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MEMORY SAFETY

The Astonishing Evolution of Probabilistic 
Memory Safety
From Basic Heap-Data Attack Detection Toward  

Fully Survivable Multivariant Execution

André Rösti  | University of California, Irvine
Alexios Voulimeneas   | TU Delft
Michael Franz  | University of California, Irvine 

Probabilistic memory safety combines randomization and replication in the hope that attacks will 
lead to observable differences across the replicas and hence be detected. It has evolved from simple 
heap-data protection to full-fledged survivability, harnessing checkpoint/restore facilities and 
hardware heterogeneity.

A s attacks exploiting memory vulnerabilities have 
become more sophisticated over time, so have 

the defenses against them. Some of the earliest cyberat-
tacks were focused on directly injecting malicious code 
into running processes.

Introduction
One of the early successful defenses introduced hardware- 
based memory page permissions that ensured pages 
were either writable or executable, but never both, 
thus stopping direct code injection attacks. Of course, 
this did not end all cyberattacks; it just led the attack-
ers to come up with more creative approaches, such as 

return-oriented programming (ROP). Over the course 
of the past three decades, a vast amount of research has 
studied ways of enforcing control-flow integrity,1 the 
goal of which is to ensure that the execution of a pro-
gram follows only the paths originally expressed in its 
source code. This research has significantly raised the 
bar for attackers trying to divert control flow.

Unfortunately, attackers can cause damage not only 
through control-flow attacks, but also by changing 
noncontrol data. Hence, a second body of research has 
studied more general ways of ensuring memory-data 
integrity. A fundamental reason why enforcing memory- 
data integrity is hard in general is the existence of point-
ers and dynamic memory management. There are many 
things that can go wrong in programs manipulating data 
via pointers, including stale pointers (use-after-frees), in 
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which a pointer access path still remains to a memory 
area that is no longer occupied by the original data the 
pointer relates to, and out of bounds accesses, in which a 
valid access path enables manipulation of data it isn’t 
supposed to.

One of the successful approaches to the memory-data 
integrity problem has been probabilistic memory safety, 
which is the topic of this article. This was originally 
proposed by Berger and Zorn in their DieHard article.4 
The authors described a system that approximates an 
infinite-sized heap and in which the memory manager 
randomizes the location of objects. Further, their system 
can run in replicated mode, in which multiple replicas 
of the data are randomized differently. Since errors or 
deliberate memory corruption attacks are unlikely to 
affect the randomized replicas in the same manner, this 
enables detection of memory corruption errors. This 
approach combines elements from earlier work on soft-
ware diversity2 and N-version programming.3

In particular, in DieHard the heap is protected proba-
bilistically from overflows, double-frees, use-after-frees, 
and uninitialized reads. The allocator uses random-
ized allocations and adds random padding between 
objects. The additional space between objects mimics 
an ideal scenario where objects on the heap would be 
infinitely spaced, and thus buffer overruns would be 
inconsequential. The random locations of new alloca-
tions thwart pointer reuse. Replicated parallel execution 
of the same program protects from uninitialized reads. 
Thanks to the randomized addresses produced by Die-
Hard’s allocator, uninitialized reads likely yield differ-
ent random data in multiple executions of the program. 
DieHard detects these diverging outputs and aborts 
execution when they occur.

DieHard pioneered probabilistic memory protec-
tion for the heap. Other researchers soon seized on 
the idea of combining randomization and replication 
more generally. This led to the development of what 
we today call multivariant execution (MVX) systems, 
which run multiple variants of a program in lockstep 
and cross-check their states frequently.5 When such sys-
tems detect a divergence, they abort program execution.

MVX systems differ from their precursor, N-version 
systems, in the way program variations are created. In 
N-version systems, the assumption is that the different 
program versions would be created manually by indepen-
dent teams of programmers (often in different program-
ming languages) from the same specification. Because of 
the resulting high development costs, such systems have 
been employed only in niche high-assurance areas, such 
as fly-by-wire avionics. In contrast to this, in MVX sys-
tems, the different variants are typically generated auto-
matically by a compiler from a single set of source code 
files, and the variants are typically more similar to each 

other. This approach has significantly lower cost because 
of the automatic variant generation.

