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a b s t r a c t 

In this paper we analyze the Hirano active layer model used in mixed sediment river morphodynam- 

ics concerning its ill-posedness. Ill-posedness causes the solution to be unstable to short-wave pertur- 

bations. This implies that the solution presents spurious oscillations, the amplitude of which depends 

on the domain discretization. Ill-posedness not only produces physically unrealistic results but may also 

cause failure of numerical simulations. By considering a two-fraction sediment mixture we obtain an- 

alytical expressions for the mathematical characterization of the model. Using these we show that the 

ill-posed domain is larger than what was found in previous analyses, not only comprising cases of bed 

degradation into a substrate finer than the active layer but also in aggradational cases. Furthermore, by 

analyzing a three-fraction model we observe ill-posedness under conditions of bed degradation into a 

coarse substrate. We observe that oscillations in the numerical solution of ill-posed simulations grow 

until the model becomes well-posed, as the spurious mixing of the active layer sediment and substrate 

sediment acts as a regularization mechanism. Finally we conduct an eigenstructure analysis of a simpli- 

fied vertically continuous model for mixed sediment for which we show that ill-posedness occurs in a 

wider range of conditions than the active layer model. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The mixed character of the sediment is a property necessary to

xplain physical phenomena such as downstream fining ( Sternberg,

875; Blom et al., 2016 ), the gravel sand transition zone ( Yatsu,

955; Blom et al., 2017 ), the formation of bedload sheets ( Seminara

t al., 1996 ), or bed surface armoring ( Parker and Klingeman,

982 ). Hirano (1971) was the first to develop a mass conservation

odel for mixed-size sediment. The model assumes that the top-

ost part of the bed, i.e. the active layer, interacts with the flow

nd is instantaneously mixed. Below the active layer lies the sub-

trate which can have vertical stratification. In this schematic rep-

esentation of the morphodynamic processes only the active layer

ediment is affected by entrainment and depositional processes. A

ertical flux of sediment originates from changes in elevation of

he interface between the active layer and the substrate. 

One of the critical aspects of the active layer model is the fact

hat the vertical extent of the active layer, or active layer thickness,

hall be a priori assigned. However, it cannot be physically mea-

ured, as it stems from the above schematic representation ( Siviglia
∗ Corresponding author. 

E-mail address: v.chavarriasborras@tudelft.nl (V. Chavarrías). 
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t al., 2017; Church and Haschenburger, 2017 ). The active layer

hickness is related to the time scale of the process under consider-

tion ( Bennett and Nordin, 1977; Rahuel et al., 1989; Sieben, 1997;

u, 2007 ). In plane bed conditions and short time scales the active

ayer thickness is assumed to be proportional to the size of a char-

cteristic coarse fraction in the bed, for instance, D 84 or D 90 (e.g.,

etts et al., 1989; Rahuel et al., 1989; Parker and Sutherland, 1990 ).

f bed forms are predominant and the time scale under consider-

tion involves the mixing induced by the passage of several bed

orms, the active layer thickness is typically related to a charac-

eristic bed form height (e.g., Deigaard and Fredsøe, 1978; Lee and

dgaard, 1986; Armanini and Silvio, 1988 ). The active layer thick-

ess may vary over space and time, although often it is assumed

o be a uniform constant. 

The active layer modeling framework has proven to be able to

epresent a wide variety of physical phenomena such as bed sur-

ace armoring (e.g., Park and Jain, 1987 ) and the morphodynam-

cs of gravel-bed rivers (e.g., Vogel et al., 1992 ) and tidal basins

e.g., Carniello et al., 2012 ). Moreover, it is implemented in a large

mount of software packages such as Telemac ( Villaret et al., 2013 ),

elft3D ( Sloff and Mosselman, 2012 ), and BASEMENT ( Vetsch et al.,

006 ). 
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Schematic of the effect of a perturbation in bed elevation in ( a ) a unisize 

sediment case and ( b ) a mixed sediment case. In the latter case, a perturbation in 

bed elevation introduces another wave, which is mainly related to the bed surface 

grain size distribution. Yet, each wave perturbs the flow, bed elevation, and bed 

surface grain size distribution. The arrows indicate the direction of propagation of 

the perturbations under subcritical flow conditions. The words “water”, “bed”, and 

“sorting” refer to a perturbation in water flow, bed level, and surface grain size 

distribution, respectively. 
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The mathematical representation of river morphodynamics

should be well-posed. This means that the mathematical problem

must have a unique solution which depends continuously on the

data ( Hadamard, 1923 ). If the solution does not depend continu-

ously on the data, the model is unfit to represent the correspond-

ing physics. 

Despite its widespread use, the active layer model has one ma-

jor mathematical shortcoming: the model can change its math-

ematical character under some parameter settings. Therefore the

mathematical problem that represents the physics of river mor-

phodynamics can become ill-posed. This fact was first recognized

by Ribberink (1987) . To this end he simplified the active layer

model by considering an equation for the mean grain size of the

active layer sediment rather than one active layer equation for

each grain size fraction. He found that under aggradational con-

ditions the problem is unconditionally well-posed and the system

may become ill-posed under degradational conditions if the sub-

strate is finer than the active layer (i.e. degradation in an armored

river). Ribberink (1987) included a third layer between the active

layer and the substrate to model the effects of dunes exceptionally

larger than the average dune height. Although this model includes

more physical mechanisms and improves the prediction of mixed

sediment processes in dune-dominated cases, it may still become

ill-posed ( Sieben, 1994 ). 

To understand the conditions in which the active layer model

becomes ill-posed we focus on how information propagates along

a river. We first consider a certain reach characterized by normal

flow and immobile sediment. A perturbation of the flow propa-

gates along the river in the form of two waves traveling at speeds

equal to u ±
√ 

gh where u [m/s] denotes the mean flow velocity, h

[m] the flow depth, and g [m/s 2 ] is the acceleration due to gravity.

If sediment is mobile, yet uniform, a perturbation in bed elevation

(e.g., a sediment hump) will propagate with a speed that is termed

the “bed celerity” ( de Vries, 1965; Lyn and Altinakar, 2002; Stecca

et al., 2014 ). As the bed elevation affects the flow, the bed eleva-

tion perturbation also induces a perturbation of the flow. Thus, un-

der unisize sediment conditions, a perturbation of the bed eleva-

tion leads to three waves ( Fig. 1 a). Although each of the waves per-

turb both bed elevation and flow, two of the waves perturb mainly

the flow without much change in bed level if the Froude number
 F r = u/ 
√ 

gh ) is sufficiently small ( de Vries, 1973; Needham, 1990;

anré and Needham, 1994 ). 

The consideration of mixed sediment (of two size fractions to

implify the example) introduces another celerity which is termed

he “sorting celerity” ( Suzuki, 1976; Ribberink, 1987; Stecca et al.,

014 ). Thus, under mixed sediment conditions (with two grain

izes), a perturbation of bed elevation causes four waves. Although

ach wave perturbs the flow, bed elevation, and surface grain size

istribution, two of these perturb mainly the flow, one mainly

he bed level, and one mainly the surface grain size distribution

 Ribberink, 1987; Stecca et al., 2014 ) ( Fig. 1 b). Sieben (1994) identi-

ed a region of parameters where, for a sediment mixture consist-

ng of two grain size classes under bed degradation into a substrate

ner than the active layer, the model is unconditionally ill-posed.

his occurs when the “sorting celerity” equals the “bed celerity”.

his was confirmed by Stecca et al. (2014) , who observed, through

umerical computation of the system eigenvalues, such model be-

avior also in case of more than two sediment fractions. 

Furthermore, Stecca et al. (2014) analytically confirmed the

utcomes of Ribberink’s analysis using a more realistic unsteady

odel for two sediment size fractions. They considered grain size

electivity of the bedload but hiding in a limited manner. Hiding

ccounts for the fact that grain size fractions finer than a charac-

eristic mean grain size of the mixture hide behind larger grains

nd so they experience a larger critical bed shear stress compared

o the unisize case ( Einstein, 1950; Komar, 1987a; 1987b ). The op-

osite happens for coarse sediment fractions, which experience a

arger exposure to the flow than in a unisize case. In their anal-

sis Stecca et al. (2014) showed that the model can become ill-

osed under degradational conditions if and only if the substrate is

ner than a reference grain size distribution which is related to the

rain size distribution of the bedload, instead of the active layer (as

n Ribberink’s (1987) analysis). 

To overcome the problem of setting the active layer thickness,

arker et al. (20 0 0) developed a stochastic framework without the

eed for a distinction between the active and inactive parts of the

ed. Blom and Parker (2004) , Blom et al. (2006) , and Blom et al.

2008) developed a model that accounts for dune sorting and the

ariability of bed elevation based on the stochastic framework de-

eloped by Parker et al. (20 0 0) . The model associates a probabil-

ty of grain size selective entrainment to all elevations within the

ed, and hence allows for sediment at any elevation to be en-

rained and contribute to the bedload discharge. Viparelli et al.

2017) developed a simplified vertically continuous model assum-

ng slow changes in bed elevation and a steady probability distri-

ution of entrainment, deposition, and bed elevation, which make

heir model suitable for large space and time domains. So far the

ell-posedness of the continuous model has never been assessed. 

Our main objective is to analyze the problem of ill-posedness

f the active layer model used for mixed sediment morphodynam-

cs. The present paper provides four key improvements with re-

pect to presently available knowledge: (i) we obtain analytical ex-

ressions to characterize a simplified model (i.e., to find whether

t is ill-posed or well-posed) with two sediment fractions only, (ii)

e study the effect of model parameter choice on ill-posedness,

iii) we find new (previously neglected) ill-posed domains, and (iv)

e study the consequences of ill-posedness in numerical simula-

ions. Our second objective is to mathematically characterize the

ertically continuous model developed by Viparelli et al. (2017) . In

he next section we present the general set of equations for mod-

ling mixed sediment river morphodynamics using (a) the active

ayer model and (b) the vertically continuous model developed by

iparelli et al. (2017) . The models are simplified and analyzed in

ection 3 . We analyze the effect of model parameters on the ill-

osedness of the active layer model in Section 4 . In Section 5 we
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tudy the consequences of ill-posedness using numerical runs. In

ection 6 we relax and study the simplifications of our analysis. 

. Model equations 

In this section we present the equations used to model river

orphodynamics. These equations represent one-dimensional hy-

rostatic flow over a mobile bed composed of an arbitrary number

 of non-cohesive sediment fractions characterized by a grain size

 k [m], where the subscript k identifies each fraction in increasing

ize (i.e., d 1 < d 2 < . . . < d N ). 

In the following section we describe the flow equations. As pre-

ious research has clarified ( Ribberink, 1987; Stecca et al., 2014 ), a

ey parameter in determining well-posedness of the active layer

odel is the active layer thickness. In this paper we both consider

 model with constant, and with unsteady (time-varying) active

ayer thickness. While the well-posedness of the model with con-

tant active layer thickness has been analyzed in previous work

 Ribberink, 1987; Stecca et al., 2014 ), to our knowledge no anal-

sis of the well-posedness of the model with unsteady active

ayer thickness is available, although use of such a model is doc-

mented in the literature (e.g. Karim et al., 1983 ). The equations

f the adapted active layer model are presented in Section 2.2 . In

ection 2.3 we present the vertically continuous model derived by

iparelli et al. (2017) . The closure relations for both models are

reated in Section 2.4 . In Section 2.5 we present a compact matrix

ormulation of the model equations. 

.1. Flow equations 

The flow is described by the 1D Shallow Water Equations (i.e.,

he Saint–Venant equations, Saint-Venant (1871) ) considering con-

tant width. Assuming steady flow conditions the water discharge

s uniform and conservation of momentum reduces to the so-

alled backwater equation ( Appendix A ). When assuming steady

ow over a movable bed composed of sediment of different sizes

e implicitly assume that the flow adapts instantaneously to per-

urbations in bed elevation and grain size distribution. Worded dif-

erently, we assume that flow perturbations propagate infinitely

ast relative to perturbations in bed elevation and surface grain

ize distribution. This assumption is referred to in literature as

he “quasi-steady flow assumption” ( de Vries, 1965; Zhang and Ka-

awita, 1987; 1990; Cao and Carling, 2002a ). The quasi-steady flow

ssumption is acceptable provided that the Froude number is suf-

ciently small, 1 − F r 2 = O(1) ( de Vries, 1973; Sieben, 1999; Lyn

nd Altinakar, 2002 ). Note that in this context the term “quasi-

teady” has a meaning different from, for instance, its use in the

odeling of flood waves where “quasi-steady” refers to negligible

nertia in the momentum balance. 

.2. Adapted active layer model equations 

The conservation of the total amount of sediment in the bed

s formulated by the Exner equation ( Exner, 1920 ). The active

ayer equation describes mass conservation for each size fraction

 Hirano, 1971 ). Appendix B presents the details of the active layer

odel. 

