〉Ω,∀v⃗ ∈ [L2(Ω)]2

〈ω, w〉Ω−〈∇× u⃗, w〉Ω = 0,∀w ∈ L2(Ω)

〈∇ · u⃗, q〉Ω = 0,∀q ∈ L2(Ω).

u⃗ · n̂ = u⃗∥, on Γ× (0,T ]

u⃗ × n̂ = u⃗⊥, on Γ× (0,T ].

(3.29)
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Where the spaces where chosen to guarantee the convergence of the integrals. But u⃗ ∈ H(div,Ω)∩ H(rot,Ω),
ω ∈ H(curl,Ω) = H 1(Ω) and P ∈ H 1(Ω) is too restrictive for the basis functions as explained in section 2.4.1.
Therefor we will change some differential operators to their weak counterparts.

We will decide our solution and test spaces based on the Hilbert complexes discussed in section 2.3. Since
u is a vector it needs to be either in H(rot,Ω) or H(div,Ω). To ensure mass conservation we need 〈∇· u⃗, q〉Ω = 0
to be exactly satisfied and therefor we need u ∈ H(div,Ω). This will be expaneded on in the next section. Now
in order to apply the finite element method as described in section 2.4 we need v⃗ in the same space as u⃗, w
in the same space as ω and q in the same space as P . Further more we need to compute 〈∇× u⃗, w〉Ω, but
u ∈ H(div,Ω), so this can only be done weakly. But then 〈∇̃× u⃗, w〉Ω implies that w ∈ H(curl,Ω). And therefor
als ω ∈ H(curl,Ω). Similarly the term 〈∇P, v⃗〉Ω means that ∇P needs to be in the same space as v⃗ , H(div,Ω).
From the Hilbert complexes it follows that this is only possible if we change the ∇ to a ∇̃ and pick P ∈ L2(Ω).
Lastly 〈∇ · u⃗, q〉Ω means that we need q ∈ L2(Ω).

Applying these spaces and working out the weak operators results in:

Find (u⃗,ω,P ) ∈ H(div,Ω)×H 1(Ω)×L2(Ω) such that
〈∂u⃗

∂t
, v⃗〉Ω+〈ω× u⃗, v⃗〉Ω+Re−1〈∇⊥ω, v⃗〉Ω−〈P,∇· v⃗〉Ω = 〈 f⃗ , v⃗〉Ω,∀v⃗ ∈ H(div,Ω)

〈ω, w〉Ω−〈u⃗,∇⊥w〉Ω =−
∫
Γ

wu∥dΓ,∀w ∈ H(curl,Ω)

〈∇ · u⃗, q〉Ω = 0,∀q ∈ L2(Ω).

(3.30)

3.4. Spatial discretization
As discussed in section 2.4.1, we now pick Continuous Lagrange elements of degree N forω and w , the Raviart-
Thomas elements of degree N for u⃗ and v⃗ , and the discontinuous Lagrange elements for p and q . The only
essential boundary conditions we have here are u⃗ · n⃗ on ∂Ω. Therefor we replace H(div,Ω) by V h

E = {v⃗ ∈ V h :

v⃗ · n⃗ = u⊥}, H(curl,Ω) by W h and L2(Ω) by Qh .

Find (u⃗h ,ω,P ) ∈V h
E ×W h ×Qh such that

〈∂u⃗h

∂t
, v⃗h〉Ω+〈ωh × u⃗h , v⃗h〉Ω+Re−1〈∇⊥ωh , v⃗h〉Ω−〈P h ,∇· v⃗h〉Ω = 〈 f⃗ , v⃗h〉Ω,∀v⃗h ∈V h

0 (3.31)

〈ωh ,ξh〉Ω−〈u⃗h ,∇⊥ξh〉Ω =−
∫
Γ
ξhu∥dΓ,∀ξh ∈W h (3.32)

〈∇ · u⃗h , qh〉Ω = 0,∀qh ∈Qh . (3.33)