As an improvement over the protections afforded by 
DieHard, in which program variants differ only in their 
heap layout, many different kinds of software diversity 
are available for MVX systems, and modern compilers 
are able to mostly automate the variant creation pro-
cess. Generally, the more diverse the variants are from 
each other, the broader the protection. For example, by 
alternating stack growth direction between variants, the 
stack can be protected in addition to the heap.

MVX systems have matured significantly since their 
first conception, broadening their applicability (mul-
tithreading, memory-dependent behavior, and GUI 
applications).11 However, certain classes of attacks 
continue to evade detection in most MVX systems. 
Examples include data-oriented programming attacks 
and position-independent code reuse.12,13 The prob-
lem in these cases is limited diversity: program variants 
are not sufficiently different in single-machine setups to 
cause observable divergences under these attacks. Dis-
tributed MVX systems across distinct machines with 
heterogeneous hardware address the limited diversity 
problem.14 The added hardware heterogeneity leads to 
increased software diversity, improving security. Using a 
heterogeneous MVX system on processors with diverse 
instruction set architectures (ISAs) significantly raises 
the bar for the two aforementioned attacks.

With these advances, MVX systems are already an 
incredibly powerful defense for a broad class of attacks 
today. We believe that the two most interesting develop-
ments lying ahead for MVX systems are 1) the devel-
opment of computers with internal heterogeneous 
hardware that allows these systems to harness hardware 
diversity in a more efficient manner, and 2) the addi-
tion of guaranteed survivability, achieved by combining 
MVX systems with checkpoint/restore facilities.

As noted, heterogeneous hardware enables the detec-
tion of otherwise elusive attacks by adding further diver-
sity into program variants. For example, alignment 
requirements across different hardware can significantly 
complicate pointer reuse. Existing systems that provide 
hardware heterogeneity are set up as a distributed net-
work of separate machines, which adds networking over-
head; by colocating heterogeneous hardware within the 
same computer, this additional overhead can be avoided.

MVX systems can also achieve survivability via check-
point/restore facilities.15 This is a natural next step— 
recovering detected attacks instead of aborting execu-
tion altogether. The straightforward idea is to capture 
the program state at regular intervals during execution 
and reverse to a last-known “good” state upon detec-
tion of a divergence. In practice, for example, for a web-
server application, this may mean dropping an attacker’s 
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connection upon an attempted exploit and continuing 
to serving regular users.

In the remainder of this article, we will revisit the 
evolution of MVX. We will then cover the interesting 
aspects and considerations of heterogeneous MVX sys-
tems and combine them with checkpoint/restore facili-
ties, based on a prototype system with these capabilities 
that we have been building. As we explain, such a system 
can prevent a broad class of memory exploits, without 
sacrificing availability. We conclude with an outlook 
toward even more advanced future developments.

The Evolution of MVX

Software Diversity
While, for most purposes, the predictability of deter-
ministic computer programs is a strength, it is detri-
mental to security: even exploitable “undefined” or 
unintended behavior is often deterministic. Attackers 
can therefore prepare for an attack offline, examining 
and exercising an application until they find a vulner-
ability. When it is time to deploy the attack on a live sys-
tem, the predictability of the program execution means 
that it will likely succeed.

Adding to this problem is the prevalence of mono-
cultures in software. In many domains, a single or only 
a handful of pieces of software dominates—take, for 
example, specialized software libraries used by many 
programs, such as cryptography, compression, or encod-
ing libraries. A single vulnerability in any such popular 
piece of software may put a large number of users at risk.

To break the high predictability aspects of programs, 
we need to reintroduce diversity. An early mitigation to 
do so was Berger and Zorn’s DieHard.4 In DieHard, the 
memory allocator randomizes placement of objects on 

the heap, making it much harder to reliably overwrite 
data in pinpoint locations. These sorts of randomiza-
tions of program behavior and implementations are 
the common theme in (automated) software-diversity-
based defenses.

Besides randomizing the heap memory layout, as 
pioneered by DieHard, many other program aspects 
can be made nondeterministic. For example, addresses 
of functions (or even individual basic blocks) can be 
easily randomized at compile or link time.2 This added 
diversity complicates a large number of exploits that 
depend on the program details being randomized, such 
as specific expected addresses, offsets, sizes of data 
structures, the availability and specific structure of gad-
gets, and so on.