To analyze the model with unsteady active layer thickness, we

rst need to set a closure relation expressing the thickness change

n time. We consider an empirical empirical power relation be-

ween dune height H [m] and flow depth h [m] ( Yalin, 1964; Gill,

971 ): 

 = a L h 

b L , (1)

here a L [ m 

1 −b L ] and b L [-] are constants. Allen (1968a,b) proposed

alues of a = 0 . 1 ∼ 0 . 2 m 

1 −b L and b = 0 . 9 ∼ 1 . 2 (with h in [m]).
L L 
ssuming that the active layer thickness L a [m] is equal to the

ean dune height ( Blom, 2008 ), we relate the active layer thick-

ess to the flow depth as follows: 

 a = a L h 

b L . (2) 

To obtain an equation for the active layer thickness variation we

ifferentiate the constitutive law, Eq. (2) , with respect to time and

hen substitute the continuity Eq. (A.1) in it: 

∂L a 

∂t 
= −a L b L h 

b L −1 ∂q 

∂x 
. (3) 

ubstitution of Eq. (3) into the active layer Eq. (B.2) yields the fol-

owing adapted active layer equation: 

∂M ak 

∂t 
− f I 

k 

∂q b 
∂x 

+ f I 
k a L b L h 

b L −1 ∂q 

∂x 
+ 

∂q bk 

∂x 
= 0 , (4) 

here t [s] denotes the time coordinate, x [m] the streamwise

oordinate, q = uh [m 

2 /s] the water discharge per unit width, q b 
m 

2 /s] is the sediment transport rate per unit width multiplied by

 / (1 − p) where p [-] is the bed porosity (i.e., the sediment trans-

ort rate q b accounts for pores), q bk [m 

2 /s] is the sediment trans-

ort rate per size fraction, M ak [m] is the volume of sediment of

ize fraction k in the active layer per unit of bed area, and f I 
k 

-] is the volume fraction content of size fraction k at the inter-

ace between the active layer and the substrate. In Fig. 2 we show

 schematic representation of the main variables of the active layer

odel. 

.3. Simplified vertically continuous model equations 

The conserved quantity in the vertically continuous model (sim-

lar to M ak in the active layer model) is the product of the cumu-

ative probability of bed elevation ( P e [-]) and the volume fraction

ontent of a specific grain size class k ( f k [-]) ( Parker et al., 20 0 0;

elosi et al., 2014 ). The vertical coordinate is z [m]. To simplify the

roblem, the probability distribution depends on a second vertical

oordinate y = z − η which is centered at the mean bed elevation.

ssuming slow changes in mean bed elevation and a constant (in

ime and space) probability distribution of bed elevation, Viparelli

t al. (2017) obtain an equation for the change in time of the vol-

me fraction content, f k : 

 e 
∂ f k 
∂t 

= −p e 
∂q bk 

∂x 
− ∂q b 

∂x 

∂ f k P e 

∂y 
, (5) 

here p e [ m 

−1 ] is the probability density function of bed elevation

 Fig. 2 ). 

As in the active layer model, information is only advected in

treamwise direction, i.e., the conservation equation does not in-

lude divergence terms in the y direction and the only indepen-

ent variable in space is x . In contrast to the active layer model,

here is no inactive substrate and sediment at all elevations plays

 role. This is illustrated by the dependence of the probability func-

ion on the y coordinate and the gradient in the y direction in Eq.

5) . Thus, although the system of equations is one-dimensional, the

athematical character of the model is a property depending not

nly on the streamwise coordinate x but also on the vertical coor-

inate y . 

.4. Closure relations 

We apply the Chézy law for the friction slope. Thus, the fric-

ion slope is proportional to the square of the mean flow velocity

ivided by the flow depth, S f = C f u 
2 / (gh ) , where C f [-] is a nondi-

ensional friction coefficient. For simplicity, we assume a constant

ondimensional friction coefficient that is independent of the flow

nd bed parameters. 
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Active Layer Model Vertically Continuous Model

q

qbk

Fig. 2. Representation of the main variables of the active layer model ( Hirano, 1971 ) and the vertically continuous model proposed by Viparelli et al. (2017) . 

Table 1 

Values of parameters in Eq. (6) according to several authors. 

Author A [-] B [-] θ c [-] 

Meyer-Peter and Müller (1948) 8 1.5 0.047 

Engelund and Hansen (1967) 0.05/ C f 2.5 0 

Fernandez-Luque and Van Beek (1976) 5.7 1.5 0.037 – 0.0455 

Wong and Parker (2006) (1) 4.93 1.6 0.047 

Wong and Parker (2006) (2) 3.97 1.5 0.0495 
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We apply a generalized form of the Meyer-Peter and Müller

(1948) transport relation, in which the sediment transport rate is

a power function of the excess bed shear stress: 

q ∗bk = A [ max ( θk − ξk θc , 0 ) ] 
B 
, (6)

where q ∗
bk 

[ −] is a nondimensional sediment transport rate

( Appendix C ), A [-] and B [-] are nondimensional parameters, θ k 

[-] is the nondimensional bed shear stress of size fraction k , also

known as Shields (1936) parameter, θ c [-] is the nondimensional

critical bed shear stress, and ξ k [-] is the hiding coefficient. Table 1

summarizes appropriate values of A, B , and θ c according to several

authors. 

A common hiding function is the one due to Egiazaroff

(1965) ( Appendix C ). A simpler relation was developed by Parker

et al. (1982) : 

ξk = 

(
D m 

d k 

)b 

, (7)

where D m 

[m] is a characteristic mean grain size and b is a

nondimensional parameter. A value of b > 1 ( Dhamotharan et al.,

1980; Misri et al., 1984; Kuhnle, 1993 ) implies that hiding is so

strong that the coarser fraction(s) in the mixture is (are) more mo-

bile than the finer one(s), i.e., reverse mobility ( Solari and Parker,

20 0 0 ). 

A final closure relation is required (only for the active layer

model) for the volume fraction content of sediment of size frac-

tion k at the interface between the active layer and the substrate,

f I 
k 
. When the interface lowers the texture at the interface is equal

to that at the topmost part of the substrate. When the interface

elevation increases various relations can be applied for f I 
k 
. Hirano

(1971) proposed that during aggradation the grain size distribution

at the interface is equal to the one of the active layer. According to

Parker (1991) also the bedload sediment plays a role in the aggra-

dational flux to the substrate. Hoey and Ferguson (1994) combined

both concepts in one parameter α [-] spanning the range [0,1] that

describes the contribution of the active layer relative to the one of
he bedload: 

f I k = 

⎧ ⎪ ⎨ ⎪ ⎩ 

f sk (z = η − L a ) if 
∂ ( η − L a ) 

∂t 
< 0 

αF ak + ( 1 − α) p k if 
∂ ( η − L a ) 

∂t 
> 0 

, (8)

here p k = q bk /q b [-] is the fraction of sediment transport rate of

ize fraction k . 

.5. Matrix formulation 

In this section we introduce a matrix formulation to asses the

ell-posedness of the system of equations. 

A system of partial differential equations (PDEs) can be mathe-

atically classified as being of a hyperbolic, elliptic, or mixed type

e.g., Courant and Hilbert, 1989 ). To this end we write the problem

n matrix-vector form (e.g., Toro, 2001 ): 

∂Q 

∂t 
+ A 

∂Q 

∂x 
= S . (9)

his equation is the one-dimensional quasi-linear non-conservative

orm of the advection equation. Q is the vector of dependent vari-

bles, A is the system matrix, and S is the vector of source terms. 

A system is hyperbolic at a point ( x, t ) if all the eigenvalues of

atrix A are real. Physical propagation problems are modeled with

yperbolic systems of equations. If all eigenvalues are complex, the

ystem is termed elliptic. Elliptic systems model equilibrium phys-

cal problems. If matrix A has both real and complex eigenvalues it

s a mixed-type system. 

A space-time dependent problem, in which we prescribe

oundary conditions as a function of time and an initial condition

as is the case in modeling river morphodynamics), governed by

n elliptic set of equations is ill-posed ( Hadamard, 1923; Joseph

nd Saut, 1990; Kabanikhin, 2008 ). This is confirmed by a pertur-

ation analysis that shows that, if all eigenvalues of matrix A are

eal, perturbations of a reference state are bounded (Appendix A

n the supplementary material). However, if there is at least one

omplex eigenvalue (or, precisely, at least two, because of the com-

lex conjugate), perturbations grow exponentially. The exponen-

ial growth depends on the product of the imaginary part of the

igenvalues and the wave number of the perturbation, which im-

lies that the solution of an ill-posed problem is unstable to short

erturbations. Attempts to numerically integrate an ill-posed prob-

em therefore produce results that continue to change as the grid

s refined ( Woodhouse et al., 2012; Barker et al., 2015 ), as in nu-

erical solutions perturbations always exist due to at least trun-

ation errors. In numerical simulations the wave number of the

hortest possible perturbation is inversely related to the horizon-

al discretization ( �x ). 
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By only using the eigenvalues of A to characterize the system

f equations we are neglecting the effect of friction (Appendix A

n the supplementary material). Yet, this suffices here as friction

ecomes relevant for small wave numbers only (Appendix A in the

upplementary material) and the most critical wave numbers, as

egards to oscillation growth, are the large ones. 

As a single complex pair of eigenvalues makes the problem ill-

osed, we do not make a distinction between the number of com-

lex eigenvalues. We term a problem with at least a pair of com-

lex eigenvalues as elliptic. 

We recast in matrix-vector form the Saint–Venant equations,

A .1) and (A .2) , the Exner equation, (B.1) , the active layer thickness

quation, (3) , and the adapted active layer equation, (4) . The vector

f dependent variables is: 

 al = 

[
h, q, η, L a , [ M ak ] ︸ ︷︷ ︸ 

N−1 

]T 
, (10)

he system matrix is: 

(11) 

nd the vector of source terms is: 

 al = 

[
0 , −ghS f , 0 , 0 , [ � ] ︸︷︷︸ 

N−1 

]T 
. (12)

The brackets ([ ]) highlight those terms that are vectors or ma-

rices. 

We also recast in matrix-vector form the Saint–Venant equa-

ions, (A.1) and (A.2) , the Exner equation, (B.1) , and the conserva-

ion equation of the vertically continuous model, Eq. (5) . The vec-

or of dependent variables is: 

 vc = 

[
h, q, η, [ f k ] ︸︷︷︸ 

N−1 

]T 
, (13)

he system matrix is: 

(14) 

and the vector of source terms is: 

 vc = 

[
0 , −ghS f , 0 , [ � ] ︸︷︷︸ ]T 

. (15)
N−1 
. Characterization of the mathematical models 

In this section we analyze the mathematical character of the

odels described in Section 2 . Eigenvalues computed numerically

an be obtained for an unlimited number of fractions. Here we

tudy a simple case assuming steady flow and two size fractions

o obtain analytical expressions of the eigenvalues. 

As in our case the temporal change of the active layer thick-

ess depends on the spatial gradient of the water discharge per

nit width, Eq. (3) , the steady flow assumption implies a constant

ctive layer thickness. Yet, in a numerical simulation where the

teady flow assumption is used but the upstream discharge varies

ith time (i.e., alternating steady flow), the active layer thickness

ay vary with time. However, in such a case the perturbations due

o a change in active layer thickness propagate infinitely fast rela-

ive to the perturbations in bed elevation and surface grain size

istribution. 

The implications of more than two sediment size fractions and

n active layer thickness as a function of the flow depth are stud-

ed in Section 6 . 

.1. Steady active layer model consisting of two size fractions 

Substitution of the backwater equation, (A.3) , in the Exner

quation, (B.1) , and the active layer equation, (B.2) , allows us to

btain a reduced model where the vector of dependent variables

 Q alS2 ) is: 

 alS2 = [ η, M a 1 ] 
T 
, (16) 

he vector of source terms ( S alS2 ) reads: 
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v b 1  
S alS2 = −S f 
uψ 

1 − F r 2 
[ 1 , γ1 ] 

T 
, (17)

and the system matrix ( A alS2 ) is: 

A alS2 = u 

⎡ ⎢ ⎣ 

ψ 

1 − F r 2 
χ1 

ψ 

1 − F r 2 
γ1 χ1 μ1 , 1 

⎤ ⎥ ⎦ 

. (18)

We define ψ [-] as: 

ψ = 

∂q b 
∂q 

, (19)

which is a parameter related to the intensity of total bedload in

the flow and ranges between 0 (null sediment discharge, i.e., fixed

bed) and O(10 −2 ) (high sediment discharge), (e.g., de Vries, 1965;

Lyn and Altinakar, 2002; Stecca et al., 2014 ). 