Where V h
0 = {v⃗ ∈V h : v⃗ · n⃗ = 0} Or in the form of the basis functions,



nu∑
i=1

∂ui

∂t
〈v⃗i , v⃗ j 〉Ω+

nu ,nω∑
i ,k=1

uiωk〈ξk × v⃗i , v⃗ j 〉+ 1

Re

nω∑
i=1

ωi 〈∇⊥ξi , v⃗ j 〉−
np∑
i=1

pi 〈qi ,∇· v⃗ j 〉 = 〈 f⃗ , v⃗ j 〉Ω , j = 1, . . . ,nu,E .

nu∑
i=1

ui 〈v⃗i ,∇× ξ⃗ j 〉−
nω∑
i=1

ωi 〈ξi ,ξ j 〉+
∫
∂Ω
ξ j (u∥× n̂)dΓ= 0, , j = 1, . . . ,nω .

nu∑
i=1

ui 〈∇ · v⃗i , q j 〉 = 0, , j = 1, . . . ,nP .

(3.34)
Where v⃗i are the Raviart-Thomas basis functions, ξi are the continuous Lagrange basis functions and qi are
the discontinuous Lagrange basis functions. And nu , nω and nP are the degrees of freedom for u⃗, ω and P
respectivally and nu,E are the degrees of freedom of u after removing the degrees of freedom used for the
essential boundary condition.
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3.5. Semi-Discrete Conservation properties
In this section we will discuss the conservational properties of the discrete Navier-Stokes equation as described
in equations (3.31-3.33). We will prove them only for the case homogeneous boundary conditions, thus V h

E =
V h and V h

0 =V h . For a further discussion see [14].

3.5.1. Mass conservation
Mass conservation for the continuous case follows from the divergence free property of u⃗. For our discrete
approximation u⃗h the divergence free property is strongly satisfied. Therefor mass is also conserved discretely.

3.5.2. Energy conservation
Equation (3.31) is valid for all v⃗h ∈ V h , therefore it is also valid for u⃗h ∈ V h (these spaces are the same, since
the boundary values are homogeneous),

〈∂u⃗h

∂t
, u⃗h〉Ω+〈ωh × u⃗h , u⃗h〉Ω+Re−1〈∇⊥ωh , u⃗h〉Ω−〈P h ,∇· u⃗h〉Ω+

∫
∂Ω

Pu∥dΓ= 〈 f⃗ , u⃗h〉Ω (3.35)

We will analyse this term by term. The first term is simply the change in discrete kinetic energy, ∂K h

∂t . The

second term is zero since ωh × u⃗h ⊥ u⃗h . Using integration by parts on the second term yields,

〈∇⊥ωh , u⃗h〉Ω = 〈ωh ,∇× u⃗h〉Ω (3.36)

Where 〈ωh ,∇×u⃗h〉Ω = 〈ωh ,ωh〉Ω = 2E h and
∫
∂Ωωu⊥dΩ= 0 if u⊥ = 0. The third term of equation (3.35) is equal

to zero, since the divergence free property of uh is strongly enforced. And the last term is zero will be zero if
there is no external force.

3.5.3. Vorticity
Equation (3.31) holds for all v⃗h ∈V h and if ξh ∈W h , then ∇⊥ξh ∈V h , thus equation (3.31) holds for ∇⊥ξ.

〈∂u⃗h

∂t
,∇⊥ξh〉Ω+〈ωh × u⃗h ,∇⊥ξh〉Ω+Re−1〈∇⊥ωh ,∇⊥ξh〉Ω−〈P h ,∇·∇⊥ξh〉Ω = 〈 f⃗ ,∇⊥ξh〉Ω,∀ξh ∈W h (3.37)

Applying integration by parts on the first term yields,

〈∂u⃗h

∂t
,∇⊥ξh〉Ω = 〈∇× ∂u⃗h

∂t
,ξh〉Ω+

∫
∂Ω
ξhu∥dΓ (3.38)

Plugging the equation above into each other and substituting ξh = 1 ∈W h yields,

〈∇× ∂u⃗h

∂t
,1〉Ω+

∫
∂Ω

u∥dΓ= 0 (3.39)

But the first term here is the change in vorticity, and the other term is 0, if u∥ = 0, thus vorticity is conserved.