Recently, researchers have explored harnessing hard-
ware platform heterogeneity to produce software varia-
tions. Processors implementing various diverse ISAs 
are available to consumers; programs compiled for 
these hardwares vary in their used application binary 
interface (ABI), endianness, and overall memory layout 
and alignment requirements. Further diversity can stem 
from the differences in operating system implementa-
tions across hardware architectures, such as differences 
in the system call interface.10

No matter how the diversity is obtained, by adding 
variability, attackers are forced to specialize their attacks 
to one variant. However, these defenses remain proba-
bilistic—if the attackers “guess” (or somehow learn, 
through an information disclosure) the right variant, no 
additional security is provided. Furthermore, probabi-
listic memory defenses cannot protect against all classes 
of attacks. For example, code-reuse attacks may succeed 
even in randomized environments.

MVX
To improve upon the deficiencies of standalone soft-
ware diversity, MVX systems detect exploits through 
parallel execution of multiple program variants.6,7 (See 
Figure 1.) In this way, it becomes impossible for an attack 
specialized on only one variant to succeed—the attack-
ers have to adapt to all variants at once. For example, 
code-reuse attacks (such as return-into-libc or ROP) 
or data-only exploits are still possible even when some 
software diversity (such as address space layout ran-
domization) is deployed, whereas MVX systems have a 
much higher probability of detecting them.

Under MVX, all variants receive identical inputs 
throughout their execution. To an end user, it appears 
as if only a single program is running. Periodically, a 
trusted monitor component checks whether all variants 
are behaving identically. Typically, this “cross-checking” 
takes place at the granularity of system calls; that is, 
the monitor verifies that all variants execute the same 

Figure 1. In multivariant execution, automatically 
diversified program variants execute in parallel on identical 
inputs while a monitor cross-checks for identical behavior.
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system calls with equivalent arguments. As the variants 
are derived from the same source program, their intended 
benign behavior should be identical. However, we expect 
a detectable divergence during an attempted attack with 
high probability because many low-level memory attacks 
depend on implementation details and undefined behav-
ior, which varies between properly diversified variants. 
As shown in previous work, the system call behavior 
does indeed diverge only under attack for a large class 
of exploits. If an attack is detected, all variants are halted 
immediately in conventional MVX systems.

For certain vulnerabilities, variants can even be 
constructed such that a divergence is guaranteed. For 
example, attacks that rely on absolute code addresses 
can be deterministically spoiled by making executable 
memory regions disjoint between variants; any execut-
able address is not executable in the other.

We note one limitation that results from using auto-
mated diversity: vulnerabilities that are fundamentally 
a part of an application’s design cannot be detected. 
Automated diversity randomizes only implementation 
details, keeping the original program semantics intact. 
If a program’s logic is flawed, those flawed semantics are 
preserved. MVX systems protect primarily against vul-
nerabilities that are an accidental consequence of imple-
mentation specifics (such as memory allocator choices).

DieHard’s “replicated mode” qualifies as an early 
MVX system. The diversity in its variants stems from the 
use of a memory allocator that randomizes the location 
of objects on the heap, and DieHard incorporates a mon-
itor that cross-checks the outputs of variants at barriers. 
This early system was concerned only with reliability, 
not security.4 Subsequent systems incorporated more 
diverse variants by making use of the various sources of 
automated software diversity outlined previously, such 
as memory layout and instruction selection.5,6

In early MVX systems, the monitor component was 
implemented in the operating system kernel. The pro-
totype in the work of Bruschi et al.6 was the first solu-
tion to run entirely in userspace. Making the monitor 
a userspace program is beneficial to security, stability, 
and ease of implementation. It reduces the trusted code 
base, honors the principle of least privilege, and makes 
use of the process isolation provided by the operating 
system to separate the monitor from the monitored 
application. However, this approach can increase the 
runtime overheads significantly. VARAN8 aimed to 
improve performance through binary rewriting; in 
this system, the monitor resides in the same address 
space as the application, and all system call instruc-
tions are rewritten to be jumps into the monitor. In 
contrast to other MVX systems, such as Orchestra,7 
whose goal is security, VARAN’s aim is to increase reli-
ability in case of crashes. VARAN cannot provide any 

security guarantees because of its architecture; the 
monitor is as vulnerable as the application it aims to 
protect. On the other hand, ReMon,9 a subsequently 
published system, aims to be both secure and perfor-
mant by using a hybrid monitor design and specific 
cross-checking policies. The basic idea is to categorize 
system calls as security critical and nonsecurity critical. 
Then, a hardened in-process monitor efficiently han-
dles nonsecurity-critical system calls, while a slower 
cross-process monitor handles the rest.