The parameter γ 1 [-] is a measure of the fraction content of

sediment in transport relative to the fraction content of sediment

at the interface between the active layer and the substrate ( Stecca

et al., 2014 ): 

γ1 = c 1 − f I 1 , (20)

where c 1 ∈ [0,1] [-] is a parameter expressing the increase in the

sediment transport intensity of the fine fraction relative to the to-

tal sediment transport intensity ( Stecca et al., 2014 ): 

c 1 = 

1 

ψ 

∂q b1 

∂q 
. (21)

We now introduce the parameter χ1 [-] which is a nondimen-

sional measure of the derivative of the total sediment transport

rate with respect to the volume of fine sediment in the active

layer: 

χ1 = 

1 

u 

∂q b 
∂M a 1 

. (22)

The parameter μ1,1 [-] is defined as: 

μ1 , 1 = d 1 , 1 − f I 1 , (23)

where d 1,1 [-] is a nondimensional measure of the derivative of the

sediment transport rate of the fine fraction with respect to the vol-

ume of fine sediment in the active layer: 

d 1 , 1 = 

1 

uχ1 

∂q b1 

∂M a 1 

. (24)

We obtain the eigenvalues of the system matrix finding the

roots of its second degree characteristic polynomial. The eigenval-

ues are nondimensionalized dividing by the flow velocity: 

λalS2 i = 

1 

2 

[ 
λb + λs 1 ±

√ 

ΔalS2 

] 
for i = 1 , 2 , (25)

where the discriminant is: 

ΔalS2 = ( λb − λs 1 ) 
2 + 4 λb λs 1 

γ1 

μ1 , 1 

. (26)

The eigenvalues of the system carry coupled information on

both the bed elevation and the surface grain size distribution

which shows that a perturbation in bed elevation causes a pertur-

bation in surface grain size distribution and vice versa ( Section 1 ).

Yet, we identify two nondimensional celerities that approximate

the changes in bed elevation ( λb ) and in surface grain size distri-

bution ( λs 1 ) independently. 

The bed celerity, which is independent of the active layer thick-

ness, was first derived by de Vries (1965) for unisize sediment: 

λb = 

ψ 

1 − F r 2 
. (27)
We define the nondimensional sorting celerity as: 

s 1 = χ1 μ1 , 1 . (28)

This sorting celerity differs from the one of Ribberink (1987) as

e considered a perturbation in the mean grain size while here

he sorting celerity relates to a perturbation in the volume frac-

ion content of each grain size fraction individually. The proposed

xpression for the sorting celerity in Eq. (28) is a generalization of

he expression proposed by Stecca et al. (2014) , as we have relaxed

tecca’s assumption of limited hiding. 

The mathematical character of the model depends on the sign

f the discriminant ΔalS2 , Eq. (26) . If ΔalS2 > 0 the two eigenvalues

re real and the system is hyperbolic. If ΔalS2 < 0 the eigenvalues

re complex and the system is elliptic. A large difference between

he bed celerity and sorting celerity reduces the likelihood that

he model becomes elliptic. Hyperbolicity is guaranteed if γ 1 > 0.

f γ 1 < 0 and the bed and sorting celerities are equal, ellipticity is

uaranteed ( Sieben, 1994; Stecca et al., 2014 ). 

Assuming that reverse mobility does not occur ( Section 2.4 ), c 1 
s larger than the volume fraction content of fine sediment in the

ctive layer ( F a 1 ) due to the grain size selectivity of the sediment

ransport relation ( Stecca et al., 2014 ). If we also assume that the

ediment transferred to the substrate in aggradational conditions

as the same grain size distribution as the active layer ( Hirano,

971 ), then the parameter γ 1 is always positive in aggradational

onditions. Only a substrate finer than the active layer yields a

egative value of the parameter γ 1 . Thus, a two-fraction active

ayer model can only be ill-posed if the bed degrades into a sub-

trate that is finer than the active layer (a result also found by

tecca et al. (2014) considering unsteady flow). 

In Sections 4.1 and 4.2 we assess the relaxation of the assump-

ions that reverse mobility does not occur and that the aggrada-

ional flux to the substrate has the same grain size distribution as

he active layer. 

.2. Steady vertically continuous model consisting of two size 

ractions 

We apply the same procedure used to analyze the active

ayer model to the vertically continuous model ( Section 2.3 ).

n this manner we obtain the discriminant of the eigenvalues

 Appendix D ): 

vcS2 = ( λb − λsc1 ) 
2 + 4 λb λsc1 

g 1 
m 1 , 1 

, (29)

here λsc 1 , g 1 , and m 1,1 are the equivalents to λs 1 , γ 1 , and μ1,1 of

he active layer model ( Appendix D ). 

Similar to the active layer model ( Section 3.1 ), the continuous

odel is hyperbolic and well-posed if ΔvcS2 > 0 and vice versa. Al-

hough the expression of the discriminant of the vertically continu-

us model, Eq. (29) , is similar to the one of the active layer model,

q. (26) , there is an essential difference between the two. In the

ctive layer model the discriminant is a function of the stream-

ise position, ΔalS2 ( x ), yet in the continuous model the discrimi-

ant is also a function of the vertical coordinate, ΔvcS2 ( x, y ). Thus,

llipticity or hyperbolicity is a property not only of the streamwise

oordinate but also of the elevation in the bed ( Section 2.3 ). Hy-

erbolicity is guaranteed if g 1 > 0 but, contrary to the active layer

odel, this parameter can be negative both under aggradational

nd degradational conditions. 

Due to grain size selective transport we can assure that, if re-

erse mobility conditions do not prevail, the concentration c 1 is

arger than the volume fraction content representative of the bed

urface F b 1 , Eq. (C.4) . However, F b 1 is a weighted average of all sed-

ment and for this reason there is no guarantee that for all bed ele-

ations the average volume fraction content ( F ) is larger than the
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Table 2 

Values of the reference case. For these values the active layer thickness can be 

seen as representative of plane bed conditions ( L a ≈ 2.5 D 90 ) as well as bedform 

dominated conditions ( L a ≈ a L h 
b L ). 

F a 1 [-] f I 1 [-] d 1 [m] d 2 [m] C f [-] u [m/s] h [m] L a [m] 

0 0.6 0.002 0.004 0.015 0.68 0.20 0.01 
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ocal volume fraction content in the bed sediment ( f 1 ). Moreover,

s there is no distinction between aggradational and degradational

ases, the domain in which the model is likely to be ill-posed is

arger than for the active layer model. The presence of fine sedi-

ent at the locations having larger probability of entrainment in

ombination with a “smooth” vertical variation (small derivative)

f the volume fraction content of fine sediment reduces the likeli-

ood of the model becoming elliptic. 

. Active layer model parameter study 

In this section we assess the effects of various model param-

ters on the mathematical character of the active layer model. To

his end we study the analytical expressions of the eigenvalues of

he steady model considering two sediment size fractions obtained

n Section 3.1 . 

.1. Hiding 

Given the fact that ill-posedness arises when considering differ-

nt grain sizes in the mixture and that a larger difference between

rain sizes increases the ill-posed domain, intuitively hiding should

educe the likelihood of ill-posedness. Its effect, however, is oppo-

ite as we will show here. 

To explain this counter-intuitive result we analyze the term in

he characteristic polynomial intrinsically related to hiding. This

erm is the derivative of the sediment transport rate of fine and

oarse sediment with respect to the volume of fine sediment in

he active layer ( ∂ q bk / ∂ M a 1 ). It can be considered as the summa-

ion of two terms: 

∂q bk 

∂M a 1 

= 

1 

L a 

⎛ ⎜ ⎜ ⎝ 

∂F ak 

∂F a 1 
Q bk ︸ ︷︷ ︸ 

presence 

+ F ak 

∂Q bk 

∂F a 1 ︸ ︷︷ ︸ 
hiding 

⎞ ⎟ ⎟ ⎠ 

for k = 1 , 2 . (30)

e name the first and second terms on the right-hand side the

presence term” and the “hiding term”, respectively. The “presence

erm” explains that an increase in the volume fraction content of 

he fine sediment in the active layer implies both (1) an increase

f the sediment transport rate of the fine fraction as its presence

t the bed surface is larger, and (2) a consequent decrease of the

ediment transport rate of the coarse fraction because its presence

t the bed surface decreases. The “hiding term” indicates the fact

hat a variation of the volume fraction content of the fine sedi-

ent changes the sediment transport rate of both fine and coarse

ractions due to a change in the mean grain size of the sediment

ixture. The “presence term” is positive for the fine fraction and

egative for the coarse fraction. The “hiding term” is always posi-

ive. 

In a situation where hiding is negligible, an increase of the

haracteristic size of the coarse fraction or decrease of the fine

raction, which is associated with a larger likelihood that the

odel is elliptic, causes an increase of the “presence term” and

hus of ∂ q bk / ∂ M a 1 . With respect to such a situation, hiding de-

reases the “presence term” of both fine and coarse sediment (re-

ucing the likelihood of ellipticity) but introduces the positive con-

ribution of the “hiding term”. Overall, the “hiding term” may dom-

nate, which increases the value of ∂ q bk / ∂ M a 1 and thus of the like-

ihood of ellipticity. 

Interestingly, in degradational conditions into a fine substrate

a situation prone to be elliptic) the hiding term dominates. Thus,

iding increases the likelihood that the model is elliptic in degra-

ational conditions into a substrate finer than the active layer. 

In Fig. 3 a we show the effect of hiding on the discriminant of

he steady active layer model considering two size fractions, Eq.
26) . We consider the reference case described in Table 2 . The sed-

ment transport rate is computed using the relation derived by

eyer-Peter and Müller (1948) . To obtain different values of hid-

ng we vary parameter b in the power law hiding function in Eq.

7) between 0 and 1 (purple line in Fig. 3 a). The yellow line in

ig. 3 a is obtained varying the characteristic grain size of the fine

raction between 0.001 m and 0.004 m using the Egiazaroff hiding

elation, Eq. (C.5) . The discriminant decreases for increasing hiding

ndependent from the hiding function. 

Besides these cases under degradational conditions, we may en-

ounter problems even under aggradation. In fact, if hiding is so

trong that reverse mobility is induced, then one of the assump-

ions of the analysis by Stecca et al. (2014) , may not be fulfilled.

n detail, it may happen that the reference content c 1 related to

he fine sediment in the bedload, Eq. (21) , is not greater than the

ontent of fines in the active layer F a 1 , which was their assumption

nder grain size selective transport. When reverse mobility instead

etermines conditions such that c 1 < F a 1 , then the discriminant, Eq.

26) , may be negative, and the model may become elliptic even

nder aggradational conditions. 

.2. Aggradational flux to the substrate 

The sediment transferred to the substrate under aggra-

ational conditions using the model by Hoey and Ferguson

1994) ( Section 2.4 ) is always finer than the sediment in the ac-

ive layer. This is because the bedload is finer than the bed surface

ue to grain size selective processes (provided that reverse mobil-

ty does not dominate). Thus, application of the model by Hoey and

erguson (1994) implies that under aggradational conditions the

nterface between the active layer and the substrate is finer than

he active layer. This means that the condition γ 1 > 0 ( Section 3.1 )

ay not be fulfilled under aggradational conditions, which implies

hat the model may become ill-posed. Therefore, a larger contri-

ution of the bedload to the aggradational flux to the substrate

smaller value of the parameter α in Eq. (8) ) implies a larger like-

ihood of the model becoming elliptic (Appendix B in the supple-

entary material). 

However, in a hypothetical aggrading case in which the grain

ize distribution transferred to the substrate is fully composed of

edload sediment ( α = 0 ), the relative content of the fine fraction

n the vertical sediment flux, γ 1 ( Eq. (20) ), that controls the size of

he ill-posed domain ( Section 3.1 ), is still not as small as it can be

ound under degradational cases (Appendix B in the supplemen-

ary material). Thus, ill-posed cases are expected to occur primarily

nder degradational conditions into a fine substrate. 

.3. Prefactor in a sediment transport relation and morphodynamic 

actor 

The discriminant ( ΔalS2 ) of the steady active layer model for

wo size fractions, Eq. (26) , can be written as ΔalS2 = A 

2 ̂ ΔalS2 ,

here ̂ �alS2 is the discriminant for a unit prefactor (i.e., A = 1 ).

he prefactor A increases or decreases the discriminant but does

ot change its sign, and so it does not change the character of the

athematical system. This is confirmed by Fig. 3 b, which shows

he effect of varying the prefactor A in the reference case described

n Section 4.1 . 
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Fig. 3. Discriminant �alS2 , Eq. (26) , as a function of: ( a ) the hiding for the fine fraction ξ 1 , ( b ) the prefactor of the sediment transport formula A , ( c ) the power B , and ( d ) 

the critical Shields stress θ c . The blue line is obtained varying the parameters from the reference state using the Meyer-Peter and Müller (1948) (MPM) sediment transport 

relation. The red line is obtained using the Engelund and Hansen (1967) (EH) relation. The yellow line is obtained by varying the characteristic grain size of the fine fraction 

using the hiding relation by Egiazaroff (1965) , Eq. (C.5) , in combination with the MPM relation, the purple line by varying the coefficient b of the power law function by 

Parker et al. (1982) , Eq. (7) , in combination with the MPM relation. The dots represent the reference situation described in Table 2 . Note that there is a different reference 

situation depending on the sediment transport relation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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Since morphodynamic time scales are usually several orders of

magnitude larger than the time scales of the flow ( Section 2.1 ),

computations usually cover a significant number of years. The

computational time is sometimes reduced using a morphodynamic

factor that multiplies the divergence of the sediment transport rate

( Latteux, 1995; Roelvink, 2006; Ranasinghe et al., 2011 ). This factor

can also be considered as a multiplication of the sediment trans-

port rate and therefore has the same effect as the prefactor A . Thus,

the use of a morphodynamic factor does not change the mathe-

matical character of the model. 

