

Delft University of Technology

The Astonishing Evolution of Probabilistic Memory Safety From Basic Heap-Data Attack
Detection Toward Fully Survivable Multivariant Execution

Rösti, André; Voulimeneas, Alexios; Franz, Michael

DOI
10.1109/MSEC.2024.3407648
Publication date
2024
Document Version
Final published version
Published in
IEEE Security and Privacy

Citation (APA)
Rösti, A., Voulimeneas, A., & Franz, M. (2024). The Astonishing Evolution of Probabilistic Memory Safety
From Basic Heap-Data Attack Detection Toward Fully Survivable Multivariant Execution. IEEE Security and
Privacy, 22(4), 66-75. https://doi.org/10.1109/MSEC.2024.3407648

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MSEC.2024.3407648
https://doi.org/10.1109/MSEC.2024.3407648

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

66	 July/August 2024	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/24©2024IEEE

MEMORY SAFETY

The Astonishing Evolution of Probabilistic
Memory Safety
From Basic Heap-Data Attack Detection Toward

Fully Survivable Multivariant Execution

André Rösti | University of California, Irvine
Alexios Voulimeneas | TU Delft
Michael Franz | University of California, Irvine

Probabilistic memory safety combines randomization and replication in the hope that attacks will
lead to observable differences across the replicas and hence be detected. It has evolved from simple
heap-data protection to full-fledged survivability, harnessing checkpoint/restore facilities and
hardware heterogeneity.

A s attacks exploiting memory vulnerabilities have
become more sophisticated over time, so have

the defenses against them. Some of the earliest cyberat-
tacks were focused on directly injecting malicious code
into running processes.

Introduction
One of the early successful defenses introduced hardware-
based memory page permissions that ensured pages
were either writable or executable, but never both,
thus stopping direct code injection attacks. Of course,
this did not end all cyberattacks; it just led the attack-
ers to come up with more creative approaches, such as

return-oriented programming (ROP). Over the course
of the past three decades, a vast amount of research has
studied ways of enforcing control-flow integrity,1 the
goal of which is to ensure that the execution of a pro-
gram follows only the paths originally expressed in its
source code. This research has significantly raised the
bar for attackers trying to divert control flow.

Unfortunately, attackers can cause damage not only
through control-flow attacks, but also by changing
noncontrol data. Hence, a second body of research has
studied more general ways of ensuring memory-data
integrity. A fundamental reason why enforcing memory-
data integrity is hard in general is the existence of point-
ers and dynamic memory management. There are many
things that can go wrong in programs manipulating data
via pointers, including stale pointers (use-after-frees), in

Digital Object Identifier 10.1109/MSEC.2024.3407648
Date of publication 14 June 2024; date of current version: 17 July 2024.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 22,2025 at 08:52:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0000-5971-8584
https://orcid.org/0000-0002-6985-8684
https://orcid.org/0000-0001-5911-2275

www.computer.org/security� 67

which a pointer access path still remains to a memory
area that is no longer occupied by the original data the
pointer relates to, and out of bounds accesses, in which a
valid access path enables manipulation of data it isn’t
supposed to.

One of the successful approaches to the memory-data
integrity problem has been probabilistic memory safety,
which is the topic of this article. This was originally
proposed by Berger and Zorn in their DieHard article.4
The authors described a system that approximates an
infinite-sized heap and in which the memory manager
randomizes the location of objects. Further, their system
can run in replicated mode, in which multiple replicas
of the data are randomized differently. Since errors or
deliberate memory corruption attacks are unlikely to
affect the randomized replicas in the same manner, this
enables detection of memory corruption errors. This
approach combines elements from earlier work on soft-
ware diversity2 and N-version programming.3

In particular, in DieHard the heap is protected proba-
bilistically from overflows, double-frees, use-after-frees,
and uninitialized reads. The allocator uses random-
ized allocations and adds random padding between
objects. The additional space between objects mimics
an ideal scenario where objects on the heap would be
infinitely spaced, and thus buffer overruns would be
inconsequential. The random locations of new alloca-
tions thwart pointer reuse. Replicated parallel execution
of the same program protects from uninitialized reads.
Thanks to the randomized addresses produced by Die-
Hard’s allocator, uninitialized reads likely yield differ-
ent random data in multiple executions of the program.
DieHard detects these diverging outputs and aborts
execution when they occur.

DieHard pioneered probabilistic memory protec-
tion for the heap. Other researchers soon seized on
the idea of combining randomization and replication
more generally. This led to the development of what
we today call multivariant execution (MVX) systems,
which run multiple variants of a program in lockstep
and cross-check their states frequently.5 When such sys-
tems detect a divergence, they abort program execution.

MVX systems differ from their precursor, N-version
systems, in the way program variations are created. In
N-version systems, the assumption is that the different
program versions would be created manually by indepen-
dent teams of programmers (often in different program-
ming languages) from the same specification. Because of
the resulting high development costs, such systems have
been employed only in niche high-assurance areas, such
as fly-by-wire avionics. In contrast to this, in MVX sys-
tems, the different variants are typically generated auto-
matically by a compiler from a single set of source code
files, and the variants are typically more similar to each

other. This approach has significantly lower cost because
of the automatic variant generation.