Previous research has explored how to overcome 
some of the limitations of MVX systems, such as work-
ing around the false positive divergences that would be 
observed because of scheduling differences in multi-
threaded programs.11 Shared memory support, support 
for address-dependent behavior, and signal delivery 
issues have also been discussed.

Baseline: A Conventional MVX System
MVX systems are traditionally implemented on a sin-
gle physical machine. Let us first dive into the typical 
design considerations of such a “conventional” MVX 
system, before we look into extending it to a heteroge-
neous, multimachine environment.

A typical MVX system comprises at least the follow-
ing three functionalities:

	■ A scheme for obtaining multiple distinct program vari-
ants. The variances between variants are crucial for 
determining which types of attacks the MVX system 
will be able to defend against.

	■ A cross-checking component, which compares the cur-
rent execution state of all variants, assuring continued 
congruence of each variant’s state. Upon a divergence, 
typical MVX systems abort execution as an attempted 
exploitation of a vulnerability is suspected.

	■ A replication and multiplexing component, which 
makes the MVX transparent to the end user. The goal 
is to make it appear as though only one program were 
running, by sharing necessary resources that cannot 
be duplicated.

Variant generation can take place at any stage of the 
program lifecycle. The cross-checking and replication 
take place at runtime and are responsibilities of a “moni-
tor” component.

Variant Generation
Any of the approaches established in the large body of 
research into software diversity can be used to generate 
variants for MVX execution.

A fairly recent, promising idea for variant genera-
tion is the use of diverse hardware, particularly proces-
sors with differing ISAs.14 ISAs differ in their available 
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instructions, instruction encodings, and sizes, leading to 
entirely different binaries after compilation. Addition-
ally, ABIs and (often) system call interfaces vary across 
architectures. Thus, if the source code of the target 
application is available, compiling and running multiple 
variants on different ISA hardware protects against all 
vulnerabilities that expose any difference across these 
various layers. For example, consider a code injection 
attack that injects the same binary payload into all vari-
ants. The only way for such an attack to succeed is if the 
payload decodes to valid instructions in both ISAs simul-
taneously; even a single ill-formed instruction will cause 
an exception in one of the variants that can be detected.

Monitor Component
The monitor component ensures lockstep execution of 
the program variants by synchronizing and cross-checking 
all program variants at “rendez-vous points.” Additionally, 
the monitor replicates the same program inputs to all vari-
ants. A straightforward choice for rendez-vous points is 
to use system call invocations: this provides sufficient secu-
rity guarantees since any dangerous outside-world inter-
action that a program variant can make is through the 
use of a system call. However, denial-of-service attacks 
are not detectable at the system call level since attackers 
can stall a program without the use of any system calls. 
Such attacks can be detected by adding rendez-vous 
points at regular time intervals.

System call interposition and cross-checking. To cross- 
check variants, a means of intercepting system calls 
efficiently is needed. Naively implemented, system call 
interposition can end up being the bottleneck of the 
system as it requires switching from a variant execution 
context to the monitor’s context. It is critical that the 
monitor is sufficiently isolated from the variant; a vul-
nerability in the variant should remain contained to the 
variant. Without proper isolation, attackers could com-
promise the monitor itself and circumvent its checks.

System call interposition and, more broadly, moni-
tor implementations, can be categorized into three cate-
gories: in-kernel monitors, which perform all their work 
inside the kernel; cross-process monitors, which inter-
cept system calls from a userspace process separate from 
the variant process; and in-process monitors, which are 
colocated in the same process as the variant.