3.5.4. Enstrophy
Taking the time derivative of (3.32) yields,

〈∂ω
h

∂t
,ξh〉Ω−〈∂u⃗h

∂t
,∇⊥ξh〉Ω =−

∫
Γ
ξh ∂u∥

∂t
dΓ= 0,∀ξh ∈W h (3.40)

Where u∥ = 0 for homogeneous boundary conditions was used. Plugging this into equation (3.37) yields,

〈∂ω
h

∂t
,ξh〉Ω+〈ωh × u⃗h ,∇⊥ξh〉Ω+Re−1〈∇⊥ωh ,∇⊥ξh〉Ω−〈P h ,∇·∇⊥ξh〉Ω = 〈 f⃗ ,∇⊥ξh〉Ω,∀ξh ∈W h (3.41)

Here the fourth term is zero since, ∇·∇⊥(·) = 0. Since ωh ∈W h , the equation above also holds for ωh ,

〈∂ω
h

∂t
,ωh〉Ω+〈ωh × u⃗h ,∇⊥ωh〉Ω+Re−1〈∇⊥ωh ,∇⊥ωh〉Ω = 〈 f⃗ ,∇⊥ωh〉Ω (3.42)
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We will again analyse this equation term by term. The first term is the change in total enstrophy ∂E
∂t . Since

u⃗ ∈V h and ∇· u⃗ = 0 is satisfied strong, we are able to write u⃗h =∇⊥φh , were φ ∈W h . Times means that we can
rewrite the second equation as,

〈ωh × u⃗h ,∇⊥ωh〉Ω = 〈∇· (ωhφh),∇⊥ω〉Ω−〈φh ×∇⊥ωh ,∇⊥ωh〉Ω = 〈ωhφh ,∇·∇⊥ω〉Ω−〈φ×∇⊥ω,∇⊥ωh〉Ω (3.43)

Where integration by parts and the homogeneous boundary conditions were used. This is equal to zero, since
∇·∇⊥(·) = 0 and φh ×∇⊥ωh ⊥∇⊥ωh . The third term is twice the total palinstrophy, P = 1

2 〈∇⊥ωh ,∇⊥ωh〉Ω. This
leaves us with the conservation equation. And the forth term is, ofcourse, zero when there is no external force.
This leaves us with the conservation equation.

∂E

∂t
=−2Re−1P. (3.44)

This means that when there is no external body force, Enstrophy is conserved in the inviscid limit (when Re −→
∞).

3.6. Time discretization
Applying the midpoint method and midpoint rule to (3.34), results in:

nu∑
i=1

ut+1
i −ut

i

∆t
〈v⃗i , v⃗ j 〉Ω+

nu ,nω∑
i ,k=1

ut+1
i +ut

i

2

ωt+1
k +ωt

k

2
〈ξk × v⃗i , v⃗ j 〉+ 1

Re

nω∑
i=1

ωt+1
i +ωt

i

2
〈∇×ξi , v⃗ j 〉−

np∑
i=1

p t+1
i +p t

i

2
〈qi ,∇· v⃗ j 〉

= 〈 f⃗ , v⃗ j 〉Ω, j = 1, . . . ,nu,E .
nu∑
i=1

ut+1
i 〈v⃗i ,∇× ξ⃗ j 〉−

nω∑
i=1

ωt+1
i 〈ξi ,ξ j 〉−

∫
Γ
ξ j (u∥× n̂)dΓ= 0, , j = 1, . . . ,nω .

nu∑
i=1

ut+1
i 〈∇ · v⃗i , q j 〉 = 0, , j = 1, . . . ,nP .

(3.45)
Where ut

i is the coëfficient for the basis function v⃗i in the finite element approximation for u⃗ at timestep t .
And similarly p t

i , ωt
i are the coefficients for the basis functions qi , ξi , respectivally, at time step t.

