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SUMMARY

Extensive efforts in cancer research over the past decades have markedly improved di-
agnosis and treatments, leading to better outcomes for cancer patients. Paradoxically,
however, these discoveries have begun to shed light on a level of complexity that rules
out the emergence of a universal cancer treatment. As any tumor is now known to
be essentially a unique disease, clinicians and researchers are moving towards a new
paradigm, termed “precision medicine”, which consists of designing bespoke lines of
treatment for each patient.

This paradigm-shift has been fueled by international consortia that have character-
ized large collections of tumors, thereby providing a vast reference for cancer hetero-
geneity. Two main strategies have been employed: sequencing of tumor biopsies directly
extracted from patients or studying pre-clinical models, i.e., tumor cells cultured in arti-
ficial environments. While the first strategy generates clinically faithful data, the second
strategy is flexible and cost-effective, and allows for the study of effects of various drugs
at different concentrations.

Based on the large amount of data generated from pre-clinical models, computer
scientists have developed various machine learning algorithms to model drug response
based on these data. However, these models do not take into account the complexity of
human tumors and the differences between model systems and human tumors, and are
therefore not directly applicable in a clinical setting. In this thesis, we aim at bridging
this gap. Specifically, we develop algorithms to integrate and align data generated from
the two aforementioned strategies with a goal to predict drug response in patients from
datasets generated using pre-clinical models.

xiii





SAMENVATTING

Uitgebreide inspanningen op het gebied van kankeronderzoek in de afgelopen decennia
hebben de diagnose en behandelingen aanzienlijk verbeterd, wat heeft geleid tot betere
vooruitzichten voor kankerpatiënten.

Echter, al deze bevindingen hebben ook licht geworpen op een niveau van complexi-
teit dat de opkomst van een generieke kankerbehandeling uitsluit.

Nu bekend is dat elke tumor in wezen een unieke ziekte is, gaan clinici en onderzoe-
kers op weg naar een nieuw paradigma, “precision medicine”, dat ernaar streeft om voor
elke patiënt een op maat gemaakte behandeling te ontwikkelen.

Deze paradigmaverschuiving is aangewakkerd door internationale consortia die grote
verzamelingen tumoren karakteriseerden, en zodoende een enorme referentie vormen
voor de heterogeniteit van kanker.

Er werden hiervoor twee strategieën gebruikt: 1) Sequentiebepaling van tumorbi-
opten die rechtstreeks van patiënten werden afgenomen, of 2) het bestuderen van pre-
klinische modellen, d.w.z. tumorcellen gekweekt in een kunstmatige omgeving. Terwijl
de eerste strategie meer realistische gegevens genereert, is de tweede strategie flexibel
en kosteneffectief, wat het mogelijk maakt om de effecten van verschillende geneesmid-
delen in verschillende concentraties te bestuderen.

Gezien de grote hoeveelheid gegevens die zijn gegenereerd uit preklinische model-
len, hebben computerwetenschappers verschillende algoritmen voor machine learning
ontwikkeld om de respons op geneesmiddelen te modelleren. Deze modellen houden
echter geen rekening met de complexiteit van menselijke tumoren en zijn niet direct
toepasbaar in een klinische setting. In dit proefschrift willen we deze kloof overbruggen.
In het bijzonder ontwikkelen we algoritmen om gegevens die zijn gegenereerd met de
twee bovengenoemde strategieën te integreren en op elkaar af te stemmen. Vervolgens
gebruiken wij deze kennis om de respons op geneesmiddelen bij patiënten te voorspel-
len op basis van datasets die zijn gegenereerd met behulp van preklinische modellen.
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RÉSUMÉ

La recherche contre le cancer a permis, ces dernières décennies, d’améliorer substan-
tiellement diagnostiques et traitements, donnant ainsi de meilleures perspectives à un
grand nombre de patients. Cependant, tous ces efforts de recherches ont mis en lumière
un fort niveau de complexité, qui, paradoxalement, rend improbable l’émergence d’une
thérapie unique. Ayant fait le constat que chaque cancer est unique, les médecins et les
chercheurs se tournent désormais vers un nouveau paradigme, la médecine personnali-
sée, consistant à individualiser les stratégies thérapeutiques.

Dans le cadre de ce changement de paradigme, plusieurs consortiums internatio-
naux ont séquencé un grand nombre de tumeurs, établissant une vaste ressource pour
analyser l’hétérogénéité entre tumeurs. Ces consortiums suivent deux stratégies : le sé-
quençage de biopsies directement prélevées de patients, ou l’étude de modèle dits pré-
cliniques, c’est-à-dire la culture de cellules cancéreuses dans un environnement artifi-
ciel. Bien que la première stratégie soit plus réaliste, la seconde offre une grande flexibi-
lité, permettant d’étudier l’effet de différents traitements.

Exploitant ces grandes bases de données pré-cliniques, de nombreux informaticiens
ont développé des algorithmes d’apprentissage machine pour modéliser la réponse des
tumeurs à différentes thérapies. Ces modèles, cependant, ne prennent pas en compte
la complexité observée chez les patients et ne peuvent donc pas aisément être utilisés
en clinique. Dans cette thèse, nous développons plusieurs algorithmes pour intégrer et
aligner les données pré-cliniques et données patients, avec un objectif partagé : utiliser
l’information disponible dans les bases de données pré-cliniques pour mieux prédire la
réponse d’un patient à certains médicaments.

xvii





1
INTRODUCTION

Cancer is a major global health issue, with 19.3 million diagnosis and 10 million deaths
for the year 2020, making it the leading cause of mortality for people under 70 years old
in 57 countries [1]. Any progress in our understanding of this disease is therefore poised
to have an impact for patients, be it by extending their lifespan or alleviating distressful
symptoms. To reach this wishful goal, cancer researchers have made use of synthetic
experimental models like cell-lines, animal models or organoids. We first give a brief
presentation and overview of existing experimental cancer models, with a focus on can-
cer cell lines. We then present how these models have been used to study drug response
prediction and highlight different modes of drug resistance in cancer patients. Finally,
we focus on a specific area of research which employs machine learning methodologies
to predict drug response from genomic data.

1.1. EXPERIMENTAL MODELS FOR CANCER RESEARCH

1.1.1. CANCER IS AN HETEROGENEOUS DISEASE
A healthy and functioning tissue consists of the aggregation of hundreds of thousands
of cells, all working together in an orderly manner. To guarantee the integrity of the
tissue, or homeostasis, each cell follows a set of instructions. These instructions are pre-
recorded in the DNA molecules which form the genetic material of the cell. Following the
central dogma of biology (Figure 1.1A), selective portions of the DNA molecules, called
genes, are transcribed into RNA molecules. These molecules have diverse functions, but
an important portion, called mRNA, are subsequently translated to proteins which are
the main effectors of the cell.
This well-oiled machine can, however, go awry for various reasons. A first cause of dis-
ruption lies in the modification of the genetic material (Figure 1.1B). This can take sev-
eral forms: base-pair modifications (mutations), repetitions or deletions of long stretches
of DNA (copy number aberrations), fusion of normally-distant portions of DNA (translocations)
or a local change in the base-pair order (inversions). These disruptions, called somatic
alterations, are supplemented by modifications in the spatial layout of these long DNA
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molecules inside the cell nucleus (Figure 1.1)C). The chromosomes are surrounded by
a myriad of proteins and small molecules which together form the chromatin environ-
ment. For any gene, its expression is directly controlled by the surrounding chromatin
environment ; modification thereof can thus have a drastic impact on gene expression
and on the whole cell-wire. One example of such epigenetic alteration corresponds to
the addition of a methyl group at a specific locus in one of the DNA molecules. Accu-
mulation of such methyl groups in a gene, or in its vicinity, drives its expression down.
Conversely, the absence of methyl groups leads to a higher expression.
Given the size of the genetic information (3 billions base-pairs), the possible alterations
are endless, and although cells have sophisticated processes to avoid such disruptions,
genetic and epigenetic alterations are not rare. Although they infrequently individually
induce a profound change in cell behavior, the accumulations of hundreds, if not thou-
sands, of such alterations within a few decades can drastically modify the function of a
cell. Division and proliferation of this aberrant cell can compromise a tissue, thereby
causing the growth of a malignant tumor. As a direct consequence, each cancer presents
a highly specific set of alterations, which causes a large variability among patients.
Another layer of complexity stems from the evolutionary development of a tumor pop-
ulation. An alteration which provides a cell with a competitive advantage will rapidly
expand into a clone, i.e., a group of cells harboring this very alteration. Emergence of
subsequent alterations will divide this clone even further, leading to a high intra-tumor
heterogeneity. Although a majority of sub-clones would eventually disappear under
evolutionary pressure, we empirically observe that tumors are not mono-clonal and are
made of a few different clones, each presenting a specific set of aberrations [2–4]. Un-
derstanding cancer development therefore requires charting the heterogeneity arising
from these two levels of complexity. Even though common molecular, physiological and
metabolic patterns are harbored by most tumors, i.e., the so-called hallmarks of can-
cer [5–7], cancer researchers are in need of versatile tools to precisely chart this complex
landscape of oncogenic profiles.

1.1.2. CELL LINES ARE MODEL SYSTEM TO STUDY CANCER

A cell line is a human biopsy grown in an artificial environment – usually a Petri dish.
Although they require a long protocol to be successfully cultured, cell lines have been
shown to be a highly cost-effective way to study cancer. To this date, more than a thou-
sand different cell lines have been established to study cancer, and some of them have
been extensively studied (e.g. HeLa, RPE1, ...). This large variety of cell lines allows
researchers to effectively chart the wide genomic landscape previously mentioned and
compare various tumors in different conditions.
In the past decade, different consortia have been established to comprehensively char-
acterize cancer cell lines: GDSC [8, 9], CCLE [10, 11] and CTRP [12, 13], to name the
three largest ones. These three consortia have molecularly characterized over one thou-
sand cancer cell lines by measuring gene expression levels (RNA-seq), the presence of
certain mutations (whole exome sequencing), copy number profiles, methylation sta-
tus at important loci (methylation array), as well as the quantification of specific pro-
teins (RPPA). More recently, techniques such as single cell sequencing (scRNA-seq and
scATAC-seq) have also been used to further characterize cell lines at a more refined reso-
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Figure 1.1 – Genetic and epi-genetic alterations disrupt cell behaviors and cause tumor formation. (A)
Schematic of the central dogma. The genetic information (DNA), located in the nucleus (dark orange) is tran-
scribed into smaller molecules, called RNA ; this process is called transcription, and governs gene expression.
Some of these molecules, called mRNA, translocate to the cytoplasm (light orange) where they are translated
into proteins. These proteins are the main cell effectors and are responsible for most physical functions. (B)
Different genetic alterations can occur in a cell: mutations, copy-number aberrations (CNA) and transloca-
tions. These alterations can modify the translated protein which may result in different effects on the cell be-
havior. (C) The DNA material has a complex spatial organization and is surrounded by a complex biochemical
environment. The spatial organization is compacted by the wrapping of chromosomes around small molecu-
lar complexes, called histones ; this wrapping has a direct influence on gene expression and disruption thereof
can have a blasting impact.

lution. Alongside recent consortia which have characterized thousands of patients (e.g.
TCGA or METABRIC), these efforts greatly help improve our understanding of cancer.

1.1.3. CELL LINES SUFFER FROM SEVERE LIMITATIONS

The protocol to establish a cancer cell line can be tedious, and not all tumor cells can be
grown into a cell line. A first difficulty lies in the total absence of micro-environment, i.e.,
the population of non-cancerous cells present within and around a tumor, which plays a
critical role in carcinogenesis. As a consequence, a successful cell line lineage must not
be too much dependent on its surrounding micro-environment to thrive. Furthermore,
as a cell line culture simply consists of an agar medium supplied with necessary growth
factors, normal cells typically stop proliferating after a few replications. This creates a
severe sample selection bias where only the most aggressive tumors are transformed
into cell lines [14]. Indeed, these aggressive tumors are most likely to have broken down
most dependencies with their surrounding stroma and are therefore more likely to hap-
pily grow in an agar plate.
Another key limitation arises from experimental artifacts caused by the way cell lines
are cultured [15]. Some cell lines have been established several decades ago and their
dissemination in various labs has caused them to genetically drift apart. As there is no
universal experimental protocol and strategy to culture cell lines, it has been observed
that cell lines originating from the same ancestral patients, harbor different mutations
and copy-number profiles, directly affecting gene expression and important cell pheno-
types such as drug response. As a consequence of this evolutionary differences, the key
assumption that cell lines represent homogeneous mono-clonal populations is severely
violated. This genetic drift furthermore hinders reproducibility, as two cultures of the
same cell line can differ substantially.
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Finally, and more fundamentally, cell lines are very simplified model systems which do
not account for key aspects of tumor development and drug resistance. Especially, in
the case of epithelial cancers, as hinted above, a tumor’s mass critically depends on in-
teractions with the surrounding stroma and micro-environment. For instance, cell lines
completely lack vasculature, which obviates the need for angiogenesis, a key hallmark of
cancer. Moreover, the complete absence of an immune system severely simplifies drug
resistance and alleviates an important source of external pressure.

1.1.4. ADVANCED EXPERIMENTAL MODELS PARTIALLY ADDRESS THESE IS-
SUES

To account for these shortcomings, more complex experimental models have been de-
veloped. A first idea involves adding immune and stromal cells, alongside epithelial can-
cer cells, to reconstruct the tumor complexity. This co-culturing strategy has recently
been exploited to study response to immuno-therapy by adding cytotoxic T-cells to tra-
ditional cell line cultures [16]. Other synthetic models, called organoids, resemble tu-
mors by reconstructing the 3D tissue architecture of a tumor. To that end, pluripotent
stem-cells are extracted from a patient and grown in a synthetic environment. Essential
nutrients are provided, but no other cells are added. The cultured stem cells are expected
to differentiate and reconstruct the tissue they were extracted from, thereby providing a
useful and fertile ground for experimentation.
Moving closer to the human setting, researchers have also largely exploited animal mod-
els. Mammals evolutionary closely related to humans are ideal candidates as they can
develop cancers which harbor strong genetic and morphological similarities with hu-
man tumors. Due to their small size and fast reproduction, mouse models were quickly
selected and used for two main research purposes. A first aim is to understand the ef-
fect of certain genetic alterations on cancer formation. To do so, genetic alterations are
introduced into a mouse model using genetic engineering. Mice can then be monitored
over their lifespan to study the effect of the engineered alterations. A different strat-
egy is employed when studying the response of pre-existing human tumors to different
anti-cancer compounds. To reach this aim, researchers have developed patient derived
xenografts, or PDXs, which are made of human tumors engrafted into immuno-deficient
mice. This allows researchers to study the effect of a drug in-vivo.
Although these models represent a significant improvement over cell lines, they are not
without flaws. A first problem comes from their cost-effectiveness : due to their higher
complexity, the formation of organoids, mouse models and PDXs typically requires more
time, experimental know-how and logistics. This in turn limits the scale of potential
drug or CRISPR screens. Furthermore, some issues encountered with cell lines are also
observed in PDX models [17] and certain cancer types have poor establishment rates
in organoid models [18]. Finally, these models are perfect and none of them perfectly
recapitulate the biology observed in humans.

1.2. DRUG RESPONSE

The large diversity among tumors has a direct clinical impact: when a patient enters
the clinic, it is tedious to predict the most effective treatment regimen. We here intro-
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Drug Target or Mode of action Cancer type

Chemotherapies
Paclitaxel Micro-tubule stabilization Ovary, Esophagus, Breast,

Lung, Cervix, Pancreas
Gemcitabine Nucleoside analogs Testis, Breast, Ovary, Lung,

Pancreas, Bladder
Carboplatin DNA cross-links Ovary, Lung, Head and Neck,

Brain
Cisplatin DNA cross-links Testis, Ovary, Cervix, Breast,

Bladder, Head and Neck,
Esophagus, Lung, Brain

5-Fluorouracil
(5-FU)

Thymidylate synthase inhi-
bition

Colon, Esophagus, Stomach,
Pancreas, Breast, Cervix

Irinotecan Topoisomerase inhibitor Colon, Lung
Doxorubicin Topoisomerase inhibitor Breast, Bladder, Lymphoma,

Leukemia
Etoposide Topoisomerase inhibitor Testis, Lung, Lymphoma,

Leukemia, Brain, Ovary
Vinblastine Micro-tubules disruption Lymphoma, Lung, Bladder,

Brain, Skin, Testis

Targeted therapies
Trametinib MEK1/MEK2 Skin
Ulixertinib ERK1/ERK2 /
Vemurafenib BRAF Skin
Dabrafenib BRAF Skin, Lung
Erlotinib EGFR Lung, Pancreas
Gefitinib EGFR Lung
Olaparib PARP (BRCA1/2 mutation) Breast, Ovary, Pancreas
Trastuzumab ERBB2 (Her-2) Breast, Stomach
Afatinib ERBB2 (Her-2) Lung
Lapatinib ERBB2 (Her-2) Breast
Imatinib BCR/ABL Gastric, Leukemia
Nutlin-2 MDM2-TP53 complex /

Table 1.1 – Example of anti-cancer drugs routinely employed in clinical care.
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Figure 1.2 – Tumor formation results from the disruption of molecular pathways. (A) Flow-chart of the most
important cancer-related pathways ; molecular information flows from the surface membrane (dark orange)
to the nucleus where it can lead to the expression or the repression of down-stream genes. Each directed arrow
corresponds to the functional activation of a daughter-protein by a parent protein, while a hammer-like arrow
corresponds to a functional inactivation or a down-regulation. MAPK pathway is indicated a light green; PI3K
pathway as light orange. (B) Several small molecules have been developed to inhibit the MAPK pathway by
acting on observed disruptions like a mutation on EGFR, KRAS or BRAF, the amplification of ERBB2 or the
deregulation of ERK.

duce the different mechanisms exploited by pre-malignant cells to grow into advanced
malignancies and show how these can be therapeutically exploited. Finally, we present
important concepts to measure and study drug response.

1.2.1. PROTEINS ARE ORGANIZED IN A NETWORK OF MOLECULAR PATHWAYS
As previously described, a cell is made of a large number of effectors, called proteins,
which all function together to allow the cell to proliferate, replicate, communicate with
surrounding cells, and among other tasks. The genetic material of human cells code for
more than 20 000 proteins which are the products of more than a billion years of evolu-
tion. As a result, this vast web of proteins is organized in groups which have co-evolved to
operate sophisticated tasks, and more importantly, to insure protection against potential
disruptions such as genetic aberrations or viral infections. More precisely, the proteins
are organized in chains, called molecular pathways, where proteins iteratively interact
with one another: one parent protein biochemically communicates with another one,
which in turns communicates with a different one, until a final molecule exerts its func-
tion. This organization results in a complex molecular network where a wide array of
signals flows across the cell. A simplistic model of the cell highlighting key molecular
pathways involved in cancer development can be found in Figure 1.2A.
A key example of signaling pathways are the Ras pathways [19], and specifically the
MAPK pathway (Figure 1.2A, highlighted in green) [20, 21]. Each cell receives various sig-
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nals from its surrounding environment. These signals indicate, for instance, whether the
cell should proliferate, differentiate or die. Such signals take the form of small molecules
that are exchanged between cells. Among these are growth factors, which play a key
role in cancer development [22]. A growth factor transmits information by binding to
a growth factor receptor, a protein from the family of receptor tyrosine kinases (RTK),
located across the cell membrane. As a result, a complex biochemical reaction leads to
the phosphorylation of certain peptides on the cytoplasmic tail of the receptor, which
attracts two molecules, Grb2 ("Grab 2") and Sos, that form a biochemical complex. This
complex activates another molecule, called Ras, which will then lead to a phosphoryla-
tion cascade: Ras → Raf → MEK → ERK1/ERK2. ERK1 and ERK2 finally translocate to
the nucleus, where they activate a number of transcription factors responsible for chro-
matin remodeling and cell proliferation. Ras is also, among others, responsible for the
activation of the PI3K pathway [23–25] (Figure 1.2A, highlighted in orange), which in-
volves similar bio-chemical reactions which lead to the downstream inhibition of apop-
tosis, and therefore impedes the cell to activate its self-destruction signaling cascade.
Virtually all functions within a cell result from a similar signal transduction scheme. The
specific biochemical reactions by which information is transmitted from one protein to
another are very diverse: some, for instance, functionally activate a protein by phoshory-
lation [26], others by tagging proteins for degradation (ubiquitylation), and others mod-
ify the structure of a protein to enable or disable certain functional pathways. The spatial
localization of a specific protein can also be crucial in the signal transduction. This is the
case for the Ras pathways discussed above where the growth factor receptor brings to-
gether proteins which would have, in normal conditions, a limited chance to interact.
Finally, although we presented pathways with a linear mode of signal transduction, molec-
ular pathways harbor non-linearities that are a necessary condition for a precise con-
trol of complex phenotypes. A first source of non-linearities stems from feedback loops
which can either lead to self-inhibition of the pathway (negative feedback-loop) or an
amplification (positive feedback loop). For instance, in the case of mitogenic signals
transduced by the Ras pathways, ERK1 triggers the expression of a gene coding for the
Sprouty protein [27], which prevents Grb2 and Sos to interact, thereby stopping Ras sig-
naling at its very root. Positive feedback loops are observed in developmental biology,
and are used to sustain decisions operated by a cell. Non-linearities can also emerge
from protein interactions, especially when a message can only be passed after recruit-
ment of two or more proteins. Transcription factors complexes provide a perfect exam-
ple: gene expression initiation requires the recruitment of several molecules, potentially
downstream of different pathways, yet a lack of one component would block the expres-
sion.

1.2.2. DISRUPTIONS OF MOLECULAR PATHWAYS LEAD TO CANCER GROWTH

As we discussed in Subsection 1.1.1, the complex structure of the cell can be disrupted
by somatic alterations and epigenetic modifications. Whilst the latter affect individual
molecular pathways by either enhancing or decreasing the transcription of particular
proteins, the disruptions caused by somatic alterations are more diverse. A first source of
disruptions comes from copy number amplifications, which act by significantly increas-
ing the transcription of the encoded proteins. An important example is ERBB2, a growth
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factor receptor important in many solid cancers [28]: the amplification of this gene in-
creases the transcription of the protein which lives on the surface membrane. ERBB2 is a
receptor tyrosine kinase upstream of the RAS pathway (Subsection 1.2.1) and is activated
by dimerization. To trigger the signaling cascade, a ligand needs to bind to two proteins
at the same time. When the concentration of ERBB2 increases, so does the probability of
dimerization on the surface membrane. This in turn over-stimulates downstream path-
ways, including the pro-proliferation and anti-apoptotic MAPK and PI3K pathways.
Copy number deletions have the opposite effect on a cell. Deletions are exploited by can-
cer cells to shut down certain pathways, preferentially pro-apoptotic and anti-proliferative
ones. BRCA1 and BRCA2 exemplify this vulnerability [29]. These two proteins insure the
integrity of the genome by triggering alerts whenever replication errors are found, and
specifically double strand breaks. These alerts can have two effects: either the cell re-
pairs the defect, or the apoptosis pathway is triggered to avoid a subsequent accumula-
tion of alterations. A lower expression of either BRCA1 and BRCA2 caused by copy num-
ber deletion would then temper the downstream protective pathways and allow replica-
tion errors to accumulate, increasing the chance of malignant tumor growths. BRCA1/2
are examples of genes which protect a cell against tumor formation and are called tumor
suppressor genes. On the other hand, genes which are over-expressed and lead to cell
proliferation are called proto-oncogenes.
Proto-oncogenes can also suffer from mutations which alter the form of the encoded
protein. This is the case for instance in EGFR, another growth factor receptors upstream
of the Ras pathways [30], and a member of the same family as ERBB2. Selective muta-
tions on this gene code for a truncated protein which harbors a fundamental flaw: it no
longer requires a ligand to activate the downstream pathways and is said to be consti-
tutively activated. Instead of transmitting an exogenous signal, the truncated protein
will sustain a continuous pro-mitogenic signal, causing the cell to rapidly replicate and
grow. This alteration is frequently observed in lung, ovary and breast cancers. Other
proto-oncogenes like KRAS (from the family coding for Ras) [31], PI3K [32–34] or BRAF
(downstream of Ras) [35] can also suffer from similar mutations. The resulting revamped
gene is referred to as an oncogene.
By altering the function of a protein, mutations can also impact tumor suppressor genes.
The first important example of such action is TP53, also known as p53 [36]. TP53 is the
cornerstone of several anti-proliferative processes: it can trigger DNA damage repair,
block the cell division should the genome integrity be compromised, and prompt the
apoptosis pathway if the damage is too severe. Disruption of TP53 is therefore neces-
sary for an aspiring cancer cell. This can be achieved by certain mutations of P53 that
dwarf its function. Importantly, owing to its complex mode of action, one mutated allele
of TP53 effectively reduces the action of the gene by a factor of 16, thereby granting a
complete freedom to proliferate. Other important tumor suppressor genes suffer from
equivalent mutations, like RB1, or BRCA1/BRCA2.
Finally, a rarer form of pathway alterations arises from translocations. This is for instance
the case in a large number of leukemias where the tyrosine kinase ABL1 (chromosome
9) is found adjacent to the BCR gene (chromosome 22). This transposition results in an
oncogenic fused gene called BCR/ABL1 which modifies ABL1 to become constitutively
active [37]. The result is a constant firing of mitogenic signals from the resulting pro-
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tein with a lack of sensitivity to negative feedback, and as a consequence a proliferative
phenotype potentially leading to malignancy.