As an improvement over the protections afforded by
DieHard, in which program variants differ only in their
heap layout, many different kinds of software diversity
are available for MVX systems, and modern compilers
are able to mostly automate the variant creation pro-
cess. Generally, the more diverse the variants are from
each other, the broader the protection. For example, by
alternating stack growth direction between variants, the
stack can be protected in addition to the heap.

MVX systems have matured significantly since their
first conception, broadening their applicability (mul-
tithreading, memory-dependent behavior, and GUI
applications).11 However, certain classes of attacks
continue to evade detection in most MVX systems.
Examples include data-oriented programming attacks
and position-independent code reuse.12,13 The prob-
lem in these cases is limited diversity: program variants
are not sufficiently different in single-machine setups to
cause observable divergences under these attacks. Dis-
tributed MVX systems across distinct machines with
heterogeneous hardware address the limited diversity
problem.14 The added hardware heterogeneity leads to
increased software diversity, improving security. Using a
heterogeneous MVX system on processors with diverse
instruction set architectures (ISAs) significantly raises
the bar for the two aforementioned attacks.

With these advances, MVX systems are already an
incredibly powerful defense for a broad class of attacks
today. We believe that the two most interesting develop-
ments lying ahead for MVX systems are 1) the devel-
opment of computers with internal heterogeneous
hardware that allows these systems to harness hardware
diversity in a more efficient manner, and 2) the addi-
tion of guaranteed survivability, achieved by combining
MVX systems with checkpoint/restore facilities.

As noted, heterogeneous hardware enables the detec-
tion of otherwise elusive attacks by adding further diver-
sity into program variants. For example, alignment
requirements across different hardware can significantly
complicate pointer reuse. Existing systems that provide
hardware heterogeneity are set up as a distributed net-
work of separate machines, which adds networking over-
head; by colocating heterogeneous hardware within the
same computer, this additional overhead can be avoided.

MVX systems can also achieve survivability via check-
point/restore facilities.15 This is a natural next step—
recovering detected attacks instead of aborting execu-
tion altogether. The straightforward idea is to capture
the program state at regular intervals during execution
and reverse to a last-known “good” state upon detec-
tion of a divergence. In practice, for example, for a web-
server application, this may mean dropping an attacker’s

Authorized licensed use limited to: TU Delft Library. Downloaded on January 22,2025 at 08:52:49 UTC from IEEE Xplore. Restrictions apply.

68	 IEEE Security & Privacy� July/August 2024

MEMORY SAFETY

connection upon an attempted exploit and continuing
to serving regular users.

In the remainder of this article, we will revisit the
evolution of MVX. We will then cover the interesting
aspects and considerations of heterogeneous MVX sys-
tems and combine them with checkpoint/restore facili-
ties, based on a prototype system with these capabilities
that we have been building. As we explain, such a system
can prevent a broad class of memory exploits, without
sacrificing availability. We conclude with an outlook
toward even more advanced future developments.

The Evolution of MVX

Software Diversity
While, for most purposes, the predictability of deter-
ministic computer programs is a strength, it is detri-
mental to security: even exploitable “undefined” or
unintended behavior is often deterministic. Attackers
can therefore prepare for an attack offline, examining
and exercising an application until they find a vulner-
ability. When it is time to deploy the attack on a live sys-
tem, the predictability of the program execution means
that it will likely succeed.

Adding to this problem is the prevalence of mono-
cultures in software. In many domains, a single or only
a handful of pieces of software dominates—take, for
example, specialized software libraries used by many
programs, such as cryptography, compression, or encod-
ing libraries. A single vulnerability in any such popular
piece of software may put a large number of users at risk.

To break the high predictability aspects of programs,
we need to reintroduce diversity. An early mitigation to
do so was Berger and Zorn’s DieHard.4 In DieHard, the
memory allocator randomizes placement of objects on

the heap, making it much harder to reliably overwrite
data in pinpoint locations. These sorts of randomiza-
tions of program behavior and implementations are
the common theme in (automated) software-diversity-
based defenses.

Besides randomizing the heap memory layout, as
pioneered by DieHard, many other program aspects
can be made nondeterministic. For example, addresses
of functions (or even individual basic blocks) can be
easily randomized at compile or link time.2 This added
diversity complicates a large number of exploits that
depend on the program details being randomized, such
as specific expected addresses, offsets, sizes of data
structures, the availability and specific structure of gad-
gets, and so on.

Recently, researchers have explored harnessing hard-
ware platform heterogeneity to produce software varia-
tions. Processors implementing various diverse ISAs
are available to consumers; programs compiled for
these hardwares vary in their used application binary
interface (ABI), endianness, and overall memory layout
and alignment requirements. Further diversity can stem
from the differences in operating system implementa-
tions across hardware architectures, such as differences
in the system call interface.10

No matter how the diversity is obtained, by adding
variability, attackers are forced to specialize their attacks
to one variant. However, these defenses remain proba-
bilistic—if the attackers “guess” (or somehow learn,
through an information disclosure) the right variant, no
additional security is provided. Furthermore, probabi-
listic memory defenses cannot protect against all classes
of attacks. For example, code-reuse attacks may succeed
even in randomized environments.

MVX
To improve upon the deficiencies of standalone soft-
ware diversity, MVX systems detect exploits through
parallel execution of multiple program variants.6,7 (See
Figure 1.) In this way, it becomes impossible for an attack
specialized on only one variant to succeed—the attack-
ers have to adapt to all variants at once. For example,
code-reuse attacks (such as return-into-libc or ROP)
or data-only exploits are still possible even when some
software diversity (such as address space layout ran-
domization) is deployed, whereas MVX systems have a
much higher probability of detecting them.