In-kernel monitors hook into the system call entry 
and exit handlers, and they have full access to the vari-
ant’s memory, allowing them to freely inspect and 
modify any data needed. However, the principle of 
least privilege suggests that incorporating a large piece 
of software like a monitor component in the kernel, 
when only a small portion of that software requires 
escalated privileges, is unwise. Compared to userspace 

development, writing kernel code is more involved, and 
bugs are more consequential.

In cross-process monitors, a separate userspace moni-
tor process receives a notification from the kernel when-
ever the variant process attempts to issue a system call 
or receives a signal. Debugging features of the operating 
system (“ptrace” in Linux) enable this. Reading the vari-
ant’s memory requires an indirection through the kernel 
(for example, “process_vm_readv”). These context and 
mode switches properly isolate the monitor from the vari-
ant, but they come with hefty performance overheads.

In-process monitors, like cross-process monitors, are 
implemented in userspace. Unlike cross-process moni-
tors, they are part of the same address space as their 
monitored application. Implemented as a shared library, 
for example, the monitor code can be “injected” into the 
variant process (using “LD_PRELOAD” in Linux). An 
alternative is to instrument code using binary rewriting. 
Such approaches allow fast variant memory reads from 
the monitor. However, the monitor is not isolated from 
the variant whatsoever in these approaches, limiting 
their use to scenarios where reliability, but not security, 
is a concern.

We believe an ideal compromise for security-focused 
systems is a hybrid in-kernel and in-process approach: 
locating the monitor within the monitored process 
allows low-overhead interactions, while a minimal ker-
nel module provides the necessary isolation. This strikes 
a balance between the performance penalty of a fully 
isolated monitor in a separate process and the complex-
ity and exposure of a fully in-kernel implementation.

Once a system call has been intercepted, the monitor 
cross-checks it between all variants. This encompasses 
comparing the system call number and its arguments 
to assure all variants are requesting equivalent services 
from the operating system. Note that, at this stage, sys-
tem call arguments must be serialized by the monitor 
for comparison. Pointer arguments, for example, must 
be resolved to their pointed-to values as the addresses 
in each variant might diverge. (In fact, in properly diver-
sified variants, addresses should diverge.) When point-
ers point to variable-length buffers, other system call 
arguments can be inspected to learn the length of the 
pointed-to buffer. For example, the “read” and “write” 
system calls take pointers to preallocated buffers to read 
data into or write data from; an additional argument 
gives their (maximum) length.

Input–output replication and multiplexing. To a user of 
an application, MVX should be indistinguishable from 
running a single program variant. This means that pro-
gram inputs given by the user must be replicated to all 
program variants. Conversely, although all program 
variants produce some output, only one result should 
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be returned to the user. To facilitate this, MVX systems 
incorporate input–output (I/O) replication functional-
ities. Any outward-facing resources, such as open sock-
ets and standard I/O, are shared by all program variants. 
System calls interacting with these outward-facing 
resources are executed once—if all variants executed 
them individually, it would be observable to the user (for 
example, as multiple outputs) or lead to divergences in 
the variant’s behaviors.

Most MVX systems implement a leader/follower 
design to facilitate replication. A designated leader vari-
ant performs all outward-facing I/O and informs its fol-
lowers of the results upon completion. The followers 
copy results back to make it appear as though the system 
call executed locally.

Additionally, certain resource identifiers, such as 
file descriptor numbers and process IDs, often diverge 
between variants, even though the referenced resources are 
the same. To facilitate comparison between variants with-
out false positive divergences, the monitor should multi-
plex resource identifiers. One approach is to keep a set of 
“canonical” identifiers and a mapping to their local values.

The Cost of Conventional MVX Systems
Since MVX systems require the parallel execution of N 
program variants, one could reasonably expect at least 
an N-times overhead. Surprisingly, the costs of deploy-
ing such systems are often lower in practice.

Although computation happens N-fold in an MVX 
system, I/O is shared between variants. This helps 
I/O-bound applications, such as webservers. The first 
MVX system reported ≈16% overhead for an unloaded 
Apache server (two variants), although that number did 
rise to ≈1.9× in a saturated network.5 Later work was 
able to reduce this to ≈34%.9 Throughput was measured 
from a client located within the same rack as the server. If 
the client has a higher-latency connection—a more real-
istic scenario—the overheads reduce to less than 2.5%.