This result is obtained assuming quasi-steady flow. While the

prefactor in the sediment transport relation rarely varies by more

than an order of magnitude, simulations may be run with mor-

phodynamic acceleration factors O(10 2 ) . In these latter cases, the

quasi-steady flow assumption may not be acceptable, which limits

the extension of our analysis. 

4.4. Exponent and critical Shields stress in a sediment transport 

relation 

The discriminant, Eq. (26) , tends to 0 − with increasing values of

B if the effective Shields stress for all sediment fractions is smaller

than 1, or to ∞ if the effective Shields stress is larger than 1 for at

least one fraction. Thus, it is difficult to generalize the effect of the

exponent. Its variation from a reference situation can both make

the system hyperbolic if the reference situation is elliptic or vice

versa. In Fig. 3 c we show the discriminant as a function of B for

the same reference cases as in Section 4.3 . The hyperbolic situation

when using Meyer-Peter and Müller (1948) becomes elliptic if the

value of the exponent B increases towards the value in Engelund

and Hansen (1967) . 

The effect of the critical Shields stress, θ c in Eq. (6) , on the dis-

criminant is similar to the effect of the exponent, as its variation

can both make a previously hyperbolic case elliptic or vice versa.

Fig. 3 d shows how a decrease of the critical shear stress when

using the sediment transport relation by Meyer-Peter and Müller
1948) increases the discriminant reducing the likelihood of ellip-

ic behavior. 

.5. Active layer thickness 

The discriminant of the eigenvalues, Eq. (26) , can be written as

 second degree polynomial of the inverse of the active layer thick-

ess, i.e., ΔalS2 = a 1 (1 /L a ) 
2 + a 2 (1 /L a ) + a 3 where a 1 > 0, a 2 , and

 3 are coefficients independent of the active layer thickness. This

mplies that: (1) the model is well-posed for a sufficiently thin ac-

ive layer, (2) the model is well-posed for a sufficiently thick ac-

ive layer, and (3) there exists one ill-posed domain only (regard-

ng the active layer thickness). These results of the two-fractions

odel confirm previous results based on the simplified active layer

odel ( Ribberink, 1987; Sieben, 1994 ). 

The inverse of the roots of the second degree polynomial are

he limit values of the active layer thickness that ensure that the

odel is well-posed: 

 

±
a = 

̂ λs 1 ̂ λb 

⎛ ⎝ 1 − 2 

̂ γ1 ̂ μ1 , 1 

±

√ (
2 

̂ γ1 ̂ μ1 , 1 

− 1 

)2 

− 1 

⎞ ⎠ 

−1 

, (31)

here we have used the notation ( ̂  ) for the variables with unit ac-

ive layer thickness (i.e., L a = 1 m). Given the facts that the active

ayer thickness is one of the most empirical parameters of the sys-

em of equations ( Section 1 ) and that river morphodynamic models

ften require calibration (e.g., Cao and Carling, 2002b ), Eq. (31) can

e applied to select a certain value for the active layer thickness to

void a situation that is prone to be ill-posed. 

. Consequences of ill-posedness 

In this section we analyze the consequences of ill-posedness us-

ng numerical simulations. Our aim is to provide modellers with

he tools to detect occurrence of ill-posedness in their results and

nderstand how the observed unrealistic model behavior changes
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Table 3 

Overview of the simulations. Only the parameters that are different between 

simulations are shown. 

Simulation L a [m] hiding M f [-] F s 1 �z Math. character 

1 0.010 No 1 0.6 0.10 Hyperbolic 

2 0 . 025 No 1 0.6 0.10 Elliptic 

3 0.010 Yes 1 0.6 0.10 Elliptic 

4 0.010 Yes 2 0.6 0.10 Elliptic 

5 0.010 No 1 0.6 0 . 01 Hyperbolic 

6 0.010 No 1 1 . 0 0.10 Elliptic 

7 0.010 No 1 1 . 0 0 . 01 Elliptic 

w  

t  

t  

S  

s

5

 

t  

t  

a  

l  

t  

u  

l  

c  

t  

α  

k  

u  

f  

d  

e  

a  

T  

i  

t  

t  

t  

2

 

q  

f  

S  

d  

F  

l  

o  

t  

p  

b  

m  

(  

3  

j

Table 5 

Values of the physical and numerical parameters varied 

in the sensitivity analysis. 

Parameter Values 

Physical d 1 [m] 0.0 0 05, 0.0 01, 0.0 02 

d 2 [m] 0.0 02, 0.0 03, 0.0 04 

L a [m] 0.010, 0.015, 0.020, 0.050 

f s 1 [-] 0.6, 0.8, 1.0 

Numerical �x [m] 0.1, 0.2 

�z [m] 0.01, 0.02, 0.05, 0.10 
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ith parameter and model choices. First we make numerical runs

o qualitatively observe the consequences of the non-linear effects

hat are neglected in the perturbation analysis ( Section 5.1 ). In

ection 5.2 we conduct a sensitivity analysis to generalize the con-

equences observed in the previous section. 

.1. Numerical examples 

The linear perturbation analysis shown in Section 2.5 indicates

hat perturbations grow unboundedly if the model is elliptic. In

his section we run four numerical simulations at flume scale to

nalyze the effects of the neglected non-linear terms. The simu-

ations are one-dimensional for the flow and are computed using

he Delft3D software package ( Lesser et al., 2004 ), which solves the

nsteady Shallow Water Equations in combination with the active

ayer model. For simplicity the active layer thickness is assumed

onstant. Under aggradational conditions the sediment transferred

o the substrate is composed of only the active layer sediment (i.e.,

= 1 in Eq. (8) ). Substrate stratigraphy is stored using a book-

eeping system ( Viparelli et al., 2010; Stecca et al., 2016 ). All sim-

lations start from equilibrium conditions under coarse sediment

eeding. A lowering of the base level is imposed, which causes

egradation into a fine substrate. We consider a well-posed ref-

rence case (Simulation 1) that (initially) has the same parameters

s the reference case of the parameter study of Section 4 ( Table 2 ).

hen, the active layer thickness is changed (Simulation 2) and hid-

ng is considered (Simulation 3). Simulation 4 is equal to Simula-

ion 3 except for its morphodynamic factor. Table 3 summarizes

he differences between the four simulations. The boundary condi-

ions that are in equilibrium with the initial condition ( Blom et al.,

016 ) as well as other parameters are described in Table 4 . 

In Fig. 4 a we plot the discriminant of the eigenvalues of the

uasi-steady active layer model, Eq. (26) , at the initial time as a

unction of the active layer thickness. Note that the conditions of

imulation 1 yield a well-posed model ( ΔalS2 > 0) while the con-

itions of Simulation 2 yield an ill-posed model ( ΔalS2 < 0). In

ig. 4 d-e we show the evolution of the bed elevation for Simu-

ations 1 and 2, respectively. The ill-posed Simulation 2 shows an

scillatory behavior that is not present in the well-posed Simula-

ion 1. We have not imposed any initial perturbation, which im-

lies that numerical noise is sufficient to trigger the oscillatory

ehavior. Simulation 3 is the same as Simulation 1, yet the sedi-

ent transport rate now accounts for hiding using the Parker et al.

1982) function, Eq. (7) , with exponent b equal to 0.8. Simulation

 is ill-posed ( Fig. 4 b) and the solution shows oscillations ( Fig. 4 f)

ust as in the ill-posed Simulation 2. 
Table 4 

Domain definition, boundary conditions, and numerical 

are: reach length ( L ), channel width ( B ), simulation time

(low. rate), horizontal discretization length ( �x ), and tim

L [m] B [m] q b 1 [m 

2 /s] q b 2 [m 

2 /s] q [m 

2 /s] 

100 1 0 1 ×10 −4 0.14 
Simulation 4 is the same as Simulation 3 except for its morpho-

ynamic factor equal to two, which decreases the value of the dis-

riminant ( Fig. 4 c), causing oscillations to develop faster ( Fig. 4 g). 

For all cases oscillations do not occur at the upstream end of

he domain. This is because oscillations require time (and so space)

o grow. In all cases oscillations grow until a maximum amplitude

s reached and then propagate downstream. This maximum ampli-

ude is such that the conditions are at the brink of ill-posedness

nd well-posedness. Worded differently, downstream from the lo-

ation where the amplitude is maximum the model is ill-posed

nd it is well-posed upstream from it. 

The oscillations are associated with degradation and subsequent

ggradation. The deposited sediment has the same grain size dis-

ribution as the active layer (which is coarser than the initial sub-

trate), so the overall effect of an oscillation is a coarsening of

he topmost part of the substrate. This coarsening acts as a reg-

larization mechanism, which not only restores hyperbolicity but

lso dampens oscillations that arrive from upstream by limiting the

ource of fine material. 

It is likely that, because of the regularization mechanism, com-

utations do not crash. As a result the extent and likelihood of

llipticity may in practice be underestimated. Yet, the results are

hysically unrealistic and implementing an automated check of the

igenvalues would be good practice for software developers and

sers. 

.2. Sensitivity analysis 

The previous section has shown that, due to the non-linearity

f the system, an ill-posed simulation generates non-physical oscil-

ations that propagate downstream and grow until a certain maxi-

um amplitude at which the mathematical problem is at the brink

f ill-posedness and well-posedness. In this section we run a sen-

itivity analysis to generalize those results. 

To this end, we vary 4 physical parameters and 2 parameters

elated to the domain discretization, using Simulation 1 as a ref-

rence case. Table 5 summarizes the parameter values used in the

ensitivity analysis. 

As we are interested in studying the behavior of simulations

nder ill-posed conditions we exclude from the analysis those sim-

lations in which the combination of parameters yield a well-

osed model. As we have observed that the oscillations need space

o grow until a maximum value ( Section 5.1 ), we exclude those

imulations in which the domain is not long enough to develop an

scillation that travels with a constant amplitude. A set of 173 out

f 256 simulations fulfills these two requirements. 
parameters. The symbols not defined in the text 

 ( T ), lowering rate of the downstream water level 

e step ( �t ). 

T [h] low. rate [m/h] �x [m] �t [s] 

2 0.03/2 0.1 0.2 
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Fig. 4. Discriminant ΔalS2 , Eq. (26) , as a function of ( a ) the active layer thickness L a , ( b ) the hiding function of the fine fraction ξ 1 , and ( c ) the morphological factor M f . 

Numerical solutions of ( d ) Simulation 1, ( e ) Simulation 2, ( f ) Simulation 3, and ( g ) Simulation 4. See Table 3 for the parameters definition. 
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In Fig. 5 a we plot the maximum flow depth ( h max ) nondimen-

sionalized with the normal flow depth ( h n ), as a function of the

discriminant, Eq. (26) . For the sake of clarity we plot the results of

the simulations with a horizontal discretization length ( �x ) equal

to 0.1 m and a thickness of the substrate layers equal to 0.01 m and

0.10 m (see Appendix C of the supplementary material for the re-

sults of all simulations). The parameters used to evaluate the dis-

criminant are those at the start of the simulation (normal flow).

The vertical black lines join simulations with the same physical pa-

rameters (i.e., they only differ regarding numerical parameters) and

the color of each dot is related to the thickness of the substrate

layer. The linear analysis has shown that the growth rate depends

on the discriminant ( Section 2.5 ), however there is only mild cor-

relation between the discriminant and the maximum amplitude of

the oscillations. 

A thinly discretized substrate is associated with a larger ampli-

tude of the oscillations ( Fig. 5 a). This effect can be seen only em-

pirically since it is not a parameter of the system of equations nor

does it appear in the linear stability analysis. For all simulations we

compute the flow depth that yields a value of the discriminant at

the initial condition equal to 0 (i.e., at the brink between elliptic-

ity and hyperbolicity). This is done numerically finding the root of

ΔalS2 ( h ), Eq. (26) , considering the water discharge and volume of

sediment in the active layer and at the substrate of the initial con-

dition. We term this flow depth the hyperbolic flow depth ( h hyp ),

which is independent of the numerical parameters of the simula-

tion and depends on physical parameters only. In Fig. 5 b we com-
are the measured maximum flow depth and the hyperbolic flow

epth. The grey line represents the situation in which h max = h hyp .

e see that the hyperbolic flow depth can be used as a rough es-

imate of the maximum flow depth that will occur in an elliptic

imulation. One important source of scatter is the fact that the hy-

erbolic flow depth depends on the initial condition only, whereas

he maximum flow depth also depends on the evolution of the so-

ution as the oscillations interact with each other. 