1.2.3. EXPLOITING PATHWAY ALTERATIONS THERAPEUTICALLY

This acquisition of oncogenic alterations, which is consubstantial with the development
of an aggressive and malignant phenotype, can however be exploited. A first approach
consists of using cytotoxic drugs, called chemotherapies, which aim at damaging and
killing cancer cells. This strategy capitalizes on two frequently observed cancer vulner-
abilities: a lack of a proper cell-cycle control, and a high proliferation rate. Mitosis in
normal cells is a highly regulated process where a diligent control of the cell integrity
prevents replication, should any genetic aberration be found. Tumor cells however usu-
ally jettison this control pathway, thereby allowing genetic aberrations to go through cell
cycle unnoticed. By inducing alterations, DNA-damaging agents (e.g. Cisplatin, Carbo-
platin, Oxaliplatin or Temozolomide) cause aberrations to accumulate in cancer cells,
thus compromising their ability to function. Although these compounds offer some can-
cer cell specificity – normal cells have an intact repair apparatus and can cope with the
damage – their complex and pleiotropic modes of action do affect non-cancerous cells
leading to important side-effects and, sometimes, the formation of a secondary tumor
[38]. Historically, this strategy has started to be widely used in the clinic in the second
half of the 20th century and is today part of the standard of care for most solid tumors.
A non-exhaustive list of standard-of-care chemotherapies is provided in Table 1.1.
A more recent strategy consists of targeting precise cancer vulnerabilities. As presented
in Subsection 1.2.2, a cancer phenotype results from many genetic and epigenetic al-
terations disrupting various molecular pathways. Taking advantage of recent techno-
logical advances like next-generation sequencing, these alterations can be comprehen-
sively charted [39]. This provides clinicians with a clear picture of what sets tumor cells
apart from healthy cells and hints at therapeutic strategies, called targeted therapies,
to exploit these differences. Let’s take the example of the MAPK pathway (Figure 1.2A,
highlighted in green). This proliferation pathway is hijacked by tumor cells to accelerate
their evolution and presents alterations in many cancers: EGFR mutation in lung cancer,
KRAS mutation in colon cancer, ERBB2 amplification in breast cancer, BRAF mutation
in skin melanoma. In the case of EGFR and ERBB2 aberrations, drugs have been de-
veloped to replace their ligands without prompting any phosphorylation cascade: small
molecules like Erlotinib/Gefitinib (EGFR) or Afatinib/Lapatinib (ERBB2), and mono-
clonal antibodies like Trastuzumab (ERBB2). Mutations activating BRAF are specifically
targeted by drugs like Vemurafenib or Dabrafenib. Downstream of BRAF, MEK can also
be directly inhibited by MEK-inhibitors like Trametinib. Finally, ERK can also be inhib-
ited, for instance by Ulixertinib. All these drugs exploit a specific known vulnerability
of the cancer cells to reduce the activity of the MAPK pathway (Figure 1.2B). As these
cancer cells have often built their whole expansion strategy on the deregulation of this
pathway, a phenomenon known as oncogene addiction, inhibition thereof often leads
to a good initial response. Therapeutic strategies have also been developed for target-
ing other pathways: Olaparib to exploit BRCA1/2 deficiencies, Alpelisib for PI3K path-
way deficiencies and Imatinib for hematopoietic tumors harboring a BCR/ABL fusion.
A non-exhaustive list of standard-of-care targeted therapies is provided in Table 1.1.
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Figure 1.3 – High-throughput drug screening allows fast evaluation of anti-cancer drugs. (A) A given anti-
cancer drug can be studied by subjecting one cell line to a wide array of concentrations. The proportion of sur-
viving cells can then be extracted for each concentration, forming a drug-response curve. (B) A drug-response
curve is specific to a pair made of one cell line and one drug. To aggregate the different drug response curve
values, we first fit a sigmoid function. This sigmoid function can then be exploited to compute the Area Under
the Curve (AUC), which corresponds to the integral of the drug response curve. Another metric, called IC50,
consists of measuring the concentration of the drug which kills half of the cell population.

Although promising, these targeted therapies are limited by several factors. First, design-
ing a compound to target a specific vulnerability is a challenging task: the compound
must fit in very specific areas of the targeted molecule, while not altering the function of
other proteins which are often evolutionary related. Second, a drug can be limited by its
pharmacokinetics, i.e. by its propensity to dilute in the plasma, to be metabolized, and
ultimately to access the cancer cells and exert its action. Drug pharmacokinetics depend
on the drug itself, but also on the patient’s characteristics, which creates another source
of important variability. Finally, toxicity can impede a functioning drug to be used in the
clinic. All the therapeutic strategies listed above come at the cost of severe toxic effects
on the healthy cells, which can harm the patient more than the pathology itself. These
limitations make the drug development process complex and cause an important attri-
tion rate: although the space of possible compounds is very large, the number of drugs
with proven clinical benefit is remarkably low.

1.2.4. MEASURING AND STUDYING DRUG RESPONSE USING MODEL SYSTEMS

Studying whether a cancer patient will be sensitive or resistant to a particular treatment
is the product of several genetic, epigenetic, physiological, metabolic and even psycho-
logical factors. Owing to their high versatility (Subsection 1.1.2), cell lines offer an ideal
structure to study the impact of genetic and epigenetic variability on the response of
a tumor cell population to a particular drug regimen. Exploiting recent technological
advances in screening technology, a cell line can be efficiently and cost-effectively sub-
jected to a drug at different concentrations (Figure 1.3A). For each concentration, the
proportion of surviving cells (called viability) can be evaluated. Comparing this survival
rate to the drug concentration (log-scale) yields a drug response curve. This drug re-
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Loss function Definition Examples of algorithms

Least-squares `
(
x, y

)= (
x − y

)2 ElasticNet, neural networks,
Kernel Ridge Regression

Hinge loss `
(
x, y

)= max
(
0,1−x y

)
SVM

Logistic `
(
x, y

)= log(1+e−x y ) Logistic regression

Table 1.2 – Loss functions frequently used in supervised learning algorithms.

sponse curve can be processed in-silico to derive useful metrics indicative of resistance
and sensitivity (Figure 1.3B). After fitting a sigmoid-like curve to the measurements [40],
two key metrics can be derived:

• Area Under the response Curve (AUC), corresponding to the area under the sig-
moid (i.e. its integral). It provides an average of the cell line viability across drug
concentrations. It is usually compared to the AUC of a flat sigmoid, corresponding
to a non-responder.

• Half-inhibitory concentration (IC50): IC50 corresponds to the concentrations which
kills half of the cell population.

Both these measures provides an indication of potency: low IC50 and AUC indicate that
a small concentration kills a large proportion of the cell population. Conversely, a large
IC50 and AUC imply a resistance to the drug. These two measures are highly correlated.
More complex and advanced model systems (Subsection 1.1.3) can also be employed in
such drug-screening endeavors. However, their higher complexity prohibits screening at
the scale possible in cell lines. The measure resulting from such screens differ also from
the ones computed on cell lines: since mouse models are 3-dimensional, the viability
measure employed is based on the measured tumor volume. Comparing this tumor vol-
ume between untreated and treated PDXs provide a powerful response read-out.

1.3. MACHINE LEARNING
Once a large compendium of drug response data has been garnered, a natural step is
to look for ways to relate it to the genomic characterization of the model systems un-
der study. A powerful approach, called machine learning, consists of finding relation-
ships and patterns within the genomic data, or between the genomic data and the drug
response, by means of statistical inference. We present here a brief overview of these
methods and refer the reader to The Elements of Statistical Learning [41] and Pattern
Recognition and Machine Learning [42] for a thorough and authoritative presentation.
In our case, we consider to have n > 0 samples and p > 0 features. A feature can be, for
instance, a gene in the case of gene expression, a genomic region in the case of copy-
number, a SNP in the case of mutations or a CpG island for methylation. The genomic
data of interest is stored in a matrix X ∈Rn×p , called design matrix, where each row cor-
responds to the characterization of a single sample. The drug response measurements
are stored in a vector Y ∈Rn with a pairing between the rows of Y and X (Figure 1.4A).
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Activation function Definition

ReLU σ (x) = max(0, x)
Sigmoid σ (x) = (1+e−x )−1

Hyperbolic tangent tanh x

Table 1.3 – Activation/Linked functions frequently used in neural networks and generalized linear models.

Kernel Definition

Linear K
(
x, y

)= xT y
Polynomial K

(
x, y

)= (
xT y +b

)a
, a ∈N,b ∈R.

Gaussian K
(
x, y

)= exp
(
−γ∥∥x − y

∥∥2
)
= exp

(
−‖x−y‖2

2σ2

)
,γ,σ> 0

Laplacian K
(
x, y

)= exp
(−γ∥∥x − y

∥∥)= exp
(
−‖x−y‖

σ

)
,γ,σ> 0

Matérn K
(
x, y

)= 21−ν
Γ(ν)

(p
2ν ‖x−y‖

σ

)ν
Kν

(p
2ν ‖x−y‖

σ

)
, ν,σ> 0

Table 1.4 – Kernels, or similarity functions, frequently used in machine learning. Γ denotes the Gamma
function, Kν the modified Bessel function of the second kind of orderν. Please note that, for both the Laplacian
and the Gaussian kernels, two equivalent definition are given; both are used in this thesis.

1.3.1. SUPERVISED LEARNING ALLOWS DRUG RESPONSE MODELLING

EMPIRICAL RISK MINIMIZATION (ERM)
A first category of machine learning techniques, called supervised learning, consists of
finding a function which relates X to Y . Formally, given a set of functions F ⊂ {

f :Rp 7→R
}

which map the genomic profiles to a real number, a supervised learning algorithm finds
the function f ∗ ∈F , which is a solution of the empirical risk minimization (ERM) prob-
lem, defined as

f ∗ = argmin
f ∈F

1

n

n∑
i=1

`
(

f (Xi ) ,Yi
) + R

(
f
)

. (1.1)

In Equation (1.1), `, called the loss function 1.2, penalizes predictions f (Xi ) deviating
from the actual values Yi . R, called the regularization term, allows to add further con-
strains to the function f . Different classes of supervised learning algorithms have been
developed, and these differ by the class of functions F they consider, the loss function
`, the regularizer R, and the optimization scheme used to solve Equation (1.1).

LINEAR MODELS

A first category, called linear models (Figure 1.4B), corresponds to affine projections of
the genomic data matrix X ; formally, Fl i near = {

x 7→ wT x +b | w ∈Rp ,b ∈R}
. Various

regularizers have been developed for these models; the most famous of them being ar-
guably the ElasticNet regularization defined as R (w) = λα‖w‖1 +λ (1−α)‖w‖2

2, with
λ > 0 called the regularization parameter and α ∈ [0,1] called the `1-ratio. The Elastic-
Net optimization therefore boils down to find w∗ and b∗ such that:

w∗,b∗ = arg min
w∈Rp ,b∈R

1

n

n∑
i=1

(
wT Xi +b,Yi

)2 + λα‖w‖1 +λ (1−α)‖w‖2
2. (1.2)
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These linear models, albeit fast, robust and often competitive, can potentially suffer from
their simplicity. Biological systems are notorious for being non-linear (Subsection 1.2.1),
and predicting a certain phenotype from linear models is poised to be restrictive. Vari-
ous extensions of linear models have been proposed in the statistics and machine learn-
ing literature and we present two independent extensions which are widely used in the
computational biology community: deep neural networks and kernel methods.

DEEP NEURAL NETWORKS

A natural way to add a non-linearity is to combine a linear classifier with a non-linear
function σ :R 7→R. This non-linear function, called linked function in statistics and ac-
tivation function in deep learning (Table 1.3), is an intrinsic property of the model which
can reflect some prior-knowledge. The functions considered by these approaches, called
generalized linear models, are of the type σ

(
wT x +b

)
with w ∈Rp and b ∈R. The regu-

larizer usually consists of a mixture of `1 and `2 norms, à la ElasticNet.
In order to add some more complexity to the model, another idea consists of combin-
ing non-linear blocks. For instance, the input x ∈ Rp could feed into d1 different gen-
eralized linear models, yielding d1 weights W1 = [

w1,1, .., w1,d1

] ∈ Rp×d1 and bias term
B1 = [

B1, ..,Bd1

]
. Each of these d1 single models is called a neuron, and the d1 neu-

rons forms a layer. These d1 neurons can finally be aggregated in a final linear model,
called output neuron, with parameters W2 ∈Rd1 and b2 ∈R. The corresponding function
f (·;W1,b1,b2,W2) is therefore formally defined as:

∀x ∈Rp , f (x;W1,b1,b2,W2) =
d1∑

k=1

[
W2,kσ

(
p∑

j=1
Wk, j x j +b1,k

)
+b2,k

]
. (1.3)

The function defined in Equation (1.3) is a function with one hidden-layer. Following
the same idea, additional layers can be added, creating a deep neural network (Figure
1.4C-D). The regularizer employed in neural networks usually consists of a sum of `2

norms of the neurons weights and is called weight decay. The ERM is usually solved by
stochastic gradient descent, exploiting the chain rule – a process called back-propagation.
Additional regularization methods have been developed in the deep learning fields, such
as dropout, early stopping or batch normalization, but these act on the optimization
strategy rather than the regularization function.

NON-PARAMETRIC KERNEL METHODS

The deep neural networks consist in a bottom-up approach, where non-linearities are
combined. A complementary class of approaches, called kernel methods, consists of
first expanding the number of features by integrating a large number of potential non-
linearities, and then performing a linear approach on this expanded space. This method
relies on the notion of positive-definite kernels (p.d.), which are functions K :Rp ×Rp 7→
R which satisfy

∀k > 0,∀x1, .., xk ∈Rp ,∀λ1, ..,λk ∈R,
∑

1≤i , j≤k
λiλ j K

(
xi , x j

)≥ 0. (1.4)

A few examples of kernels are given in Table 1.4. Positive kernels are especially interest-
ing due to two theorems. The first one, called Moore–Aronszajn theorem, states that a
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Figure 1.4 – Supervised learning methods. (A) A supervised machine learning task finds a function f which
approximates the labels Y by means of the input matrix X . X contains for each sample (row) its molecular
characterization, e.g. its gene expression profile. (B) Heatmap of a synthetic 2D example where drug response
is predicted by a linear models, overlayed by the points used for training the model. (C) A neural network
is organized in layers, each one containing neurons. The information,e.g. gene expression profiles, flows
from left to right, and follows a serie of non-linear transformation. The end neuron, called output neuron,
approximates the labels. (D) Same data as in (B) modeled by a neural network. (E) Kernel methods implicitly
map the gene expression profiles into a richer kernel space H where linear methods are performed. (D) Same
data as in (B), modeled by a kernel ridge regression.

p.d. kernel can be seen as a linear method in a more complex space, which is an intrinsic
property of the kernel ((Figure 1.4E). Formally, for any p.d. kernel, there exists a Hilbert
space H and a mapping ϕ from the feature space Rp to H such that

∀x, y ∈Rp , K
(
x, y

) = 〈
ϕ (x) ,ϕ

(
y
)〉

H . (1.5)

The functions considered in the ERM are of the types x 7→ 〈
ω,ϕ (x)

〉
H with ω ∈ H and

corresponds to a linear projection in the new complex space; the regularization corre-
sponds to λ‖ω‖2

H
with λ> 0 hyper-parameter. However, the space H can be arbitrarily



1.3. MACHINE LEARNING

1

15

complex – potentially infinite dimensional – and therefore computationally intractable.
A second theorem, called the Representer theorem, solves this issue by showing that
the solution of the ERM is a combination of the training samples after mapping in the
complex space H . Formally, if we denote by ω∗ the ERM optimum, then

∃α ∈Rn , ω∗ =
n∑

i=1
αiϕ (Xi ) . (1.6)

Combining the Representer theorem with the ERM formulation provides a computation-
ally tractable way to optimize the problem, known as the kernel trick. Two loss functions
are usually used for supervised kernel methods: the hinge loss, yielding support vec-
tor machines (SVM) and the least-squares loss, yielding Kernel Ridge Regression (KRR)
(Figure 1.4F).

1.3.2. UNSUPERVISED LEARNING EXPLOITS LARGE UNLABELLED DATASETS
Obtaining drug response data, or any other label of interest, can be very expensive. As
a result, unlabelled genomic datasets far outnumber the amount of labelled data, and
various algorithms have been designed to extract and exploit patterns from these rich
resources. This class of algorithms, usually referred to as unsupervised learning, comes
in different flavors. A first goal of these methods consists of finding clusters in the data,
i.e. groups of samples which share the same neighborhood while being distant from
the rest of the dataset. Various algorithm have been developed for this purpose, like K-
mean, hierarchical clustering, and more recently Louvain and Leiden clustering.
A second goal consists of mapping the high-dimensional input space to a lower-dimensional
latent space, or embedding space, which captures most of the signal. This concentrated
signal can then be exploited in several ways, e.g. for visualization, analysis of latent di-
rections, or to reduce complexity of supervised learning task when only a subset of the
dataset is labelled. These dimensionality reduction methods, sometimes also referred
to as manifold learning approaches, consists, at least implicitly, of two main elements:
an encoder function f ∗

E and a decoder function f ∗
D . The encoder maps the input space

to the embedding space ; the decoder takes as input the embedding and maps it back to
the input space. The combined function f ∗

D ◦ f ∗
E can be compared to the actual sample,

and these two functions are the solution of an optimization scheme that minimizes this
discrepancy over two sets of function FE and FD :

f ∗
E , f ∗

D , = argmin
fe∈FE ,V ∈FD

n∑
i=1

D
(
Xi , fD ◦ fE (Xi )

)
. (1.7)

The choice of a distance measure D (or pseudo-distance) and the two sets of func-
tions FE and FD divide the dimensionality reduction methods in different categories.

1. A first choice consists of restricting FE and FD to linear projections. When, fur-
thermore, the Frobenius norm is considered for D , then we obtain a popular al-
gorithm called principal component analysis (PCA). Another choice consists of
taking only non-negative projection matrices, resulting in non-negative matrix
factorization.
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2. A second choice consists of modelling both fE and fD as neural networks. The
resulting architecture is called an auto-encoder and allows for a non-linear em-
bedding of the input. An elegant refinement of these auto-encoder architectures,
called variational auto-encoders (VAE), are also widely used in probabilistic mod-
elling.

3. Finally, linear dimensionality reduction can be performed after kernel transfor-
mation. Similar to Kernel Ridge Regression, these non-linear dimensionality re-
duction methods consists of first mapping the input data to a kernel space H ,
and then performing PCA in this potentially infinite-dimensional space. This ap-
proach, called Kernel PCA, also exploits the kernel trick presented above.

1.3.3. DIFFERENCES IN DATASET COMPOSITION CAN BE CORRECTED USING

TRANSFER LEARNING
Machine learning algorithms are designed to extract relationships from a training data.
However powerful, these algorithms are often specific to the data they have been trained
on. Several cases have been reported showing poor generalization of such algorithms to
data points not encountered during training. Transfer learning aims at circumventing
this issue by correcting for differences between a source dataset, used for training, and
a target dataset of interest. We refer the reader to [43, 44] for comprehensive reviews on
transfer learning.

DIFFERENCES IN PROBABILITY DISTRIBUTION AND ERM
In Subsection 1.3.1, we presented the Empirical Risk Minimization used in supervised
learning. Specifically, the first term in Equation (1.1) corresponds to the empirical ap-
proximation of the risk function denotes R. Formally, in our setting, the risk associated
with a function f ∈F is defined as:

R
(

f ,ν(X ,Y )
) = EX ,Y ∼ν(X ,Y )

[
`

(
Y , f (X )

)]
, (1.8)

where ν(X ,Y ) denotes the joint probability distribution of the inputs and the labels. The
function f ∗ defined in Subsection 1.3.1 minimizes the quantity defined in Equation 1.8
over f ∈F (e.g. linear functions, neural networks, kernel methods, etc.).
In a typical transfer learning scenario, the predictor f ∗ is trained on a source data fol-
lowing a probability distribution νS

(X ,Y ), but applied on a target data following a dif-

ferent probability distribution νT
(X ,Y ) 6= νS

(X ,Y ). This causes R( f ,νT
(X ,Y )) to differ from

R( f ,νS
(X ,Y )) for most (if not all) functions f . As a direct consequence, the optimal func-

tion f ∗ which minimizes R(·,νS
(X ,Y )) is not guaranteed to be the optimal function for the

target.
A first approach to solve this issue consists of observing that:

EνT
(X ,Y )

[
`

(
Y , f (X )

)] = EνS
(X ,Y )

[
`

(
Y , f (X )

) νT
(X ,Y ) (X ,Y )

νS
(X ,Y ) (X ,Y )

]
. (1.9)

This re-formulation, highlights a key problem: the joint probability distribution of the
target should be known for all source samples. Since the target data is usually only par-
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tially labelled, getting a good estimate of νT
(X ,Y ) (X ,Y ) for all source points is computa-

tionally challenging without further model assumptions.

DIFFERENT TRANSFER LEARNING ASSUMPTIONS

The two probability distributions νS
(X ,Y ) and νT

(X ,Y ) can differ in many different ways,

leading to different methodologies. Specifically, using the Bayes rule, we have νS
(X ,Y ) =

νS
Y |Xν

S
X = νS

X |Y ν
S
Y and νT

(X ,Y ) = νT
Y |Xν

T
X = νT

X |Y ν
T
Y . These equalities allow the division of

transfer learning methods in three categories:

• If νS
Y |X = νT

Y |X , the methods only differ by their prior distributions ; this setting is
called covariate shift.

• If νS
X |Y = νT

X |Y , the methods differ by the prior distribution of their labels ; this
setting is called label shift.

• If νS
X = νT

Y , the methods only differ by their posterior distributions.

This choice of assumption is further guided by the availability of data. The target data
can either contain labels (inductive transfer learning) or be completely unlabelled (transductive
transfer learning). In some cases, called unsupervised transfer learning, both source
and target labels do not contain any labels.

1.4. CONTRIBUTION AND THESIS PLAN
Exploiting machine learning algorithms in various shapes and forms, several studies
have attempted to predict drug response in cell lines [45–51]. However, cell lines models
differ strongly from human tumors (Subsection 1.1.3) and these drug response models
are poised to suffer from a poor transferability when applied in a clinical setting (Sub-
section 1.3.3). Capitalizing on promising early studies [52, 53], we set out to use transfer
learning techniques (Subsection 1.3.3) to derive biomarkers predictive of drug response
in the clinic. In this thesis, we make the following contributions:

1. Noting a large imbalance in predictive power towards gene expression [46, 54, 55],
we develop Percolate, a methodology which derives DNA-based biomarkers by ex-
ploiting the common signal with gene expression (Chapter 2). To account for the
peculiarities of each omic-data type, Percolate extends correlation-based align-
ment methodologies [56, 57] by means of Exponential-family PCA.

2. We then turn our focus to gene-expression based biomarkers. To systematically
correct gene expression profiles for differences between cell lines and tumors, we
develop a linear transfer learning technique, PRECISE, based on a comparison of
principal components (Chapter 3). Technically, PRECISE extends previous subspace-
based transfer learning approaches [58–60] by offering a simpler analytical expres-
sion for the geodesic paths on the Grassmann manifold based on the notion of
Principal Vectors.
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3. In Chapter 4, we posit that linearity is too strong an assumption for our clinical
drug response prediction task. We employ the framework offered by kernel meth-
ods to introduce non-linearities in PRECISE and thereby derived TRANSACT. Us-
ing patient data from The Cancer Genome Atlas (TCGA) and the Hartwig Medical
function (HWG), we validate TRANSACT on a wide range of drugs. We propose an
interpretability scheme of TRANSACT which allows us to provide insights in the
mechanisms associated with the resistance to Paclitaxel and Gemcitabine.

4. Finally, noting that neither cancer cell lines nor epithelial tumor cells are made of
homogeneous mono-clonal populations, we developed Sobolev Alignment to ex-
tend the previous comparisons to scRNA-seq data (Chapter 5). Sobolev Alignment
uses recent advances in deep generative modeling (VAE) and approximate ker-
nel methods (Nyström approximation) to compare complex non-linear patterns
of gene expression. We applied Sobolev Alignment to lung cancer cell lines and
showed the conservation of immune-related pathways in cancer cell lines.
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2. DESIGNING DNA-BASED PREDICTORS OF DRUG RESPONSE USING THE SIGNAL JOINT

WITH GENE EXPRESSION

2.1. INTRODUCTION

Over the course of their lifespan, human cells accumulate molecular alterations that re-
sult in the modification of behavior [61]. When aggregated at the tissue level, these al-
terations can compromise tissue homeostasis, in turn clinically impacting a patient [6].
Understanding the combined effect of these alterations is key to designing bespoke lines
of treatment [62, 63]. These molecular alterations occur at different genomic levels and
are recorded using different technologies, collectively referred to as ’omics’ technolo-
gies. Each of these omic measurements offers only partial information regarding the
compromised tissue. Aggregating different omic measurements, an analysis known as
multi-omics integration, is therefore necessary to generate a comprehensive picture of
the molecular features underlying a cancerous lesion [64, 65].
Owing to their high versatility, cell lines offer a cost-effective model system for drug re-
sponse modelling [66]. Specifically, large scale consortia have industriously subjected a
large number of cell lines to hundreds of different compounds, yielding valuable drug
response measurements [9, 11, 67]. A key challenge resides in combining these response
measurements with multi-omics data to study mechanisms of resistance and sensitivity[68].
Existing approaches focus on combining all omics data types and can be ordered based
on the stage of the analysis at which the integration is performed[69]. At one extreme,
early integration approaches [70, 71] first aggregate all features from all data types to
process them all simultaneously. At the other extreme, late integration approaches first
compute a representation of each data type individually, and subsequently combine
these representations [56, 57, 72]. Several other methods can be positioned along this
ordering, and differ by the analysis stage during which the grouping of data types is
performed[73]. Although promising and encouraging, these methods do not take into
account the quality of the data types and do not explicitly model their topology [54],
i.e., how the data types relate to each other regarding information content and capac-
ity to predict drug response. In particular, it has been observed that, although it has
traditionally been the least clinically actionable data type, gene expression consistently
prevails over other data types [55] and provides similar performance as early-integration
approaches [46], obviating the need for complex integration strategies.
In order to maintain the predictive power of gene expression data, while exploiting the
robustness of the most actionable data types, we present Percolate, an unsupervised
multi-omics integration framework. Percolate sets itself apart from other integration
approaches as it aims to eliminate gene expression measurements from the final pre-
dictor, rather than integrating it with all other data types. This is achieved by extracting
the joint signal between gene expression and the other data types in an iterative fash-
ion. First the joint signal between gene expression and Data type 1 (e.g. mutations) is
extracted. Then the remaining signal (not shared with Data type 1) is employed to ex-
tract the joint signal of gene expression with Data type 2 (e.g. copy number data). This
procedure is repeated for all omics data types. In this way, the gene expression signal
is "percolated" down the other omics data types, ideally extracting all predictive signal
from the gene expression data. We first show that comparing gene expression to other
data types individually recovers a known topology of multi-omics data. We then show
that the information shared between individual omic data types and gene expression in-
creases drug response predictive performance for the individual omic data types. Finally,
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Figure 2.1 – Dissecting multi-omics topology using Percolate bridges the gap between predictive and robust
data types. (A) Trade-off between robust data types (MUT, CNA) and predictive types (METH, GE). (B) Work-
flow of our implementation of GLM-PCA, which relies on the projection of saturated parameters. (C) Workflow
of Percolate, which extends JIVE to non-Gaussian settings by comparing the low-rank structures of saturated
parameter matrices.

reconstructing the joint signal solely from mutation, copy-number and methylation, we
show that the signatures derived from "percolating" gene expression down these data
types recapitulate the drug response predictive performance of these data types. Here
we make the following technical contributions:

• We employ a popular framework, called JIVE [56, 57], which we extend to non-
Gaussian noise models.

• We exploit an extension of PCA, called GLM-PCA, for which we present a versatile
implementation.