We can rewrite equation (3.45) as:

F u
j (u t+1,ωt+1,P t+1,u t ,ωt ,P t ) =

nu∑
i=1

ut+1
i −ut

i

∆t
〈v⃗i , v⃗ j 〉Ω+

nu ,nω∑
i ,k=1

ut+1
i +ut

i

2

ωt+1
k +ωt

k

2
〈ξk × v⃗i , v⃗ j 〉+ 1

Re

nω∑
i=1

ωt+1
i +ωt

i

2
〈∇×ξi , v⃗ j 〉

−
np∑
i=1

p t+1
i +p t

i

2
〈qi ,∇· v⃗ j 〉−〈 f⃗ , v⃗ j 〉Ω = 0, j = 1, . . . ,nu,E .

Fω
j (u t+1,ωt+1,P t+1,u t ,ωt ,P t ) =

nu∑
i=1

ut+1
i 〈v⃗i ,∇× ξ⃗ j 〉−

nω∑
i=1

ωt+1
i 〈ξi ,ξ j 〉−

∫
Γ
ξ j (u∥× n̂)dΓ= 0, , j = 1, . . . ,nω .

F P
j (u t+1,ωt+1,P t+1,u t ,ωt ,P t ) =

nu∑
i=1

ut+1
i 〈∇ · v⃗i , q j 〉 = 0, , j = 1, . . . ,nP .

(3.46)
Where

u t =


ut

1
ut

2
. . .

ut
nu

 ,ωt =


ωt

1
ωt

2
. . .
ωt

nω

 ,P t =


p t

1
p t

2
. . .

p t
nu

 . (3.47)

Unlike for the primal and mixed heat equation this doesn’t result in a bilinear system of equations. We are left
with the non linear term 〈ω× u⃗, v⃗〉. Therefor we are unable to immediately calculate (u⃗t+1,ωt+1, p t+1) from
(u⃗t ,ωt , p t ). We will therefor use the Newton-Raphson method. The Newton-Raphson method allows us to
approximate roots of functions through iteration, as long as our initial guess is sufficiently close to the root. In
this way, if we know (u t ,ωt ,P t ), we can find the roots of equation (3.46), and thereby find (u t+1,ωt+1,P t+1).
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The Newton-Raphson method now states that each next iteration is given by the previous iteration in the
following manner:u t+1

n+1
ωt+1

n+1
P t+1

n+1

=
u t+1

n
ωt+1

n
P t+1

n

− J−1(u t+1
n ,ωt+1

n ,P t+1
n ,u t ,ωt ,P t )

F u(u t+1
n ,ωt+1

n ,P t+1
n ,u t ,ωt ,P t )

Fω(u t+1
n ,ωt+1

n ,P t+1
n ,u t ,ωt ,P t )

F P (u t+1
n ,ωt+1

n ,P t+1
n ,u t ,ωt ,P t )

 (3.48)

Where (u t+1,ωt+1
n ,P t+1

n ) is the previous iteration, J−1 is the inverse of the Jacobian, which be written in the
form of 9 sub matrices in the following manner:

J(u t+1
n ,ωt+1

n ,P t+1
n ,u t ,ωt ,P t ) =


∂F u

∂u
∂F u

∂ω
∂F u

∂P
∂Fω

∂u
∂Fω

∂ω
∂Fω

∂P
∂F P

∂u
∂F P

∂ω
∂F P

∂P

 (3.49)

Where ∂F u

∂u is a nu ×nu sub matrix with ( ∂F u

∂u )i j = ∂F u
i

∂u j
, ∂F u

∂ω is a nω×nu sub matrix with ( ∂F u

∂ω )i j = ∂F u
i

∂ω j

∂F u

∂P is

a np ×nu sub matrix with ( ∂F u

∂P )i j = ∂F u
i

∂p j
, ∂Fω

∂u is a nu ×nω matrix with ( ∂Fω

∂u )i j = ∂Fω
i

∂u j
etc.