Under MVX, all variants receive identical inputs
throughout their execution. To an end user, it appears
as if only a single program is running. Periodically, a
trusted monitor component checks whether all variants
are behaving identically. Typically, this “cross-checking”
takes place at the granularity of system calls; that is,
the monitor verifies that all variants execute the same

Figure 1. In multivariant execution, automatically
diversified program variants execute in parallel on identical
inputs while a monitor cross-checks for identical behavior.

Program
Inputs

Program Variant

Program Variant

C
ro

ss
-C

he
ck

in
g

M
on

ito
r

M
on

ito
r

Authorized licensed use limited to: TU Delft Library. Downloaded on January 22,2025 at 08:52:49 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 69

system calls with equivalent arguments. As the variants
are derived from the same source program, their intended
benign behavior should be identical. However, we expect
a detectable divergence during an attempted attack with
high probability because many low-level memory attacks
depend on implementation details and undefined behav-
ior, which varies between properly diversified variants.
As shown in previous work, the system call behavior
does indeed diverge only under attack for a large class
of exploits. If an attack is detected, all variants are halted
immediately in conventional MVX systems.

For certain vulnerabilities, variants can even be
constructed such that a divergence is guaranteed. For
example, attacks that rely on absolute code addresses
can be deterministically spoiled by making executable
memory regions disjoint between variants; any execut-
able address is not executable in the other.

We note one limitation that results from using auto-
mated diversity: vulnerabilities that are fundamentally
a part of an application’s design cannot be detected.
Automated diversity randomizes only implementation
details, keeping the original program semantics intact.
If a program’s logic is flawed, those flawed semantics are
preserved. MVX systems protect primarily against vul-
nerabilities that are an accidental consequence of imple-
mentation specifics (such as memory allocator choices).

DieHard’s “replicated mode” qualifies as an early
MVX system. The diversity in its variants stems from the
use of a memory allocator that randomizes the location
of objects on the heap, and DieHard incorporates a mon-
itor that cross-checks the outputs of variants at barriers.
This early system was concerned only with reliability,
not security.4 Subsequent systems incorporated more
diverse variants by making use of the various sources of
automated software diversity outlined previously, such
as memory layout and instruction selection.5,6

In early MVX systems, the monitor component was
implemented in the operating system kernel. The pro-
totype in the work of Bruschi et al.6 was the first solu-
tion to run entirely in userspace. Making the monitor
a userspace program is beneficial to security, stability,
and ease of implementation. It reduces the trusted code
base, honors the principle of least privilege, and makes
use of the process isolation provided by the operating
system to separate the monitor from the monitored
application. However, this approach can increase the
runtime overheads significantly. VARAN8 aimed to
improve performance through binary rewriting; in
this system, the monitor resides in the same address
space as the application, and all system call instruc-
tions are rewritten to be jumps into the monitor. In
contrast to other MVX systems, such as Orchestra,7
whose goal is security, VARAN’s aim is to increase reli-
ability in case of crashes. VARAN cannot provide any

security guarantees because of its architecture; the
monitor is as vulnerable as the application it aims to
protect. On the other hand, ReMon,9 a subsequently
published system, aims to be both secure and perfor-
mant by using a hybrid monitor design and specific
cross-checking policies. The basic idea is to categorize
system calls as security critical and nonsecurity critical.
Then, a hardened in-process monitor efficiently han-
dles nonsecurity-critical system calls, while a slower
cross-process monitor handles the rest.

Previous research has explored how to overcome
some of the limitations of MVX systems, such as work-
ing around the false positive divergences that would be
observed because of scheduling differences in multi-
threaded programs.11 Shared memory support, support
for address-dependent behavior, and signal delivery
issues have also been discussed.

Baseline: A Conventional MVX System
MVX systems are traditionally implemented on a sin-
gle physical machine. Let us first dive into the typical
design considerations of such a “conventional” MVX
system, before we look into extending it to a heteroge-
neous, multimachine environment.

A typical MVX system comprises at least the follow-
ing three functionalities:

	■ A scheme for obtaining multiple distinct program vari-
ants. The variances between variants are crucial for
determining which types of attacks the MVX system
will be able to defend against.

	■ A cross-checking component, which compares the cur-
rent execution state of all variants, assuring continued
congruence of each variant’s state. Upon a divergence,
typical MVX systems abort execution as an attempted
exploitation of a vulnerability is suspected.

	■ A replication and multiplexing component, which
makes the MVX transparent to the end user. The goal
is to make it appear as though only one program were
running, by sharing necessary resources that cannot
be duplicated.

Variant generation can take place at any stage of the
program lifecycle. The cross-checking and replication
take place at runtime and are responsibilities of a “moni-
tor” component.

Variant Generation
Any of the approaches established in the large body of
research into software diversity can be used to generate
variants for MVX execution.

A fairly recent, promising idea for variant genera-
tion is the use of diverse hardware, particularly proces-
sors with differing ISAs.14 ISAs differ in their available

Authorized licensed use limited to: TU Delft Library. Downloaded on January 22,2025 at 08:52:49 UTC from IEEE Xplore. Restrictions apply.