• We develop an out-of-sample extension for JIVE, and specifically for the case when
only one of the two data types is available.
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WITH GENE EXPRESSION

2.2. METHODS

2.2.1. TRADE-OFF BETWEEN ROBUST AND PREDICTIVE TYPES
We consider four data types: mutations (MUT), copy number aberrations (CNA), methy-
lation (METH) and gene expression (GE). MUT and CNA directly measure genetic aber-
rations and therefore rely on DNA measurements. Due to several biological and techno-
logical factors, these measurements are highly robust and suffer from limited technical
artefacts. On the other end of the spectrum, GE measures RNA abundance, a process
known for exhibiting large biological variability and prone to technical artefacts. Be-
tween these two extremes, methylation offers an intermediate level of robustness. How-
ever, when it comes to drug response prediction, the order is reversed: GE offers, on av-
erage, a better predictive performance than METH, and significantly outperforms MUT
and CNA [45, 46, 66]. This leads to a trade-off between robustness and predictive ability
(Figure 2.1A) with MUT and CNA being the most robust and least predictive and GE be-
ing the most predictive and least robust, with METH rating at the intermediate level in
terms of robustness and predictive capacity.

2.2.2. EXPONENTIAL FAMILY DISTRIBUTION
Our integrated approach is inspired by AJIVE [57], a computational approach which
takes as input two paired datasets and computes a joint and a data-specific signals.
AJIVE is an extension of the JIVE model [56], which we selected, among other exten-
sions [74, 75], for its computational tractability and its mathematical formulation which
is amenable to the derivation we propose. JIVE, AJIVE, and derivations thereof, critically
rely on Principal Component Analysis (PCA) which assumes a Gaussian noise model on
the data [76, 77]. To extend this framework to non-Gaussian settings, we make use of a
generalized formulation that can deal with a wider class of parametric distribution mod-
els, i.e., the so-called exponential families [78].
Let X ⊂Rp , we say that a random vector Z ∈X follows an exponential family distribu-
tion if its probability density function f can be written as

∀z ∈X , f (z|θ) = h (z)exp
(
η (θ)T T (z) − A (θ)

)
, (2.1)

where T : X → Rq (q > 0) is called the sufficient statistics, θ ∈ Rq the exponential pa-
rameter, η : Rq →∈ Rq the natural parametrization, A : Rq → R the log-partition func-
tion and h : X →R+ the base measure. The exponential family encompasses a broad set
of distributions (Table A.1), including the Gaussian distribution with unit variance, the
Poisson, the Bernoulli, the Beta or the Gamma distributions. Practically, the functions A,
T and η are modelling choices which can be tuned for any specific application.

2.2.3. SATURATED MODEL PARAMETERS
We consider a dataset X ∈ Rn×p with n samples and p features which we model using
an exponential family defined by E = (

T, A,η
)

(Subsection 2.2.2). This choice of a dis-
tribution is usually motivated by prior knowledge on the data, e.g. Bernoulli for binary
data. If we assume that each element in the data matrix X follows this exponential fam-
ily distribution, we define the saturated parameters of X given this exponential family,
θ̃ (X ;E ), as the matrix of n×p natural parameters which minimise the following negative
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Data type Family distribution
Copy-number aberration (CNA) Log-Normal or Gamma
Gene expression (GE) Negative-Binomial
Methylation (METH) Beta
Mutation (MUT) Bernoulli

Table 2.1 – Exponential family distributions. Gaussian distribution is assumed to have unit variance. The
dispersion parameter r is fixed for the Negative Binomial.

log-likelihood:

θ̃ (X ;E ) = argmin
θ∈Rn×q

L (θ; X ,E )

where L (θ; X ,E ) =̂
n∑

i=1

p∑
j=1

A
(
θi , j

)−η(
θi , j

)T T
(
Xi , j

)
.

(2.2)

The saturated parameters correspond to single-sample maximum likelihood estimates.
In the particular case where A is differentiable with an invertible differential, assumption

which holds for the usual distributions, let’s define g as g−1 =
(

d A
dη

)−1 ◦T . Equation (2.2)

admits the following solution

θ̃ (X ;E ) = g−1 (X ) . (2.3)

Note that g is defined using the derivative of A with regards to η, not θ. Equation 2.3
shows that the saturated parameters correspond to a dual representation of the data mo-
tivated by prior knowledge on the data-distribution. We will exploit this representation
à la PCA to find the main sources of variations.

2.2.4. GENERALIZED LINEAR MODEL PRINCIPAL COMPONENT ANALYSIS (GLM-
PCA)

Principal Component Analysis (PCA) admits three equivalent definitions: maximisation
of projected variance, minimisation of reconstruction error and maximisation of a Gaus-
sian likelihood with unit-variance. In GLM-PCA, also referred to as Exponential PCA in
the literature, this Gaussian likelihood is replaced by an exponential family distribution,
as was first proposed by Collins et al [79]. The approach from Collins et al computes the
saturated parameters using an SVD-like decomposition, which yields three different ma-
trices. Refinements of this idea which solves a similar optimisation problem, have been
proposed in the literature [80, 81] and offer competitive routines for the computation
of these three matrices. Another take on this problem, which relies on the projection of
saturated parameters, has recently been developed by Landgraf et al [82]. This approach
offers the advantage of a simpler single-matrix optimisation instead of concomitantly
optimising on three. Furthermore, the out-of-sample extension relies on a matrix multi-
plication and is thus computationally fast. We therefore turned to this implementation.
Formally, given an exponential family characterized by E = (T, A,ν) and a number of
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principal components d , GLM-PCA solves the following optimisation problem:

Ṽ (X ;E ,d) , µ̃ (X ;E ,d) =
argmin

V ∈Rd×p ,µ∈Rp

V V T =Id

L
((
θ̃ (X ;E )−1nµ

T )
V T V +1nµ

T ; X ,E
)
, (2.4)

with L defined in Equation (2.2) and 1n a vector of size n made of ones. The opti-
misation problem presented in Equation (2.4) corresponds to the minimisation of the
negative log-likelihood after projection of the centered saturated parameters on a d-
dimensional subspace. The solution Ṽ is the orthogonal matrix which best reconstructs
the data-likelihood. We refer the reader to Chapter ?? for further details on the distribu-
tions we used.
The solution of Equation (2.4) is an optimisation problem with a Stiefel-manifold con-
traint, which we solved by using recent advances in auto-differentiation [83] and opti-
misation on Riemmannian manifolds [84]. We modelled the functions A, T and the neg-
ative log-likelihood using PyTorch; stochastic gradient descent (SGD) on the Stiefeld-
manifold was performed using McTorch. Such a formulation allows to employ a large
variety of exponential family distribution without the need for heavy and potentially
cumbersome Lagrangian computations. Our optimisation scheme relies on four hyper-
parameters: number of factors (or principal components), learning rate, number of epochs
and batch size. To determine them, we compute the Akaike Information Criterion (AIC)
of the complete data for various values of d and different hyper-parameters [85]. For a
GLM-PCA model with d PCs, the AIC corresponds to the sum of the data log-likelihood
and the number of model parameters, which we estimate as the dimensionality of the
Stiefel manifold

{
V ∈Rd×p |V V T = Id

}
, equal to pd −d(d +1)/2. Among all trained mod-

els, we select the one which harbors the smallest AIC.

2.2.5. COMPARISON OF GLM-PCA DIRECTIONS BY PERCOLATE
We consider two datasets X A ∈ Rn×p A and XB ∈ Rn×pB with paired samples (rows) but
potentially different features. We first perform GLM-PCA independently on X A and XB

using two different exponential family distributions, yielding dA and dB factors, respec-
tively denoted as ṼA and ṼB . We furthermore denote by θ̃A and θ̃B the saturated param-
eters of datasets A and B respectively, and µ̃A and µ̃B the intercept terms. To compute the
sample scores resulting from these two GLM-PCAs, we perform an SVD decomposition
on

(
θ̃A −1nµ̃

T
A

)
Ṽ T

A ṼA = ŨAΣAW T
A and

(
θ̃B −1nµ̃

T
B

)
Ṽ T

B ṼB = ŨBΣB W T
B . By construction,

these SVDs are of respective ranks dA and dB .
To compare the two sets of samples scores, ŨA and ŨB , we aggregate them in a matrix M
which we decompose by SVD:

M = [
ŨA ,ŨB

] = UMΣM V T
M . (2.5)

The top left-singular vectors correspond to sample scores which are highly correlated
between ŨA and ŨB , since these two matrices are consisting, by construction, of uncor-
related factors. Following the same intuition as in AJIVE, these can be understood as the
joint signal: restricting to the top r J components (r J < min(dA ,dB )), we obtain the ma-
trix ŨJ ∈ Rn×r J corresponding to the joint view. We furthermore denote by ΣJ ∈ Rr J×r J
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Figure 2.2 – Assessing the number of joint components. (A) Schematic of the sample-level permutations we
perform to estimate the number of joint components. (B) Venn-diagram of the number of joint components
obtained using the permutation scheme. (C) Ratio of variance explained for the GE saturated parameters
matrix after projection on the joint components.

the diagonal square matrix containing the top r J singular values of M . Finally, we define
the individual signal of A, denoted as Ũ A

I , as the signal from ŨA not present in ŨA . We
define Ũ B

I similarly:

Ũ A
I = (

In −ŨJŨ T
J

)
ŨA

Ũ B
I = (

In −ŨJŨ T
J

)
ŨB

. (2.6)

The Percolate workflow is summarised in Figure 2.1B-C.
In order to set the number of joint components r J , we employ a sample-level permu-
tation scheme. We first independently permute the rows of ŨA and ŨB , which we then
aggregate as in Equation (2.5) to obtain the singular values. We perform 100 such per-
mutations independently and retrieve the first singular value for each. Finally, we set
r J as the number of elements in ΣM over one standard deviation from the mean of the
permuted singular values (Figure 2.2A).

2.2.6. PROJECTOR OF JOINT SIGNAL

AJIVE does not provide an out-of-sample extension, and we here propose a derivation
thereof by rewriting the matrix UJ as a function of the saturated parameters. If we de-

compose the matrix VM as VM =
[

V T
M ,A V T

M ,B

]T
such that V T

M ,A contains the first dA
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Figure 2.3 – The joint signal between robust and gene expression contains most of the predictive signal. (A)
Workflow of our approach. (B) Predictive performance for MUT when using Percolate between MUT and GE.
Each point corresponds to a single drug, with the x-axis corresponding to the predictive performance obtained
using the original mutation data, and the y-axis by either the joint (red) or the individual (blue) signals. (C)
Predictive performance for CNA, similarly displayed as in B. (D) Predictive performance for METH, similarly
displayed as in B.
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columns of V T
M and V T

M ,B the last dB ones, we obtain (Section A.4):

ŨJ = ŨJ ,A + ŨJ ,B

with

{
ŨJ ,A = (

θ̃A −1nµ̃
T
A

)
Ṽ T

A ṼAWAΣ
−1
A VM ,AΣ

−1
J

ŨJ ,B = (
θ̃B −1nµ̃

T
B

)
Ṽ T

B ṼB WBΣ
−1
B VM ,BΣ

−1
J

. (2.7)

The formulation of ŨJ presented in Equation (2.7) highlights the additive contribution
of both dataset to the joint signal. At test time, both views are therefore required to es-
timate the joint signal. To tackle the issue of missing data-view, we propose a nearest-
neighbor imputation of the unknown joint-term. Let’s consider, without loss of general-
ity, that only the view A is available. The joint signal has been computed using the two
data matrices X A and XB , yielding ŨJ ,A and ŨJ ,B . The second term contains r J terms,
and we train r J corresponding k-Nearest-Neighbors (kNN) regressors. The test dataset
YA ∈ Rm×p A can be projected on the joint signal by replacing the saturated parameter
θ̃A in Equation 2.7 with the saturated parameter of the test data. We then estimate the
second term by means of the r J kNN regression models. Adding these two terms yields
an estimate of the joint signal.

2.2.7. DRUG RESPONSE PREDICTION

We assess the predictive performance of a dataset by employing ElasticNet [86], which
has been shown, inspite of its relative simplicity, to outperform more complex non-
linear models when it comes to drug response prediction [45, 66, 87]. For a given dataset,
we perform nested cross-validation as follows. First, datasets are stratified into 10 groups
of equal size. For each group (10%), we employ a 3-fold cross-validation grid search on
the remaining 90% to determine the optimal ElasticNet hyper-parameters (`1-ratio and
penalization). We then fit this optimal ElasticNet model on the 90% to predict the class
labels on the 10%. Repeating this procedure, we obtain one cross-validated estimate per
sample and we define the predictive performance as the Pearson correlation between
these estimates and the actual values.

2.2.8. DATA DOWNLOAD, MODELLING AND PROCESSING

We consider four data types in our analysis (Table 2.1) which we modelled using dif-
ferent exponential family distributions (Sections A.1, A.2 and A.3). The GDSC data was
accessed on January 2020 from CellModel Passport [9]. For GE, MUT and CNA, we re-
stricted to protein coding genes known to be frequently mutated in cancer, referred to as
the mini-cancer genome [88]. GE was corrected for library size using TMM normaliza-
tion [89] and mutations were restricted to non-silent.

2.3. RESULTS

2.3.1. THE BREAKDOWN OF THE JOINT SIGNALS HIGHLIGHTS THE TOPOL-
OGY OF MULTI-OMICS DATA

To compare data types, we employ Percolate using the distributions defined in Table 2.1,
and a number of PCs set using the procedure presented in Subsection 2.2.4 (Figure A.2).
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Figure 2.4 – Robust-type-based signatures created from Percolate recapitulate drug response. (A) Schematic
of the cross validation experiment. (B) Results for MUT with a special zoom on drugs predictive for joint but
not robust (left) and for robust but not join (right). (C) Results for CNA. (D) Results for METH.
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For each comparison, setting the number of joint components is a crucial step, as it de-
fines the threshold between the joint and individual signals. For that purpose, we used a
sample level permutation test (Figure 2.2A, Subsection 2.2.5).
We observe that GE shares 21 joint components with METH, 13 with CNA and only 6 with
MUT, which is coherent with the gradient put forward in Figure 2.1. We furthermore ob-
serve that MUT is consistently the data type with the least number of joint components
(Figure 2.2B), highlighting the weakness of the signal coming from MUT data, corrobo-
rating previous measured topologies of multi-omics data [54]. To measure the strength
of the underlying joint signals, we computed the proportion of GE variance explained
by the joint directions (Figure 2.2C), computed as the ratio between the joint signal vari-
ance and the variance of the GE’s saturated parameters matrix. We observe that the joint
signal between GE and METH explains 26% of GE variance, while this figures drops to
14% and 7% for CNA and MUT, respectively. These observations highlight the existence
of a joint signal, of which the predictive performance can be interrogated.

2.3.2. ROBUST SIGNAL PREDICTIVE OF DRUG RESPONSE IS CONCENTRATED

IN THE JOINT PART

We then investigated the relevance of the joint and individual signals when it comes
to drug response prediction. Considering one robust data type at a time (MUT, CNA or
METH), we first decomposed the original robust data type into a signal joint with GE and
an individual signal specific to the robust data type. We then computed, for 195 drugs
(Methods), the predictive performance for these two signals and compared it to the orig-
inal robust robust data (Figure 2.3A, Subsection 2.2.7). To ensure a proper comparison
between joint, individual and cell-view, the cross-validation was performed using the
same folds for all datasets.
We first analyzed the results obtained between MUT and GE data (Figure 2.3B). We ob-
serve that for most drugs, the predictive performance of the joint signal exceeds the pre-
dictive performance of the original robust signal, except for a number of drugs of which
the response is quite well predicted based on MUT only. This set includes the drugs
Nutlin-3, Dabrafenib, and PLX-4720. In contrast, the individual signal shows no predic-
tive performance (Pearson correlation below 0) for most drugs, indicating an absence of
drug response related signal in the individual portion. We then turned to CNA where the
choice of distribution was unclear, with, to the best of our knowledge, no clear precedent
on how to model such data. Due to the observed behavior of CNA data, we opted for two
possible distributions: Log-normal and Gamma distributions (Table A.1). We observe
that the joint signal computed using a Gamma-distribution yields better performances
than the log-normal model (Figure A.3A-B). When using a Gamma distribution, a con-
clusion similar to the MUT data can be reached with the majority of drugs predicted
well with the joint signal except three drug, AZD4547, PD173074 and Savolitinib (Fig-
ure 2.3C). This advocates for using the Gamma distribution for analyzing CNA data and
shows that the joint signal presents an increased performance while the individual sig-
nal is not predictive. Finally, we studied the drug response performance obtained after
decomposing METH using GE (Figure 2.3D). We observe that the joint signal presents a
similar predictive performance as the original methylation data. The individual signal
is, again, not predictive. These results highlight the potential of restricting predictors to
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Figure 2.5 – Study of joint signals contributing to improved performance. For each drug, we report the top
10 largest gene regression coefficients from the joint signal, in absolute values. We first analysed the joint
biomarkers created from MUT data for Gemcitabine (A), Vincristine (B) and Palbociclib (C). We then turned to
CNA-based signatures for OSI-27 (D), Vorinostat (E) and Vincristine (F).
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the joint signal for robust data types.

2.3.3. OUT-OF-SAMPLE EXTENSION RECAPITULATES THE PREDICTIVE PER-
FORMANCE OF ROBUST SIGNAL

In order to compute the joint signal between one robust data type and GE, one needs
to have access to both modalities. However, the purpose is to become independent of
non-robust GE measurements. In order to study whether the joint signal could be esti-
mated without access to gene expression, when the predictor is applied to a test case, we
exploited our out-of-sample extension (Subsection 2.2.6). We employed this algorithm
to compute the drug response predictive performance of the joint signal estimated using
the robust data alone (Figure 2.4A). Dividing the data in ten independent folds, we per-
formed a cross-validation estimation as follows. For each train-test division of the data,
we trained a Percolate instance on the 90% of the data, the training set containing GE
and the robust data type. The resulting joint information was then used to train an Elas-
ticNet model to predict drug response. The remaining 10% (test data) were then used
to first estimate the joint signal, solely based on the robust data (Subsection 2.2.6). This
joint signal was then used as input into the ElasticNet model to predict the response on
this test set. Finally, we computed the predictive performance as indicated in Subsection
2.2.7.
When analyzing results for MUT (Figure 2.4B), we first observe a clear drop in perfor-

mance for the joint signal compared to the previous results (Figure 2.3B). This suggests
that the GE portion of the joint signal (Equation 2.7) contains a significant portion of
predictive signal, which is less well captured by our out-of-sample extension. Nonethe-
less, we observe that 11 drugs show a predictive performance above 0.2 for joint but
not for the robust data. In contrast, 11 drugs show the opposite effect, including seven
which target the MAPK pathway – MEK (Trametinib, PD0325901, Selumetinib) and ERK
(ERK2440, ERK6604, Ulixertinib, SCH772984). BRAF inhibitors Dabrafenib and PLX-
4720 also show a drop in performance. This suggests that constitutive activation of the
MAPK pathway is not recapitulated by the joint signal. Nonetheless, the joint signal gen-
erated by Percolate helps increase performance for several poorly predictive drugs and
is therefore of interest to study various response mechanisms. We then turned to CNA
(Figure 2.4C) and observe a modest decrease in predictive performance compared to
the performance on the original CNA profiles. Three drugs show a spectacular drop as
the response can not be predicted by the joint signal – Savolitinib (cMET), PD173074
(FGFR) and AZD4547 (FGFR). In contrast, three drugs show improved performance for
the joint signal – OSI-027 (mTOR), Navitoclax (HDAC) and Vincristine (tubulin). Finally,
we repeated the experiment for METH (Figure 2.4D) and observe that predictive perfor-
mances of the joint signal is remarkbly comparable to the predictive performance on the
original METH data, with most drugs falling showing less than 2% relative performance
difference (Figure A.4C). Taken together, these results show that the joint signal recapit-
ulates the drug response performance abilities of DNA-based measurements.

2.3.4. STUDY OF GENES CONTRIBUTING TO THE JOINT SIGNALS
We then set out to study the underlying mechanisms associated with the predictors de-
rived from the robust data types (Subsection 2.3.3) which also lead to improved perfor-
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Figure 2.6 – The signal joint with DNA-based measurements deprives gene expression from any predictive
power. (A) Schematic of our iterative procedure to remove from GE any signal joint with robust data type. (B)
Predictive performance of the resulting residual gene expression compared to the predictive performance of
the complete gene expression.
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mance. For a given drug, we trained an ElasticNet model on the joint signal, yielding
one regression coefficient per joint component. Using the relationship from Equation
2.7, we obtain a regression coefficient for each gene. A positive coefficient indicates that
larger values of the saturated parameters, caused by a mutation or amplification of the
supporting gene, are associated with resistance. In contrast, a negative coefficient indi-
cates that larger values of the saturated parameters are associated with sensitivity.
For MUT, we studied the mode of action of three drugs for which the joint signal per-
forms well (Figure 2.4B): Gemcitabine (Figure 2.5A), Vincristine (Figure 2.5B) and Palbo-
ciclib (Figure 2.5C). We observe that TP53 mutation status is associated with resistance
to three drugs, concordant with earlier observations showing that TP53 mutant are more
resistant to chemotherapy [90]. Resistance to Gemcitabine and Vincristine is also asso-
ciated with KRAS and PI3KCA mutations, known for their proliferative potential [91, 92].
Interestingly, mutations in MYC and MAPK8IP2 are associated with sensitivity to these
three drugs. Three other drugs show a drop in predictive performance on the joint signal
as compared to the original signal: Nutlin-3, Dabrafenib and PLX-4720 (Figure 2.4B). We
observe that the known targets of these drugs exhibit a large coefficient: TP53 for Nultin-
3 (known resistance biomarker) and BRAF for Dabrafenib and PLX-4720 (Figure A.5).
These three drugs highlight a limitation of our approach: GLM-PCA generates scores
which aggregates the contributions of several genes. Highly-specific drugs, like Nutlin-3
(Mdm2-inhibitor) or BRAF/MEK-inhibitors not only target a specific protein, but muta-
tions in the target are excellent response predictors. Such cases do not benefit from the
GLM-PCA aggregation as a single feature alone is predictive.
Next we turned to CNA where three drugs: OSI-27 (Figure 2.5D), Vorinostat (Figure 2.5E)
and Vincristine (Figure 2.5F), which all showed increased performance when the joint
signal is employed as compared to the original CNA data. For both OSI-27 (mTORC1)
and Vorinostat (HDAC), we observe that amplification of CDKN2A (p16) is associated
with sensitivity. P16 acts as a tumor-suppressor by slowing down the early progression of
the cell-cycle and its loss is here associated with resistance for these two drugs. Finally,
Vincristine’s predictor shows that MAP4K1’s amplification as a predictor of resistance.
Such result is coherent with what we observed for MUT (Figure 2.5B) where mutations
on KRAS were associated with resistance.

2.3.5. ITERATIVE APPLICATION OF PERCOLATE DEPRIVES GENE EXPRESSION

FROM PREDICTIVE POWER

Finally, we questioned whether some signal predictive of drug response is still present
in gene expression. To this end, we studied the GE signal after it has been stripped of
all the signal it shares with MUT, METH or CNA. To remove all signal associated with
robust data types from GE, we used Percolate iteratively on GE, starting with the least
predictive data type (MUT), followed by CNA and ending with the most predictive data
type (METH) (Figure 2.6A). Specifically, we first "percolate" GE through MUT to obtain
an individual GE signal (not shared with MUT), which is then percolated through CNA
to obtain a second GE individual signal, which is then finally percolated through METH,
resulting in the individual GE signal we denote as residual gene expression. We finally
assessed the predictive performance of this residual gene expression and compared it to
the predictive performance of the original GE (Figure 2.6B, Subsection 2.2.7). We observe
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that no drug reaches a Pearson correlation above 0.16, indicative of a complete lack of
predictive performance in the residual GE. This shows that removing the signal joint with
DNA-based measurements deprives gene expression from any predictive ability.

2.4. DISCUSSION
Designing multi-omics predictors of drug response has highlighted the existence of a
trade-off between robust and predictive data types. To study this trade-off, we devel-
oped Percolate, a method which decomposes a pair of data types into a joint and an
individual signal. After showing that the strength of the joint signal recapitulates the
known topology between data types, we showed that the joint signal contains more pre-
dictive power than any robust data type alone. Exploiting our out-of-sample extension,
we showed that the joint signal, computed from robust data types alone, recapitulates
most of the predictive performance of each original robust signal. Finally, we showed
that the gene expression signal predictive of drug response is fully captured by robust
data types through Percolate.
Technically, Percolate extends JIVE in two different ways. First, by using GLM-PCA in-
stead of PCA, we tailor the dimensionality reduction step to the specific data under con-
sideration. Second, we developed an out-of-sample extension which allows to estimate
the joint signal, even in the absence of one data-modality. For our analysis, we made use
of standard distributions from the exponential family: Negative Binomial, Gamma, Beta
or Bernoulli. Our implementation of GLM-PCA is versatile and any exponential family
distribution can be employed in our framework, provided it can be auto-differentiated
by PyTorch. Employing more complex distribution, like the inverse-gamma for copy-
number is a fruitful avenue to improve on our methodology.
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3.1. INTRODUCTION
Cancer is a heterogeneous disease that arises due to the accumulation of somatic ge-
nomic alterations. These alterations show high levels of variability between tumors re-
sulting in heterogeneous responses to treatments. Precision medicine attempts to im-
prove response rates by taking this heterogeneity into account and tailoring treatment
to the specific molecular make-up of a given tumor. This requires the identification of
biomarkers to identify the set of patients that will benefit from a given treatment while
sparing those that will not benefit the unnecessary side-effects. However, as there are
limited patient response data for a wide range of drugs, pre-clinical modes such as cell
lines and patient-derived xenografts (PDXs) have been employed to generate large-scale
data sets that enable the development of personalized treatment strategies based on the
data-driven identification of biomarkers of response. More specifically, hundreds of pre-
clinical models have not only been extensively molecularly characterized, but, more im-
portantly, their response to hundreds of drugs have also been recorded. This has re-
sulted in large public resources containing data derived from cell lines (GDSC1000, [9])
and PDX models (NIBR PDXE, [93]).

These pre-clinical resources can be employed to build predictors of drug response
which are then transferred to the human setting, allowing stratification of patients for
drugs the patients have not yet been exposed to. Geeleher et al. applied this approach
by simply correcting for a batch effect between the cell line and tumor data sets and
then directly transferring the cell line predictor to the human setting ([52, 53]). This
already yielded some promising results: it recovered well-established biomarkers such
as the association between Lapatinib sensitivity and ERBB2 amplifications. However,
when directly transferring a predictor from the source domain (cell lines) to the target
domain (human tumors) one assumes that the source and target data originate from the
same distribution. While the differences between pre-clinical models and human tu-
mors have been studied extensively ([15, 17, 94]), the most obvious differences include
the absence of an immune system in both cell lines and PDXs and the absence of a tu-
mor micro-environment and vasculature in cell lines. One can therefore not assume
similarity between the source and target distributions.