If we take the values of the previous time step, (u t ,ωt ,P t ), as our initial guess for the values of the next
timestep, u t+1

0 ,ωt+1
0 ,P t+1

0 ), we can use the Newton-Raphson method to iterate to the correct values of the next
time step, since this should be a good enough inital guess for a suffiecntly small timestep.
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4
Results and discussion

4.1. Steady Heat equations
We looked at the convergence of the primal and mixed steady heat equation as described in sections 2.4.2 and
2.4.3. We did this by looking at the problem

−∇·∇u =−sin(x)−cos(y) on (0,π)× (0,π)

∇u · n⃗ = 1 on {0}× [0,π]∪ {1}× [0,π]

u =−sin(x)−cos(y) on (0,π)× {0}∪ (0,π)× {1}

(4.1)

Where we know that the exact solution is uexact =−sin(x)−cos(y). This problem was chosen so that the exact
solution is known, and to test if the convergence rate is as expected. This is done to see if the method is working
as expected. We approximated the solution to this problem with the Julia programming language[3], using the
Gridap module[2][18]. We used a square mesh from sizes 4 by 4, 8 by 8, 16, by 16, 32 by 32 and 64 by 64. And
used this mesh with the primal steady heat equation with Continuous Lagrange elements of 1 and 2 and for the
mixed formulation with discontinuous Lagrange elements of order 1 together with Raviart-Thomas elements
of order 2 and with discontinuous Lagrange elements of order 2 with Raviart-Thomas elements of order 3. We
then calculated the total root mean square error for these different mesh sizes. The results can be seen in figure
4.1, where the lines the lines y = (1/N )2 and y = (1/N )3 are added to show the degree of convergence. This is
to be expected, since we expect the error to converge at a rate proportional to the the step size to the power of
the order + 1, error ∝ (1/N )(order+1)[1, p. 59]

(a) Order 1 Continuous Lagrange elements were used for the Primal formu-
lation and order 1 Discontinuous lagrange elements together with order 2
Raviart-Thomas elements for the Mixed formulation

(b) Order 2 Continuous Lagrange elements were used for the Primal formu-
lation and order 2 Discontinuous lagrange elements together with order 3
Raviart-Thomas elements for the Mixed formulation

Figure 4.1: Root mean square error of the finite element approximation for different mesh sizes
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4.2. Unsteady heat equation
The transient heat equation was also implemented in Gridap, but due to time restrictions the results are om-
mitted.

4.3. Navier-Stokes equations
The conservative discretization, as described in the previous chapter, was tested for the lid driven cavity prob-
lem. This problem is describes a square box, with non-slip boundaries, where all boundaries are not moving,
except for the top, which moves with a constant velocity of 1 to the left. This can be described as follows,

∂u⃗

∂t
+ω× u⃗ +Re−1∇⊥ω+∇P = 0, in (0,1)× (0,1)× (0,T ] (4.2)

ω−∇× u⃗ = 0, in (0,1)× (0,1)× (0,T ] (4.3)

∇· u⃗ = 0, in (0,1)× (0,1)× (0,T ] (4.4)

u⃗ · n̂ = 0, on {0,1}× [0,1]∪ [0,1]× {0,1}× (0,T ] (4.5)

u⃗ × n̂ =−1, on [0,1]× {1}× (0,T ]. (4.6)

u⃗ × n̂ = 0, on {0,1}× [0,1]∪ [0,1]× {0}× (0,T ]. (4.7)

Where, without loss of generality we have taken the length of the box to be 1. Where for a small enough
Reynolds number this should lead to a steady state after sufficient time. Thus by repeating the time iteration,
as described in the previous chapter, until the difference between two subsequent time steps is sufficiently
small gives us an approximation for that steady state. We first implemented this process in the Julia program-
ming language[3], using the Gridap[2][18] module, but this implementation was too slow to work with. We
then implemented this process in Python, using the firedrake system[8]. The results will be compared to some
benchmark cases[15][4].