In theory, MVX systems will introduce N-fold run-
time overheads for applications that are already under 
full load during regular (non-MVX) execution. In prac-
tice, CPU cores are often underutilized, and MVXs 
may be specifically deployed on systems with ample 
spare resources; therefore, the reported overheads for 
benchmarks such as SPECint2006 are between 18% 
and 4%. In the best case, MVX systems have achieved 
near-native performance.8,9

Adding Heterogeneity: MVX Across 
Diverse Machines
Running all variants on the same physical machine, as 
is done in the vast majority of established MVX sys-
tems, leaves programs vulnerable to architecture-specific 
exploits. Diversity obtained through heterogeneous 

hardware is powerful because it further reduces the set 
of undetectable vulnerabilities. It is relatively easy to 
obtain additional protections, stemming from the ABI 
and ISA heterogeneity, just by recompiling the same 
software for different platforms. Heterogeneity can also 
come from other hardware or convention differences, 
such as different endianness, structure layouts, or avail-
able system calls.

In current heterogeneous MVX systems, monitors run 
on physically separate machines; this is called “distrib-
uted MVX.” These machines are interconnected with a 
high-bandwidth, low-latency link, and this link is utilized 
to cross-check and replicate results between variants.

As opposed to a system that executes variants on the 
same machine, a heterogeneous and distributed MVX 
environment faces additional challenges. For one, cross- 
checking between variants involves network communica-
tion, significantly shifting the overheads. Cross-checking 
the states of the variants becomes more involved as the 
state representations differ across architectures. For exam-
ple, the set of available system calls, and their numbers, 
differ on x86_64 and ARM64 Linux. A canonicalization 
phase, which translates an architecture-specific state into a 
platform-agnostic canonical form, is required.

Networking Considerations
In a local MVX system, shared memory primitives can 
facilitate fast cross-checking and replication across vari-
ant processes. In a distributed system, the network com-
munication quickly becomes the biggest overhead. To 
achieve a workable system, a low-latency, high-bandwidth 
connection between constituent machines is paramount. 
In previous work, we have employed InfiniBand connec-
tions between directly connected hosts in the same rack 
with remote direct memory access network drivers to 
minimize these overheads. Further optimizations to con-
sider include the following:

	■ Cross-checking policy: Relieving some noncritical system 
calls from cross-checking, or deferring cross-checking 
to a later point, reduces the amount of required net-
work communication and opens the door for the opti-
mizations discussed here.

	■ Asynchronous replication: For cross-check-exempted 
system calls, the leader does not need to execute strictly 
in lockstep with followers; asynchronous replication 
makes use of this.

	■ Batching of replication information: Perhaps counterin-
tuitively, batching replication information can reduce 
overall system latency.

Cross-checking policy. It has been shown that, depend-
ing on the class of attacks one wishes to defend against, 
cross-checking all system calls is not required. An efficient 
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monitor should support different policies that omit cer-
tain system calls from cross-checking to adjust a safety/
overhead tradeoff based on the application. Previous 
work9 used the following policies:

	■ Code execution: checks only execve, mmap, and mprotect
	■ Information disclosure: checks all read/write system 

calls in addition to the ones checked by the code execu-
tion policy

	■ Comprehensive: cross-checks all system calls.

Developers of MVX systems manually define these 
policies ahead of deployment. A policy can be as simple as 
a list of system calls deemed safe under the assumed threat 
model. More detailed policies may additionally consider 
arguments. For example, if the goal is to protect against 
information disclosure to a remote attacker, one may 
consider write system calls to be safe unless they write to 
a socket. Defining policies is a simple one-time process. 
During execution, the policies are applied automatically.

Asynchronous replication. I/O replication is required for 
system calls interacting with outward-facing resources. 
In a naive implementation, the leader node, after send-
ing replication information, may wait for the follower(s) 
to acknowledge receipt.

However, this is not necessary for system calls that 
are exempt from cross-checking. Instead, the leader 
can append its replication information to a queue and 
immediately continue variant execution, while another 
process disperses the replication information in paral-
lel. Through this “fire-and-forget” approach, some of 
the network communication happens concurrently with 
useful variant execution on the leader. Once the fol-
lowers arrive at the same point in program execution, 
they will consume the required replication information 
from the queue and continue. If they arrive at that point 
before the leader does, they block and wait for the leader.