Transfer Learning aims at addressing this issue (see ([43, 44]) for a general review).
Transfer learning methods can be assigned to different categories depending on the
availability of source and target labels and on the specific relation between these source
and target datasets. Since we have a very small number of labeled tumor samples, but
a wealth of labeled pre-clinical models, our approach falls into the category referred to
as transductive1. Since the features (i.e. the genes) are the same in the source and target
domains, our problem requires a domain adaptation strategy, sometimes also referred
to as homogeneous domain adaptation.

As previously mentioned, the marginal distributions of pre-clinical models and tu-
mors are expected to be different. However, we assume that drug response is, for a
large part, determined by biological phenomena that are conserved between pre-clinical
models and human tumors. Therefore there should exist a set of features (genes) for
which the conditional distribution of drug response given these features is comparable

1While this terminology is not widely used in the community, we follow the categorization employed in ([43]).
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across cell lines, PDXs and human tumors. Different methodologies have been proposed
to find such a common space and these can be divided in two main categories ([95]). For
approaches in the first category, called data-centric, a common subspace can be found
directly from both the pre-clinical models and the tumors by aligning the marginal distri-
butions. This can be done by, for instance, using the Maximum Mean Discrepancy either
exactly or employing semi-definite-programming ([96, 97]), or by using approximations
based on multiple-kernel learning ([98]) or empirical kernel maps ([99]). Approaches
in the second category, called subspace-centric, perform the domain adaptation correc-
tion by first reducing the dimensionality, and then aligning the low-rank representations
([58, 59, 100]). In the first category, the marginal distributions are directly aligned, sug-
gesting that the empirical distribution would sufficiently accurately reflect the real be-
havior of the source and target samples. If, for instance, the source dataset consists of
a proportion of ER positive samples that is very different from the target dataset, such
a direction would be discarded as it is too dissimilar between the source and target.
Clearly, this would be undesirable, as it represents a very important variable in breast
cancer. The second category does find the directions of important variations, and then
compares these directions between source and target. Hence, these approaches do not
directly compare the distribution and are less subject to the sample size issue and to
sample selection bias. We chose to employ the latter approach.

We present PRECISE (Patient Response Estimation Corrected by Interpolation of
Subspace Embeddings), a methodology based on domain adaptation that trains a re-
gression model on processes that human tumors share with pre-clinical models. Fig.
3.1 shows the general workflow of PRECISE. We first independently extract factors from
the cell lines, PDXs and human tumors by means of linear dimensionality reduction.
We then use a linear transformation that geometrically matches the factors from one of
the pre-clinical models to the human tumor factors ([59]). Subsequently we extract the
common factors (principal vectors (PVs)) defined as the directions that are the least in-
fluenced by the linear transformation (Fig. 3.1A). After selection of the most similar prin-
cipal vectors, we compute new feature spaces (based on this selection) by interpolating
between the source domain (cell line or PDX principal vectors) and the target domain
(human tumor principal vectors). The feature spaces resulting from this interpolation al-
low a balance to be struck between the chosen model system and the tumors ([58, 100]).2

From the set of interpolated spaces, the consensus representation is obtained by optimiz-
ing the match between the marginal distributions of the chosen pre-clinical model and
the human tumor data projected on these interpolated features. These consensus fea-
tures are finally used to train a regression model using data from the pre-clinical model of
choice. We use this regression model to predict tumor drug response (Fig. 3.1B). As these
features are shared between the pre-clinical models and the human tumors, the regres-
sion model is expected to generalize to human tumors. We finally use known biomarker-
drug associations (from independent data sources, e.g. mutation status, copy number)
as positive controls to validate the predictions of the model in human tumors (Fig. 3.1C).

This work contains the following novel contributions. First, we introduce a scalable
and flexible methodology to find the common factors between pre-clinical models and

2Our method, although using the notion of canonical angle, differs markedly from Canonical Correlation Anal-
ysis. Indeed, in our case, samples are not paired and no cross-correlation can be computed.
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human tumors. Second, we use this methodology to quantify the transcriptional com-
monality in biological processes between cell lines, PDXs and human tumors, and we
show that these common factors are biologically relevant. Third, we show how these
common factors can be used in regression pipelines to predict drug response in human
tumors and that we recover well-known biomarker-drug associations. Finally, we de-
rive an equivalent, faster and more interpretable way to compute the geodesic flow ker-
nel, a widely used domain adaptation method in computer vision. Our approach builds
up on the work of ([58, 100]) but extend these approaches by first removing irrelevant
non-transferable information automatically, and second by finding consensus features
within the interpolation scheme to counter the bias towards source features induced by
Ridge regression.

3.2. MATERIAL AND METHODS

3.2.1. NOTES ON TRANSCRIPTOMICS DATA
We here present the datasets employed in this study. Further notes on pre-processing
can be found in Subsection B.1.2.

THE CELL LINE DATASET

We used the GDSC1000 dataset to train predictors on the cell lines. GDSC1000 contains
IC50-values for a wide range of drugs. Amongst these drugs, we restricted ourselves to
drugs that are either cytotoxic chemotherapies or targeted therapies and have shown an
effect on at least one cancer type. This resulted in a set of 45 drugs employed in this
study (Subsection B.1.1). The gene expression profiles of 1,031 cell lines are available in
total, including 51 breast cancer and 40 skin melanoma lines. Gene expression data are
available in the form of FPKM and read counts.

THE PDX DATASET

We used the Novartis PDXE dataset which includes the gene expression profiles of 399
PDXs, including 42 breast cancer PDXs and 32 skin melanoma PDXs. Transcriptomics
data are available in the form of FPKM.

THE HUMAN TUMOR DATASET

We extracted gene expression profiles for human tumors from TCGA. Specifically, we em-
ployed gene expression profiles for 1,222 breast cancers and 472 skin melanoma cancers.
Both FPKM and read counts are available. Mutation and copy number aberrations have
been downloaded from the cBioPortal ([101]). Translocation data has been downloaded
from TumorFusions ([102]).

3.2.2. THE COSINE SIMILARITY MATRIX
Transcriptomics data are high-dimensional with p ∼ 19.000 features (genes) and since
these genes are highly correlated, only some combinations of genes are informative. A
simple – yet robust ([103]) – way to find these combinations is to use a linear dimen-
sionality reduction method, like PCA, that breaks the data matrix down in d f factors
independently for the source (cell lines or PDXs) and target (human tumors) such that

∀i ∈ {s, t }, Xi = Si Pi with Pi PT
i = Id f

, (3.1)
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Figure 3.1 – Overview of PRECISE and its validation. (A) Human tumor and pre-clinical data are first pro-
cessed independently to find the most important domain-specific factors (using, for instance PCA). These
factors are then compared, aligned and ordered by similarity, yielding principal vectors (PVs). The first PVs
are pairs of vectors that are geometrically very similar and capture strong commonality between human tu-
mors and pre-clinical models, the PVs at the bottom represent dissimilarities between human tumors and
pre-clinical models. (B) A cut-off in similarity enables the retention of processes that are common. After in-
terpolation between these most similar pre-clinical and tumor PVs, a consensus representation is computed by
balancing the influence of human tumor and pre-clinical PVs. We performed a gene set enrichment analysis
on these features to assess that they were clinically relevant. A tumor-aware regression model is finally trained
by projecting pre-clinical and human tumor transcriptomics data on this consensus representation. (C) In
order to validate our model, we use positive controls from independent data sources such as copy number or
mutation data. These positive controls are established biomarker-drug associations. We compare the predic-
tions of our model to predictions obtained based on these independent established biomarkers. Red boxes
highlight our contributions.
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where s and t refer to the source and target, respectively; X represents the (n x p) tran-
scriptomics dataset where each row represents a sample and each column a gene; Id f

is the identity matrix and P ∈ Rd f ×p contains the factors in the rows (i.e. the principal
components). Since these factors are computed independently for the source and the
target, we refer to them as domain-specific factors. Here we only consider PCA (Principal
Components Analysis) since it is widely adopted by the community, and for its direct link
to variance that acts as a first-order approximation in the comparison of distributions.
Our method is, however, flexible and any linear dimensionality reduction method can
be used.

Once domain-specific factors have been independently computed for both the source
and target, a simple way to map the source factors to the target factors is to use the sub-
space alignment approach suggested by ([59]). This approach finds a linear combination
(M∗) of source factors that reconstructs the target factors as closely as possible:

M∗ = argmin
M∈Rd f ×d f

∣∣∣∣PT
s M−PT

t

∣∣∣∣
F = Ps PT

t , (3.2)

which is the least squares solution under orthogonality constraints from Equation (3.1).
This optimal transformation consists of the inner product between the source and target
factors and therefore quantifies the similarity between the factors. We will therefore refer
to it as the cosine similarity matrix. It is also referred to as Bregman matrix divergence in
the literature.

3.2.3. COMMON SIGNAL EXTRACTION BY TRANSFORMATION ANALYSIS
As we will show in Subsection 3.3.1, matrix M∗ is far from diagonal, indicating that there
is not a one-to-one correspondence between the source- and target-specific factors.
Moreover, using M∗ to map the source-projected data onto the target domain-specific
factors would only remove source-specific variation, leaving target-specific factors and
the associated variation untouched.

To understand this transformation further, we performed a SVD, i.e. Ps PT
t = UΓVT ,

where U and V are orthogonal of size d f and Γ is a diagonal matrix. U and V define or-
thogonal transformations on the source and target domain-specific factors, respectively,
and create a new basis for the source and target domain-specific factors:

sk = (
PT

s U
)

.,k and tk = (
PT

t V
)

.,k for all k ∈ {
1, ..,d f

}
. (3.3)

These define the principal vectors (PVs) ([104]) that have the following equivalent defini-
tion:

∀k ∈ {
1, ..d f

}
, sk , tk = argmax

s∈span(Ps ), t∈span(Pt )
sT t

s.t ∀i < k,

{
si ⊥ s
ti ⊥ t

and sT s = t T t = 1
. (3.4)

s1, .., sd f
define the same span as the source-specific factors – and so do t1, .., td f

with
the target-specific factors. PVs thus retain the same information as the original domain-
specific factors, but their cosine similarity matrix (Γ) is diagonal. The PVs {(s1, t1) , .., (sd f

, td f
)}

are derived from the source and target domain-specific factors and the pairs are sorted in
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Algorithm 1 PRECISE

Require: source data Xs , target data Xt , number of domain-specific factors d f , number
of principal vector dpv .
Ps ← d f source domain-specific factors (e.g. Principal Components)
Pt ← d f target domain-specific factors (e.g. Principal Components)
U,V,Γ← SVD of Ps PT

t = UΓVT

Qs ←
(
PT

s U
)T

Qt ←
(
PT

t V
)T

Φ=ΦQs ,Qt as specified in Equation (3.7)
for i ← 1 to dpv do

Si ← [Φi (0) ,Φi (0.01) , ..,Φi (1)]T

Xpr o j
s,i = Xs Si

Xpr o j
t ,i = Xt Si

τi ← time of optimal matching between columns of Xpr o j
s,i and Xpr o j

t ,i
end for

F ←
[
Φ1 (τ1) ,Φ2 (τ2) , ..,Φdpv

(
τdpv

)]T

X pr o j
s ← Xs F

X pr o j
t ← X t F

Train a regression model on X pr o j
s

Apply it on the projected target data X pr o j
t

decreasing order based on their similarity. The top PVs are very similar between source
and target while the bottom pairs are very dissimilar. For this reason we restricted the
analysis to the top dpv principal vectors. In (Equation 3.4), PVs have been defined as uni-
tary vectors that maximise the inner product. The similarities therefore range between 0
and 1, and can thus be interpreted as the cosines of principal angles defined as

∀k ∈ {
1, ..d f

}
, θk = arccos

(
sT

k tk
)

. (3.5)

We define Qs and Qt as the matrix with the ordered principal vectors of the source
and the target, respectively, with the factors in the rows.

3.2.4. FACTOR-LEVEL GENE SET ENRICHMENT ANALYSIS
In order to associate the principal vectors and the consensus representation with bio-
logical processes, we use Gene Set Enrichment Analysis ([105]). For each factor (i.e. a
principal vector or a consensus factor), we projected the tumor data onto it, yielding one
score per tumor sample. These sample scores where then used in the GSEA package as
continuous phenotypes. We employed sample-level permutation to assess significance
based on 1000 permutations. We used two curated gene sets from the MSigDB package:
the canonical pathways (cp) and the chemical and genetic perturbations (cgp).

3.2.5. BUILDING A ROBUST REGRESSION MODEL
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Given the common factors, we can create a drug response predictor based on these
pairs of PVs. There are different ways to use these pairs of PVs. We could restrict our-
selves to either the source or target PVs, but it would only support one of the two do-
mains. Alternatively, we could use both source and target PVs. However, this would also
be sub-optimal for the following reason. Source PVs are computed using the source data
and maximize the explained variance of the source. Hence the source data projected on
the source PVs is likely to have higher variance than the source data projected on the
target PVs, since target PVs have not been optimized for the source data. If we were to
apply penalized regression on the source data projected on both the source and target
PVs, it would preferably select the source PVs. This would in turn lead to a loss of gen-
eralizability as source-specific information is weighed more heavily that target specific
information.

One way to circumvent this issue is to construct a new feature space using ‘interme-
diate’ features based on interpolation between the spaces spanned by the the source and
target PVs. For instance, in the plane that joins s1 and t1, the rotations from the former
to the latter vector could contain a better representation. The intermediate features are
expected to be domain invariant as they represent a trade-off between source and target
domains and can thus be used in a regression model.

There is an infinite number of parameterizations for the intermediate features that
join the source to the target PVs. As suggested in ([100], [58]), we consider the geodesic
flow representing the shortest path on the Grassmannian manifold. We derive (see Sub-
section B.2.2 for the complete proof) a parameterization of the geodesic as a function of
the PVs. Let’s defineΠ and Ξ as

∀τ ∈ [0,1] ,

 Π (τ) = diag
(

sin((1−τ)θi )
sin(θi )

)
i

Ξ (τ) = diag
(

sin(τθi )
sin(θi )

)
i

, (3.6)

where diag(·) is the diagonal matrix. The intermediate representations are then defined
by the geodesic path, that corresponds to a rotation for each pair of PVs:

Φ : τ ∈ [0,1] 7→ QT
s Π (τ)+QT

t Ξ (τ) . (3.7)

This geodesic path contains, for each pair of PVs, the features forming a rotating arc
between the source and the target PVs. This formulation of the geodesic flow has the
advantage of being based on the PVs, and not the domain-specific factors, in contrast
to the formulation used in ([100]) and ([58]). Non-similar PVs can be removed prior to
interpolation.

However, we show in Subsections B.2.3 and B.2.4 that projecting on all these fea-
tures is equivalent, even in the infinite case, to projecting onto both the source and the
target principal vectors, with the undesirable consequences described above. It is there-
fore preferable to create, for each pair of PVs, a single interpolated feature that strikes
the right balance between the information contained in the source and target spaces.
Consequently, a regression model trained on source data projected on the interpolated
feature would generalize better on the target space. To construct these interpolated, or
consensus features, we use the Kolmogorov-Smirnov (KS) statistic as a measure of sim-
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ilarity between the source and target data, both projected on a candidate interpolated
feature.

Specifically, by denoting dpv as the number of selected PVs, for i ∈ {
1, ..,dpv

}
and

τ ∈ [0,1] the feature at position τ between the i th pair is defined as Φi (τ) = (Φ (τ))·,i . For
each pair of PVs, we then select the position τi that minimizes the KS statistic between
the distributions of the source and target data projected on this feature. Let denote by D
the KS statistic between the two projected datasets. We thus define τi as:

τi = min
τ∈[0,1]

D
(
XsΦi (τ) ,XtΦi (τ)

)
. (3.8)

This optimization is performed using a uniformly spaced grid search in interval [0,1]
with step size 0.01, moving between the source and the target.

This process is repeated for each of the top dpv PVs, resulting in an optimal interpo-
lation position for each. These positions are then plugged back into the geodesic curve
to yield the domain-invariant feature representation F defined as:

F =
[
Φ1 (τ1) ,Φ2 (τ2) , .. ,Φdpv

(
τdpv

)]T
. (3.9)

The source data can now be projected on these features and the resulting data set
can be used for training a regression model that can be more reliably transferred to the
target (human tumor) data.

3.2.6. NOTES ON IMPLEMENTATION

Once the number of principal components and principal vectors have been set (see Sub-
section B.5 for an example), the only hyper-parameter that needs to be optimized is the
shrinkage coefficient (λ) in the regression model. We employed a nested 10-fold cross
validation for this purpose. Specifically, for each of the outer cross validation folds, we
employed an inner 10-fold cross-validation on 90% of the data (the outer training fold)
to estimate the optimal λ. To this end, in each of the 10 inner folds, we estimated the
common subspace, projected the inner training and test fold on the subspace, trained a
predictor on the projected inner training fold and determined the performance on the
projected inner test fold as a function of λ. After completing these steps for all 10 in-
ner folds, we determined the optimal λ across these results. Then we trained a model
with the optimal λ on the outer training fold and applied the predictor to the remaining
10% of the data (outer test fold). We then employed the Pearson correlation between the
predicted and actual values on the outer test folds as a metric of predictive performance.
Note that every sample in an outer test folds is never employed to perform either domain
adaptation nor in constructing the response predictor in that same fold.

The methodology presented in this section is available as a Python 3.7 package avail-
able on our GitHub page. The domain adaptation step has been fully coded by ourselves
and the regression and cross-validation uses scikit-learn 0.19.2 ([106]).
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Figure 3.2 – Comparison of domain-specific factors between source and target with the source being cell lines
(A,B) or PDXs (C,D). (A,C) The absolute cosines similarity, i.e. the absolute values of the scalar products be-
tween source and target PVs. High similarities are found between some factors but no clear 1-1 correspon-
dence is visible (absence of high values on the diagonal). (B,D) The ratio of tumor variance explained. Human
tumor data were projected on the source and target PVs, the variance of the projected data on each direc-
tion was computed and divided by the total human tumor variance. The shaded regions represent the 98%
confidence intervals obtained by bootstrapping the human tumor samples. Overall, the first five cell line fac-
tors each explain more than 1% of the human tumor variance each, while for PDXs this is achieved for the
first seven factors. The non-monotonic behavior of the PDX and cell line principal component curves shows
that the human tumor variance is not supported by the same directions than the pre-clinical models, which
necessitates domain adaptation. PDXs show slightly higher similarity to human tumors than cell lines.
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3.3. RESULTS

3.3.1. PRE-CLINICAL MODELS AND HUMAN TUMORS SHOW LIMITED SIMI-
LARITY

The cosine similarity matrix M∗ presented in Subsect. 3.2.2 gives an indication of the
similarity between the source and the target principal components. A clear correspon-
dence between factors would yield a diagonal matrix, allowing a single target principal
component to be assigned to a single source principal component. Using data presented
in Subsect. 3.2.1, Fig. 3.2A and Fig. 3.2C instead, show that this is clearly not the case as
each source principal component shows similarity to a number of target principal com-
ponents. Roughly speaking, for cell lines (Fig. 3.2A), the top four source factors show high
similarity with the top ten target factors. The similarity between PDXs and human tumor
principal components is generally higher and holds for a larger set of factors (Fig. 3.2C).
This is to be expected since PDXs are believed to show higher resemblance to human
tumors than cell lines.

When tumor data is projected on the cell line principal components, the explained
variance accounts for around 30% of the variance explained when mapping the data on
the human tumor principal components (Fig. 3.2B). For PDXs, on the other hand, this
amounts to 40% (Fig. 3.2D), again indicating that PDXs resemble tumors more closely
than cell lines. The bootstrap confidence intervals obtained by bootstrapping the tumor
samples show that the obtained variance proportions differ significantly (Fig. 3.2B and
Fig. 3.2D). However, for both model systems, the explained variance is relatively small,
indicating that the data for both model systems are not drawn from the same probabil-
ity distribution as the human tumors, underscoring the need for a proper alignment of
the datasets prior to transferring a predictor from the pre-clinical modes to the human
tumors.

In order to show that some gene-level structure is shared between these systems, we
permuted the order of the genes in the source data only. We then computed the cosine
similarities and target explained variance as before (Subsect. B.3.2). Neither the cosine
similarity values, nor the variance explained were as high as for the original unshuffled
data, suggesting that model systems and tumor cells do share some feature-level struc-
ture. We also compared the target data to samples drawn uniformly from a gaussian with
a random covariance matrix in order to study whether the similarity between source and
target data is significant. As shown in (Subsect. B.3.3), this also yields values three to four
orders of magnitude lower than observed. This all shows the existence of a shared signal
between source and target.

3.3.2. PRINCIPAL VECTORS CAPTURE COMMON BIOLOGICAL PROCESSES

The source and target principal components are employed to compute the ‘common fac-
tors’ or PVs for both the source and target (see Subsect. 3.2.3). Fig. 3.3A shows that the
source and target PVs exhibit a perfect one-to-one correspondence. This is not unex-
pected since, by construction, this cosine similarity matrix is the central diagonal matrix
(Γ) in the SVD of the optimal transformation between source and target (Equation 3.2).
The source and target PVs are directions that respectively support the source and the
target variance and are ranked by their pairwise similarity. When 20 principal compo-
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Figure 3.3 – Principal vectors (PVs) computed from breast cell lines and breast tumors from 20 principal com-
ponents. (A) The Cosine Similarity matrix for cell line and tumor PVs. The values on the diagonal show the
similarities within the corresponding pairs of PVs. Similarity starts at 78% and goes down to 2% for the last pair
(not shown). The off-diagonal values are almost zero, showing that pairs of PVs of unequal rank are orthogonal
to one another. (B) The Spearman correlations between the Normalized Enrichment Scores (NES) of source
and target PVs for the different gene sets employed. The top principal vectors show similar enrichments while
the bottom ones show little similarity, even negative correlation. This shows that top principal vectors rep-
resent the same biological phenomena. (C) The NES based on the Canonical Pathways for each PV pair with
the NES for the source PV on the left and the NES for the target PV on the right (separated by a dashed line).
Non-significant gene sets are represented as white cells. For this figure panel, we selected the ten gene sets
that were most highly enriched in the first five PVs, the ten gene sets that showed the highest enrichment in
the bottom PVs as well as all the gene sets related to extra-cellular matrix. The top PVs are exclusively enriched
in pathways related to cell cycle. Immune system-related pathways are enriched in the middle and bottom PVs
and PVs at the bottom tend to show enrichment for the target PVs only. (D) The NES for each PV as displayed
in (C), for the CHARAFE and VANTVEER gene sets. The top principal vectors are significantly enriched in sets
associated with breast cancer subtypes.
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nents are computed between breast cell lines and breast tumors, the similarity between
the principal vectors ranges from 0.78 to 0.02, indicating that the low ranking pairs are
almost orthogonal. Although 0.78 could seem like a low value for the top similarity, such
a value remains significantly large for a 19,000-dimensional space. Fig. B.5A depicts the
top 20 PVs obtained for breast PDXs and breast tumors and shows that the top similarity
coefficients are higher than for cell lines, as expected.

To determine how PVs are related to genes, we calculated the contribution of each
gene to the PVs. We subsequently employed these contributions in a gene set enrich-
ment analysis (see Subsect. 3.2.4) to compute the association between the pathways in
a given data base and the PVs. This resulted in a vector of pathway scores for every PV.
We then computed the pathway similarity between a pair of PVs as the correlation of
the pathway scores. Fig. 3.3B shows these correlations for the top 20 pairs of cell line
and human tumor PVs for six different pathway databases. Correlations are close to one
for the first principal vectors, indicating high pathway similarities, whereas the pathway
similarity decreases (even becoming negative) for the lower ranked PVs. Taken together
this shows that the principal vectors capture shared pathway information between the
model systems and the human tumors.

When zooming in on the individual pathway similarities, we observe roughly two
types of behaviors (Fig. 3.3C and Fig. 3.3D). First, some gene sets show significant en-
richment for the top PVs as well as lower ranked PVs. These gene sets are related to
breast cancer subtypes, cell cycle and DNA replication, i.e. gene sets one would expect
to be enriched in both cell lines and human tumors. Second, some gene sets show en-
richment for the more dissimilar PVs. Most of these gene sets are related to the response
of the immune system and the extra-cellular matrix, entities which are not fully present
in the cell lines. Fig. B.5C shows the results of the gene set enrichment analysis for breast
PDXs and human tumors. We observe roughly the same behavior as for the cell lines
and human tumors, especially regarding the gene sets enriched in the top PVs and the
enrichment of immune related sets. However, we do observe that the extra-cellular ma-
trix shows enrichment in higher ranked PVs (PV 5 and 7) which is in line with what one
would expect in a PDX model. Taken together, this indicates that the PVs that are most
similar between pre-clinical models and human tumors provide a mechanism to capture
the information shared between model systems are tumors, while discarding processes
that behave differently.

3.3.3. THE CONSENSUS REPRESENTATION YIELDS REDUCED BUT COMPETI-
TIVE PERFORMANCE

Using PRECISE, we have derived a consensus feature representation which is both bi-
ologically informative and shared between the source and target. This representation
can be used in a regression model trained on the source drug response data. Since ([45]),
demonstrated that regularized linear models such as Ridge regression or ElasticNet ([86])
yield state-of-the-art performance for drug response prediction and since it is widely
used, we will be employing Ridge regression.

We computed the predictive performance of PRECISE for 84 drug and tumor type
combinations (Subsect. B.1.1). For a given drug and tumor type combination, we used
PRECISE with all cell lines – i.e. the 1.001 cell lines across the 31 tissue types – as source
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Figure 3.4 – Predictive performance assessment. (A) Scatterplot of the performance of PRECISE and Ridge re-
gression. Predictive performance for each approach was computed as the Pearson correlation between the
measured and the 10-fold cross-validated predicted IC50s. PRECISE and Ridge regression performance is
strongly correlated, with PRECISE showing a slight drop in performance. (B) Predicted drug response (pre-
dicted IC50) for breast tumors based on a predictor of Lapatinib response trained on all the cell lines – i.e.
across all tissue types – employing gene expression data only. ERBB2 copy number status in tumors corre-
lates significantly with predicted IC50 values, validating the predictions, as tumors with ERBB2 amplifications
are known to be more sensitive to Lapatinib. (C) Predicted drug response (predicted IC50) for skin melanoma
tumors based on a predictor of Tramatinib response trained on all the cell lines – i.e. across all tissue types
– employing gene expression data only. The PRECISE predictions are validated by the established fact that
BRAFV600E-mutated tumors show a significantly higher sensitivity while the tumors bearing other mutations
in BRAF do not show responses that differ from wild-type tumors.

and the corresponding tumor type as target. For example, to predict response to Vemu-
rafenib in melanoma, we used all the cell lines from the GDSC panel, regardless of tumor
type, as source, and melanoma tumors from the TCGA as target. We used 70 principal
components since the variance explained shows a plateau after 70 principal components
(Subsect. B.5.1). For the selection of the top PVs, we compared the obtained similarity
values of the source and target PVs to the similarities obtained with random data and
put the cutoff at the top 40 PVs (Subsect. B.5.2). We then computed the interpolated fea-
ture space employing the KS statistic and employed this feature space in the subsequent
Ridge regression models.