70	 IEEE Security & Privacy� July/August 2024

MEMORY SAFETY

instructions, instruction encodings, and sizes, leading to
entirely different binaries after compilation. Addition-
ally, ABIs and (often) system call interfaces vary across
architectures. Thus, if the source code of the target
application is available, compiling and running multiple
variants on different ISA hardware protects against all
vulnerabilities that expose any difference across these
various layers. For example, consider a code injection
attack that injects the same binary payload into all vari-
ants. The only way for such an attack to succeed is if the
payload decodes to valid instructions in both ISAs simul-
taneously; even a single ill-formed instruction will cause
an exception in one of the variants that can be detected.

Monitor Component
The monitor component ensures lockstep execution of
the program variants by synchronizing and cross-checking
all program variants at “rendez-vous points.” Additionally,
the monitor replicates the same program inputs to all vari-
ants. A straightforward choice for rendez-vous points is
to use system call invocations: this provides sufficient secu-
rity guarantees since any dangerous outside-world inter-
action that a program variant can make is through the
use of a system call. However, denial-of-service attacks
are not detectable at the system call level since attackers
can stall a program without the use of any system calls.
Such attacks can be detected by adding rendez-vous
points at regular time intervals.

System call interposition and cross-checking. To cross-
check variants, a means of intercepting system calls
efficiently is needed. Naively implemented, system call
interposition can end up being the bottleneck of the
system as it requires switching from a variant execution
context to the monitor’s context. It is critical that the
monitor is sufficiently isolated from the variant; a vul-
nerability in the variant should remain contained to the
variant. Without proper isolation, attackers could com-
promise the monitor itself and circumvent its checks.

System call interposition and, more broadly, moni-
tor implementations, can be categorized into three cate-
gories: in-kernel monitors, which perform all their work
inside the kernel; cross-process monitors, which inter-
cept system calls from a userspace process separate from
the variant process; and in-process monitors, which are
colocated in the same process as the variant.

In-kernel monitors hook into the system call entry
and exit handlers, and they have full access to the vari-
ant’s memory, allowing them to freely inspect and
modify any data needed. However, the principle of
least privilege suggests that incorporating a large piece
of software like a monitor component in the kernel,
when only a small portion of that software requires
escalated privileges, is unwise. Compared to userspace

development, writing kernel code is more involved, and
bugs are more consequential.

In cross-process monitors, a separate userspace moni-
tor process receives a notification from the kernel when-
ever the variant process attempts to issue a system call
or receives a signal. Debugging features of the operating
system (“ptrace” in Linux) enable this. Reading the vari-
ant’s memory requires an indirection through the kernel
(for example, “process_vm_readv”). These context and
mode switches properly isolate the monitor from the vari-
ant, but they come with hefty performance overheads.

In-process monitors, like cross-process monitors, are
implemented in userspace. Unlike cross-process moni-
tors, they are part of the same address space as their
monitored application. Implemented as a shared library,
for example, the monitor code can be “injected” into the
variant process (using “LD_PRELOAD” in Linux). An
alternative is to instrument code using binary rewriting.
Such approaches allow fast variant memory reads from
the monitor. However, the monitor is not isolated from
the variant whatsoever in these approaches, limiting
their use to scenarios where reliability, but not security,
is a concern.

We believe an ideal compromise for security-focused
systems is a hybrid in-kernel and in-process approach:
locating the monitor within the monitored process
allows low-overhead interactions, while a minimal ker-
nel module provides the necessary isolation. This strikes
a balance between the performance penalty of a fully
isolated monitor in a separate process and the complex-
ity and exposure of a fully in-kernel implementation.

Once a system call has been intercepted, the monitor
cross-checks it between all variants. This encompasses
comparing the system call number and its arguments
to assure all variants are requesting equivalent services
from the operating system. Note that, at this stage, sys-
tem call arguments must be serialized by the monitor
for comparison. Pointer arguments, for example, must
be resolved to their pointed-to values as the addresses
in each variant might diverge. (In fact, in properly diver-
sified variants, addresses should diverge.) When point-
ers point to variable-length buffers, other system call
arguments can be inspected to learn the length of the
pointed-to buffer. For example, the “read” and “write”
system calls take pointers to preallocated buffers to read
data into or write data from; an additional argument
gives their (maximum) length.

Input–output replication and multiplexing. To a user of
an application, MVX should be indistinguishable from
running a single program variant. This means that pro-
gram inputs given by the user must be replicated to all
program variants. Conversely, although all program
variants produce some output, only one result should

Authorized licensed use limited to: TU Delft Library. Downloaded on January 22,2025 at 08:52:49 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 71

be returned to the user. To facilitate this, MVX systems
incorporate input–output (I/O) replication functional-
ities. Any outward-facing resources, such as open sock-
ets and standard I/O, are shared by all program variants.
System calls interacting with these outward-facing
resources are executed once—if all variants executed
them individually, it would be observable to the user (for
example, as multiple outputs) or lead to divergences in
the variant’s behaviors.

Most MVX systems implement a leader/follower
design to facilitate replication. A designated leader vari-
ant performs all outward-facing I/O and informs its fol-
lowers of the results upon completion. The followers
copy results back to make it appear as though the system
call executed locally.

Additionally, certain resource identifiers, such as
file descriptor numbers and process IDs, often diverge
between variants, even though the referenced resources are
the same. To facilitate comparison between variants with-
out false positive divergences, the monitor should multi-
plex resource identifiers. One approach is to keep a set of
“canonical” identifiers and a mapping to their local values.