Replication batching. In addition to the cost of exchang-
ing useful information, each network exchange between 
monitors adds some amount of communication over-
head, such as required message headers and acknowl-
edgments. This overhead can become unreasonably 
large and dominate over the useful payload exchanged, 
especially when a large number of small messages is 
exchanged. For example, the “gettime” system call must 
be replicated (all variants should receive the same time 
stamp), but the data sent are only a few bytes (a long 
integer, the time stamp).

Perhaps counterintuitively, batching replication infor-
mation can reduce the overall latency of the system. 
The general idea is for the leader to “collect” replica-
tion information for multiple system calls until the 

replication batch reaches a certain threshold size or until 
the system encounters a system call that requires syn-
chronization. The collected information for multiple 
system calls is then sent, all at once, to followers. In this 
way, a single message header and acknowledgment will 
carry a payload of multiple system calls, amortizing the 
communication overhead. Since program execution is 
considerably faster than network communication, paus-
ing variants until a batch of replication information is 
received and then executing a sequence of system calls 
“all at once” overall benefits the system performance.

Canonical System Call Form
In the cross-checking phase, MVX monitors must 
ensure the same system calls are issued with identical 
arguments. On a conventional MVX system, this con-
sists of a straightforward comparison of the attempted 
system call number and its serialized arguments.

On a heterogeneous system, cross-checking requires 
an additional “canonicalization” phase. In this phase, 
data are transformed into a platform-agnostic normal-
ized form. System call interfaces, for example, argument 
data types, diverge between different architectures. 
For example, if the heterogeneous system employs one 
little-endian and one big-endian architecture, all integer 
arguments larger than one byte must be translated into 
a canonical form before comparison.

For results replication, a de-canonicalization process 
also needs to take place. For example, the “gettime” sys-
tem call on x86_64, which is not present on ARM64 
Linux, may be canonicalized to a “gettimeofday” system 
call upon entry for cross-checking. If the call is executed 
on x86_64, the time stamp return value obtained must 
be plugged into a “struct timeval”, the expected return 
value of “gettimeofday” on ARM64, and vice versa if the 
“gettimeofday” call is executed on ARM, and its results 
must be replicated into a “gettime” return value.

Adding Survivability: Checkpoint/Restore
We have discussed MVX behavior during regular, 
benign execution. What should an MVX system do 
when, during cross-checking, a divergence is detected? 
Previous research answered this question by stopping 
execution of the program altogether. We believe an 
MVX system could be made more useful by managing 
divergences using checkpoint/restore. MVX systems 
are often deployed to protect critical infrastructure, 
such as webservers; in such applications, availability is 
an important requirement that is usually as important as 
security. By providing MVX systems with a checkpoint/
restore mechanism, we can satisfy both of those require-
ments: not just security, but also availability.

Checkpoint/restore has been an established tech-
nique since the 1990s to enable fault tolerance.15 The 
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program state, such as the memory and register con-
tents, is captured and stored at regular intervals. When 
needed, this stored state can be restored to resume pro-
gram execution at the previously stored “snapshot.” 

Integrating MVX with checkpoint/restore is a straight-
forward idea: the MVX monitor takes on an additional 
responsibility of creating checkpoints at regular inter-
vals during regular program execution. (See Figure 2.) 
These checkpoints are created only as long as all vari-
ants agree on the program state. Upon a divergence, the 
last checkpoint can be restored to resume execution 
from a previous uncompromised state. Restoring to a 
previous checkpoint may discard some useful work that 
the application already did (for example, in the case of 
a webserver, dropping some users’ connections). How-
ever, the overall downtime is less than if the application 
were terminated and restarted because checkpoints 
keep most of the built-up state of the application.

Checkpointing Locations
One critical consideration when adding checkpoint/
restore functionality to an MVX system is the choice of 
checkpointing location and frequency. The checkpointing 
location should be chosen such that the target application 
does not become “confused” by potentially changed exter-
nal circumstances. For example, in a webserver application, 
the middle of a connection-handling routine would not 
be a good place to create a checkpoint since that connec-
tion may no longer exist when the checkpoint is restored. 
Instead, checkpoints should be created at a “logical” begin-
ning of a unit of processing. Most long-running applica-
tions are structured around a main loop that processes 
events. The start of an iteration of such a main loop is usu-
ally a good checkpointing location.