As shown in Fig. 3.4A, PRECISE achieves predictive performances that are reduced
but comparable with a Ridge regression model trained on the raw cell line gene expres-
sion data. The Pearson correlation between Ridge regression and PRECISE performance
is r = 0.97 with a median relative reduction in Pearson correlation of 0.039. As it is the
aim of the consensus representation to focus on the commonalities between the cell
lines and the human tumors, it is to be expected that such a representation will not fully
capture the variation in the cell lines as it is also adapted to the variation in the human
tumors. Hence, a small drop in performance is not unexpected, as long as it results in
improved predictions on the human tumor data, which we will demonstrate in the next
section.



3.3. RESULTS

3

49

3.3.4. DOMAIN-INVARIANT REGRESSION MODELS RECOVER BIOMARKER-DRUG

ASSOCIATIONS

To validate our predictor on human tumor data, we follow ([53]) by comparing the pre-
diction in human tumors with the performance of independent, known biomarkers.
Since we exclusively use gene expression to stratify patients in terms of their response
to a certain therapy, we can use known biomarkers derived from other data sources –
e.g. mutations or copy number changes – to create an independent response stratifi-
cation of the human tumors against which we can compare our approach. In order to
predict the IC50 in human tumor, we trained PRECISE using all the cell lines, irrespective
of their tissue of origin, and the corresponding tumor type.

The first known and clinically employed association between a biomarker and re-
sponse to a drug that we tested is the association between the presence of an ERBB2 am-
plification and response to Lapatinib in breast cancer. Since Lapatinib specifically tar-
gets the ERBB2 growth factor, breast tumors that overexpress this growth factor, and are
therefore addicted to this signal, respond well to this therapy. An accurate stratification
of the breast tumors by PRECISE would therefore show a negative association with the
level of ERBB2 amplification in the tumors, as the tumors predicted to be most sensitive
(lowest IC50) would show the highest level of ERBB2 copy number amplification. This is
exactly what we observe in Fig. 3.4B, where the predicted IC50 and the observed ERBB2
copy number amplification level show a Spearman correlation of ρ =−0.32. In addition,
the copy number loss and copy number neutral categories show statistically significant
differences in predicted IC50 compared to the samples harboring a copy number gain.

The second known association that we investigated is the association between the
presence of a BRAFV600E mutation and response to MEK inhibitors in skin melanomas,
while other BRAF mutations have not exhibited this association. As shown in Fig. 3.4C,
the IC50s predicted for Trametinib by PRECISE show a significant difference between
tumors bearing a BRAFV600E mutation and tumors that are wild type for this gene. In
addition, the PRECISE predictions also show a significant difference in predicted Trame-
tinib response between tumors bearing a BRAFV600E mutation and tumors bearing other
mutations in this gene.

Other known associations we tested against are shown in Fig. B.9: Dabrafenib sensi-
tivity predicted by BRAFV600E mutations(Fig. B.9A), Vemurafenib sensitivity predicted by
BRAFV600E (Fig. B.9B) mutations, Imatinib sensitivity predicted by BCR/ABL transloca-
tions in Acute Myeloid Leukemia (Fig. B.9C), Olaparib sensitivity predicted by BRCA1
deletion in breast cancer (Fig. B.9D) and Talazoparib sensitivity predicted by BRCA1
deletion in breast cancer (Fig. B.9E). These results have been computed using all the
cell lines as source. When using solely cell lines from the tissue under consideration, the
same results are observed, with a larger difference in predicted sensitivity for BRAFV600E

mutated tumors for Trametinib (Fig. B.9G), Dabrafenib (Fig. B.9H) and Vemurafenib (Fig. B.9I),
and a very clear separation of BCR/ABL translocated tumors from the rest under Ima-
tinib treatment (Fig. B.9J).

Finally, we compared results from PRECISE with two baseline approaches. We repli-
cated results from ([53]) by employing Ridge regression on either the raw or ComBat cor-
rected gene expression data. Correcting for batch effect with ComBat provides a baseline
comparison for our methodology. Lapatinib sensitivity is predicted as well as by PRE-
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CISE (Fig. B.10A) with or without the ComBat pre-processing step. For Dabrafenib, the
association with BRAFV600E is recovered, with and without ComBat. However, while the
strength of the association obtained with ComBat is comparable to the association re-
covered with PRECISE, the strength diminishes without ComBat pre-processing (Fig. B.10C).
In contrast to PRECISE, neither Ridge regression nor Ridge regression in combination
with ComBat were able to recover the association between the BRAFV600E mutation and
Trametinib.

In summary, PRECISE is capable of retrieving all tested associations between known
biomarkers and drug response, while current state-of-the-art approaches fail to recover
all these associations.

3.4. DISCUSSION
Using high throughput sequencing and screening technologies, scientists have leveraged
the versatility of pre-clinical models over the past decade to create powerful predictors
of drug response. However, due to the intrinsic differences between cell lines, PDXs and
real human tumors, these predictors can not be expected to directly translate to the hu-
man setting. We have quantified the overlap in terms of the transcriptomics signal be-
tween these pre-clinical models and human tumors. We then introduced PRECISE, a do-
main adaptation framework that finds shared mechanisms between pre-clinical models
and human tumors that display the same behavior across these systems.

PRECISE generates PVs, pairs of factors that capture the common variance between
pre-clinical models and human tumors. The top pairs of PVs are most similar, and thus
recapitulate molecular behavior shared between the systems. The least similar PVs, can
be discarded since they correspond to mechanisms not shared across systems.

These vectors depend on the choice of linear dimensionality reduction methods em-
ployed. We employed PCA, but other methods have been proposed in the literature (e.g.
[70, 107]), all having different qualities (e.g. being biologically meaningful, filtering out
noise, etc.). The versatility of our method enables the use of any dimensionality reduc-
tion scheme, as long it finds an informative linear subspace.

Interpolation between the source and target principal vectors gives rise to features
that balance the contribution of pre-clinical models and tumors. We showed (Sect. B.2)
that interpolating between the principal vectors is equivalent to employing the Geodesic
Flow Kernel approach that relies on the geodesics on the Grassmannian manifold ([58])
and has already yielded state-of-the-art performance in Computer Vision.

Recently, other ways to interpolate between the source and the target domains have
been proposed, such as ([108]) that use a spline instead of the geodesic. We devised a
simple, yet effective interpolation scheme between the source and target PVs where we
employed the similarity based on the Kolmogorov-Smirnov statistic between the source
and target data projected on the interpolated space to arrive at a consensus representa-
tion. This representation strikes the right balance between the pre-clinical models and
the human tumors.

We subsequently projected the data on this consensus representation and trained a
regression model which takes the distribution of the tumor gene expression data into
account. This work considered Ridge and ElasticNet, but our approach is versatile and
can be employed in combination with any classification or regression approach.
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We showed that a Ridge regression model based on the consensus representation
achieves slightly reduced performance compared to state-of-the-art approaches applied
directly to the raw cell line gene expression data. This is to be expected, as the consensus
representation filters out cell line specific information while capturing more relevant
tumor variation, hence enabling efficient transfer to the tumor samples.

We finally compared our predictions to the performance of known biomarkers such
as BRAFV600E in skin cancer or ERBB2 amplification in breast cancer and show that our
method can reliably recover the associations between these biomarkers and their com-
panion drugs. We show that response to Lapatinib can be predicted better when all cell
lines are used for domain adaptation. On the other hand, using all cell lines reduced
the power to predict response to Vemurafenib, although the resulting association with
BRAFV600E mutation status remained significant. This might be due to the ubiquity of
the ERBB2 amplification in several tumor types, in contrast to the BRAFV600E mutation
that is specific to particular tumor types.

We restricted our study to domain adaptation based on transcriptomics data only,
as it has been shown to be the most predictive data type ([45]). However, dissimilar be-
havior between pre-clinical models and human tumors might also be present in other
molecular data types. A multi-omic drug response predictor should also correct for these
differences, which will require a multi-omic domain adaptation approach which accom-
modates the unique data characteristics of each molecular data type.

Other methods have recently been proposed to tackle the problem of transferring
pre-clinical predictors to human tumors. In ([109]), the authors create a correlation net-
work for each omics data type and jointly map these networks onto a protein-protein in-
teraction network. They then select the cliques that are conserved across omics-layers.
In ([110]), the authors present an elegant framework for fold-change prediction in hu-
mans based on data from mouse models. Using fold-change data from both humans
and mouse, a linear model is fitted at the gene-level. This linear model is then used to
predict fold changes in human tumors for novel conditions. The problem of translating
from model systems to human has broad applications and we envision that it will be a
very active area of future research.
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4.1. INTRODUCTION
The accumulation of somatic alterations on the genome and epigenome transforms healthy
cells into malignant tumor cells. Although these alterations are required for tumor growth,
they also confer vulnerabilities on tumor cells. Some well-known examples of such ge-
netic vulnerabilities are the amplification of ERBB2 in breast cancer [111], the BRAFV600E

mutation in skin melanoma [112] or the BCR/ABL fusion in leukemia [113]. These vul-
nerabilities have been successfully exploited clinically by directing drugs against them.
However, for the vast majority of cancer patients, no clear biomarkers exist. Hence, ex-
panding our arsenal of accurate biomarkers would pave the way for personalized medicine,
by identifying the most effective drug for each patient [114].
In order to discover such biomarkers, pre-clinical models have been used extensively
in the past decades, either in the form of cell lines, patient-derived xenografts (PDX) or
organoids. This was partially fueled by the relative ease with which these model systems
can be subjected to drug screening. This has led to break-through discoveries with broad
clinical impact [115]. However, Paul Valery’s statement, "what is simple is always wrong;
what is not, is unusable"" [116], also applies to these model systems. Specifically, their
simplicity also confers weaknesses: the lack of a micro-environment in cell lines, and the
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absence of an immune system in cell lines, PDXs and organoids. These shortcomings are
further amplified by culture artefacts [15? ] that lead to a reduced clinical significance of
these models [94, 117] and a high attrition rate in drug development [118].
Computational approaches that correct for these differences are therefore needed to im-
prove the identification of truly predictive biomarkers [119]. In the particular case of
cancer, approaches that identify biomarkers are divided into two distinct categories. In
the first category, mechanistic models are developed on pre-clinical models and subse-
quently “humanized” to focus on the similarities between pre-clinical models and hu-
man tumors [109]. The second category approaches the problem in a statistical fashion.
Using molecular profiles and drug screens from large-scale panels of pre-clinical models
[9, 45, 93], cell line drug response predictors are inferred [66, 120]. The resulting models
are then applied to predict the sensitivity of patients to certain drugs. Although already
promising, these approaches either do not take into account the fundamental differ-
ences between pre-clinical models and human tumors [121], or only model these differ-
ences as a technical batch effect [52, 53, 122]. Recently, transfer learning and multi-task
learning approaches have been developed to explicitly take these differences into ac-
count, either partially using tumor responses during training [123, 124], or solely based
on pre-clinical labels while employing linear approaches to correct for differences be-
tween pre-clinical models and human tumors (Chapter 3).
We present TRANSACT (Tumor Response Assessment by Non-linear Subspace Alignment
of Cell-lines and Tumors), a versatile framework for subspace-based transfer learning
[44, 58, 60, 97, 125] which enables the transfer of drug response predictors trained on
a source domain (e.g. cell lines and PDXs) to a target domain (e.g. human tumors).
TRANSACT employs the powerful and robust mathematical framework of Kernel meth-
ods [47, 48, 50, 68, 126, 127] to capture both linear and non-linear molecular processes
expressed in both the source and target domains. In doing so, we obviate the need for
cell-line pre-selection [128–130] and limit the loss of statistical power. While TRANS-
ACT cannot compensate for inherent deficiencies in model systems, it identifies and ex-
ploits the space where model systems do represent human tumors accurately. First, we
demonstrate that, compared to existing methods [53, 122, 131], modeling non-linearities
using TRANSACT improves drug response prediction in PDXs after training on cell line
responses only. We fix the hyperparameter controlling the degree of non-linearity on the
PDX data and then employ TRANSACT to transfer predictors of drug response trained
on cell lines to two human tumor datasets: primary tumors from TCGA and metastatic
lesions from the Hartwig Medical Foundation (HMF). Specifically, the median perfor-
mance of TRANSACT exceeds that of competing approaches in 7 of 13 challenges on
TCGA and the HMF set. Importantly, this performance improvement is attained without
any training on data from the human tumors. We finally employ the interpretability of
our approach to identify genes and pathways associated with drug response. We pro-
vide a thorough mathematical derivation of our algorithm in which we propose a prin-
cipled way to compare kernel principal components based on loadings by extending the
framework of principal vectors to the non-linear kernel PCA setting. We generated a
completely reproducible pipeline and a fully open-source software package.
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4.2. RESULTS

4.2.1. TRANSACT: GENERATING NON-LINEAR MANIFOLD REPRESENTATIONS

TO TRANSFER PREDICTORS OF RESPONSE FROM PRE-CLINICAL MOD-
ELS TO TUMORS

TRANSACT compares genomic signals contained in the source (e.g., pre-clinical models)
and target (e.g., human tumors) datasets, and outputs a consensus space – a represen-
tation of processes that are present in both datasets. The nature of this representation
depends on the similarity function, K , that characterizes the relationships between sam-
ples (Subsection 4.4.4). Depending on the similarity function employed, various types of
non-linear relationships can be represented in the consensus space. For instance, in the
case of a Gaussian similarity function, these non-linearities include constant, linear, sec-
ond and higher-order interaction terms (Subsection 4.4.9).
In a first step, TRANSACT computes processes active in pre-clinical models and human
tumors, referred to as Non-Linear Principal Components (NLPCs) (Figure 4.1A, Figure
C.1A-B). These NLPCs correspond to non-linear combinations of gene activities that
capture the variation in source and target sets (Figure C.2A). However, these two sets of
processes typically display limited similarity, simply because pre-clinical models are not
perfect models of human tumors (Figure C.1C). In order to capture the biological signal
common to both pre-clinical models and tumors, we align the two sets of NLPCs us-
ing the notion of Principal Vectors (PVs) (Figure 4.1B).These PVs are pairs of non-linear
processes ¬– one pre-clinical and one tumor process – ranked by decreasing similar-
ity (Figure 4.1B). The top PVs correspond to highly similar processes, while bottom PVs
are essentially different processes. We first filter out PVs with low similarity (below 0.5)
in order to discard information specific to either pre-clinical models or tumors (Figure
4.1C). Since the remaining PVs represent pairs of highly correlated processes, we per-
form, within each PV pair, an interpolation between the pre-clinical and the tumor pro-
cesses (Figure 4.1C). We then select one intermediate vector that best balances the con-
tribution of each dataset (Figure 4.1C, Figure C.1E). These intermediate processes are
called Consensus Features and correspond to biological processes that are 1) important
in both pre-clinical and tumor signals, and 2) geometrically filtered to ensure that the
signal is not specific to either one of the datasets. We then project pre-clinical and tumor
samples on the Consensus Features (Figure 4.1D, Figure C.1F, Subsection 4.4.7). Finally,
we use the projected scores as input in a predictive model of drug response trained using
pre-clinical response data (Figure C.1G).
We theoretically show that, in the case of a linear similarity function, TRANSACT reduces
to PRECISE [131] (Subsection C.9) and is fundamentally different from approaches such
as Canonical Correlation Analysis (CCA)[132] (Subsection C.10).

4.2.2. NON-LINEARITIES IMPROVE RESPONSE PREDICTION OF PREDICTORS

TRANSFERRED FROM CELL LINES TO PATIENT-DERIVED XENOGRAFTS

(PDXS)
When it comes to predicting drug response in one model system, it is known that induc-
ing non-linearities can lead to improved performance[50], although linear methods re-
main competitive [45, 87].We investigated whether the introduction of non-linearities in
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Figure 4.1 – TRANSACT generates a non-linear representation to transfer predictors of drug response from
pre-clinical models to tumors. A In the first step, we use a non-linear dimensionality reduction method to
find biological processes active in pre-clinical models and in tumors. This step is performed independently in
pre-clinical models and tumors and gives two sets of non-linear processes called NLPCs. Here we consider 8
genes and 3 NLPCs for both pre-clinical models and tumors. A colored circle means that the corresponding
gene contributes to the NLPC, while a grey circle is a gene that does not contribute. A colored connection is
the interaction, or product, of two genes that contribute to the NLPC. For instance, the red pre-clinical NLPC
represents the expression of Genes 5 and 7, and the product of the expression of Genes 5 and 7. B These two
sets of processes are compared and ranked by similarity. For that purpose, we compute Principal Vectors (PV),
which are pairs of processes, one from pre-clinical, one from tumor, ordered by decreasing similarity. Here
the first PV is conserved between pre-clinical models and tumors, the second shows a 50% similarity while the
last PV corresponds to two distinct processes. C We first discard the PVs with low similarity, e.g., PV 3. We
then aggregate each PV pair into one Consensus Feature (CF) by finding an intermediate feature that balances
the effect of the pre-clinical and tumor dataset. D Pre-clinical and tumor data are finally projected on each
consensus feature, yielding a sample-by-CFs matrix. These Consensus Feature scores represent the activity of
biological processes essentially important for both pre-clinical models and tumors. These scores can then be
used in any machine learning model to predict drug response.
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Figure 4.2 – Impact of modeling non-linearities for drug response prediction transfer from cell lines to
PDXs.. A Main workflow of the prediction on PDXs. Using cell lines and PDX gene expression, we compute
consensus features and project each dataset onto these. We then train a predictor of drug response (Elastic-
Net regression) on the projected scores of cell lines and the cell line response, measured as the Area Under
the drug response Curve (AUC). Finally, we use this regression model to predict drug response on PDXs and
correlate the predicted AUC to the known best average response. B Proportion of non-linearities induced by
the Gaussian similarity function as a function of the scaling factor γ. For different values of γ, we compute the
average contribution over all consensus features of offset, linear, interaction and higher order features (Sub-
section 4.4.9). Offset is here to be understood as the exponential of the squared depth and does not correspond
to a constant term. We finally evaluate the response prediction on PDX models for different values of γ, and
for five competing approaches: ElasticNet, Deep Learning (DL), ComBat+DL, PRECISE and a Kernel Ridge Re-
gression (KRR) with same non-linearities as TRANSACT. We report results for Erlotinib (C), Gemcitabine (D),
Afatinib (E) and Cetuximab (F) which show the Spearman correlation between predicted AUC and Best Average
Response on the PDX models. (G) Diagram summarizing the effect of non-linearities and domain adaptation
in our predictor.
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the computation of sample similarities resulted in improved response prediction of pre-
dictors trained on cell lines (source domain) and transferred to PDXs (target domain).
Since gene expression is known to have predictive power comparable to other omics
datasets combined[45, 46, 54, 66], we restricted our analysis to the expression of 1780
genes known to be related to cancer [88]. Using TRANSACT, we computed consensus
features for cell lines (1049 cell lines from 26 different tissues) and all PDXs (399 samples
from 5+ different tissues) (Subsection 4.4.7). We projected the gene expression data of all
cell lines and all PDXs onto these consensus features. We employed ElasticNet to train
models of drug response. We employed the projected cell line expression data as in-
put and the drug response, quantified as the area under the drug response curve (AUC),
as target output (Subsection 4.4.3). We applied this trained predictor on the projected
PDX expression data and compared the predicted response to the measured best aver-
age response by Spearman Correlation (Figure 4.2A). We made use of the standard Gaus-
sian similarity function (Subsection 4.4.4) to vary the level of non-linearity introduced.
This similarity function is characterized by a single scaling factor γ, whose size is directly
proportional to the proportion of non-linearity introduced (Figure 4.2B). We studied the
predictive performance in PDXs for seven different values of γ, ranging from a set of
consensus features with an almost purely linear (γ = 1×10−5 to an almost purely non-
linear composition (γ= 1×10−2). We compared the performance of TRANSACT to three
approaches that do not perform domain adaptation: ElasticNet [86], a deep learning re-
gression model (Subsection 4.4.10), referred to as Deep Learning (DL), and a Kernel Ridge
Regression model (KRR) with same non-linear kernel settings as TRANSACT. We further
compared it to two state-of-the-art domain adaptation approaches: ComBat batch cor-
rection followed by a deep learning regression (ComBat+DL)[122] and PRECISE[131], a
linear domain adaptation approach. All models were trained to predict response to four
different drugs (Erlotinib, Cetuximab, Gemcitabine, Afatinib) for which we had response
data available for both PDX models and cell lines (Figure 4.2C-F). For ComBat+DL and
DL, we report the median performance obtained over 50 independent random initial-
izations (Subsection 4.4.10). Three other drugs were also studied: Paclitaxel, Ruxolitinib
and Trametinib, however, these show no significant association between predicted and
actual response in PDXs for any of the tested methods.
The studied methods can be divided along two axes: linear vs non-linear and domain-
adapted vs non-adapted (Figure 4.2G) and we evaluated the performances along these
axes for the four drugs. For KRR and TRANSACT we performed the comparisons for the
values of gamma that gave the best performance. We observe that non-linear meth-
ods (KRR and TRANSACT) prevail over linear approaches (ElasticNet and PRECISE) for
three of the four drugs in each separate comparison (Figure 4.2G). Furthermore, domain
adapted approaches (PRECISE and TRANSACT) prevail over non-domain adapted ap-
proaches (ElasticNet and KRR) for three of the four drugs in each comparison (Figure
4.2G).
When considering Deep Learning-based approaches, we observe, in general, a clear im-
provement for approaches that employ domain-adaptation (PRECISE and TRANSACT)
over those that either do not (DL), or use a naïve correction (ComBat+DL), confirming
our earlier observation, namely the necessity to correct the input signal when moving
from the source to the target domain. Moreover, this also suggests that the correction
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required to transfer from cell lines to PDXs is more complicated than correcting for a
technical batch effect as performed by ComBat. When comparing TRANSACT to DL, a
non-linear and non-adapted method, we observe better performance for TRANSACT for
all 4 drugs.
We note that for KRR, additional non-linearity tends to reduce performance. In con-
trast, the introduction of additional non-linearity in TRANSACT increases performance.
Specifically, we observe for several drugs that the predictive performance increases with
the scaling factor until a maximal performance is reached (γ = 10−4 for Erlotinib, Ce-
tuximab and Afatinib and γ = 10−3 for Gemcitabine), after which the predictive perfor-
mance drops. As we only have three drugs in common between the PDX and human co-
horts, we decided to fix the scaling factor to the average of these two values (γ∗ = 5Ö10−4)
and employ the associated consensus space to transfer the predictors of response to the
tumor samples. For the drugs in common, we applied the predictors with drug-specific
values of γ optimized on the PDX models to the TCGA and HMF cohorts. We only did
so for the drugs where the drug specific value of γ differed from γ∗, i.e. not for Afatinib.
For Gemcitabine, we observe a small increase in performance (0.01 in AUC) for TCGA
and no difference for HMF, while for Cetuximab the prediction result still failed to reach
significance. As a further check of the selected value of γ∗, we analyzed the proper-
ties of the consensus space obtained using γ∗. We observe a concentration of the offset
contribution in the top consensus features and an increasing proportion of non-linear
terms contribution to lower order features (Figure C.7C). The UMAP[133] projection of
the consensus features shows a clear co-clustering of cell lines and PDXs of the same
tissue (Figure C.7D).

4.2.3. CONSENSUS FEATURES BETWEEN CELL LINES (GDSC) AND HUMAN

TUMORS CONSERVE PRIMARY TUMOR INFORMATION.
With the scaling factor (γ) calibrated on PDX models, we moved to the clinical setting
to investigate domain adaptation between cell lines and two different human tumor
datasets: primary tumors from TCGA and metastatic lesions from the HMF. We selected
30 consensus features in the GDSC-TCGA analysis (Figure C.9) and 20 in the GDSC-HMF
analysis (Figure C.10). We arrived at these numbers by first selecting NLPCs based on the
inflection point of the cumulative eigenvalues, and subsequently only retaining PVs with
a similarity above 0.5. We observe that the consensus features computed between GDSC
and TCGA (Figure 4.3A) and between GDSC and HMF (Figure 4.3B) show a concentration
of offset and linearities in the top consensus features, and overall the same proportion
of non-linearities as in the GDSC-to-PDXE analysis (Figure 4.3C).
In order to visualize the structure retained in the consensus space, we embedded our
consensus scores into a 2D space using UMAP[133]. We observed that primary tumors
cluster together based on their tissue type (Figure 4.3D). Most cell lines cluster with the
tumors from a similar tissue of origin. However, some groups of cell lines cluster to-
gether but away from the tumors with the same tissue of origin, as observed in previous
studies[128, 129]. For example, there is a cell line cluster consisting of PNS (Peripheral
Nervous System) and bone cell lines that co-clusters with CNS (Central Nervous System)
tumors. To quantify the degree of co-clustering of cell lines and tumors, we compared
distances between tumors and cell lines from similar and non-similar tissues, and ob-
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Figure 4.3 – Pan-cancer consensus features between cell lines and tumors conserve tissue type information.
We used cell lines (GDSC) as source data and compute two sets of consensus features with two different target
datasets: primary tumors (TCGA, A and D) and metastatic lesions (HMF, B and E). (A) Proportion of linear
and non-linear contributions to each of the 30 GDSC-to-TCGA consensus features. (B) Proportion of linear
and non-linear contributions to each of the 20 GDSC-to-HMF consensus features. (C) Comparison of global
contributions in the three analyses, i.e. GDSC-to-PDXE, GDSC-to-TCGA and GDSC-to-HMF. (D) UMAP plot of
primary tumors (TCGA, 21 tissues) and cell lines (GDSC, 22 tissues) projected on the consensus features, using
the same parameters as selected in Figure 2. The full legend for Panels D and E is depicted in Figure C.11B.
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served, as expected, a higher similarity between tumors and cell lines from the same
tissue (Figure C.11D). Metastatic lesions show a weaker clustering based on the primary
tumor’s tissue of origin (Figure C.11A and E). This is not unexpected, as the expression
profiles are derived from biopsy sites distant from the primary tissue. Of particular in-
terest, we observe the existence of a hematopoietic cell-line cluster that co-clusters with
metastatic samples from various biopsy sites. Most of these tumor samples (7 out of 12
samples) are lymph node metastases and most likely display a hematopoietic expression
profile due to blood infiltration in the samples (Figure C.11C).