The Cost of Conventional MVX Systems
Since MVX systems require the parallel execution of N
program variants, one could reasonably expect at least
an N-times overhead. Surprisingly, the costs of deploy-
ing such systems are often lower in practice.

Although computation happens N-fold in an MVX
system, I/O is shared between variants. This helps
I/O-bound applications, such as webservers. The first
MVX system reported ≈16% overhead for an unloaded
Apache server (two variants), although that number did
rise to ≈1.9× in a saturated network.5 Later work was
able to reduce this to ≈34%.9 Throughput was measured
from a client located within the same rack as the server. If
the client has a higher-latency connection—a more real-
istic scenario—the overheads reduce to less than 2.5%.

In theory, MVX systems will introduce N-fold run-
time overheads for applications that are already under
full load during regular (non-MVX) execution. In prac-
tice, CPU cores are often underutilized, and MVXs
may be specifically deployed on systems with ample
spare resources; therefore, the reported overheads for
benchmarks such as SPECint2006 are between 18%
and 4%. In the best case, MVX systems have achieved
near-native performance.8,9

Adding Heterogeneity: MVX Across
Diverse Machines
Running all variants on the same physical machine, as
is done in the vast majority of established MVX sys-
tems, leaves programs vulnerable to architecture-specific
exploits. Diversity obtained through heterogeneous

hardware is powerful because it further reduces the set
of undetectable vulnerabilities. It is relatively easy to
obtain additional protections, stemming from the ABI
and ISA heterogeneity, just by recompiling the same
software for different platforms. Heterogeneity can also
come from other hardware or convention differences,
such as different endianness, structure layouts, or avail-
able system calls.

In current heterogeneous MVX systems, monitors run
on physically separate machines; this is called “distrib-
uted MVX.” These machines are interconnected with a
high-bandwidth, low-latency link, and this link is utilized
to cross-check and replicate results between variants.

As opposed to a system that executes variants on the
same machine, a heterogeneous and distributed MVX
environment faces additional challenges. For one, cross-
checking between variants involves network communica-
tion, significantly shifting the overheads. Cross-checking
the states of the variants becomes more involved as the
state representations differ across architectures. For exam-
ple, the set of available system calls, and their numbers,
differ on x86_64 and ARM64 Linux. A canonicalization
phase, which translates an architecture-specific state into a
platform-agnostic canonical form, is required.

Networking Considerations
In a local MVX system, shared memory primitives can
facilitate fast cross-checking and replication across vari-
ant processes. In a distributed system, the network com-
munication quickly becomes the biggest overhead. To
achieve a workable system, a low-latency, high-bandwidth
connection between constituent machines is paramount.
In previous work, we have employed InfiniBand connec-
tions between directly connected hosts in the same rack
with remote direct memory access network drivers to
minimize these overheads. Further optimizations to con-
sider include the following:

	■ Cross-checking policy: Relieving some noncritical system
calls from cross-checking, or deferring cross-checking
to a later point, reduces the amount of required net-
work communication and opens the door for the opti-
mizations discussed here.

	■ Asynchronous replication: For cross-check-exempted
system calls, the leader does not need to execute strictly
in lockstep with followers; asynchronous replication
makes use of this.

	■ Batching of replication information: Perhaps counterin-
tuitively, batching replication information can reduce
overall system latency.

Cross-checking policy. It has been shown that, depend-
ing on the class of attacks one wishes to defend against,
cross-checking all system calls is not required. An efficient

Authorized licensed use limited to: TU Delft Library. Downloaded on January 22,2025 at 08:52:49 UTC from IEEE Xplore. Restrictions apply.

72	 IEEE Security & Privacy� July/August 2024

MEMORY SAFETY

monitor should support different policies that omit cer-
tain system calls from cross-checking to adjust a safety/
overhead tradeoff based on the application. Previous
work9 used the following policies:

	■ Code execution: checks only execve, mmap, and mprotect
	■ Information disclosure: checks all read/write system

calls in addition to the ones checked by the code execu-
tion policy

	■ Comprehensive: cross-checks all system calls.

Developers of MVX systems manually define these
policies ahead of deployment. A policy can be as simple as
a list of system calls deemed safe under the assumed threat
model. More detailed policies may additionally consider
arguments. For example, if the goal is to protect against
information disclosure to a remote attacker, one may
consider write system calls to be safe unless they write to
a socket. Defining policies is a simple one-time process.
During execution, the policies are applied automatically.

Asynchronous replication. I/O replication is required for
system calls interacting with outward-facing resources.
In a naive implementation, the leader node, after send-
ing replication information, may wait for the follower(s)
to acknowledge receipt.

However, this is not necessary for system calls that
are exempt from cross-checking. Instead, the leader
can append its replication information to a queue and
immediately continue variant execution, while another
process disperses the replication information in paral-
lel. Through this “fire-and-forget” approach, some of
the network communication happens concurrently with
useful variant execution on the leader. Once the fol-
lowers arrive at the same point in program execution,
they will consume the required replication information
from the queue and continue. If they arrive at that point
before the leader does, they block and wait for the leader.

Replication batching. In addition to the cost of exchang-
ing useful information, each network exchange between
monitors adds some amount of communication over-
head, such as required message headers and acknowl-
edgments. This overhead can become unreasonably
large and dominate over the useful payload exchanged,
especially when a large number of small messages is
exchanged. For example, the “gettime” system call must
be replicated (all variants should receive the same time
stamp), but the data sent are only a few bytes (a long
integer, the time stamp).