An MVX system may leave the definition of the 
checkpointing location to the system administrator, or 
future work may investigate how to automatically deter-
mine suitable checkpointing locations.

Another consideration is checkpointing frequency/
period: Assume checkpoints are created every nth time 
execution passes a potential checkpoint creation loca-
tion. Choosing the period n decides a tradeoff between 
benign program performance and performance under 
attack. With a lower frequency (a larger n), the over-
head of checkpoint creation is minimized during reg-
ular execution, but the execution takes a “bigger step 
back” upon checkpoint restoration, so performance 
under attack decreases. Conversely, a low n causes larger 
overheads even when no checkpoints are needed but 
reduces the disruption when restoring is necessary.

Creating Checkpoints
At the process level, a checkpoint as a minimum will cap-
ture the memory and register contents. This will allow 

purely functional programs to be restored at a later time. 
However, almost all useful programs interact with the 
operating system in some way, meaning the operating 
system state associated with a process must be captured 
as well. This includes information such as contents of 
opened files, opened external sockets, child processes, 
etc. Checkpoint/Restore in Userspace is a utility that is 
able to capture all of this state for Linux processes and 
store it to disk. It does so by pausing the process and 
attaching to it using ptrace.

For many purposes, such a complete checkpoint is 
not required. For example, as long as a webserver appli-
cation has robust error-handling code, it should have no 
issue handling a suddenly dropped connection. There 
is, therefore, a tradeoff between completeness of the 
checkpoint and time taken to create the checkpoint.

Alternatively to on-disk checkpoints, checkpoints for 
MVX applications can be created as in-memory only as 
they are needed on a much shorter time scale than other 
checkpoint/restore algorithms. Typically, these check-
points will live only for a few seconds before being sup-
planted by the next captured checkpoint during regular 
execution. When creating an in-memory checkpoint, 
copy-on-write semantics can be used to further reduce 
the overhead: instead of copying all memory pages of the 
variant, one marks them all as read-only and only copies 
those pages that the process attempts to write to.15 On 
Linux, the “fork” system call provides this functionality.

Outlook
Combining MVX systems with hardware heterogene-
ity and checkpoint/restore facilities results in unavoid-
able additional runtime overheads. However, in many 
domains, the superlative security and survivability 

Figure 2. At regular intervals, we create a checkpoint of 
each variant’s execution state. If a divergence later occurs, 
we can restore the most recently created checkpoint. IP: 
instruction pointer.
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assurances that such systems enable often justify the 
lower throughput. Critical infrastructure systems (such 
as airline reservations, power, water, traffic, and bank-
ing) often comprise long-running applications that can-
not easily be restarted and where security is of critical 
importance. Such systems could greatly benefit from 
execution using an MVX approach that allows contin-
ued execution under attack.

We are currently evaluating a combined checkpoint/
restore–MVX system that we have been building. Our 
system prototype runs on a distributed network of het-
erogeneous hardware to harness the security benefits 
achieved by ISA diversity. The system we have built is 
stable for real-world webserver and database applica-
tions and will be the subject of a future publication.

I n current heterogeneous MVX systems, network 
communication undoubtedly is the largest contrib-

utor to overheads—even in the face of the discussed 
optimizations. Although the achievable overheads 
are acceptable for high-stakes domains, such systems 
are less appealing for applications that cannot toler-
ate these slowdowns. Achieving heterogeneity locally, 
that is, on one physical machine, could be a promis-
ing next step for opening the doors to using such sys-
tems more broadly. Performance has been the primary 
focus of hardware developers in the past. However, 
we believe that allocating more real estate on proces-
sors to security, for example, through heterogeneous 
ISA processor architectures, could have real benefits 
worth investigating. For example, novel designs might 
implement different ISAs on each core of a proces-
sor while continuing to share the same memory. This 
would enable the construction of heterogeneous MVX 
systems with architectural vulnerability resilience at 
much lower overheads. 
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