4.2.4. CONSENSUS FEATURES INCREASE TRANSFER OF RESPONSE PREDIC-
TORS FROM CELL LINES TO PRIMARY TUMORS AND METASTATIC LE-
SIONS

To further validate our approach, we transferred response predictors from cell lines to
the TCGA and HMF collections of human tumors. First, we projected the GDSC and
TCGA expression data onto the GDSC-TCGA consensus features. Then we trained, for
each drug, a regression model using solely the cell line response data (measured as AUC).
These drug-specific regression models were then used to predict response on the pro-
jected TCGA data, for patients that received the target drug as monotherapy or in com-
bination with other standard-of-care therapies (Subsections ??). Finally, we compared
the predicted patient responses to the known categorical clinical responses using a one-
sided Mann-Whitney test and computed the corresponding effect size. We trained mod-
els for seventeen different drugs (Table 1). We compared the performance of TRANS-
ACT to the performance obtained by four competing approaches (ElasticNet, DL, Com-
Bat+DL and PRECISE) (Table 1, Figure 4.4A, Subsection 4.4.10). For the Deep Learning
approaches (DL and ComBat+DL), we selected the architecture and hyper-parameters
for each drug by 5-fold cross-validation on GDSC. We subsequently trained 50 models
with different and independent initializations and reported the median performance ob-
tained on TCGA.
ElasticNet and PRECISE obtain significant associations (bold entries in Table 1 and Ta-
ble 2) for three and six drugs, respectively, but neither approach ever outperforms (i.e.
achieves a larger AUC) all other approaches. DL and ComBat+DL achieve significant as-
sociations for eight and five drugs, respectively – however, both approaches outperform
all others (red, bold entries in Table 1 and Table 2) for only three and one drug, respec-
tively. In contrast, TRANSACT achieves significant associations for seven drugs and ob-
tains a larger AUC than all other approaches for five drugs.
For both deep learning approaches, we observe an important dependency on the net-
work initialization (Figure 4.4A). More importantly, we observe no correlation between
the training error achieved on the source domain (cell lines) and the prediction accu-
racy on the target domain (human tumors), making it impossible to select a proper ini-
tialization solely based on the source domain performance (Figure C.12A, Figure C.13A).
Results obtained with TRANSACT, on the contrary, do not depend on a random initial-
ization.
For the HMF data, we repeated the steps above, while employing the GDSC-HMF con-
sensus features as well as the HMF and GDSC expression and response data. We trained
models for six drugs (Table 2, Figure 4.4B). Across all approaches, we observe a signif-
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Figure 4.4 – Consensus features improve response prediction in patients.(A) We used consensus features
computed between the GDSC and each tumor dataset to train a predictor for 17 drugs on TCGA and 6 drugs on
HMF, using only GDSC drug response. We then predicted the continuous response in patients for each drug
and compared this predicted value to the observed clinical response using a one-sided Mann-Whitney test
(Table 1, Table 2). We performed the same prediction tasks using three state-of-the-art approaches (ComBat
+ Deep Learning, Deep Learning and PRECISE) and we summarized the results in a boxplot for TCGA (A) and
HMF (B), restricting to the drugs where at least one method reaches a significant prediction. For ComBat+DL
and DL, we display the results obtained using 50 different random initializations. (C) Table of performance
comparing each method; to read as “method on y-axis obtained higher AUC than method on x-axis”, e.g. “PRE-
CISE obtained higher AUC than ComBat+DL for 9 drugs”. (D) Comparison of ROC AUCs obtained with each of
the four methods for the 13 drugs with significant prediction. P-values computed using a one-sided Wilcoxon
paired rank-sum test.
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icant association between the predicted AUC and clinical responses for four of the six
drugs (Table 2, Figure C.14). PRECISE reaches significance for two drugs, whereas Elas-
ticNet, DL and Combat+DL reach significance for a single drug. TRANSACT outperforms
PRECISE on three drugs, and ComBat+DL, Deep Learning and ElasticNet on four drugs.
TRANSACT achieves a borderline non-significant association for Paclitaxel but achieves
an effect size of 0.7. In contrast, all competing approaches fail to achieve any association
with effect sizes around 0.5, corresponding to random chance. Also for the HMF cohort,
deep learning approaches show a strong dependency on parameter initialization (Fig-
ure 4B) and a lack of correlation between source and target domain performance (Figure
C.12B, Figure C.13B).
In summary, across the 23 drug prediction challenges on the TCGA and HMF cohorts, 13
lead to a significant prediction for at least one method. Amongst these, TRANSACT per-
forms best, reaching significance in 11 challenges, followed by Deep Learning and Com-
Bat+DL reaching significance in 9 and 6 challenges, respectively. TRANSACT yields larger
AUCs than Deep Learning, ComBat+DL and PRECISE for 9, 9 and 8 drugs respectively
(Figure 4.4C). It should be noted that only 3 of these comparisons are significant based
on the bootstrap CIs of the AUC. Nevertheless, when comparing methods in a paired
fashion across the 13 drugs where at least one method reaches significance, we observe
that AUCs obtained by TRANSACT are significantly larger than the AUCs obtained by
ComBat+DL (p = 0.021, one-sided paired Wilcoxon rank-sum test) (Figure 4.4D). When
comparing TRANSACT to Deep Learning or PRECISE, we observe larger obtained me-
dian AUCs, but these differences are not significant (p = 0.07 and p = 0.21, respectively).

4.2.5. INTERPRETABILITY OF CONSENSUS FEATURES CONFIRMS KNOWN MECH-
ANISMS FOR TARGETED THERAPIES AND UNVEILS POTENTIAL BIOMARK-
ERS OF SENSITIVITY FOR CYTOTOXIC DRUGS

Figure 4.5 – Interpretability of TRANSACT consensus features recapitulates modes of action for Afatinib and
Gefitinib, and highlights mechanisms of sensitivity and resistance to Gemcitabine and Paclitaxel.(A) For the
Afatinib (HER-2 protein kinase inhibitor) response model trained on GDSC samples projected on GDSC-to-
TCGA consensus features, we show the contribution of each gene to the predictor (left): positive (negative)
weights in the predictor indicate that high (low) expression of the genes leads to resistance (sensitivity) rep-
resented by larger (smaller) AUCs. We performed a PreRanked gene set enrichment analysis (GSEA) on these
weights and highlight genes associated to two significantly enriched gene sets: “Charafe [...] Luminal vs Mes-
enchymal UP” (center-left) and “Charafe [...] Luminal vs Mesenchymal DOWN” (center-right). The two trian-
gles on the right illustrate these two gene-set distributions. (B) Interpretation of the linear part of the Gefitinib
(EGFR inhibitor) model. We display gene weights ordered by contribution (left) and the ranks of genes known
to be down regulated in Gefitinib resistant tumors (right). (C) Interpretation of Gemcitabine predictor. (C.1.)
We display the positions of genes associated to two significantly enriched gene sets: “CDC42 pathway”, associ-
ated to positive weights (resistance), and “TNFγ-signalling”, associated to negative weights (sensitivity). (C.2.)
Interaction terms make 15% of Gemcitabine predictor. We show the distribution of their weights annotated
with the ten largest weights (resistance) and ten smallest weights (sensitivity). (D) Interpretation of Paclitaxel
predictor. (D.1.) We display the positions of genes associated to two significantly enriched gene sets, both to
resistance: “Basaki YBX1 target UP” and “constitutive signaling by PI3K-aberrant signaling”. (D.2.) Interac-
tion terms for Paclitaxel, that make 12% of the predictor, alongside the top-10 resistant and top-10 sensitive
interactions.

Finally, we made use of the interpretability of our approach to mechanistically validate
our predictors (Subsection 4.4.9). We first validated targeted therapies with documented
modes of action. We started with the TRANSACT predictor of response for Afatinib, a
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small molecule inhibitor of the EGFR family, which includes HER2 (Figure 4.5A). We
performed a gene set enrichment analysis of the linear terms that constitutes 80% of
the predictor. Most enriched gene sets are related to breast cancer subtypes as defined
by Charafe and colleagues[134] where, contrary to the definition based on the intrinsic
breast cancer subtypes, the Luminal subtype contains both ER+ and HER2+ tumors. The
top ranked gene set amongst the genes associated with sensitivity (genes with a negative
coefficient in the predictor) are genes associated with the “Luminal” subtypes (FDR <
0.001). Conversely, genes associated with resistance (genes with a positive coefficient in
the predictor) show enrichment for the “Mesenchymal” molecular signatures, shared by
basal and mesenchymal subtypes. This corresponds with HER2 negative samples, which
is in line with our expectation as absence of the drug target would indicate lack of re-
sponse. Similarly, in the TRANSACT response predictor for Gefitinib (EGFR inhibitor) the
genes constituting the linear portion and associated with sensitivity (negative predictor
coefficients) show an enrichment for genes downregulated in Gefitinib resistant tumors
(Figure 4.5B). Interestingly, two gene sets related to breast cancer subtypes also show a
significant enrichment in the negative coefficients of the predictor, linked to sensitiv-
ity: “Luminal vs Basal Down” (NES=-1.94, FDR<0.001) and “Luminal vs Mesenchymal
Up” (NES=-1.85, FDR=0.004). The first gene set contains EGFR, the target of Gefitinib,
implying that high levels of EGFR are, as one would expect, associated with sensitivity.
The association of the second set with Gefitinib response is supported by the fact that
mesenchymal tumors have been shown to be resistant to EGFR inhibition [135]. Further
support is provided by the presence of two genes in the leading edge of the enrichment:
ERBB2 ¬¬and PTPN6 (SHP-1) (Dataset S4). ERBB2 is a member of the EGFR family which
heterodimerizes with EGFR resulting in activation of the EGFR pathway. Such cells tend
to be sensitive to inhibition of the pathway, i.e. to Gefitinib treatment. PTPN6, on the
other hand, inhibits the PI3K pathway [136, 137], activation of which is a known resis-
tance mechanism to Gefitinib[138]. Therefore, high levels of PTPN6 prevents the path-
way from being activated to circumvent Gefitinib treatment effects.
Cytotoxic drugs such as Gemcitabine or Paclitaxel have complex modes of actions in-
volving different pathways, crosstalk between which remains challenging to understand.
Since the predictions of these two drugs showed a significant association in both PDXs
and patients, we set out to interpret the mechanisms of sensitivity or resistance inferred
by our predictor. In Gemcitabine (Dataset S5), we observe that over-expression of the
CDC42 pathway is a significant marker of resistance (FDR = 0.012, Figure 4.5C.1.) to-
gether with pathways linked to microtubule formation and cell migration (Figure C.15),
both known to be promoted by CDC42[139]. Together, these enriched pathways high-
light CDC42 over-expression as a potential mechanism of Gemcitabine resistance, which
suggests the use of CDC42 inhibitors [140, 141] for Gemcitabine-resistant tumors. An-
other interesting finding is the significant enrichment of TNFα signaling in the genes as-
sociated with sensitivity (FDR=0.046) (Figure 4.5C.1.). A clinical trial has shown that co-
administration of TNF with gemcitabine improves patient survival and further inhibits
tumor growth[142], lending additional credence to this finding. Last, we observe a con-
centration of sensitive interactions involving BLK, a pro-apoptotic Src-proto-oncogene
involved in B-cell signaling and differentiation (Figure 4.5C.2.). Since hematopoietic cell
lines respond better to Gemcitabine, these interactions can either act as a tissue-type
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marker or could potentially represent a sensitive pathway.
Finally, we looked for enriched pathways in the Paclitaxel predictor (Figure 4.5D.1.,
Dataset S6) and observed three potential mechanisms of resistance. We first observe
that in the linear terms, the genes associated with resistance are significantly enriched
in genes linked to silencing of YBX1[143] (FDR=0.106), a gene associated with prolifer-
ation in certain tumor types[144]. . In ovarian cancer, YBX1 has been shown to reg-
ulate ABCB1 expression levels, a gene related to Paclitaxel resistance [145–148]. Our
pan-cancer analysis therefore further supports the role of drug transporters in Paclitaxel
resistance. Second, we observe a significant enrichment in genes associated with resis-
tance for PI3K activation (FDR=0.18), which is corroborated by the observed activation of
PI3K/AKT/mTOR signaling pathway in Paclitaxel-resistant cancer cells[149, 150]. More-
over, a recent investigation suggests that PI3K catalytic subunits can regulate ABCB1
expression[151]. Finally, when it comes to the non-linear part, we observe a concen-
tration of fibroblast growth factors interactions in the non-linearities associated with re-
sistance, in particular FGF3, FGF20 and FGF8 and FGF4 (Figure 4.5D.2., Dataset S6). This
behavior, although suggested by previous studies[152, 153], is all the more interesting as
cell lines do not contain any micro-environment that would elicit such resistance.

4.3. DISCUSSION
We introduced an approach to integrate pre-clinical and clinical data in a fully unsu-
pervised way. Our approach geometrically aligns sample-to-sample similarity matrices
and extracts directions of important variations for both datasets, without requiring any
sample-level pairing. By performing a geometrical alignment instead of a direct distribu-
tion comparison, our approach limits the effect of a potential sample selection bias. This
geometrical alignment is implicitly performed in a space induced by our similarity func-
tion, which enables the integration of various assumptions regarding non-linearities in
the system. Although we restricted ourselves to a single Gaussian similarity function for
all drugs, designing similarity functions that incorporate a wide range of prior knowl-
edge, specifically tailored for each drug, is a potentially promising avenue. Learning the
similarity matrix, e.g. using multiple kernel learning[154] or deep learning methods such
as variational auto-encoders[155], may also help increase performance.
TRANSACT compares directions computed using Kernel PCA, but our approach can be
extended to other basis expansion methods by modulating the way the coefficients αs

and αt are computed. More generally, our method is versatile, generalizable, and can be
applied beyond the scope of our study, e.g., to integrate single cell sequencing data.
We showed that the consensus features can be used to build translatable predictors of
drug response. Although we do not require a strong covariate shift assumption as in
a previous study[156], we do assume the functions modeling the response from these
consensus features follow the same monotonicity in pre-clinical models and human tu-
mors. This assumption, albeit reasonable, may be questioned.
In this study, we limited ourselves to gene expression. Making use of other genomics
levels – e.g., mutations, copy number, methylation, chromatin accessibility – may help
refine the prediction by providing additional signal. The integration of our approach
with multi-omics integration strategies[72, 73] may offer a solution to the translation of
multi-omics signatures.
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Finally, we evaluated the predictors on a variety of drug prediction tasks in human data
that are quantitatively far greater, and mechanistically more diverse than prior work. We
were able to predict response in patients that received a particular treatment, either as
monotherapy or in combination with other therapies, even though the cell line predic-
tors were trained on monotherapies only. We convincingly demonstrate that response
predictions are now substantially better than random guessing for a number of thera-
pies of high clinical importance, such as platinum-based chemotherapies, gemcitabine
and paclitaxel. In addition, we include results of a new dataset from HMF which pro-
vides independent validation of performance on TCGA data. Intriguingly, none of the
methods were able to predict the human responses to cyclophosphamide. However, no
effect in vitro has been observed for this pro-drug, which might be considered as a neg-
ative control for the approaches.
Although our results are encouraging, we recognize that the drug response prediction
models we present here are still far from clinical applicability. For example, one would
never withhold a standard-of-care therapy based on the accuracy with which the pre-
sented predictors can identify non-responsive patients. However, a more likely scenario
where such predictors could become useful sooner, is in providing guidance in drug re-
purposing for patients that have become refractory to all standard-of-care treatments.
To reach accuracies that are acceptable for clinical application, we anticipate that large-
scale model system drug (combination) screens could provide the required training sam-
ples sizes.
The recent advent of immuno-therapies calls for methods with the ability to predict the
clinical response from model systems. This requires model systems capable of mimick-
ing the action of the immune system and screening technologies able to measure the
response for large panels. We believe that our approach can be extended to such prob-
lems once data is made available.

4.4. METHODS

4.4.1. PUBLIC DATA DOWNLOAD AND PRE-PROCESSING

GDSC DATASET, DOWNLOAD AND PROCESSING

We made use of the GDSC1000 cell line panel[9], which contains complete molecular
profiles for 1,049 cell lines (Figure C.3). Gene expression is provided in the form of
both read counts and FPKM. For both settings, we normalized the dataset for library-
size and potential sampling artifacts using TMM[157] and log-transformed the adjusted
read counts[158, 159]. Finally, we performed a gene-level mean-centering and standard-
ization. When comparing GDSC to PDXE, we employed the FPKM data; in the two other
analysis (GDSC to TCGA and GDSC to HMF), we made use of the read count data. In this
way, FPKM and read count were never used at the same time.

NOVARTIS PDXE DATASET, DOWNLOAD AND PROCESSING

We made use of NIBR PDXE dataset for patient-derived xenografts[93], which contains
the gene expression profiles of 399 PDXs (Figure C.4). Gene expression is provided in
the form of FPKM. We normalized the dataset using TMM [157] and log-transformed the
adjusted read counts[158, 159]. Finally, we performed a gene-level mean-centering and
standardization.
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TCGA DATASET, DOWNLOAD AND PROCESSING

We made use of the TCGA dataset for analyzing human biopsies[160], which comprises
10,347 human tumors (Figure C.5). Gene expression is provided in the forms of both
read counts and FPKM and we used the same pre-processing pipeline as for GDSC. Re-
sponse data have been obtained from Ding et al[161]. Following Ding et al, for each drug,
we consider the response to patients who were administered a particular drug either as
monotherapy or in combination with other drugs.

4.4.2. HARTWIG MEDICAL FOUNDATION DATASET (HMF) DOWNLOAD

AND PROCESSING
We validated our approach on a cohort of 1,049 patients provided by the Hartwig Med-
ical Foundation – referred to as HMF (Figure C.6A). Gene expression was measured for
each metastatic sample prior to indicated drug regimen. We used MultiQC for qual-
ity control[162], salmon v1.0.0 for alignment to reference transcriptome [163], and fi-
nally edgeR for gene-level quantification[89]. Comparison with results obtained using
STAR[164] and featureCounts[165] shows high degree of concordance (Figure C.6D) and
we used this comparison to refine our filtering. Read counts were then processed using
the same pipeline as in GDSC and TCGA.
Drug response was measured in 802 unique metastatic samples using the RECIST crite-
ria. Response was measured differently for each patient (Figure C.6B) with most patients
having one single measure of response around 10 to 15 weeks after treatment started
(Figure C.6C). Since we are interested in the response of the drug given the molecu-
lar characterization measured, we considered for each patient the first response after
treatment. Since most drugs are administered in combination, we considered, for each
drug, all the patients that received it, whether in combination with other drugs or as
monotherapy. For instance, in the case of Gemcitabine, we predicted drug response for
all patients that received Gemcitabine as part of their treatment strategies.

4.4.3. MEASURE OF DRUG RESPONSE
In our different analysis, we rely on drug response measurements, either to train a pre-
dictor (GDSC), or to validate it (PDXE, TCGA and HMF). For cell lines (GDSC), drug re-
sponse is measured as Area Under the drug response Curve, referred to as AUC. For PDX,
drug response is measured as Best Average Response, which corresponds to the relative
variation of tumor volume induced by a certain treatment. For both AUC and Best Av-
erage Response, large values are associated with resistance. For TCGA and HMF, clinical
responses have been measured using the RECIST criteria[166]. Based on various met-
rics, patients get assigned to one of the following four groups: Complete Response (CR),
Partial Response (PR), Stable Disease (SD) and Progressive Disease (PD). Following the
division used in previous works[122, 123], we divide TCGA patients in two categories:
Responders (CR and PR) and Non Responders (SD and PD). For HMF, we discriminate be-
tween each possible couple: PR vs PD, PR vs SD and SD vs PD. Since only a couple of
patients showed a complete response, we did not consider these patients.
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4.4.4. MATHEMATICAL NOTATION

We denote by p the number of genes. We consider one source dataset Xs =
{

xs
1, .., xs

ns

}⊂
Rp and one target dataset Xt =

{
x t

1, .., x t
nt

} ⊂ Rp with corresponding source and target
data matrices Xs ∈Rns×p and X t ∈Rnt×p .
We consider a similarity function K – also called kernel function – that assigns to two
samples a scalar value that is large for similar samples and small for dissimilar samples.
In this work, we assume the kernel to be positive definite (Proposition C.2), and specifi-
cally use the following two kernels:

• Linear kernel: K l i near
(
x, y

)= xT y .

• Gaussian kernel, or Radial Basis Function: K r b f
γ

(
x, y

)= exp
(−γ‖x − y‖2

)
, with γ>

0.

We denote by Ks the matrix of similarity between source samples, Kt between target
samples and Ks t the matrix of similarity between source and target (Definition C.2.2).
These similarity matrices are then mean-centered (Definition C.3.1), yielding matrices
K̃s , K̃t and K̃st .

4.4.5. KERNEL PCA BY EIGEN-DECOMPOSITION OF CENTERED KERNEL MA-
TRIX FOR CAPTURING DIRECTIONS OF PRINCIPAL VARIANCE

Using the so-called Kernel Trick (Proposition C.2) the similarity matrices previously pre-
sented can be seen as sample-covariance matrices and therefore decomposed to com-
pute principal components inside the embedded space, a procedure known as Kernel
PCA [167]. We perform Kernel PCA on source and target data independently to compute
ds and dt principal components respectively. Kernel PCA on the source dataset consists
of an eigen-decomposition of the matrix K̃s , yielding αs ∈ Rds×ns , while Kernel PCA on
the target dataset decomposes K̃t , yielding αt ∈Rdt×nt (Definition C.4.1).

4.4.6. COMPARING AND ALIGNING PRE-CLINICAL AND TUMOR NON-
LINEAR PRINCIPAL COMPONENTS

Similarly to the cosine similarity matrix in other related works [59, 131], we define the
non-linear cosine similarity matrix MK as the matrix that geometrically compares the
source NLPCs to the target NLPCs (Definition C.6.1). This matrix can be computed as
follow (Proposition C.6.2):

MK = αs K̃stα
t T = αsCns Kst Cntα

t T
. (4.1)

In a first step of our domain adaptation approach, we use the matrix MK to align NLPCs,
yielding non-linear principal vectors s1, .., sd for the source and t1, .., td for the target
domains, with d = min(ds ,dt ) (Definition C.5.1). These principal vectors are pairs of
vectors: one linear combination of source NLPCs and one linear combination of tar-
get NLPCs, ordered by decreasing similarity with the first pair being the most similar.
The computation of these PVs relies on the Singular Value Decomposition [104] of MK ,

MK =βsΣβt T , that helps us define the source and target sample importance loadings ρs
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and ρt as follows (Proposition C.6.5)

ρs =βsT
αs and ρt =βt T

αt . (4.2)

4.4.7. INTERPOLATION BETWEEN KERNEL PRINCIPAL VECTORS FOR BAL-
ANCING EFFECT OF SOURCE AND TARGET

Each pair of principal vectors contains two vectors that are geometrically similar. Pro-
jection on them will create two highly correlated covariates that would not be optimal
for subsequent statistical treatment. In order to compute one vector out of each pair,
we interpolate between the source and the target PV within each pair (Definition C.7.2).
For the kth PV, the interpolation is modulated by a coefficient τk that ranges between 0,
when the interpolation returns the source PV, and 1, when the interpolation returns the
target PV. This interpolation between vectors within each PV pair relies on two functions
Γ (τ) = [Γ1 (τ1) , ..,Γd (τd )]T and ξ(τ) = [ξ1 (τ1) , ..,ξd (τd )]T defined as (Definition C.7.1).
For a set of d interpolation coefficients [τ1, ..,τd ], we compute the projection of source
and target datasets F (τ) ∈R(ns+nt )×d as follows (Theorem C.7.6)

F (τ) =
[

Ks Kst

K T
st Kt

][
Cns 0

0 Cnt

][
ρsT

0

0 ρt T

][
Γ (τ)
ξ (τ)

]
. (4.3)

Such an interpolation between PVs balances the effect of source and target datasets. We
prove that, in the case of a linear kernel, our interpolation scheme is equivalent to the
one from previous approaches[58, 60] (Subsection C.9).
Within each pair of PVs, we select one intermediate representation where the source
and target projections match the most. For the kth PV-pair, we compare the source and
target projected data using a Kolmogorov-Smirnov statistic and select the interpolation
coefficient τ∗k where the statistic is minimal. We obtain a set of optimal interpolation

coefficients τ∗ ∈ [0,1]d when, for each PV, source and target influence are balanced. We
call the corresponding vector consensus features. These consensus features show the
minimal difference between source and target domain, a theoretical necessary condition
for domain adaptation[168].

4.4.8. PREDICTION USING ELASTICNET
In order to predict drug response, we use ElasticNet regression[86]. ElasticNet is a linear
model that imposes two penalties on the coefficients to predict: an `1 penalty that leads
to a sparse model and an `2 penalty that jointly shrinks correlated features. We chose
ElasticNet first because it has repeatedly been shown in the drug response prediction
literature to give equivalent, if not better, predictive performance compared to complex
models [45, 66, 87]. Using a linear classifier limits the complexity and therefore makes
the transfer more robust in practice.

4.4.9. TAYLOR EXPANSION OF THE SIMILARITY FUNCTION FOR INTER-
PRETABILITY OF THE MODEL

In the case of RBF, we perform a PCA in an infinite-dimensional feature space. Although
this space cannot be analytically computed, it can be approximated using a Taylor ex-
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pansion [169] (Subsection C.8). For the q-th consensus feature, we differentiate three
kinds of contributions (Definition C.8.4):

• Offset Oq : a Gaussian term that models the squared depth.

• Linear contributions
(
Lq, j

)
1≤ j≤p : a linear term, resembling the expression of one

gene.

• Interaction terms
(
Iq, j ,k

)
1≤ j ,k≤p : an interaction term that expresses the product

of two genes.

These contributions can be computed from sample importance loadings of consensus
features (Proposition C.8.7). We consider the contributions’ sum-of-squares as a geo-
metrical proportion since these sum up to one (Definition C.8.8). In order to look for
enrichment in a particular consensus feature, we look for enrichment of particular gene
sets[105]. Specifically, for the linear contribution, we compute the loading of all linear
terms corresponding each to one gene. We then use these gene scores to perform a Pre-
Ranked gene set enrichment analysis with 1000 permutations and use a threshold of 20%
for FDR. Since these loadings correspond to a Euclidean geometric proportion, we used
a squared statistic to compare them.