In Fig. 5 c we plot the nondimensional maximum flow depth as

 function of the streamwise location where the maximum flow

epth occurs (nondimensionalized with the total length of the do-

ain). For the sake of clarity we plot the results of the simulations

ith a thickness of the bookkeeping layers ( �z ) equal to 0.01 m

see Appendix C of the supplementary material for the results of

ll simulations). In the thinly discretized simulations we find the

aximum amplitude more upstream compared to the coarsely dis-

retized simulations. The location where the maximum amplitude

f the oscillations is found is related to its growth rate since a

aster growing oscillation develops its maximum amplitude in less

istance than a slower one. This result confirms the findings of lin-

ar stability analysis ( Section 2.5 ). 

Also the maximum flow depth and the domain discretization

re mildly correlated. Similar to the vertical discretization, smaller

ells yield a larger maximum flow depth but this effect can be seen

nly empirically. 

The discretization of the substrate affects also the duration of

he elliptic behavior. Fig. 6 shows the longitudinal profile of four
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Fig. 5. Maximum flow depth h max (nondimensionalized by the normal flow depth h n ) that develops as a consequence of ellipticity. In ( a ) the maximum flow depth is plotted 

against the discriminant ΔalS2 for a horizontal discretization length ( �x ) equal to 0.1 m and for a thickness of the bookkeeping layers ( �z ) equal to 0.01 m (red dots) and 

0.10 m (blue dots). The vertical black lines connect two simulations in which all parameters but �z are the same. In ( b ) the maximum flow depth is plotted against the 

hyperbolic flow depth ( h hyp ) nondimensionalized with the normal flow depth. Each black dot is the result of a simulation. The black lines connect simulations with the same 

physical parameters and the grey line is the perfect agreement. In ( c ) the maximum flow depth is plotted against the distance from upstream at which the maximum flow 

depth occurs ( x max ) nondimensionalized with the length of the domain ( L ) for a thickness of the bookkeeping layers ( �z ) equal to 0.01 m and for a horizontal discretization 

length equal to 0.1 m (orange dots) and 0.2 m (green dots). The black lines connect two simulations in which all parameters but �x are the same. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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imulations from the sensitivity analysis at the end of the run

Simulations 1, 5, 6, and 7, see Table 3 ). The substrate of the well-

osed simulations at the end of the runs is unaltered, whereas

t has coarsened in the ill-posed cases due to the oscillatory be-

avior, which acts as a regularization mechanism ( Section 5.1 ). A

hinly discretized substrate enhances the regularization mechanism

s one full layer is created with the grain size distribution of the

coarse) active layer during the aggrading phase of the oscillation.

f the bed is discretized into thick layers the material transferred to

he substrate will be averaged with the sediment already present

n the top substrate layer. The resulting grain size distribution of

he substrate may not be sufficiently coarse to prevent the model

rom being ill-posed. 

. Implications of considering more than two size fractions or 

n unsteady active layer thickness 

To obtain an analytical expression of the eigenvalues we have

estricted our analysis to mixtures of sediment composed of two

ize fractions and steady flow. In this section we explore the con-

equences of relaxing these assumptions. 
.1. Ill-posed domain of a three-size-fractions case 

A model for three sediment size fractions is too complex to ob-

ain analytical expressions of the eigenvalues. We therefore first at-

empt to provide insight addressing a specific case based on the

esults of the case for two size fractions. 

The concept of a finer or coarser active layer relative to the

ubstrate is unequivocally applicable in the case of two size frac-

ions. However, this concept is not as straightforward for three size

ractions, as it requires the definition of a mean grain size. As an

xtension of the results for the two size fractions case where the

odel can only be ill-posed in degradational conditions into a sub-

trate finer than the active layer (assuming certain conditions on

he closure relations, Section 3.1 ), we consider a situation with

hree size fractions which, regardless of the method to compute

he mean grain size, is governed by degradation into a substrate

oarser than the active layer. This happens, for instance, if the vol-

me fraction contents in the active layer of the fine, medium, and

oarse size fractions are 0.5, 0.5, and 0, respectively; and at the

nterface are 0.5, 0, and 0.5. 

We consider a sediment mixture with the above volume frac-

ion contents and characteristic grain sizes of the fine, medium,
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Fig. 7. Results of an ill-posed simulation with 3 grain size fractions under degradational conditions into a substrate coarser than the active layer: ( a ) bed elevation at selected 

times, ( b ) surface mean grain size with time, and ( c ) grain size stratification at the end of the simulation. 
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and coarse fraction equal to 0.0 01 m, 0.0 03 m, 0.0 05 m. All the

other parameters are equal to the reference case ( Table 2 ). This sit-

uation is elliptic as two of the eigenvalues of the system matrix are

complex. Thus, in a three size fractions case the mean grain size of

the sediment in the active layer relative to that at the interface is

not a valid discriminant of the mathematical character of the sys-

tem of equations. 

Fig. 7 shows the results of a numerical simulation based on the

above parameters. The solution presents oscillations as in the pre-

vious ill-posed cases. However, the amplitude of these oscillations

is now significantly smaller (compare Fig. 7 a to Fig. 4 e). A relatively

large oscillation appears after approximately 3 h which entrains

coarse sediment from the substrate ( Fig. 7 b). During the aggrada-

tional phase of the oscillations fine sediment from the active layer
s transferred to the substrate. Thus, at the end of the simulation

he top part of the substrate is finer than initially ( Fig. 7 c). To il-

ustrate the implications of this result we study the effects of dis-

retizing the same sediment mixture into two or three sediment

ractions. To discretize the sample into three sediment fractions we

se characteristic grain sizes equal to 0.0 01 m,0.0 03 m and 0.0 05 m

nd to discretize it into two sediment fractions we use 0.002 m and

.004 m. The volume fraction content in the medium size of the

hree fraction mixture is equally split between the fine and coarse

ins of the two fraction mixture. We vary all volume fraction con-

ents between 0 and 1 to obtain different sediment mixtures and

he flow depth (keeping the water discharge per unit width con-

tant) between 0.15 m and 1.5 m to obtain different flow conditions.

ll other parameters are equal to the reference case. 
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the mixture is discretized into three size fractions the model may be ill-posed under degradational conditions into a substrate coarser than the active layer. 
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Fig. 8 a-b shows the elliptic domain when the mixture is dis-

retized into two and three size fractions, respectively. On the ver-

ical axis we plot the difference between the mean grain size of

he sediment in the active layer ( D ma [m]) and at the interface be-

ween the active layer and the substrate ( D mI [m]). Note that some

ituations that are well-posed when the mixture is discretized into

wo fractions are ill-posed when it is discretized into three frac-

ions. We cannot prove that the eigenvalues of the system matrix

or three size fractions are always real under aggradational condi-

ions due to the complexity of the expressions. Nevertheless, we

ave not obtained a single complex value in any of the aggrada-

ional tests we have conducted. 

.2. Effect of an unsteady active layer thickness in the ill-posed 

omain 

In this section we analyze the implications of considering a

ariable active layer thickness with respect to the ill-posedness of

he system of equations. The flow needs to be considered unsteady

o study the variability of the active layer thickness if it is related

o dune growth ( Section 3 ). We simplify the system assuming two

ediment size fractions and negligible hiding ( Stecca et al., 2014

nd Appendix D of the supplementary material). 

We obtain the characteristic polynomial of the system matrix,

q. (11) . We prove that in aggradational and degradational con-

itions into a substrate coarser than the active layer the charac-

eristic polynomial has 5 real roots (Appendix D of the supple-

entary material). Therefore the model is well-posed regardless of

he unsteady active layer thickness. Regarding degradational con-

itions into a substrate finer than the active layer we prove that

f λb > λs 1 F a 1 / f I 1 , considering a variable active layer thickness in-

reases the likelihood of the model becoming elliptic. Note that,

ssuming a similar order of magnitude of the bed and sorting

elerities, in conditions prone to be elliptic (i.e., degradation into

 substrate significantly finer than the active layer) a variable ac-

ive layer thickness increases the domain in which the active layer

odel is elliptic. We numerically test several sets of parameters

nd we find no case where the model is hyperbolic if the active
ayer is unsteady but elliptic if it is constant (Appendix D of the

upplementary material). This suggests that, although we do not

rovide a formal proof, an unsteady active layer thickness always

ncreases the likelihood of the model being ill-posed. 

. Conclusions 

We have assessed the well-posedness of the equations used to

odel mixed sediment river morphodynamics. In particular we

ave studied the system formed by the flow equations ( Saint-

enant, 1871 ) together with the active layer model ( Hirano, 1971 )

nd a simplified vertically continuous model ( Viparelli et al., 2017 ).

ur findings are the following: 

• Considering two size fractions and the quasi-steady flow as-

sumption we obtain an analytical expression for the discrimi-

nant that determines whether the active layer and continuous

models are ill-posed. 
• Assuming (i) two size fractions, (ii) steady flow, (iii) no reverse

mobility, and (iv) that under aggradational conditions the depo-

sitional flux of sediment to the substrate is entirely composed

of active layer sediment, the active layer model can be ill-posed

under degradational conditions into a substrate finer than the

active layer only. 
• The use of a hiding factor increases the likelihood of ill-

posedness. Strong hiding that causes reverse mobility may

cause ill-posedness also in aggradational conditions. 
• Aggradational cases may be ill-posed if the depositional flux of

sediment to the substrate includes bedload sediment ( Hoey and

Ferguson, 1994 ). 
• The active layer model may be ill-posed in degradational condi-

tions into a substrate coarser than the active layer if more than

two size fractions are considered. 
• Considering a variable active layer thickness associated with

dune growth increases the likelihood that the active layer

model is ill-posed. 
• The simplified vertically continuous model can be ill-posed un-

der both aggradational and degradational conditions. A small
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vertical gradient of the probability of bed elevation and volume

fraction content decreases the likelihood of the model being ill-

posed. 
• Ill-posedness results in non-physical oscillations that grow un-

til a maximum amplitude is reached, at which the model re-

covers its hyperbolic character (and becomes well-posed). The

non-physical oscillations itself act as a regularizing mechanism

by coarsening the substrate. 

The numerical solution of an ill-posed problem may be reliable

if perturbations do not have space and/or time to grow or if the

consequences of the perturbations are negligible compared to the

accuracy of the problem data. However, the reliability of the solu-

tion becomes subjective. This implies that it is up to the modeller

to decide whether a solution is representative of the physical phe-

nomenon under consideration. 

In a well-posed model a finer grid provides more accurate re-

sults. This is opposite in ill-posed models as the growth rate of

oscillations decreases with grid size. Thus, if a model is ill-posed,

one may be tempted to use a larger grid size such that oscillations

do not have space to grow and numerical viscosity is sufficient to

suppress the consequences of ill-posedness. We do not recommend

to follow this strategy because of the subjectivity of the solution. 

We do not recommend discarding the active layer and vertically

continuous models for modeling mixed sediment river morphody-

namics. The former has proven its validity over a large range of

situations ( Section 1 ) and the latter is yet a simplified version of a

continuous sediment conservation model. Moreover, both models

are well-posed for a vast range of situations. 

The ill-posedness of the system of equations is a fundamental

mathematical problem independent of the numerical solver. It can

only be solved by an improved set of equations that represents

physical processes in a better way than existing models do. In this

regard we are currently conducting laboratory experiments to in-

vestigate the physical mechanisms that are relevant under condi-

tions in which the active layer model is ill-posed. One may want

to introduce minimal changes to the active layer model to regu-

larize it (i.e., to ensure that the model is always well-posed). In

this case, the most straightforward solution is to check whether

the model is ill-posed and to change the active layer thickness to

a value that provides a well-posed model. One needs to be aware

that this approach is not simply a numerical trick, as it implies a

change of the time scale of the physical processes under consid-

eration. Moreover, it implies a temporal change of the active layer

thickness which may be relatively large and local. Preliminary sim-

ulations show that this solution is not always stable. Another pos-

sibility may be to artificially modify the celerities without chang-

ing the actual thickness of the active layer. A similar approach has

been used by Zanotti et al. (2007) to regularize the ill-posed two-

layer shallow water model. Current work by the authors builds on

this idea. 
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ppendix A. Flow equations 

The water phase is mathematically described by the Saint–

enant equations ( Saint-Venant, 1871 ) in which mass conservation

s represented by the continuity equation: 

∂h 

∂t 
+ 

∂q 

∂x 
= 0 , (A.1)

here t [s] denotes the time coordinate, x [m] the streamwise co-

rdinate, and q = uh [m 

2 /s] the water discharge per unit width.

he balance of streamwise momentum is represented by: 

∂q 

∂t 
+ 

∂(q 2 /h + gh 

2 / 2) 

∂x 
+ gh 

∂η

∂x 
= −ghS f , (A.2)

here η [m] denotes the bed elevation and S f [-] the friction slope.