Perhaps counterintuitively, batching replication infor-
mation can reduce the overall latency of the system.
The general idea is for the leader to “collect” replica-
tion information for multiple system calls until the

replication batch reaches a certain threshold size or until
the system encounters a system call that requires syn-
chronization. The collected information for multiple
system calls is then sent, all at once, to followers. In this
way, a single message header and acknowledgment will
carry a payload of multiple system calls, amortizing the
communication overhead. Since program execution is
considerably faster than network communication, paus-
ing variants until a batch of replication information is
received and then executing a sequence of system calls
“all at once” overall benefits the system performance.

Canonical System Call Form
In the cross-checking phase, MVX monitors must
ensure the same system calls are issued with identical
arguments. On a conventional MVX system, this con-
sists of a straightforward comparison of the attempted
system call number and its serialized arguments.

On a heterogeneous system, cross-checking requires
an additional “canonicalization” phase. In this phase,
data are transformed into a platform-agnostic normal-
ized form. System call interfaces, for example, argument
data types, diverge between different architectures.
For example, if the heterogeneous system employs one
little-endian and one big-endian architecture, all integer
arguments larger than one byte must be translated into
a canonical form before comparison.

For results replication, a de-canonicalization process
also needs to take place. For example, the “gettime” sys-
tem call on x86_64, which is not present on ARM64
Linux, may be canonicalized to a “gettimeofday” system
call upon entry for cross-checking. If the call is executed
on x86_64, the time stamp return value obtained must
be plugged into a “struct timeval”, the expected return
value of “gettimeofday” on ARM64, and vice versa if the
“gettimeofday” call is executed on ARM, and its results
must be replicated into a “gettime” return value.

Adding Survivability: Checkpoint/Restore
We have discussed MVX behavior during regular,
benign execution. What should an MVX system do
when, during cross-checking, a divergence is detected?
Previous research answered this question by stopping
execution of the program altogether. We believe an
MVX system could be made more useful by managing
divergences using checkpoint/restore. MVX systems
are often deployed to protect critical infrastructure,
such as webservers; in such applications, availability is
an important requirement that is usually as important as
security. By providing MVX systems with a checkpoint/
restore mechanism, we can satisfy both of those require-
ments: not just security, but also availability.

Checkpoint/restore has been an established tech-
nique since the 1990s to enable fault tolerance.15 The

Authorized licensed use limited to: TU Delft Library. Downloaded on January 22,2025 at 08:52:49 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 73

program state, such as the memory and register con-
tents, is captured and stored at regular intervals. When
needed, this stored state can be restored to resume pro-
gram execution at the previously stored “snapshot.”

Integrating MVX with checkpoint/restore is a straight-
forward idea: the MVX monitor takes on an additional
responsibility of creating checkpoints at regular inter-
vals during regular program execution. (See Figure 2.)
These checkpoints are created only as long as all vari-
ants agree on the program state. Upon a divergence, the
last checkpoint can be restored to resume execution
from a previous uncompromised state. Restoring to a
previous checkpoint may discard some useful work that
the application already did (for example, in the case of
a webserver, dropping some users’ connections). How-
ever, the overall downtime is less than if the application
were terminated and restarted because checkpoints
keep most of the built-up state of the application.

Checkpointing Locations
One critical consideration when adding checkpoint/
restore functionality to an MVX system is the choice of
checkpointing location and frequency. The checkpointing
location should be chosen such that the target application
does not become “confused” by potentially changed exter-
nal circumstances. For example, in a webserver application,
the middle of a connection-handling routine would not
be a good place to create a checkpoint since that connec-
tion may no longer exist when the checkpoint is restored.
Instead, checkpoints should be created at a “logical” begin-
ning of a unit of processing. Most long-running applica-
tions are structured around a main loop that processes
events. The start of an iteration of such a main loop is usu-
ally a good checkpointing location.

An MVX system may leave the definition of the
checkpointing location to the system administrator, or
future work may investigate how to automatically deter-
mine suitable checkpointing locations.

Another consideration is checkpointing frequency/
period: Assume checkpoints are created every nth time
execution passes a potential checkpoint creation loca-
tion. Choosing the period n decides a tradeoff between
benign program performance and performance under
attack. With a lower frequency (a larger n), the over-
head of checkpoint creation is minimized during reg-
ular execution, but the execution takes a “bigger step
back” upon checkpoint restoration, so performance
under attack decreases. Conversely, a low n causes larger
overheads even when no checkpoints are needed but
reduces the disruption when restoring is necessary.

Creating Checkpoints
At the process level, a checkpoint as a minimum will cap-
ture the memory and register contents. This will allow

purely functional programs to be restored at a later time.
However, almost all useful programs interact with the
operating system in some way, meaning the operating
system state associated with a process must be captured
as well. This includes information such as contents of
opened files, opened external sockets, child processes,
etc. Checkpoint/Restore in Userspace is a utility that is
able to capture all of this state for Linux processes and
store it to disk. It does so by pausing the process and
attaching to it using ptrace.

For many purposes, such a complete checkpoint is
not required. For example, as long as a webserver appli-
cation has robust error-handling code, it should have no
issue handling a suddenly dropped connection. There
is, therefore, a tradeoff between completeness of the
checkpoint and time taken to create the checkpoint.