4.4.10. COMPARISON TO COMPETING APPROACHES
We compare TRANSACT to four different approaches. The two first approaches consist
in applying a regression model trained on a source dataset to a target dataset without
any correction; we use one linear ElasticNet model (referred to as ElasticNet) and a non-
linear neural network model (referred to as Deep Learning). In both cases, we perform a
grid-search 5-fold cross-validation on cell lines to select the model with the best perfor-
mance: on ElasticNet we vary the `1 ratio and the total regularization ; on Deep Learning,
following the protocol from Sakellaropoulos et al [122], we use a hyperbolic-tangent acti-
vation function while varying the global network structure, the `2 penalty and the input
and output dropout levels (Dataset S7).
The other two approaches first correct the signal and then train a regression model. The
third approach (referred to as ComBat+DL) reproduces the approach from Sakellaropou-
los et al [122] by first performing a ComBat technical batch effect correction between
source and target, and then applying a neural network on the corrected signal, similar
to Deep Learning (Dataset S8). The last competing approach, referred to as PRECISE,
consists in using a linear similarity function followed by an ElasticNet model, which is
equivalent to PRECISE (Subsection C.9).
For the two deep learning approaches, we first performed cross-validation on the source
dataset (with or without correction) to select the hyper-parameters and the network
structures with the largest predictive performance. We then re-initialize the network
and train it on the complete GDSC dataset.
In all comparisons, ROC curves and areas were computed using the pROC package[170].
The 95% Confidence Intervals (CI) were computed using the “bootstrap” sub-method
with 1000 samplings with stratification.
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5.1. INTRODUCTION
Synthetic model systems, like cell lines, offer a highly cost-effective and versatile way to
study human biology. In the case of cancer, the possibility to study these model systems
under a wide array of conditions renders them particularly attractive for drug screen-
ing [9, 11, 171]. When compared to human tumors, however, these benefits are over-
shadowed by intrinsic limitations such as the lack of a vasculature or micro-environment
[15, 17, 94]. Consequently, understanding the biological differences between pre-clinical
models and patients is key to improving the translation of findings from cell lines to clin-
ical implementation [118, 172].
Several computational studies have already attempted to characterize the molecular dif-
ferences between cell lines and patients. The first category of approaches consist of de-
signing machine learning tools to capture the common information relevant for trans-
ferring biomarkers of drug response [53, 109, 123, 124, 131, 173]. A second category of
approaches compare the genomic landscapes of cell lines and tumors in an unsuper-
vised fashion[128, 129, 174]. The latter studies have notably highlighted the existence
of key differences in molecular profiles and identified clear differences between certain
cancer cell lines and their associated tumors.
These insightful studies are based on bulk RNA-seq data, where gene expression is av-
eraged across thousands of cells. Single cell sequencing technologies, like single-cell
RNA sequencing (scRNA-seq), provide a more fine-grained view by measuring gene ex-
pression profiles for each individual cell. Here, we set out to assess the similarities and
differences in transcriptional profiles between cell lines and tumors at single cell resolu-
tion. Specifically, we focus on cell line cultures [175, 176] and tumors extracted from lung
cancer patients [177], as non-small cell lung cancer (NSCLC) cell lines have been shown
to markedly drift from their tissue of origin [129]. Using a panel of lung cancer tumors
and a panel of cell lines, we first show that the differences between cell lines and tumors
cannot be modeled as a classical batch effect. As existing methods for comparing cell
lines to tumors were not designed for scRNA-seq data [131, 173], we developed a novel
computational approach, Sobolev Alignment (SA), which mobilizes recent advances in
large scale kernel-based machine learning [178–180] and deep-learning-based proba-
bilistic modelling of scRNA-seq profiles [181–183]. We show that the application of SA to
three simulated single cell datasets accurately captures the (constructed) shared biology
between datasets. Using SA, we then set out to characterize the shared and distinct biol-
ogy between NSCLC cell lines and tumors. Amongst others, we show the conservation of
a wide array of immune-related processes. By exploiting the biological processes shared
between cell lines and tumors, we demonstrate that our approach recapitulates known
modes of action of four clinically approved drugs, Finally, we analyzed the perturbation
triggered by a drug with an unknown mode of action.
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Figure 5.1 – Transcriptional differences between cell lines and tumors obscure the traditional cell type di-
vision. We aligned cells from 198 cell lines and tumor cells extracted from 58 NSCLC patients using three
state-of-the-art batch-effect correction approaches: Seurat (A), Harmony (B) and LIGER (C). We here display
the 2-dimensional UMAP visualization of the data after correction. Cell lines are divided in two cell-type cate-
gories: NSCLC (Non-Small Cell Lung Cancer) cell lines in dark red, and other types in light red; patient cells are
divided between epithelial cells (coined NSCLC) and other cells (micro-environment) in dark and light blue
respectively. (D) Workflow of our analysis.
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5.2. RESULTS

5.2.1. DIVERGENCE BETWEEN GENE EXPRESSION PROFILES OF NON-SMALL

CELL LUNG CANCER (NSCLC) CELL LINES AND TUMORS OBSCURES

CELL-TYPE DEFINITION
Cancer cell lines established from biopsies of NSCLC patients are usually assumed to
correspond to homogenous cell populations classified as differentiated epithelial cells.
Following this assumption, integrating single cell profiles measured on NSCLC cell lines
and tumors should yield a perfect co-clustering [132, 184–187]. This assumption is, how-
ever, challenged by recent studies which highlight significant differences in gene expres-
sion patterns [129, 173], mostly resulting from the lack of a micro-environment in cell
lines. To assess this cell type drift and evaluate the ability of existing batch effect correc-
tion tools to correct it, we employed three state-of-the-art approaches [188, 189]: Seurat
v3 [132], Harmony [190] and LIGER [187] (Methods). For cell lines, we use a panel of
53,512 single cells from 198 cell lines derived from 22 cancer types [175], including 11,105
single cells from 32 NSCLC cell lines (Figure D.1C), referred to as the Kinker dataset. For
tumors, we use a panel of 208,506 cells from 58 NSCLC cancer patients at different dis-
ease stages [177], including 36,467 epithelial cells (Figure 5.1A-B), referred to as the Kim
dataset. We characterized cells along two axes: 1) their origin, i.e., whether derived from
cell lines or tumors, and 2) their type, i.e. whether the cells are epithelial NSCLC cells,
micro-environment-related cells (tumors), or from a different cancer type (cell lines). We
visualized the degree of co-clustering using UMAP [191]. For both Seurat (Figure 5.1A)
and Harmony (Figure 5.1B), we observe no co-clustering of epithelial tumor cells and
NSCLC cell line cells. LIGER offered a slightly better co-clustering (Figure 5.1C), with one
cluster mixing cell-lines and tumors from the same cell type, although not perfectly. For
all three methods, however, most NSCLC cancer cell lines are projected away from the
epithelial tumor cells, indicating either a clear difference in gene expression profiles or
an inability of current methods to correct this kind of batch effect. When considering at
the tumor clustering, we furthermore observe a lack of mixing in epithelial tumor cells
from different patients, contrasting with a good mixing in tumor micro-environment
cells (Figure D.1D-F). This suggests profound differences between transcriptional pro-
files of cell lines and tumor cells, and the inability of standard single cell batch alignment
pipelines to identify commonalities. To overcome this limitation, we set out to system-
atically identify and align biological processes present in cell lines and tumors (Figure
5.1D).

5.2.2. SOBOLEV ALIGNMENT COMPARES DEEP PROBABILISTIC MODELS BY

KERNEL APPROXIMATION
We previously introduced two computational approaches to align bulk cell line and tu-
mor gene expression profiles in an unsupervised manner: PRECISE [131] and TRANS-
ACT [173], respectively based on PCA and kernel PCA. However, these two approaches,
do not account for the specific properties of scRNA-seq data, such as zero-inflation or
over-dispersion, which limit their applicability to single-cell data. To accommodate
these properties, we replaced the (kernel-)PCA dimensionality reduction step with a
Variational Auto-Encoder (VAE) [178] tailored to scRNA-seq data [182, 183]. A VAE con-
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Figure 5.2 – Sobolev Alignment systematically compares molecular processes active in cell lines and tumors.
(A) In the first step, we employ Variational Auto-Encoders (VAE) to aggregate single cell profiles into a hand-
ful of so-called latent factors. Each of these latent factors represents a complex non-linear gene combination.
Leveraging a model tailored to scRNA-seq data, scVI, this decomposition also accounts for technical issues,
such as dropout, dispersion, or library-size. We train two independent VAEs, one for each data stream, with
different architectures (Methods, Figure D.2A), resulting in two sets of latent factors. (B) In order to relate these
two sets of factors, Sobolev Alignment yields a cosine similarity matrix with values ranging from 0 to 1: 0 means
that the biology supporting the two factors is completely different while 1 means that the genes supporting the
latent factors are perfectly similar. (C) The cosine similarity matrix is finally decomposed to obtain Sobolev
Principal Vectors (SPV) which are pairs of latent factors – one from cell lines (top), one from tumors (bottom)
– ranked by gene-level similarity. Here, the first SPV corresponds to two highly similar processes, while sub-
sequent SPV pairs contain less and less similar processes. (D) Technically, Sobolev Alignment leverages the
generative nature of each VAE to build a large labeled training dataset. This dataset is then employed as la-
beled training data in a large-scale Kernel Ridge Regression, using Falkon, which approximates the encoder
functions. We approximate cell line and tumor VAEs by two different sets of kernel machines, independently
from one another but using the same Matérn kernel (Methods). We then compare these two sets of approx-
imations, yielding the cosine similarity matrix (Section D.5). (E) In order to interpret the SPVs, we derived a
scheme which relies on the Taylor expansion of the Gaussian kernel. This yields two sets of contributions:
the contribution of genes and of interaction terms –– which are the products of two genes. These weights are
used in a Gene Set Enrichment Analysis (GSEA) framework to measure the enrichment of certain biological
processes.
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sists of two neural networks: one network which reduces the dimensionality of gene
expression profiles to a much smaller number of latent factors, and a second which aims
to reconstruct the original expression profiles from the latent factors. Akin to principal
components, each latent factor represents a source of variation and captures combina-
tions of correlated non-linear patterns in the studied dataset (Figure D.2A).
To capture processes present in either cell line or tumor data, we train two independent
VAEs (Methods), one on cell lines and one on tumors (Figure 5.2A). This allows each
model to capture the variability within either data set separately. (Figure D.2B). Next,
based on the similarities between the two resulting sets of latent factors, cell line latent
factors are matched with tumor latent factors based on a cosine similarity score (Figure
5.2B, Methods), where a high cosine similarity score indicates that two factors are over-
lapping and thus share underlying biology. Note that this cosine similarity is determined
at the gene-level and takes into account how each gene, as well as each nonlinear com-
bination of genes, influences the latent factor. The cosine similarity matrix between the
two sets of latent factors is then used to generate pairs of matching factors (one from
the cell lines and one from the tumors) that are ordered by decreasing similarity follow-
ing the notion of Principal Vectors [104] (Figure 5.2C, Section D.6). Consequently, each
resulting Sobolev Principal Vector (SPV) corresponds to a pair of processes – one from
the cell line and one from the tumor data. By construction, the top SPVs correspond to
non-linear combinations of genes common to cell lines and tumors, whereas the lower-
ranked SPVs relate to cell line or tumor-specific biology. We show that the SPVs can be
interpreted by exploiting a closed form solution for the Taylor expansion of the Gaussian
kernel [169] (Figure 5.2E), which computes the contributions of genes and their interac-
tion terms to each SPV (Methods). The gene-contributions are analyzed using standard
PreRanked GSEA [105], while we derived an extension of GSEA for the interaction terms
(Methods). Sobolev Alignment relies on several hyper-parameters, which we selected as
indicated in Figure D.2D.
Our main technical contribution consists in overcoming two drawbacks of VAEs: the dif-
ficulty to interpret the resulting latent factors, and the absence of simple manipulation to
obtain the contributions of the genes to the factors. Our strategy consists in approximat-
ing the VAE mapping using a Matérn kernel machine (Figure 5.2D), able to approximate
a very wide class of functions, so-called Sobolev spaces, and mathematically easy to han-
dle (Section D.3). Note that we cannot initially use this kernel machine to find the latent
factors as they assume a gaussian noise model which is violated in scRNA-seq data. As
the VAE is a generative model, we can train the kernel machine by generating a large data
set (∼ 106 −107 data points) from the trained scVI models (Figure 5.2D). Each latent fac-
tor is then approximated using Falkon [179, 180], a large-scale Kernel Ridge Regression
tool based on the Nyström approximation (Methods).

5.2.3. SYNTHETIC DATA COMPARISON
In order to demonstrate the utility of SA, we applied it to synthetically constructed sin-
gle cell datasets. We employed Dyngen [192] to generate the single cell data using three
synthetic models. In each model we simulated processes associated with the source (cell
line) and a target (tumor), respectively, and we varied the level of overlap (conservation)
between the source and target.
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Figure 5.3 – Sobolev Alignment faithfully discriminates shared from specific biological processes on three
synthetic datasets. We generated three models of increasing complexity to assess the capacity of Sobolev
Alignment in discriminating common from data-specific signals. (A) Gene regulatory network of model I. A
blue box indicates a gene shared between source and target, green a gene specific to source, and orange to
target. (B) Proportion of gene weights for source (top) and target (bottom) SPVs. (C) Proportion of interaction
weights for source (top) and target (bottom) PVs. (D-F) Results similarly displayed for model II. (G-I) Results
similarly displayed for model III. (blue: common; grey: interactions with one common and one specific gene;
green: source-specific; orange: target-specific).
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For the first model (model I) the source and target both contain a conserved regula-
tory network (A1-A4), which is complemented with an independent network (X1-X4)
in the source and an independent network (Y1-Y4) in the target (Figure 5.3A). Follow-
ing Cannoodt et al, each network is initialized by “external” genes (Ext1-Ext6) (Figure
5.3A). Following Dyngen, source and target datasets furthermore differ by their kinetic
parameters and the structure of housekeeping genes and transcription factors, which
are used for generating the data, but excluded when applying SA. We ran the complete
SA pipeline (Figure D.2A) and obtained 8 SPVs for the source and 10 for the target. To
inspect the SPVs, we first look at their linear portion (Figure 5.3B), which account for
50% of the SPVs norm (Figure D.3B-C). The three top source and target SPVs exclusively
consist of signal from the shared network. The subsequent two SPVs consist of a mix of
shared and source/target-specific signal. Finally, the last three SPVs are made up solely
of source/target specific genes. Next, we looked at the interaction genes (Figure 5.3C),
which explain 30% of the variation in the SPVs (Figure D.3A-C) and observed a similar
pattern. The first 3 SPVs contain a strong shared component and a strong mixed com-
ponent (interactions between shared and source/target specific genes). In contrast, the
last 3 SPVs contain a strong pure source/target-specific as well as mixed interactions.
Next, we constructed a more challenging dataset with a conserved component and
source/target-specific external control of this shared component. Following an example
proposed by Cannoodt et al, we designed a conserved cycling backbone pathway (Figure
5.3D). To this we added a linear pathway, specific to the source, providing an activating
signal from an external gene (Ext1-5) to the shared component via B1. Similarly, specific
to the target, we added a linear pathway inhibiting the shared component via C1 (Fig-
ure 5.3D). Analysis of the linear part (Figure 5.3E) and the interaction part of the SPVs
(Figure 5.3F) showed a decreasing contribution of shared linear and interaction terms
when going down the ranking of the SPVs. Specifically, shared linear terms account for
98% of source SPV1 and 80% of target SPV1, while these proportions decrease to 50%
and 40%, respectively, for SPV9. Note that none of the SPVs solely contain shared signal
or source/target-specific signal (as was the case for model I). This might be because, for
model II, the source and target-specific genes have a direct influence on the conserved
network. As a result, a significant amount of covariance is to be expected between the
shared and source/target-specific genes. Nevertheless, SA does correctly identify the
shared elements of the source and target in the top PVs while the source and target spe-
cific elements are represented in the lower ranked PVs.
Finally, models I and II harbor individual genes that are specific to either source or tar-
get. To further challenge our Sobolev Alignment, we created a model III, that has a shared
component similar to model II (genes A1-A15), and a set of shared genes (X1-X20) but
whose wiring is different between the source and target (Figure 5.3G). When applying
SA, we observed that the linear part of the first three SPVs mostly consist of shared genes
(Figure 5.3H) and that the non-linear part of these SPVs is dominated by either pure
shared or mixed interactions (Figure 5.3I). Also here, the last three SPVs have a limited
contribution of shared genes or interaction terms consisting of shared genes. The re-
sults from these three models demonstrate that Sobolev Alignment is able to capture the
shared information between two datasets in the top ranked SPV components.
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5.2.4. SOBOLEV ALIGNMENT EFFECTIVELY INTEGRATES CELL LINES AND

TUMORS
We applied our Sobolev Alignment to compare treatment naïve NSCLC cell lines (Kinker
dataset) and epithelial tumor cells from NSCLC patients (Kim dataset) (Methods). Fol-
lowing the hyper-parameter selection pipeline (Figure D.2), we selected two different ar-
chitectures for the scVI models (Supp. Table 1) and approximated the embedding of the
VAE latent factors with the Falkon kernel machine using a Laplacian kernel with σ = 15
(Methods). Each scVI latent factor is approximated very well, with the Spearman corre-
lation between our approximation and the scVI-computed values ranging between 0.97
and 0.99 for the cell lines and between 0.95 and 0.99 for the tumors (Figure D.7A).
The similarities between the SPVs of the cell lines and the tumor data ranged from 0.51
to 0.01 (Figure D.7B) and we retained the top 12 significant SPV pairs (Methods). From
the 12 cell line-tumor SPV pairs, we subsequently constructed a 12-dimensional Sobolov
Consensus Space. Each dimension of the consensus space consists of a consensus vec-
tor obtained by interpolating between the matched cell line and tumor SPV pair (Meth-
ods). These consensus vectors represent the best balance between the effects of the cell
lines and the tumors. We then projected the cell line and tumor data on the resulting 12
consensus vectors and performed a UMAP projection and observed a reasonably good
but not perfect co-clustering of cell lines and tumors (Figure 5.4A). Inspired by Seurat’s
and LIGER’s workflows, we performed a Mutual Nearest Neighbor (MNN) correction to
the cell-line and tumor datasets in the Sobolev Consensus Space [185]. Although MNN
on the gene expression profiles performs poorly (Figure 5.4B), its combination with SA
resulted in a clear improved co-clustering of cell lines and tumors (Figure 5.4C). Such
co-clustering is not achieved by either Seurat v3 (Figure D.8A), Harmony (Figure D.8B),
or LIGER (Figure D.8C). In subsequent analyses, we will employ the datasets resulting
from the projection on the Sobolev Consensus Space with MNN correction, denoted as
the SA+MNN space.
To validate the quality of our alignment, we compared the EGFR mutation status of pa-
tients from the Kim dataset (tumor) with the EGFR signaling activity in the cell lines. We
chose this comparison as the cell lines in the Kinker dataset do not harbor any activat-
ing EGFR mutations, rendering the direct transfer of mutation status from cell lines to
tumors impossible. The cell line EGFR signaling is computed [193], for each cell, using
UCell [194] (Methods). As we expect cell line cells with high EGFR signaling activity to be
in close proximity to EGFR mutant tumor cells, we predict, for each tumor cell, the EGFR
signaling level from the cell lines using a k-Nearest Neighbor (kNN) regression in the
SA+MNN space (Figure 5.4D, Figure D.9A). From the cell-line predictions, we observed
that mutant EGFR tumors have higher EGFR signaling levels compared to wild-type tu-
mors (Figure 5.4E, Figure D.9B), coherent with a constitutive activation of EGFR signal-
ing pathway. In other words, EGFR-mutated tumor cells indeed preferentially cluster
with cell lines harboring a high level of EGFR signaling after aligning the datasets in the
SA+MN consensus space. Next, we evaluated whether the cell cycle states of neighbor-
ing cell line and tumor cells in the SA+MNN space are comparable. “G2/M” and “G1/S”
scores were provided for the Kinker cell line dataset. We computed equivalent quantities
on the Kim tumor dataset using the Seurat v3 cell-cycle regression tool. Comparing the
tumor cells’ G2/M scores predicted with a kNN regression model from the cell line data
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Figure 5.4 – Sobolev Alignment effectively integrates cell lines and epithelial tumor cells. We employed
Sobolev Alignment to compare untreated epithelial cells from NSCLC cancer patients with untreated NSCLC
cell lines. (A) UMAP of cell lines and tumors after projection on SPVs and interpolation. (B) UMAP of cell lines
and tumors after correction with Mutual Nearest Neighbors (MNN). (C) UMAP of cell lines and tumors after
projection on SPVs, interpolation, and subsequent correction by MNN. (D) Workflow of our cell line neighbor-
hood validation, which computes, for each tumor cell, the value of a certain phenotype in neighboring cell line
cells. (E) Relationship between imputed EGFR signaling levels and EGFR status in tumor cells. (F) Relationship
in tumor cells between G2/M score imputed from cell lines (y-axis) and G2/M score computed using Seurat v3
(x-axis). (G) Workflow of our tumor neighborhood validation, reversing the order from cell line neighborhood
validation. (H) Relationship between pathway levels and oncogenic form in cell line; left to right: genes up-
regulated in KRAS mutated cells (“KRAS UP”), genes down-regulated in KRAS mutated cells (“KRAS DOWN”)
and genes down-regulated in TP53 mutated cells (“TP53 DOWN”) (Figure D.9H-M).
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(Figure D.9C) with the cell-cycle scores, we observe a spearman correlation of 0.41 (Fig-
ure 5.4F), indicating that our co-clustering captures mitotic entrance. When performing
the same experiment with the S scores (Figure D.9D-E), we however only observe a mod-
est spearman correlation of 0.11. Following a similar type of analysis (Figure 5.4G), we
find that tumor cells in the neighborhood of KRAS-mutant cell lines have a higher level of
expression of genes in KRAS-mutant lung cancer cells according to the “KRAS UP” gene
set and a lower level of expression of genes down-regulated in KRAS-mutant lung can-
cer cells based on the “KRAS DOWN” gene set (Figure 5.4H, Figure D.9F-I). Also, tumor
cells in the neighborhood of TP53 mutated cell lines have lower levels of genes down-
regulated by TP53 mutations (Figure 5.4H, Figure D.9J); however, we could not find an
association for genes up-regulated by TP53 mutant protein (Figure D.9K-L). Taken to-
gether, alignment of cells from cell lines and tumors in the SA+MNN space conserves
important biomarkers, indicating the biological relevance of our mathematical model.

5.2.5. SOBOLEV ALIGNMENT HIGHLIGHTS THE CONSERVATION OF IMPOR-
TANT INTRINSIC IMMUNE-RELATED PATHWAYS IN CELL LINES

To assess which tumor-related biological processes align well to cell line biology, we ana-
lyzed each of the tumor SPVs (Figure 5.4). First, by construction, cell line and tumor cells
in the same neighborhood show similar values for all SPVs, indicating that SPVs can be
understood as biomarkers, which can help relate clinical samples to cell line models. To
interpret the tumor SPVs, we computed the linear (Subsection D.7.3, Supp. Table 2) and
interaction loadings (Methods, Supp. Table 3), and subsequently performed a gene set
enrichment analysis (Subsection D.7.4, Supp. Table 4). Using GSEA on the linear part
(Figure 5.2E), we report, for each SPV, the top 10 most enriched gene sets in the linear
portion (FDR < 0.05). To study interaction terms, we created interaction gene sets that
correspond to all genes in a pair of gene sets (Methods). For instance, the interaction-
gene-set “M Phase x Keratinization” contains all interaction pairs with one gene from
the “M Phase” gene set, and one gene from the “Keratinization” gene set. For each SPV,
we computed the Normalized Enrichment Scores (NES) of all interaction gene sets using
a modified procedure akin to PreRanked GSEA (Methods). The remaining analyses are
based on the top 5% interaction terms with the largest absolute NESs values.
We observed that negative coefficients of SPV1 are enriched for gene sets linked to G2/M
mitotic gene sets (Figure 5.5A), indicating a conservation of mitosis-related biological
processes. Keratin genes, represented by e.g. the “keratinization” set, are also driving
the enrichment of several gene sets in the negative coefficients. Four known lung adeno-
carcinoma markers [195], KRT7-8–18-19, are amongst the 10 most important linear con-
tributors, indicating a conservation of the keratin markers between cell lines and tumors.
The two subsequent SPVs (SPV2 and SPV3) are enriched for PI3K-AKT and the MET path-
ways (Figure 5.5B-C), two important cancer-related pathways expected to be shared be-
tween cell lines and tumors. SPV4 is not associated with any enrichment. Positive co-
efficients of SPV5 (Figure 5.5D) are significantly enriched for immune-related gene sets
(interferon signaling, cytokine signaling, interferon gamma, adaptive immune system)
and their interactions. The negative coefficients of SPV5 are enriched for keratin-related
gene sets. Analysis with the oncogenic signatures from MSigDB (Supp Table 4) indi-
cates an enrichment in the positive portion for genes upregulated in KRAS mutant cells
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Figure 5.5 – Analysis of Sobolev Alignment directions show the conservation in cell lines of important mi-
totic pathways alongside innate immune processes. For each SPV computed between the Kinker and the
Kim datasets (Figure 5.4), we study the tumor processes recapitulated in cell lines by performing a gene set
enrichment analysis on the tumor SPVs. (A) Results for SPV1. The left UMAP of cell lines and tumors is col-
ored with the scores of SPV1 projected on the cells (SA+MNN). Turning to gene loadings, the subsequent bar
plot summarizes the top 10 most enriched gene sets for the Reactome MSigDB collection, represented by their
Normalized Enrichment Scores (NES). Finally, interaction terms between these linearly enriched gene sets are
reported in a heatmap. A white value indicate that the interaction term is not in the 5% most enriched interac-
tion terms. A negative value (red) indicates that the product of the two pathways drives down the value of the
SPV; a positive (blue) value indicates the reverse. The SPV scores (left) and gene-loadings (right) are connected:
blue cells in the UMAP harbor a high expression of blue linear and interaction gene sets, and reciprocally. We
repeated the experiment for SPV2 (B), SPV3 (C), SPV5 (D) and SPV6 (E) with a similar display.
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(FDR < 0.035). SPV5 values gradually change across the UMAP, suggesting a higher-level
structure shared between cell lines and tumors. More specifically, cells in the lower-left
of the UMAP exhibit a high keratinization level, while cells in the upper-right present
either KRAS activation, or a high level of activity for immune-related pathways. Analysis
of SPV6 (Figure 5.5E) shows a similar pattern as SPV5 with keratinization and immune
activity enriched in the positive and negative coefficients, respectively. SPV6 also shows
a gradient between high-keratinization and high immune-response, represented here
by antigen presentation (MHC class II, microbial peptides, antigen presentation). Al-
together, these results highlight the conservation of immune-related pathways in lung
cancer cell line models alongside their interplay with keratin-levels and KRAS aberra-
tions.