Considering steady flow, the conservation of water mass, Eq.

A.1) , reduces to a spatially constant discharge, and the conserva-

ion of momentum, Eq. (A.2) , to the backwater equation: 

∂h 

∂x 
= 

−1 

1 − F r 2 
∂η

∂x 
− S f 

1 − F r 2 
. (A.3)

ppendix B. Active layer equations 

The conservation of the total amount of sediment in the bed is

epresented by the Exner equation ( Exner, 1920 ): 

∂η

∂t 
+ 

∂q b 
∂x 

= 0 , (B.1)

here q b [m 

2 /s] is the sediment transport rate per unit width mul-

iplied by 1 / (1 − p) where p [-] is the bed porosity (i.e., the sed-

ment transport rate q b accounts for pores). For simplicity, mech-

nisms such as subsidence and uplift, compaction and dilation of

ediment are neglected in the above equation ( Paola and Voller,

005 ). Of special relevance is the implicit assumption that the tem-

oral change of the storage of sediment within the water column

nd its effects on bed elevation are negligible ( Park and Jain, 1987;

tevens, 1988; Correia et al., 1992; Morris and Williams, 1996 ).

e consider that there is no lag between changes in bottom bed

hear stress ( Bell and Sutherland, 1983; Jain, 1992 ). Worded dif-

erently, the sediment transport rate is at capacity and adapts in-

tantaneously to the flow field. Thus, the sediment transport rate

oes not require a constitutive equation and is treated as a closure

elation. 

Assuming constant porosity and density, the active layer equa-

ion describes the conservation of mass of grain size fraction k in

he active layer ( Hirano, 1971 ): 

∂M ak 

∂t 
+ f I k 

∂(η − L a ) 

∂t 
+ 

∂q bk 

∂x 
= 0 , (B.2)

here M ak [m] is the volume of sediment of size fraction k in the

ctive layer per unit of bed area, f I 
k 

[-] is the volume fraction con-

ent of size fraction k at the interface between the active layer and

he substrate ( f I 
k 

∈ [0 , 1] ), L a [m] is the active layer thickness, and

 bk [m 

2 /s] is the sediment transport rate per unit width of size

raction k multiplied by 1 / (1 − p) . The addition of the sediment

ransport rate for each size fraction equals the total amount of sed-

ment in transport including pores: 

 b = 

N ∑ 

k =1 

q bk . (B.3)

Assuming constant porosity and density, mass conservation of

ediment of size fraction k in the substrate is expressed by: 

∂M sk 

∂t 
− f I k 

∂(η − L a ) 

∂t 
= 0 , (B.4)
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here M sk [m] is the sediment volume of size fraction k in the

ubstrate per unit of bed area. 

The volume of sediment per unit of bed area in the active layer

nd the substrate are defined as: 

 ak = F ak L a , M sk = 

∫ η−L a 

η0 

f sk (z) d z, (B.5)

here F ak [-] is the volume fraction content of size fraction k in the

ctive layer ( F ak ∈ [0,1]), f sk ( z ) [-] is the volume fraction content of

ize fraction k in the substrate at elevation z [m] ( f sk ( z ) ∈ [0,1]), and

0 [m] is the time invariant datum for bed elevation. The volume

raction contents are constrained by the equations: 

N 
 

k =1 

f I k = 1 , 

N ∑ 

k =1 

F ak = 1 , 

N ∑ 

k =1 

f sk (z) = 1 . (B.6)

hus, the volume of sediment per unit of bed area is constrained

y the equations: 

N 
 

k =1 

M ak = L a , 

N ∑ 

k =1 

M sk = η − L a − η0 . (B.7)

The summation of N active layer equations yields the Exner

quation ( Ribberink, 1987; Parker et al., 20 0 0 ), as the active layer

quation, (B.2) , represents fractional mass conservation of sedi-

ent and the Exner equation, (B.1) , represent the conservation

f the total amount of sediment. Thus, to consider N active layer

quations is equivalent to considering N − 1 active layer equations

nd the Exner equation. We here choose for the second option, as

n this way the conservation of sediment mass per size fraction can

e considered as an extension of the unisize model. 

The substrate equation, (B.4) , is a linear combination of the

xner equation, (B.1) , and the active layer equation, (B.2) , which

eans that the substrate equation does not play a role in the

athematical behavior of the system and can be treated in a de-

oupled manner. 

ppendix C. Sediment transport closure relation 

The sediment transport rate of size fraction k per unit width

including pores), q bk , is expressed as the product of the volume

raction content of size fraction k at the bed surface ( F bk [-]) and

he sediment transport capacity Q bk [m 

2 /s] which is the sediment

ransport we would obtain if the bed was formed by unisize sedi-

ent yet including hiding effects ( Deigaard and Fredsøe, 1978; Rib-

erink, 1987; Armanini, 1995 ): 

 bk = F bk Q bk . (C.1)

he sediment transport capacity is the product of a nondimen-

ional sediment transport rate ( q ∗
bk 

[ - ] ) and the parameter 

√ 

gRd 3 
k 

 Einstein, 1950 ): 

 bk = q ∗bk 

√ 

gRd 3 
k 
( 1 − p ) , (C.2) 

here we account for the volume of pores multiplying by 1 −
p. R = ρs /ρw 

− 1 [-] is the submerged specific gravity, ρs = 2650

g/m 

3 the sediment density, and ρw 

= 10 0 0 kg/m 

3 the water den-

ity. The volume fraction content of size fraction k at the bed sur-

ace is constrained by the condition: 

N 
 

k =1 

F bk = 1 . (C.3) 

In the active layer model the volume fraction content of size

raction k at the bed surface is considered to be equal to the vol-

me fraction content in the active layer ( F = F ). In the vertically
bk ak 
ontinuous model developed by Viparelli et al. (2017) , it is consid-

red equal to the integral of the volume fraction content of size

raction k in the bed sediment weighted by the elevation’s expo-

ure to the flow: 

 bk = 

∫ + ∞ 

−∞ 

f k (y ) p e (y ) d y. (C.4) 

The sediment transport rate q ∗
bk 

is related to the mean charac-

eristics of the flow. Here we consider a generalized form of the

eyer-Peter and Müller (1948) transport relation, which estimates

ediment transport as a power function of the excess bed shear

 Eq. 6 ). The nondimensional bed shear stress of size fraction k or

hields (1936) parameter is computed as θk = C f u 
2 / (gRd k ) [-]. 

A commonly used hiding relation is the one due to Egiazaroff

1965) : 

k = 

( 

log 10 ( 19 ) 

log 10 

(
19 

d k 
D m 

)) 2 

, (C.5) 

here D m 

[m] is a characteristic mean grain size of the mixture

btained as an average of the grains in movement and in the bed

urface. In practical terms, D m 

is computed as the arithmetic mean

e.g, Wu et al., 20 0 0 ), geometric mean (e.g., Bettess and Frangi-

ane, 2003 ) or the median grain size (e.g., van Niekerk et al., 1992;

leinhans et al., 2002 ) of the bed surface sediment. A simpler ex-

ression was developed by Parker et al. (1982) : 

k = 

(
D m 

d k 

)b 

, (C.6) 

here the characteristic mean grain size is the median grain size

 D 50 ) of the subpavement sediment (below an armor layer) ( Parker

t al., 1982 ) or the geometric mean of the surface sediment ( Parker,

990 ). 

If the nondimensional parameter b is equal to 0, there is no hid-

ng effect and each grain size behaves independently of each other.

f b = 1 , the sediment transport of each size fraction is indepen-

ent of its grain size (for B = 1 . 5 ), thus only depends on its pres-

nce at the surface ( F bk ). Buffington and Montgomery (1997) made

n inventory of values of b spanning between 0.32 and 1.25. A

alue of b > 1 implies reverse mobility ( Solari and Parker, 20 0 0 ). 

In this paper we compute the characteristic mean grain size,

 m 

, as the geometric mean: 

 m 

= d ref 2 

∑ N 
k =1 F bk log 2 

(
d k 

d ref 

)
, (C.7)

here d ref = 1 mm is a reference grain size that makes the grain

ize on φ-scale nondimensional. 

ppendix D. System of equations of the steady vertically 

ontinuous model consisting of two size fractions 

The vector of dependent variables ( Q vcS2 ) is: 

 vcS2 = [ η, f 1 ] 
T 
, (D.1) 

he vector of source terms is: 

 vcS2 = −S f 
uψ 

1 − F r 2 

[ 
1 , 

p e 

P e 
g 1 

] T 
, (D.2) 

nd the system matrix is: 

 vcS2 = u 

⎡ ⎢ ⎣ 

ψ 

1 − F r 2 
1 

p e 
X 1 

ψ 

1 − F r 2 
p e 

P e 
g 1 X 1 

1 

P e 
m 1 , 1 

⎤ ⎥ ⎦ 

. (D.3) 

Parameters g 1 , X 1 , m 1, 1 , and δ1,1 are the equivalent of parame-

ers γ 1 , χ1 , μ1, 1 , and d 1,1 in the active layer model ( Section 3.1 ):

 1 = c 1 − ϕ 1 , (D.4)
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ϕ 1 = − 1 

p e 

∂ f 1 P e 

∂y 
, (D.5)

X 1 = 

p e 

u 

∂q b 
∂ f 1 

, (D.6)

m 1 , 1 = δ1 , 1 − ϕ 1 , (D.7)

δ1 , 1 = 

p e 

uX 1 

∂q b1 

∂ f 1 
. (D.8)

The eigenvalues of the system matrix, Eq. (D.3) , nondimension-

alized dividing by the flow velocity, are: 

λvcS2 i = 

1 

2 

[ 
λb + λsc1 ±

√ 

ΔvcS2 

] 
for i = 1 , 2 , (D.9)

where the discriminant is: 

ΔvcS2 = ( λb − λsc1 ) 
2 + 4 λb λsc1 

g 1 
m 1 , 1 

. (D.10)

We define λsc 1 as the nondimensional sorting celerity of the

vertically continuous model, as the equivalent of the sorting celer-

ity in the active layer model in Eq. (28) : 

λsc1 = 

X 1 m 1 , 1 

P e 
. (D.11)

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at 10.1016/j.advwatres.2018.02.011 

References 

Allen, J.R.L. , 1968. Current Ripples. Their Relation to Patterns of Water and Sediment

Motion , 433. North Holland Publishing Company, Amsterdam . 

Allen, J.R.L., 1968. The nature and origin of bed-form hierarchies. Sedimentology 10
(3), 161–182. https://doi.org/10.1111/j.1365-3091.1968.tb01110.x . 

Armanini, A., 1995. Non-uniform sediment transport: dynamics of the active layer.
J. Hydraul. Res. 33 (5), 611–622. https://doi.org/10.1080/002216 895094 98560 . 

Armanini, A., Silvio, G.d., 1988. A one-dimensional model for the transport of a sed-
iment mixture in non-equilibrium conditions. J. Hydraul. Res. 26 (3), 275–292.

https://doi.org/10.1080/002216 888094 99212 . 

Barker, T., Schaeffer, D.G., Bohorquez, P., Gray, J.M.N.T., 2015. Well-posed and ill-
posed behaviour of the μ-rheology for granular flow. J. Fluid Mech. 779, 794–

818. https://doi.org/10.1017/jfm.2015.412 . 
Bell, R.G., Sutherland, A.J., 1983. Nonequilibrium bedload transport by steady

flows. J. Hydraul. Eng. 109 (3). https://doi.org/10.1061/(ASCE)0733-9429(1983)
109:3(351) . 

Bennett, J.P., Nordin, C.F., 1977. Simulation of sediment transport and armouring.

Hydrol. Sci. Bull. 22 (4), 555–569. https://doi.org/10.1080/02626667709491760 . 
Bettess, R., Frangipane, A., 2003. A one-layer model to predict the time develop-

ment of static armour. J. Hydraul. Res. 41 (2), 179–194. https://doi.org/10.1080/
002216 803094 99960 . 

Blom, A., 2008. Different approaches to handling vertical and streamwise sorting
in modeling river morphodynamics. Water Resour. Res. 44 (3), W03415. https://

doi.org/10.1029/20 06WR0 05474 . 

Blom, A., Arkesteijn, L., Chavarrías, V., Viparelli, E., 2017. The equilibrium alluvial
river under variable flow, and its channel-forming discharge. J. Geophys. Res.

Earth Surf. https://doi.org/10.10 02/2017JF0 04213 . 
Blom, A., Parker, G., 2004. Vertical sorting and the morphodynamics of bed-form

dominated rivers: a modeling framework. J. Geophys. Res. Earth Surf. 109,
F02007. https://doi.org/10.1029/2003JF000069 . 

Blom, A., Parker, G., Ribberink, J.S., de Vriend, H.J., 2006. Vertical sorting and the

morphodynamics of bed-form-dominated rivers: an equilibrium sorting model.
J. Geophys. Res. Earth Surf. 111, F01006. https://doi.org/10.1029/20 04JF0 0 0175 . 