We pciked a 38 by 38 mesh, with elements of order 3 (meaning order 3 continuous lagrange elements,
order 3 Raviart-Thomas elements and order 2 discontinuous lagrange elements), Reynolds number 1000, a
difference of 10−12 for subsequent Newton-Raphson steps before moving to the next time step, and step size
∆t = 0.01. The resulting steady state is compared to a benchmark case. The benchmark solutions were pro-
duced, three different large (graded) grids were used (of sizes 1201x1201, 1413x1413 and 1661x1661) and the
extrapolated result was projected (interpolated) onto the base 1201x1201 grid[15].

In figure 4.2 we show contours representing vorticity values of -5 to 5 with steps of 1 for the conservative
discretization and the benchmark. We see that the contours match very well. Only in the top right the structure
preserving model has some results that don’t match well. Furthermore, in figure 4.3 the x-component of the
velocity along the vertical line x=0.5 for this case is compared to the benchmark. And it is again shown that it
matches up very well.

4.3.1. Altered mesh
To try to improve the accuracy we used a different type of mesh, with higher resolution near the boundary and
lower resolution in the centre, since the biggest changes happen near the boundary. This new mesh is made
in the following manner. First an N by N triangular mesh, made up of squares separated by a line from the top
left to bottom right AND a line from the top right to bottom left. Then the new mesh is made with the following
mapping,

m : (x̄, ȳ) −→ (x, y) such that

x = 0.5(sin((x̄ − 1

2
)π)+1)

y = 0.5(sin((ȳ − 1

2
)π)+1)

Here x, y are the coördinates of the altered mesh and x̄, ȳ are the coördinates of the old mesh. A 36 by 36
example can be seen in figure 4.4.

We test the accuracy of this 36 by 36 altered mesh with Reynolds number 2500 against a benchmark gen-
erateed in the sameway as before [15]. Again elements of order 3, Newton-Raphson tollerance 10−12 and time
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(a) Countours representing vorticity values from -5 to 5 at steps of 1 for the
structure preserving grid with a 38 by 38 mesh, with elements of order 3 and
Re=1000

(b) Countours representing vorticity values from -5 to 5 at steps of 1
given by the benchmark[15] for Re=1000

Figure 4.2: Comparison between the conservative discretization and a benchmark case of vorticity countours

steps of 0.01 were used. Figure 4.5 shows contours representing vorticity values of -5 to 5 with steps of 1 for the
method and a benchmark. Here there is a noticeable difference in the centre between the contour lines, but
they match quite well near the edge, even at the top right corner. This is expected since the mesh has a higher
resolution near the boundary.
Figure 4.6 shows the x-component of the velocity along the line x=0.5 of this method compared to a bench-
mark for Reynolds number 2500. We see that this method preforms well very close to the boundary, but over
or under estimates just a bit further from the boundary. This is could be explained by the chosen mesh having
a higher resolution close to the boundary. It also matches the benchmark near the centre, this could be the
case because there is little movement in the centre.

4.3.2. Comparison to Taylor-Hood
We now compare our conservative discretization to Taylor-Hood method. In order to do so we pick the same
mesh, a triangular mesh made up of 28 by 28 squares, separated into triangles by a line from the top left to
the bottom right. The conservative discretization will have elements of order 2 (meaning order 2 continuous
lagrange elements, order 2 Raviart-Thomas elements and order 1 discontinuous lagrange elements). Similarly,
the Taylor-Hood method will have order 2 for velocity in all direction and order 1 for pressure. And we take the
same time step ∆t = 0.01s. The results for t = 1, t = 3 and t = 5 can be seen in figure 4.7. We see that in the
the Taylor-Hood method has some oscillations in the top left, which are not based on anything physical, while
the structure conserving method does not have these errors. This shows a clear advantage of the conservative
discretization.

For an additional comparison, in figure 4.8 we shown the results of the conservative discretization on an
altered mesh with a 28 by 28 mesh with polynomial order 2 and the same step size next to a reference method,
which is a conservative discretization with normal mesh of size 50 by 50 and order 3. This reference method is
the conservative discretization on a normal 50 by 50 grid, with order 3. This increased order, means that it’s the
closest to the actual result. We see smoother results for the altered mesh near the boundary, especially near
the top right corner, which matches the higher resolution reference better than any other method. There is no
noticeable difference in the rest of the figure.