Alternatively to on-disk checkpoints, checkpoints for
MVX applications can be created as in-memory only as
they are needed on a much shorter time scale than other
checkpoint/restore algorithms. Typically, these check-
points will live only for a few seconds before being sup-
planted by the next captured checkpoint during regular
execution. When creating an in-memory checkpoint,
copy-on-write semantics can be used to further reduce
the overhead: instead of copying all memory pages of the
variant, one marks them all as read-only and only copies
those pages that the process attempts to write to.15 On
Linux, the “fork” system call provides this functionality.

Outlook
Combining MVX systems with hardware heterogene-
ity and checkpoint/restore facilities results in unavoid-
able additional runtime overheads. However, in many
domains, the superlative security and survivability

Figure 2. At regular intervals, we create a checkpoint of
each variant’s execution state. If a divergence later occurs,
we can restore the most recently created checkpoint. IP:
instruction pointer.

1) Checkpoint Creation

2) Restore Upon Divergence

IP

IP

Monitor

Monitor

Authorized licensed use limited to: TU Delft Library. Downloaded on January 22,2025 at 08:52:49 UTC from IEEE Xplore. Restrictions apply.

74	 IEEE Security & Privacy� July/August 2024

MEMORY SAFETY

assurances that such systems enable often justify the
lower throughput. Critical infrastructure systems (such
as airline reservations, power, water, traffic, and bank-
ing) often comprise long-running applications that can-
not easily be restarted and where security is of critical
importance. Such systems could greatly benefit from
execution using an MVX approach that allows contin-
ued execution under attack.

We are currently evaluating a combined checkpoint/
restore–MVX system that we have been building. Our
system prototype runs on a distributed network of het-
erogeneous hardware to harness the security benefits
achieved by ISA diversity. The system we have built is
stable for real-world webserver and database applica-
tions and will be the subject of a future publication.

I n current heterogeneous MVX systems, network
communication undoubtedly is the largest contrib-

utor to overheads—even in the face of the discussed
optimizations. Although the achievable overheads
are acceptable for high-stakes domains, such systems
are less appealing for applications that cannot toler-
ate these slowdowns. Achieving heterogeneity locally,
that is, on one physical machine, could be a promis-
ing next step for opening the doors to using such sys-
tems more broadly. Performance has been the primary
focus of hardware developers in the past. However,
we believe that allocating more real estate on proces-
sors to security, for example, through heterogeneous
ISA processor architectures, could have real benefits
worth investigating. For example, novel designs might
implement different ISAs on each core of a proces-
sor while continuing to share the same memory. This
would enable the construction of heterogeneous MVX
systems with architectural vulnerability resilience at
much lower overheads.

Acknowledgment
We thank Stijn Volckaert and Jonas Vinck, Adrian
Dabrowski, and Felicitas Hetzelt for helpful discussions.

This research was funded in part by the Office of
Naval Research (ONR) under grant N00014-21-1-2409;
any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the authors
and do not necessarily reflect the views of ONR.
André Rösti is the corresponding author.

References
	 1.	 M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-

flow integrity,” in Proc. 12th ACM Conf. Comput. Commun.
Secur. (CCS), New York, NY, USA: Association for Com-
puting Machinery, 2005, pp. 340–353, doi: 10.1145/
1102120.1102165.

	 2.	 P. Larsen, A. Homescu, S. Brunthaler, and M. Franz,
“SoK: Automated software diversity,” in Proc. IEEE Symp.
Secur. Privacy, Berkeley, CA, USA, 2014, pp. 276–291,
doi: 10.1109/SP.2014.25.

	 3.	 A. Avizienis, “The N-version approach to fault-tolerant
software,” IEEE Trans. Softw. Eng., vol. SE-11, no. 12, pp.
1491–1501, Dec. 1985, doi: 10.1109/TSE.1985.231893.

	 4.	 E. D. Berger and B. G. Zorn, “DieHard: Probabilistic
memory safety for unsafe languages,” in Proc. 27th ACM SIG-
PLAN Conf. Program. Lang. Des. Implementation (PLDI),
New York, NY, USA: Association for Computing Machin-
ery, 2006, pp. 158–168, doi: 10.1145/1133981.1134000.

	 5.	 B. Cox et al., “N-variant systems: A secretless framework
for security through diversity,” in Proc. 15th Conf. USE-
NIX Secur. Symp. - Volume 15 (USENIX-SS), Berkeley,
CA, USA: USENIX Association, 2006, Art. no. 9.

	 6.	 D. Bruschi, L. Cavallaro, and A. Lanzi, “Diversified
process replicæ for defeating memory error exploits,” in
Proc. IEEE Int. Perform., Comput. Commun. Conf., Pisca-
taway, NJ, USA: IEEE, 2007, doi: 10.1109/PCCC.2007.
358924.

	 7.	 B. Salamat, T. Jackson, A. Gal, and M. Franz, “Orchestra:
Intrusion detection using parallel execution and monitor-
ing of program variants in user-space,” in Proc. 4th ACM
Eur. Conf. Comput. Syst. (EuroSys), New York, NY, USA:
Association for Computing Machinery, 2009, pp. 33–46,
doi: 10.1145/1519065.1519071.