Blom, A., Ribberink, J.S., Parker, G., 2008. Vertical sorting and the morphodynamics
of bed form-dominated rivers: a sorting evolution model. J. Geophys. Res. Earth

Surf. 113, F01019. https://doi.org/10.1029/20 06JF0 0 0618 . 
Blom, A., Viparelli, E., Chavarrías, V., 2016. The graded alluvial river: profile concav-

ity and downstream fining. Geophys. Res. Lett. 43, 1–9. https://doi.org/10.1002/
2016GL068898 . 

Buffington, J.M., Montgomery, D.R., 1997. A systematic analysis of eight decades of

incipient motion studies, with special reference to gravel-bedded rivers. Water
Resour. Res. 33 (8), 1993–2029. https://doi.org/10.1029/96WR03190 . 

Cao, Z. , Carling, P.A. , 2002. Mathematical modelling of alluvial rivers: reality and
myth. Part 1: general review. Proc. Inst. Civil Eng. Water Maritime Eng. 154 (3),

207–219 . 
ao, Z. , Carling, P.A. , 2002. Mathematical modelling of alluvial rivers: reality and
myth. Part 2: special issues. Proc. Inst. Civil Eng. Water Maritime Eng. 154 (4),

297–307 . 
arniello, L., Defina, A., D’Alpaos, L., 2012. Modeling sand-mud transport induced by

tidal currents and wind waves in shallow microtidal basins: application to the
Venice Lagoon (Italy). Estuarine Coast. Shelf Sci. 102, 105–115. https://doi.org/

10.1016/j.ecss.2012.03.016 . 
hurch, M., Haschenburger, J.K., 2017. What is the “active layer”?,. Water Resour.

Res. 53 (1), 5–10. https://doi.org/10.1002/2016WR019675 . 

Correia, L.R.P., Krishnappan, B.G., Graf, W.H., 1992. Fully coupled unsteady mobile
boundary flow model. J. Hydraul. Eng. 118 (3), 476–494. https://doi.org/10.1061/

(ASCE)0733-9429(1992)118:3(476) . 
ourant, R. , Hilbert, D. , 1989. Methods of Mathematical Physics, volume 2: Differen-

tial Equations. John Wiley and Sons, p. 852pp . 
eigaard, R., Fredsøe, J., 1978. Longitudinal grain sorting by current in alluvial

streams. Nord. Hydrol. 9 (1), 7–16. https://doi.org/10.2166/nh.1978.002 . 

hamotharan, S. , Wood, A. , Parker, G. , Stefan, H. , 1980. Bedload Transport in a Model
Gravel Stream Tech. Rep. 190. University of Minnesota St. Anthony Falls Hydaulic

Laboratory, 71 pp . 
giazaroff, I.V. , 1965. Calculation of nonuniform sediment concentrations. J. Hydraul.

Div. 91(4), 225–247 . 
instein, H.A. , 1950. The Bed-load Function for Sediment Transportation in Open

Channel Flows. Tech. Rep. 1026. US Department of Agriculture . 

Engelund, F. , Hansen, E. , 1967. Monograph on Sediment Transport in Alluvial
Streams. Tech. Rep. Hydraulic Lab.. Technical University of Denmark, Copen-

hagen, Denmark, p. 65 . 
Exner, F.M. , 1920. Zur Physik der Dünen. Akad. Wiss. Wien Math. Naturwiss 129(2a),

929–952 . (in German) 
ernandez-Luque, R., Beek, R.V., 1976. Erosion and transport of bed-load sediment.

J. Hydraul. Res. 14 (2), 127–144. https://doi.org/10.1080/00221687609499677 . 

ill, M.A. , 1971. Height of sand dunes in open channel flows. J. Hydraul. Div. 97(12),
2067–2074 . 

adamard, J.S. , 1923. Lectures on Cauchy’s Problem in Linear Partial Differential Equa-
tions . Yale University Press, New Haven, p. 316pp . 

irano, M., 1971. River bed degradation with armoring. Trans. Jpn. Soc. Civ. Eng. 195,
55–65. https://doi.org/10.2208/jscej1969.1971.195 _ 55 . 

Hoey, T.B., Ferguson, R., 1994. Numerical simulation of downstream fining by selec-

tive transport in gravel bed rivers: model development and illustration. Water
Resour. Res. 30 (7), 2251–2260. https://doi.org/10.1029/94WR00556 . 

ain, S.C., 1992. Note on lag in bedload discharge. J. Hydraul. Eng. 118 (6). https://
doi.org/10.1061/(ASCE)0733-9429(1992)118:6(904) . 

oseph, D., Saut, J., 1990. Short-wave instabilities and ill-posed initial-value prob-
lems. Theor. Comput. Fluid Mech. 1 (4), 191–227. https://doi.org/10.1007/

BF0 04180 02 . 

abanikhin, S.I., 2008. Definitions and examples of inverse and ill-posed problems.
J. Inv. Ill-Posed Probl. 16, 317–357. https://doi.org/10.1515/JIIP.2008.019 . 

arim, M.F. , Holly, F.M. , Kennedy, J.F. , 1983. Bed Armouring Procedures in IALLU-
VIAL and Application to the Missouri River. Tech. rep. 269. Iowa Institute for

Hydraulic Research, University of Iowa . 
leinhans, M., Wilbers, A., De Swaaf, A., Berg, J.V.D., 2002. Sediment supply-limited

bedforms in sand-gravel bed rivers. J. Sediment. Res. 72 (5), 629–640. https://
doi.org/10.1306/030702720629 . 

omar, P.D. , 1987. Selective grain entrainment by a current from a bed of mixed

sizes: a reanalysis. J. Sediment. Petrol. 57 (2), 203–211 . 
omar, P.D., 1987. Selective gravel entrainment and the empirical evaluation of

flow competence. Sedimentology 34 (6), 1165–1176. https://doi.org/10.1111/j.
1365-3091.1987.tb00599.x . 

Kuhnle, R.A., 1993. Incipient motion of sand-gravel sediment mixtures. J. Hydraul.
Eng. 119 (12), 1400–1415. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:

12(1400) . 

atteux, B., 1995. Techniques for long-term morphological simulation under tidal
action. Mar. Geol. 126 (126), 129–141. https://doi.org/10.1016/0025-3227(95)

0 0 069-B . 
ee, H.Y., Odgaard, A.J., 1986. Simulation of bed armoring in alluvial channels. J.

Hydraul. Eng. 112 (9), 794–801. https://doi.org/10.1061/(ASCE)0733-9429(1986)
112:9(794) . 

esser, G., Roelvink, J., van Kester, J., Stelling, G., 2004. Development and validation

of a three-dimensional morphological model. Coast. Eng. 51, 883–915. https://
doi.org/10.1016/j.coastaleng.2004.07.014 . 

yn, D., Altinakar, M., 2002. St. Venant-Exner equations for near-critical and tran-
scritical flows. J. Hydraul. Eng. 128 (6), 579–587. https://doi.org/10.1061/(ASCE)

0733-9429(2002)128:6(579) . 
eyer-Peter, E. , Müller, R. , 1948. Formulas for bed-load transport. In: Proceedings

of Second Meeting of the International Association for Hydraulic Structures Re-

search, Stockholm, pp. 39–64 . 
isri, R.L., Garde, R.J., Raju, K.G.R., 1984. Bed load transport of coarse nonuni-

form sediment. J. Hydraul. Eng. 110 (3), 312–328. https://doi.org/10.1061/(ASCE)
0733-9429(1984)110:3(312) . 

orris, P.H., Williams, D.J., 1996. Relative celerities of mobile bed flows with fi-
nite solids concentrations. J. Hydraul. Eng. 122. https://doi.org/10.1061/(ASCE)

0733-9429(1996)122:6(311) . 

eedham, D.J., 1990. Wave hierarchies in alluvial river flows. Geophys. Astrophys.
Fluid Dyn. 51 (1–4), 167–194. https://doi.org/10.1080/03091929008219855 . 

van Niekerk, A., Vogel, K.R., Slingerland, R.L., Bridge, J.S., 1992. Routing of hetero-
geneous sediments over movable bed: model development. J. Hydraul. Eng. 118

(2), 246–262. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:2(246) . 

https://doi.org/10.1016/j.advwatres.2018.02.011
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0001
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0001
https://doi.org/10.1111/j.1365-3091.1968.tb01110.x
https://doi.org/10.1080/00221689509498560
https://doi.org/10.1080/00221688809499212
https://doi.org/10.1017/jfm.2015.412
https://doi.org/10.1061/(ASCE)0733-9429(1983)109:3(351)
https://doi.org/10.1080/02626667709491760
https://doi.org/10.1080/00221680309499960
https://doi.org/10.1029/2006WR005474
https://doi.org/10.1002/2017JF004213
https://doi.org/10.1029/2003JF000069
https://doi.org/10.1029/2004JF000175
https://doi.org/10.1029/2006JF000618
https://doi.org/10.1002/2016GL068898
https://doi.org/10.1029/96WR03190
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0016
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0016
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0016
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0017
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0017
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0017
https://doi.org/10.1016/j.ecss.2012.03.016
https://doi.org/10.1002/2016WR019675
https://doi.org/10.1061/(ASCE)0733-9429(1992)118:3(476)
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0021
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0021
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0021
https://doi.org/10.2166/nh.1978.002
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0023
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0023
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0023
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0023
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0023
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0024
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0024
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0025
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0025
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0026
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0026
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0026
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0027
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0027
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0027
https://doi.org/10.1080/00221687609499677
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0028
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0028
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0029
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0029
https://doi.org/10.2208/jscej1969.1971.195_55
https://doi.org/10.1029/94WR00556
https://doi.org/10.1061/(ASCE)0733-9429(1992)118:6(904)
https://doi.org/10.1007/BF00418002
https://doi.org/10.1515/JIIP.2008.019
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0035
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0035
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0035
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0035
https://doi.org/10.1306/030702720629
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0037
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0037
https://doi.org/10.1111/j.1365-3091.1987.tb00599.x
https://doi.org/10.1061/(ASCE)0733-9429(1993)119:12(1400)
https://doi.org/10.1016/0025-3227(95)00069-B
https://doi.org/10.1061/(ASCE)0733-9429(1986)112:9(794)
https://doi.org/10.1016/j.coastaleng.2004.07.014
https://doi.org/10.1061/(ASCE)0733-9429(2002)128:6(579)
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0045
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0045
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0045
https://doi.org/10.1061/(ASCE)0733-9429(1984)110:3(312)
https://doi.org/10.1061/(ASCE)0733-9429(1996)122:6(311)
https://doi.org/10.1080/03091929008219855
https://doi.org/10.1061/(ASCE)0733-9429(1992)118:2(246)


V. Chavarrías et al. / Advances in Water Resources 114 (2018) 219–235 235 

P  

 

P  

 

P  

P  

P  

P  

P  

 

P  

P  

 

 

P  

 

R  

 

R  

 

 

R  

 

R  

S  

 

 

S  

 

S  

 

S  

 

S  

S  

S  

 

 

S  

 

S  

 

S  

 

S  

 

S  

S  

 

S  

 

T  

V  

 

 

 

V  

 

V  

 

V  

 

 

V  

 

d  

d  

W  

 

W  

 

W
W  

Y  

Y  

Z  

 

Z  

 

 

Z  

 

Z  
aola, C., Voller, V.R., 2005. A generalized Exner equation for sediment mass
balance. J. Geophys. Res. Earth Surf. 110, F04014. https://doi.org/10.1029/

20 04JF0 0 0274 . 
ark, I., Jain, S.C., 1987. Numerical simulation of degradation of alluvial chan-

nel beds. J. Hydraul. Eng. 113 (7), 845–859. https://doi.org/10.1061/(ASCE)
0733-9429(1987)113:7(845) . 

arker, G., 1990. Surface-based bedload transport relation for gravel rivers. J. Hy-
draul. Res. 28 (4), 417–436. https://doi.org/10.1080/0 02216890 09499058 . 

arker, G., 1991. Selective sorting and abrasion of river gravel. I: theory. J. Hydraul.

Eng. 117 (2), 131–147. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:2(131) . 
arker, G., Klingeman, P.C., 1982. On why gravel bed streams are paved. Water Re-

sour. Res. 18 (5), 1409–1423. https://doi.org/10.1029/WR018i005p01409 . 
arker, G. , Klingeman, P.C. , McLean, D.G. , 1982. Bedload and size distribution in

paved gravel-bed streams. J. Hydraul. Div. 108 (4), 544–571 . 
arker, G., Paola, C., Leclair, S., 20 0 0. Probabilistic Exner sediment continuity equa-

tion for mixtures with no active layer. J. Hydraul. Eng. 126 (11), 818–826.

https://doi.org/10.1061/(ASCE)0733-9429(20 0 0)126:11(818) . 
arker, G., Sutherland, A.J., 1990. Fluvial armor. J. Hydraul. Res. 28 (5), 529–544.

https://doi.org/10.1080/0 02216890 09499044 . 
elosi, A., Parker, G., Schumer, R., Ma, H.B., 2014. Exner-based master equation for

transport and dispersion of river pebble tracers: derivation, asymptotic forms,
and quantification of nonlocal vertical dispersion. J. Geophys. Res. Earth Surf.