Lastly we compare some initial time step for the lid driven cavity problem for Reynolds number 10000 in
figure 4.9. We compare the conservative discretization and the Taylor-Hood method both on 50 by 50 version
of the original mesh. Both with polynomial order 3 and time step 0.01. As a reference we also show the results
of a higher resolution Taylor-Hood method. This reference has order 3 and a 200 by 200 mesh.
Here we see that the conservative discretization matches the reference for longer. It also at no point gets the
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[width=8cm]

Figure 4.3: Comparison of the x-component of the velocity along the line x=0.5 for Re=1000
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Figure 4.4: A 36 by 36 example of the altered mesh.

unphysical oscilations in the velocity as the Taylor-Hood method does. This shows an even clearer advantage
of the conservative discretization.
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(a) Countours representing vorticity values from -5 to 5 at steps of 1 for the
structure preserving grid with a 36 by 36 mesh, with elements of order 3 and
Re=2500

(b) Countours representing vorticity values from -5 to 5 at steps of 1
given by the benchmark[15] for Re=2500

Figure 4.5: Comparison between the conservative discretization and a benchmark case of vorticity countours

[width=8cm]

Figure 4.6: Comparison of the x-component of the velocity along the line x=0.5 for Re=2500
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(a) magnitude of velocity of conservative discretization at t=1 (b) magnitude of velocity of Taylor-hood method at t=1 (c) Legend

(d) magnitude of velocity of conservative discretization at t=3 (e) magnitude of velocity of Taylor-hood method at t=3 (f) Legend

(g) magnitude of velocity of conservative discretization at t=5 (h) magnitude of velocity of Taylor-hood method at t=5 (i) Legend

Figure 4.7: Comparison between conservative discretization and Taylor-Hood method for Re=1000, and 28 by 28 mesh and time step 0.01
at times 1, 3 and 5.
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(a) magnitude of velocity on an altered mesh at t=1 (b) magnitude of velocity of the reference at t=1 (c) Legend

(d) magnitude of velocity on an altered mesh at t=3 (e) magnitude of velocity of the reference at t=3 (f) Legend

(g) magnitude of velocity on an altered mesh at t=5 (h) magnitude of velocity of the reference at t=5 (i) Legend

Figure 4.8: Comparison between an altered mesh for Re=1000, and 28 by 28 mesh and time step 0.01 at times 1, 3 and 5 and a reference.
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(a) magnitude of velocity of conservative discretiza-
tion at t=1

(b) magnitude of velocity of Taylor-hood method at
t=1

(c) magnitude of the velocity of the higher resolution refer-
ence Taylor-Hood

(d) magnitude of velocity of conservative discretiza-
tion at t=3

(e) magnitude of velocity of Taylor-hood method at
t=3

(f) magnitude of the velocity of the higher resolution refer-
ence Taylor-Hood

(g) magnitude of velocity of conservative discretiza-
tion at t=5

(h) magnitude of velocity of Taylor-hood method at
t=5

(i) magnitude of the velocity of the higher resolution refer-
ence Taylor-Hood

Figure 4.9: Comparison between conservative discretization and Taylor-Hood method for Re=10000, and 50 by 50 mesh and time step 0.01
at times 1, 3 and 5. Also shown is a higher resolved reference with a 200 by 200 mesh.
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5
Conclusion

In this report we implement and test a discretization for the 2D dimensionless incompressible Navier-Stokes
equations, as described by Zhang, Palha, Gerritsma and Yao [19]. The mass, energy, enstrophy and vorticity
conserving discretizations shows results which accurately matches higher resolution benchmark results. For
the under resolved case it performed better than the Taylor-Hood method and importantly it did not show any
unphysical oscillations in the solution. This result was even more prevalent for the higher Reynolds number
case. This clearly shows the utility of this discritisation, since for a lot of practical situations the simulations
will be very under resolved.

Due to time constraints, the conservation properties of these equations were not tested. These should be
confirmed before any other conclusions are made.
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