	 8.	 P. Hosek and C. Cadar, “VARAN the unbelievable: An
efficient N-version Execution framework,” in Proc. 20th
Int. Conf. Archit. Support for Program. Lang. Oper. Syst.
(ASPLOS), New York, NY, USA: Association for Com-
puting Machinery, 2015, pp. 339–353, doi: 10.1145/
2694344.2694390.

	 9.	 S. Volckaert et al., “Secure and efficient application moni-
toring and replication,” in Proc. USENIX Conf. USENIX
Annu. Tech. Conf. (USENIX ATC), Berkeley, CA, USA:
USENIX Association, 2016, pp. 167–179.

	10.	 A. Venkat et al., “HIPStR: Heterogeneous-isa program
state relocation,” in Proc. 21st Int. Conf. Archit. Sup-
port Program. Lang. Oper. Syst., 2016, pp. 727–741, doi:
10.1145/2872362.2872408.

	11.	 S. Volckaert, B. Coppens, B. De Sutter, K. De Boss-
chere, P. Larsen, and M. Franz, “Taming parallelism in a
multi-variant execution environment,” in Proc. 12th Eur.
Conf. Comput. Syst. (EuroSys), New York, NY, USA: Asso-
ciation for Computing Machinery, 2017, pp. 270–285,
doi: 10.1145/3064176.3064178.

	12.	 H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and
Z. Liang, “Data-oriented programming: On the expres-
siveness of non-control data attacks,” in Proc. IEEE Symp.
Secur. Privacy (SP), San Jose, CA, USA, 2016, pp. 969–
986, doi: 10.1109/SP.2016.62.

	13.	 E. Göktas et al., “Position-independent code reuse: On
the effectiveness of ASLR in the absence of information

Authorized licensed use limited to: TU Delft Library. Downloaded on January 22,2025 at 08:52:49 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/SP.2014.25
http://dx.doi.org/10.1109/TSE.1985.231893
http://dx.doi.org/10.1145/1133981.1134000
http://dx.doi.org/10.1109/PCCC.2007.358924
http://dx.doi.org/10.1145/1519065.1519071
http://dx.doi.org/10.1145/2872362.2872408
http://dx.doi.org/10.1145/3064176.3064178
http://dx.doi.org/10.1109/SP.2016.62
http://dx.doi.org/10.1145/1102120.1102165
http://dx.doi.org/10.1145/1102120.1102165
http://dx.doi.org/10.1109/PCCC.2007.358924
http://dx.doi.org/10.1145/2694344.2694390
http://dx.doi.org/10.1145/2694344.2694390

www.computer.org/security� 75

disclosure,” in Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P),
London, U.K., 2018, pp. 227–242, doi: 10.1109/EuroSP.
2018.00024.

	14.	 A. Voulimeneas et al., “Distributed heterogeneous
N-variant execution,” in Proc. 17th Int. Conf. Detection Intru-
sions Malware, Vulnerability Assessment (DIMVA), Lisbon,
Portugal. Berlin, Germany: Springer-Verlag, Jun. 24–26,
2020, pp. 217–237, doi: 10.1007/978-3-030-52683-2_11.

	15.	 J. S. Plank, K. Li, and M. A. Puening, “Diskless check-
pointing,” IEEE Trans. Parallel Distrib. Syst., vol. 9, no. 10,
pp. 972–986, Oct. 1998, doi: 10.1109/71.730527.

André Rösti is a Ph.D. student at the University of Califor-
nia, Irvine, Irvine, CA 92697-3425 USA. His research
focuses primarily on systems software. Rösti received
his M.S. in computer science from the University of
California, Irvine. Contact him at aroesti@uci.edu.

Alexios Voulimeneas is an assistant professor at TU Delft,
2628 XE Delft, The Netherlands. His research inter-
ests broadly include systems security, operating sys-
tems, and computer networks. Voulimeneas received
his Ph.D. in computer science from the University of
California, Irvine. Contact him at a.voulimeneas@
tudelft.nl.

Michael Franz is a distinguished professor at the Uni-
versity of California, Irvine, CA 92697-3425 USA.
His research focuses on computer security, systems,
and software. Franz received a doctor of science from
ETH Zurich. He is a Fellow of IEEE, the Association
for the Advancement of Science, the Association for
Computing Machinery, and the International Fed-
eration for Information Processing. Contact him at
franz@uci.edu.

IEEE Pervasive Computing

seeks accessible, useful papers on the latest

peer-reviewed developments in pervasive,

mobile, and ubiquitous computing. Topics

include hardware technology, software

infrastructure, real-world sensing and

interaction, human-computer interaction,

and systems considerations, including

deployment, scalability, security, and privacy.

 Call
 for Articles

Author guidelines:

www.computer.org/mc/

pervasive/author.htm

Further details:

pervasive@computer.org

www.com
puter.o

rg/perv
asive

Digital Object Identifier 10.1109/MSEC.2024.3425118

Authorized licensed use limited to: TU Delft Library. Downloaded on January 22,2025 at 08:52:49 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/EuroSP.2018.00024
http://dx.doi.org/10.1007/978-3-030-52683-2_11
http://dx.doi.org/10.1109/71.730527
mailto:aroesti@uci.edu
mailto:a.voulimeneas@tudelft.nl
mailto:a.voulimeneas@tudelft.nl
mailto:franz@uci.edu
http://dx.doi.org/10.1109/EuroSP.2018.00024

	066_22msec04-rosti-3407648