119 (9), 1818–1832. https://doi.org/10.10 02/2014JF0 03130 . 

etts, G., Thoms, M., Brittan, K., Atkin, B., 1989. A freeze-coring technique applied to
pollution by fine sediments in gravel-bed rivers. Sci. Total Environ. 84, 259–272.

https://doi.org/10.1016/0048- 9697(89)90388- 4 . 
ahuel, J., Holly, F., Chollet, J., Belleudy, P., Yang, G., 1989. Modeling of riverbed

evolution for bedload sediment mixtures. J. Hydraul. Eng. 115 (11), 1521–1542.
https://doi.org/10.1061/(ASCE)0733-9429(1989)115:11(1521) . 

anasinghe, R., Swinkels, C., Luijendijk, A., Roelvink, D., Bosboom, J., Stive, M., Wal-

stra, D., 2011. Morphodynamic upscaling with the MORFAC approach: depen-
dencies and sensitivities. Coast. Eng. 58 (8), 806–811. https://doi.org/10.1016/j.

coastaleng.2011.03.010 . 
ibberink, J.S. , 1987. Mathematical modelling of one-dimensional morphological

changes in rivers with non-uniform sediment. Delft University of Technology
Ph.D. thesis . The Netherlands. 

oelvink, J., 2006. Coastal morphodynamic evolution techniques. Coast. Eng. 53,

277–287. https://doi.org/10.1016/j.coastaleng.2005.10.015 . 
aint-Venant, A.J.C.B. , 1871. Théorie du mouvement non permanent des eaux, avec

application aux crues des rivières et à l’introduction des marées dans leur
lit. Comptes Rendus des Séances de l’Academie des Sciences Académie, 73,

237–240 . (in French). 
eminara, G., Colombini, M., Parker, G., 1996. Nearly pure sorting waves and for-

mation of bedload sheets. J. Fluid Mech. 312, 253–278. https://doi.org/10.1017/

S0 0221120960 01991 . 
hields, A. , 1936. Anwendung der Ähnlichkeitsmechanik und Turbulenzforschung

auf die Geschiebebewegung. Versuchsanstalt für Wasserbau und Schiffbau, 26,
Ph.D. thesis . Berlin, Germany, (in German). 

ieben, A. , 1994. Notes on the Mathematical Modelling of Alluvial Mountain Rivers
with Graded Sediment. Tech. rep. 94–3. Delft University of Technology, The

Netherlands . 
ieben, J. , 1997. Modelling of Hydraulics and Morphology in Mountain Rivers Ph.D.

thesis, Delft University of Technology, The Netherlands . 

ieben, J., 1999. A theoretical analysis of discontinuous flow with mobile bed. J.
Hydraul. Res. 37 (2), 199–212. https://doi.org/10.1080/002216 899094 98306 . 

iviglia, A., Stecca, G., Blom, A., 2017. Gravel-Bed Rivers: Process and Disasters , chap.
26: Modeling of Mixed-Sediment Morphodynamics in Gravel Bed Rivers Using

the Active Layer Approach: Insights from Mathematical and Numerical Analysis,
703–728. Wiley-Blackwel, l. https://doi.org/10.1002/9781118971437.ch26 . 

loff, K., Mosselman, E., 2012. Bifurcation modelling in a meandering gravel-sand

bed river. Earth Surf. Process. Landf. 37 (14), 1556–1566. https://doi.org/10.1002/
esp.3305 . 

olari, L., Parker, G., 20 0 0. The curious case of mobility reversal in sediment
mixtures. J. Hydraul. Eng. 126 (3), 185–197. https://doi.org/10.1061/(ASCE)

0733-9429(20 0 0)126:3(185) . 
tecca, G., Siviglia, A., Blom, A., 2014. Mathematical analysis of the Saint-Venant-
Hirano model for mixed-sediment morphodynamics. Water Resour. Res. 50,

7563–7589. https://doi.org/10.1002/2014WR015251 . 
tecca, G., Siviglia, A., Blom, A., 2016. An accurate numerical solution to the Saint-

Venant-Hirano model for mixed-sediment morphodynamics in rivers. Adv. Wa-
ter Resour. 93, Part A, 39–61. https://doi.org/10.1016/j.advwatres.2015.05.022 . 

ternberg, H. , 1875. Untersuchungen über Längen- und Querprofil geschiebeführen-
der Flüsse. Zeitschrift für Bauwesen 25, 483–506 . (in German) 

tevens, M.A., 1988. Discussion of “unsteady sediment transport modeling” by Den-

nis A. Lyn (January, 1987, vol. 113, no. 1). J. Hydraul. Eng. 114 (8), 954–956.
https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(954) . 

uzuki, K. , 1976. On the propagation of a disturbance in the bed composition of
an open channel. Tech. Rep. r 1976/09/l. Laboratory of Fluid Mechanics, Delft

University of Technology, The Netherlands . 
oro, E.F. , 2001. Shock-Capturing Methods for Free-Surface Shallow flows. Wiley,

p. 326pp . 

etsch, D. , Ehrbar, D. , Peter, S. , Russelot, P. , Volz, C. , Vonwiller, L. , Faeh, R. , Farshi, D. ,
Mueller, R. , Veprek, R. , 2006. BASEMENT, Basic simulation environment for com-

putation of environmental flow and natural hazard simulation, software man-
ual. In: Laboratory of Hydraulics, Hydrology and Glaciology (VAW). ETH Zurich,

Switzerland . 
illaret, C., Hervouet, J.M., Kopmann, R., Merkel, U., Davies, A.G., 2013. Morphody-

namic modeling using the telemac finite-element system. Comput. Geosci. 53,

105–113. https://doi.org/10.1016/j.cageo.2011.10.004 . 
iparelli, E., Moreira, R.R.H., Blom, A., 2017. Gravel-bed rivers: process and disas-

ters . In: Chap. 23: Modelling Stratigraphy-Based GBR Morphodynamics. Wiley-
Blackwell, pp. 609–637. https://doi.org/10.1002/9781118971437.ch23 . 

iparelli, E., Sequeiros, O.E., Cantelli, A., Wilcock, P.R., Parker, G., 2010. River mor-
phodynamics with creation/consumption of grain size stratigraphy 2: numerical

model. J. Hydraul. Res. 48 (6), 727–741. https://doi.org/10.1080/00221686.2010.

526759 . 
ogel, K.R., van Niekerk, A., Slingerland, R.L., Bridge, J.S., 1992. Routing of heteroge-

neous sediments over movable bed: model verification. J. Hydraul. Eng. 118 (2),
263–279. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:2(263) . 

e Vries, M. , 1965. Considerations about non-steady bed load transport in open
channels. Tech. Rep. 36. Delft Hydraulics Laboratory, The Netherlands . 

e Vries, M. , 1973. River-bed variations - aggradation and degradation. Tech. Rep.

107. Delft Hydraulics Laboratory, The Netherlands . 
ong, M., Parker, G., 2006. Reanalysis and correction of bed-load relation of Meyer-

Peter and Müller using their own database. J. Hydraul. Eng. 132 (11), 1159–1168.
https://doi.org/10.1061/(ASCE)0733-9429(2006)132:11(1159) . 

oodhouse, M.J., Thornton, A.R., Johnson, C.G., Kokelaar, B.P., Gray, J.M.N.T., 2012.
Segregation-induced fingering instabilities in granular free-surface flows. J. Fluid

Mech. 709, 543–580. https://doi.org/10.1017/jfm.2012.348 . 

u, W. , 2007. Computational River Dynamics, 494. Taylor & Francis . 
u, W., Wang, S. S., Jia, Y., Nonuniform sediment transport in alluvial rivers, J. Hy-

draul. Res . 20 0 0. 38, (6), 427–434. 10.1080/0 0221680 0 09498296. 
alin, M.S. , 1964. Geometrical properties of sand wave. J. Hydraul. Div. 90 (5),

105–119 . 
atsu, E. , 1955. On the longitudinal profile of the graded river. EOS, Trans. Am. Geo-

phys. Union 36 (4), 655–663 . 
anotti, A.L., Méndez, C.G., Nigro, N.M., Storti, M., 2007. A preconditioning mass

matrix to avoid the ill-posed two-fluid model. J. Appl. Mech. 74 (4), 732–740.

https://doi.org/10.1115/1.2711224 . 
anré, D.D.L., Needham, D.J., 1994. On the hyperbolic nature of the equations of

alluvial river hydraulics and the equivalence of stable and energy dissipat-
ing shocks. Geophys. Astrophys. Fluid Dyn. 76, 193–222. https://doi.org/10.1080/

03091929408203665 . 
hang, H., Kahawita, R., 1987. Nonlinear model for aggradation in alluvial

channels. J. Hydraul. Eng. 113 (3), 353–369. https://doi.org/10.1061/(ASCE)

0733-9429(1987)113:3(353) . 
hang, H., Kahawita, R., 1990. Linear hyperbolic model for alluvial channels. J. Hy-

draul. Eng. 116 (4), 478–493. https://doi.org/10.1061/(ASCE)0733-9429(1990)116: 
4(478) . 

https://doi.org/10.1029/2004JF000274
https://doi.org/10.1061/(ASCE)0733-9429(1987)113:7(845)
https://doi.org/10.1080/00221689009499058
https://doi.org/10.1061/(ASCE)0733-9429(1991)117:2(131)
https://doi.org/10.1029/WR018i005p01409
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0055
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0055
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0055
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0055
https://doi.org/10.1061/(ASCE)0733-9429(2000)126:11(818)
https://doi.org/10.1080/00221689009499044
https://doi.org/10.1002/2014JF003130
https://doi.org/10.1016/0048-9697(89)90388-4
https://doi.org/10.1061/(ASCE)0733-9429(1989)115:11(1521)
https://doi.org/10.1016/j.coastaleng.2011.03.010
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0062
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0062
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0062
https://doi.org/10.1016/j.coastaleng.2005.10.015
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0064
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0064
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0064
https://doi.org/10.1017/S0022112096001991
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0066
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0066
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0066
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0067
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0067
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0068
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0068
https://doi.org/10.1080/00221689909498306
https://doi.org/10.1002/9781118971437.ch26
https://doi.org/10.1002/esp.3305
https://doi.org/10.1061/(ASCE)0733-9429(2000)126:3(185)
https://doi.org/10.1002/2014WR015251
https://doi.org/10.1016/j.advwatres.2015.05.022
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0075
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0075
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0075
https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(954)
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0077
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0077
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0078
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0078
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0079
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0079
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0079
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0079
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0079
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0079
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0079
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0079
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0079
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0079
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0079
https://doi.org/10.1016/j.cageo.2011.10.004
https://doi.org/10.1002/9781118971437.ch23
https://doi.org/10.1080/00221686.2010.526759
https://doi.org/10.1061/(ASCE)0733-9429(1992)118:2(263)
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0084
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0084
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0085
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0085
https://doi.org/10.1061/(ASCE)0733-9429(2006)132:11(1159)
https://doi.org/10.1017/jfm.2012.348
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0088
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0088
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0089
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0089
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0090
http://refhub.elsevier.com/S0309-1708(17)30265-8/sbref0090
https://doi.org/10.1115/1.2711224
https://doi.org/10.1080/03091929408203665
https://doi.org/10.1061/(ASCE)0733-9429(1987)113:3(353)
https://doi.org/10.1061/(ASCE)0733-9429(1990)116:4(478)

	Ill-posedness in modeling mixed sediment river morphodynamics
	1 Introduction
	2 Model equations
	2.1 Flow equations
	2.2 Adapted active layer model equations
	2.3 Simplified vertically continuous model equations
	2.4 Closure relations
	2.5 Matrix formulation

	3 Characterization of the mathematical models
	3.1 Steady active layer model consisting of two size fractions
	3.2 Steady vertically continuous model consisting of two size fractions

	4 Active layer model parameter study
	4.1 Hiding
	4.2 Aggradational flux to the substrate
	4.3 Prefactor in a sediment transport relation and morphodynamic factor
	4.4 Exponent and critical Shields stress in a sediment transport relation
	4.5 Active layer thickness

	5 Consequences of ill-posedness
	5.1 Numerical examples
	5.2 Sensitivity analysis

	6 Implications of considering more than two size fractions or an unsteady active layer thickness
	6.1 Ill-posed domain of a three-size-fractions case
	6.2 Effect of an unsteady active layer thickness in the ill-posed domain

	7 Conclusions
	 Acknowledgments
	Appendix A Flow equations
	Appendix B Active layer equations
	Appendix C Sediment transport closure relation
	Appendix D System of equations of the steady vertically continuous model consisting of two size fractions
	 Supplementary material
	 References