5.2.6. SOBOLEV ALIGNMENT ALLOWS TO STUDY THE MODE OF ACTION FOR

CERTAIN DRUGS
Finally, we employed our methodology to study the different modes of action to anti-
cancer drugs. We first computed the SPVs between the McFarland [176] cell line and
the Kim tumor datasets. The McFarland dataset consists of a multiplexed perturbation
screen on 33 NSCLC cell lines where each cell line was exposed to 19 anti-cancer drugs.
Transcriptomic read-outs were measured 6 or 24 hours after drug exposure (Figure D.10).
To study this set of perturbations (Figure 5.6A), we first mapped the cell line data to the
top cell line SPVs (Figure D.11A-C), thereby restricting the analysis to processes shared
with tumors.
For each embedded cell, we computed the gene-loadings corresponding to the combi-
nation of projected SPV scores (Methods). For each cell line and exposed drug, we em-
ployed the Mann-Whitney test to assess, per gene, whether the gene weights from cells
retrieved after drug induction are significantly different from gene weights of cells ob-
tained after vehicle-treatment (DMSO). To include a measure of effect size, we filtered
genes based on the mean differences of the associated gene-weights between the two
groups (drug induction and DMSO). For this effect size, the threshold is set to the 95%
percentile of the effect size distribution resulting from random DMSO-perturbed cells
(Figure D.12A). Genes which are significant (FDR < 0.05) and pass the effect size filter
are considered to be perturbed by the drug in the cell line under consideration. The
set of genes is then further annotated using EnrichR44 to associate them with biological
processes (only gene sets with at least 5 perturbed genes are considered).
We first analyzed Idasanutlin (a.k.a. Nutlin-3), an Mdm2 inhibitor which triggers apop-
tosis selectively in TP53 wild-type cells [196]. When examining the number of genes
perturbed after 24 hours for each of the 5 cell lines (Figure 5.6B), we observe a clear
difference between the sole TP53 wild-type cell-line (NCIH226) and the four mutated
cell lines. While NCIH226 harbors 70 up-regulated genes and 78 down-regulated genes,
none of the mutated cell lines show more than 5 perturbed genes. For NCIH226, we ob-
serve a clear enrichment for apoptosis and the p53 pathway in the up-regulated genes,
while G2M checkpoints and E2F targets are down-regulated, coherent with the known
mode of action of Idasanutlin (Figure 5.6C). We then turned to Everolimus, an mTOR
inhibitor [197], and performed the analysis presented in Figure 5.6A for each of the 18
perturbed cell lines (Figure D.12B, Supp. Table 5). The enrichment scores are summa-
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Figure 5.6 – Sobolev Alignment identifies modes of action from drug perturbations. Exploiting a large drug-
perturbation screen (McFarland dataset), we studied the modes of action of several drugs recapitulated by the
SPV common with tumors (Kim dataset). (A) After first embedding all cells to the SPV space corresponding
to the top cell lines SPVs, we computed the gene-weights corresponding to each single cell embedding, yield-
ing the pictured heatmaps. Using a rank-sum test (Mann-Whitney, Benjamini-Hochberg FDR multiple-testing
correction), we assessed, for each drug, the difference in gene weights between DMSO-treated cells and drug-
treated cells; the threshold in effect size was set as the 95% percentile of gene-weights differences observed
within the DMSO-treated cells of the studied cell line. Up- and down-regulated genes were then analyzed using
EnrichR. (B) Number of up- and down-regulated genes for 5 cell lines subjected to Mdm2-inhibitor Idasanut-
lin alongside their TP53 mutation status. (C) Enrichment observed using the MSigDB Hallmarks collection for
NCIH226 (blue: enrichment in genes up-regulated by Idasanutlin, red: enrichment in down-regulated genes).
(D) Boxplot of q-values obtained when analyzing Everolimus (mTOR inhibitor). (E) Boxplots of q-values ob-
tained when analyzing Trametinib (MEK-inhibitor). (F) Number of up- and down-regulated genes for each cell
line perturbed with BRD3379, a drug with an unknown mode of action. Zooming on the two most perturbed
cell lines, we performed the EnrichR analysis using the Reactome MSigDB collection for NCIH838 (G) and Ben
(H).
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rized in a boxplot (Figure 5.6D), each point corresponding to a significantly enriched cell
line. We observe that for 12 cell lines, G2M checkpoints and E2F targets are significantly
down-regulated; the 6 other cell lines correspond to the cell lines with the least num-
ber of perturbed genes (Figure D.12B). We also observe a down-regulation of mTORC1
signaling for four cell lines (A549, IALM, LU99, NCIH1355), coherent with the known
mode of action. We performed a similar experiment for Trametinib, a MEK-inhibitor
(Figure 5.6E, Figure D.12C). Upregulation of IFN-γ and IFN-α, down-regulation of genes
over-expressed in KRAS mutant cells, and down-regulation of cell cycle pathways are
observed, consistent with previous reports [176, 198]. Androgen response and choles-
terol homeostasis pathways are enriched, suggesting combination therapies with anti-
androgen or cholesterol lowering drugs may yield synergistic effects or reduce resistance
to MEK inhibitors [199–201]. Several pathways, such as Apoptosis and EMT, display a
duality where up-regulation is observed for some cell lines while others show depletion.
While this may represent normal variations in drug response, these results are consis-
tent with the notion that resistance to MEK inhibitors can be achieved through various
adaptation mechanisms, including EMT, and highlights the need for combination ther-
apies in NSCLC [202, 203]. Finally, we turned to a drug with an unknown mode of action,
BRD3379. When examining the number of perturbed genes per cell line, we observe
that two cell lines stand out: NCIH838 and BEN (Figure 5.6F, Figure D.12D). Performing
pathway enrichment analysis revealed that both NCIH838 (Figure 5.6G) and BEN (Figure
5.6H) are characterized by cell cycle arrest (down-regulation of cell cycle gene sets). Both
cell lines show enrichment for genes involved in senescence, reminiscent of the effects
of BRD4 inhibition [204, 205]. Indeed, genes shown to be related to senescence induc-
tion by BRD4 inhibition, such as Aurora kinases A/B55 and CDKN1A (p21) [205], show
similar patterns of expression upon BRD3379 treatment (Supp. Table 5). Furthermore,
JQ1 inhibition, a BRD2-3-4 inhibitor, similarly shows induction of senescence and cell
cycle arrest (Figure D.12E-F). Therefore, we posit that BRD3379 mode of action is likely
to be similar to that of BRD4 inhibitors.
Taken together, these results demonstrate the ability of our approach to recapitulate
clinically validated drug response mechanisms and exemplify the potential of Sobolev
Alignment to decipher complex modes of action.

5.3. DISCUSSION
We showed that single cell profiles measured from pre-clinical models and human tu-
mors cannot be aligned using current batch-effect correction tools like Seurat, LIGER
and Harmony. To help researchers study the translational potential of pre-clinical mod-
els, we derived a novel framework that exploits the power of unsupervised deep genera-
tive models (VAE), known to their ability to embed scRNA-seq data, with the benefits of
kernel machines, known to be interpretable. In the first step, a VAE is trained to embed
both input datasets independently, capturing the different sources of variations into a
set of latent factors. In the second step, we approximate the mapping towards the latent
factors using Falkon-trained kernel machines, which allows us to calculate the contribu-
tion of each gene to each of the latent factors. We then match the latent factors of the
two domains by calculating their Sobolev Principal Vectors (SPVs). Finally, we construct
a consensus space by interpolation between matched SPVs onto which all data can be
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projected.
We applied our approach to a set of synthetic examples and showed that a conserved
network of genes contributes to the most important SPVs. We then applied our align-
ment to NSCLC cell lines and epithelial cancer cells and showed enrichment of known
oncogenes in the top SPVs. Further analysis of the top SPVs pointed towards the conser-
vation of mitotic and immune-related pathways in cultured cells. In a last experiment,
we aligned a multiplexed drug-perturbation screen with NSCLC cell lines and showed
that the common SPVs recapitulate modes of action for several drugs.
Although we restricted our analysis to single cell gene expression data, our computa-
tional approach is versatile, and can easily be adapted for other molecular features, such
as chromatin accessibility [206], protein levels [207] or ribosomal profiling [208]. Re-
cently developed deep probabilistic models tailored for such data [209, 210] could be
for instance employed to adapt our framework. We also solely compare cell line mod-
els to human tumors, but more complex models could be studied equally well, such as
organoids or patient derived xenografts.
On a more technical note, our approach develops and exploits connections between
deep-learning-based algorithms and kernel methods [211]. Recent works have shown
theoretical connections [212], demonstrating, for instance, the equivalence between the
Laplacian kernel and the so-called Neural Tangent Kernel [213]. We envision that future
theoretical works could help improve our approach, and we believe that a promising
avenue for improvement lies in replacing the kernel ridge regression step. Indeed, we
observe that kernel ridge regression is locally adaptive and is not ideal for approximat-
ing functions that exhibit large variations in localized areas, as is often the case with
neural networks. Furthermore, our interpretation scheme relies on the decomposition
of the Gaussian kernel, which we extended to the Laplacian kernel by exploiting con-
nections between the feature spaces of Gaussian and Laplacian kernels. Derivation of a
closed-form solution for the Laplacian kernel RKHS basis could help improve our analy-
sis. Finally, our approach could be used in other areas, for instance to define a similarity
measure between neural networks, as spearheaded by recent works [214–216].

5.4. METHODS

5.4.1. DATA DOWNLOAD AND PROCESSING
Cell line and tumor data were downloaded following the protocol indicated in the sup-
ported publications [175–177], i.e., using the Broad Institute Single Cell Portal for cell
lines, and GEO repository GSE131907 for tumors. Both datasets were processed using
Scanpy [217].

5.4.2. BATCH EFFECT CORRECTION
The Seurat R implementation (version 4.0.1) was used and corrected for batch effect us-
ing Reciprocal PCA. We used Liger R implementation (version 0.5.0.9). Finally, we use
Harmony Python implementation (version 0.0.5). For all methods, we used default pa-
rameters.
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5.4.3. MODEL SELECTION FOR SCVI
The first step of Sobolev Alignment consists in training two Variational Auto-Encoders
(VAEs): one using the source (cell lines) and one using the target (tumor) dataset. For
training these two VAEs, we turned to an established implementation, called scVI [182,
218]. As any neural-network-based approach, scVI requires a lot of hyper-parameters to
be tuned, e.g., number of hidden layers, number of latent factors, number of neurons
per layers, dropout rate, weight decay, likelihood function, early stopping or number of
iterations. In order to select a combination of hyper-parameters that best reconstructs
the data, we turned to Bayesian Optimization [219] and selected independently for each
dataset the best combination of hyper-parameters based on the reconstruction error
computed on an held-out test set (Supp. Table 1). The two resulting optimal models
were then trained using the complete source and target data, respectively. Furthermore,
VAEs are frequently suffering from posterior collapse [220, 221], i.e., the presence of at
least one latent factor with zero variance, which causes matrices MX and MY to be sin-
gular and renders our alignment strategy unstable. To avoid it, we devised a rejection
scheme: after complete training of the model, we computed the variance of each latent
vector and restarted the training, should one latent vector happen to be collapsed. If the
training fails five times in a row, one latent factor is removed.
Naming dX and dY the number of latent factors for source and target, respectively, this
training step generates to set of encoders: f X

1 , .., f X
dX

for source and f Y
1 , .., f Y

dY
for the tar-

get. Each of these functions maps a single cell expression profile to a latent factor score.

5.4.4. APPROXIMATION OF LATENT FACTORS EMBEDDING FUNCTION BY

KERNEL RIDGE REGRESSION

In a second step, we approximate each embedding function ( f X
1 , .., f X

dX
and f Y

1 , .., f Y
dY

)
using Kernel Ridge Regression (KRR), with a view to exploit interesting mathematical
properties of kernel methods (Section D.3). To generate enough training data, we exploit
the generative nature of the two scVI models. We provide here the procedure for the
source model, which can be readily applied to the target model as well (Sections D.4 and
D.5).
First, we randomly sample N random noise vectors z X

1 , .., z X
N ∼ N

(
0, IdX

)
, with IdX the

identity matrix of size dX . Using the source model decoder, we collect N artificial gene
expression profiles x̂ X

1 , .., x̂ X
N ∈Rp . As VAEs are not bijective, the original vectors z X

1 , .., z X
N

do not perfectly equate the encoder outputs for x̂ X
1 , .., x̂ X

N ∈ Rp . To limit the noise in our
model, we input the samples x̂ X

1 , .., x̂ X
N ∈Rp in the encoder functions, resulting in new ar-

tificial vectors ẑ X
1 , .., ẑ X

N ∈ RdX ; each ẑ X· corresponds here to the mean of the embedding
parametrization of a sample. We subsequently approximate the embedding functions
by training, on the artificial data

{(
x̂ X

1 , ẑ X
1

)
, ..,

(
x̂ X

N , ẑ X
N

)}
, dX independent KRR models. To

scale to the large amount of data we sampled, we turned to Falkon [180], a stochastic ap-
proximation of KRR which relies on the Nyström approximation [222]. Critically, Falkon
relies on the choice of a kernel function, which in our case, must provide a universal
approximation. We turned to the Laplacian, Matérn and Gaussian kernels, which are
defined in Table 1.4.
Let us denote by K the kernel selected. Falkon selects M anchor points (M << N ) among
the training data, denoted x̃ X

1 , .., x̃ X
M and approximates the embedding functions f X

k by
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computing the matrix αX ∈RdX ×M such that:

∀k ∈ {1, ..,dX } , f X
k

(
x ∈Rp) ≈

M∑
i=1

αX
k,i K

(
x̃ X

k , x
) =̂ θX

k (x) . (5.1)

Equation (5.1) corresponds to the regular basis-expansion form resulting from the Rep-
resenter Theorem, with the M anchor points instead of the N training samples. It is
however important to note that the coefficients αX are optimized using the N −M non-
anchor points, and the optimization therefore exploits the whole dataset.

5.4.5. COMPARISON OF LATENT FACTORS BY SOBOLEV ALIGNMENT

We have approximated the source encoder functions f X
1 , .., f X

dX
by the kernel machines

θX
1 , ..,θX

dX
, and the target encoder functions f Y

1 , .., f Y
dY

by the kernel machines θY
1 , ..,θY

dY
.

These two approximations are then used to compute the cosine similarity matrix MK

(Definition D.5.10). We here present the computational approach to compute MK , and
refer the reader to Section D.5 for the precise mathematical definition and derivation.
Let us define the three following kernel matrices:

KX =
(
K

(
x̃ X

i , x̃ X
j

))
1≤i , j≤M

KY =
(
K

(
x̃Y

i , x̃Y
j

))
1≤i , j≤M

KX ,Y =
(
K

(
x̃ X

i , x̃Y
j

))
1≤i , j≤M

. (5.2)

These three matrices correspond to similarity (or kernel) values between the different
anchor points computed by Falkon (Equation 5.1). We then define the three following
matrices, referred to as un-normalized cosine similarity matrices (Proposition D.5.9):

M̃X = αX KXα
X T

M̃Y = αY KY α
Y T

M̃X Y = αX KX ,Y α
Y T

. (5.3)

The cosine similarity is then computed as follows (Definition D.5.10):

M̃K = M̃
− 1

2
X M̃X Y M̃

− 1
2

Y . (5.4)

5.4.6. COMPUTATION OF PRINCIPAL VECTORS AND PRINCIPAL ANGLES

We now have two sets of vectors which approximate the two VAEs: θX
1 , ..,θX

dX
for source

and θY
1 , ..,θY

dY
for target. To compare them, we use the notion of Sobolev Principal Vec-

tors (SPVs) which correspond to pairs of vectors (one from source, one from target)
ranked by decreasing similarity (Definition D.6.1). To compute them, we need to de-
compose the cosine similarity matrix (Equation 5.4) by SVD:

M̃K = UΣV T . (5.5)



5.4. METHODS

5

91

The diagonal matrix Σ contains the similarity values between the principal vectors
(Corollary D.6.2.1), and can be written as:

Σ =

cosθ1 · · · 0
...

. . .
...

0 · · · cosθd̂

 , with d̂ = min(dX ,dY ) . (5.6)

We also define the two matrices γX ∈Rd̂×M and γY ∈Rd̂×M as

γX = U T M̃
− 1

2
X αX and γY = V T M̃

− 1
2

Y αY . (5.7)

The principal vector pairs
{
(s1, t1) , · · · ,

(
sd̂ , td̂

)}
are finally computed as (Theorem D.6.2):

∀k ∈ {
1, · · · d̂}

, sk =
M∑

i=1
γX

k,i K
(
x̃ X

i , ·) and tk =
M∑

i=1
γY

k,i K
(
x̃Y

i , ·) . (5.8)

5.4.7. INTERPRETABILITY OF PRINCIPAL VECTORS BY KERNEL TAYLOR EX-
PANSION

We here present the interpretability scheme which relies on the explicit characterization
of the Gaussian kernel RKHS [169] (Section D.7). We define the following univariate basis
function ek

i , for i ∈ {
1, · · · , p

}
and k ∈N, as:

∀x ∈Rp , ek
i (x) =̂ xk

i

σk
p

k !
exp

(
− x2

i

2σ2

)
, (5.9)

with σ the scale parameter of the Matérn kernel (Table 1.4). An orthonormal basis of
the Gaussian RKHS can then be defined by combining these univariate basis functions
with an outer product (Proposition D.7.3), yielding Gaussian basis functions, defined, for
K = [

k1, · · · ,kp
] ∈Np , as:

∀x ∈Rp , GK (x) =̂
p∏

j=1
e

k j

j (x) =

 p∏
j=1

x
k j

j

σk j
√

k j !

exp

(
−‖x‖2

2σ2

)
. (5.10)

Since these Gaussian basis functions form an orthonormal basis, we exploit them to
parametrize the latent factors and the SPVs (Subsection D.7.1). Based on Equation (5.10),
we define the following offset matrices as the exponential term, i.e.,

O X = diag

[
exp

(
−‖x̃ X

i ‖2

2σ2

)]
1≤i≤M

and OY = diag

[
exp

(
−‖x̃Y

i ‖2

2σ2

)]
1≤i≤M

, (5.11)

together with the artificial data matrices A X = [
x̃ X

1 , ·, x̃ X
M

] ∈ RM×p and A Y =[
x̃Y

1 , ·, x̃Y
M

] ∈RM×p , which correspond to the linear terms. Finally, we define:

• LX
f act ∈ RdX ×p and LY

f act ∈ RdY ×p , which contain the contributions of each gene

(columns) to each source and target latent factor (rows) respectively.
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• LX
SPV ∈Rd̂×p and LY

SPV ∈Rd̂×p containing the contribution of each gene (columns)
to each source and target principal vector (rows) respectively.

These matrices of linear weights can be computed as follows (Theorem D.7.11):

LX
f act = 1

σ
αX O X A X and LY

f act = 1

σ
αY OY A Y . (5.12)

LX
SPV = 1

σ
γX O X A X and LY

SPV = 1

σ
γY OY A Y . (5.13)

Following a similar protocol, we can compute the contributions of each interaction term
to the latent factors and the SPVs, and we refer the reader to Proposition D.7.3 and Defi-
nition D.7.6 for the complete definition.
To extend this interpretability scheme to other Matérn kernels, e.g., the Laplacian ker-
nels, we proved the orthogonality of linear and interaction terms within the RKHS (Lem-
mas D.7.16 and D.7.17). In order to scale linear and interaction terms, we exploited a
heuristic which consists in comparing the amount of non-linearities with results ob-
tained using a Gaussian kernel with same parameter σ (Subsection D.7.5).

5.4.8. VISUALIZATION USING SOBOLEV PRINCIPAL VECTOR INTERPOLA-
TION

In order to reduce the SPV pairs to a single vector, we followed the same protocol as
in PRECISE and TRANSACT and devised an interpolation scheme (Figure D.6). If we
denote by θk between vectors of the kth SPV, i.e., θk = arccos〈sk , tk〉H , the projection on
interpolation time τ ∈ [0,1] is defined as

Fk (τ) = sin(1−τ)θk

sinθk
sk + sinτθk

sinθk
tk . (5.14)

For each SPV, we discretize [0,1] and project the whole data on all the interpolated vec-
tors. Using a Kolmogorov-Smirnov statistics, we compare source and target projected
data and return the interpolation time τk which minimizes these statistics. We repeat
this step for all SPVs and project the data on all the interpolated vectors.

5.4.9. GENE SET ENRICHMENT ANALYSIS
To connect the linear and interaction weights (Equations (5.12) and (5.13)) to known
biological processes, we employ Gene Set Enrichment Analysis (GSEA) [223]. We pro-
cess the linear and interaction parts in two distinct analyses. First, the linear weights
are used as input to a PreRanked analysis with 1000 gene-level permutations. For the
interaction terms, we compute enrichment score following a protocol inspired from the
original GSEA framework. As interaction terms correspond to pairs of genes, we define
for two gene sets G1 and G2 the interaction gene set G1 ×G2 as the set of gene pairs with
one gene in G1 and the other in G2. To compute the enrichment score of G1×G2, termed
ES (G1 ×G2), we rank all interaction terms in decreasing order and assign to each inter-
action 1 if the interaction is in G1 ×G2 and −1 otherwise. We then divide the positive
values by the number of elements in G1 ×G2 and the negative values by the number of
interactions not in G1 ×G2. We finally compute the cumulative sum over the ranked set
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of interactions and define ES (G1 ×G2) as the cumulative sum with the largest absolute
value.
Taking inspiration from the original GSEA protocol, we generated the null model by sam-
ple permutation: once the scVI model is trained and artificial data is generated, we
randomly shuffled the sample labels of latent space values. We then ran the Sobolev
Alignment protocol and computed the interaction weights. Although the linear analysis
has been carried out with 1 000 permutations, we only performed 100 permutations for
the interaction terms, out of computational time considerations. We finally computed
the enrichment scores for each permutation and computed the normalized enrichment
scores (NES) and FDR values as in the original GSEA.





6
DISCUSSION

Exploiting the high versatility and cost-effectiveness of model systems, such as cell lines
and patient derived xenografts, the research community has gathered a vast amount of
knowledge and data. These pre-clinical discoveries, however, happen to have a limited
applicability in a clinical setting and most findings do not readily translate to action-
able clinical insights. This is for instance the case for predictive biomarkers of drug re-
sponse. To enhance the applicability of model-system-based biomarkers, we have de-
veloped computational methods to integrate pre-clinical and clinical data. In this final
chapter, we summarize the key methodological aspects and findings of each developed
method and discuss the limitations of our studies. The methods developed in this the-
sis contribute to wider scientific fields which we tried to advance. In this chapter, we
attempt to position our work in the broader scientific community, allowing us to im-
prove the methodologies we developed but to also scout for potential new application
areas. Finally, we propose some general thoughts on were we stand in the development
of computational models for drug response prediction.

6.1. USING GENE EXPRESSION PREDICTIVE POWER TO EN-
HANCE DNA-BASED PREDICTORS

When it comes to drug response prediction, gene expression offers the highest predic-
tive performance, completely over-shadowing other data-types such as mutation, copy-
number or methylation [46, 54, 55]. These DNA-based measurements, however, are clin-
ically more actionable and their measurement is generally more robust. To bridge this
gap and help transfer gene expression predictive power to DNA-based measurements,
we developed Percolate (Chapter 2). Percolate takes as input two data-types, e.g. muta-
tions and gene expression, and break these down into a joint and an individual signals.
Using the out-of-sample extension we devised, a drug response predictor can be trained
on multi-modal data, thereby exploiting the strength of gene expression, but used in
practice when only one of the two modalities is present. We here discuss two main limi-
tations of our approach and offer ways to circumvent it. We finally present ideas to scale
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up this idea up to other applications.

6.1.1. LIMITATIONS OF THE JOINT SIGNAL
Modelling the joint signal between two data-modalities constitutes the cornerstone of
Percolate and we show that, in our specific application, the individual signal is not pre-
dictive. However, we observe that the resulting mutation-based signatures do not of-
fer a systematic gain in performance: using the joint signal leads to better predictions
for 11 drugs, while it induces a drop in performance for 11 drugs, including 8 MAPK
inhibitors. Computing the joint information between gene expression and mutations
requires access to both modalities, and the imputation we perform to predict the joint
signal solely from mutation seems to be sub-optimal. This sub-optimality could be alle-
viated by using a larger sample size, for instance using a compendium like TCGA [160],
by using another distribution for gene expression or mutation, or by designing a better
out-of-sample extension. These signatures were also computed using pan-cancer data
and some tissue-specific mutational effects could therefore not be fully retrieved. How-
ever, restricting to a single tissue would significantly shrink the sample-size, which is not
desirable. A plausible solution could be to train GLM-PCA in a few-shot-learning fashion
[124, 224–226], exploiting other cancer types for pre-training and tuning on the tissue of
interest. These remarks also apply to copy-number and methylation.
Furthermore, the individual signal is not necessarily irrelevant and can potentially con-
tain information not joined with gene expression. Post-translational modifications form
a counter-example where mutations have a limited effect on the gene expression while
having a large phenotypic effect. This is the case of mutations in genes coding for hi-
stone acetyl and methyl modifiers, like EZH2, which have been shown to exert a direct
impact in various pathologies like folicular lymphomas [227] or the Weaver syndrome
[228], while having a limited and convoluted impact on gene expression. Such weak sig-
nal would require larger samples to be detected efficiently, which can explain the con-
clusion of our study. Designing predictors which take into account both the joint and
the individual signal, while exploiting the stratification, is a potential fruitful avenue.

6.1.2. LIMITATIONS OF THE EXPONENTIAL FAMILY
Another key contribution of our work consists of extending the popular JIVE frame-
work from Gaussian noise models to the broader class of exponential family distri-
butions. Although this constitutes, we believe, an important improvement in multi-
omic modelling, our approach has so far been technically limited in two aspects. First,
we restricted our study to distributions already used in the literature. Designing an
exponential-family distribution based on external data is one avenue to incorporate
prior knowledge in Percolate. For instance, one could think of modelling a log-partition
function on a wide compendium of external data, allowing for instance to encode prior-
knowledge on the interactions between genes. This modelling is however not trivial and
would require some theoretical and methodological advances. Provided such methodol-
ogy is developed, combining the resulting exponential family distribution with Percolate
would be relatively straight-forward.
Furthermore, the exponential family distribution itself can potentially be restrictive. For
instance, although the choice of a Negative Binomial distribution was natural for gene
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expression, technical adaptations were needed as the Negative Binomial is not an expo-
nential family distribution. Employing Percolate in applications where an exponential
family distribution is not a relevant modelling choice would thus require to extend our
methodology past this hypothesis. We argue that Normalizing Flows (NF) form an at-
tractive solution [229]. Formally, a Normalizing Flow corresponds to a bijective function
f :Rd →Rp which reconstructs a data-matrix X ∈Rn×p from d factors assumed to follow
a multivariate normal distribution. Taking the notations from Chapter 2, if we consider
two trained normalizing flows f A and fB , one can compute the scores ZA = f −1

A (X A) and
ZB = f −1

B (XB ), subsequently whitened by SVD, i.e., ZA = UAΣAV T
A and ZB = UBΣB V T

B .
The matrix M computed by stacking UA and UB can then be decomposed by SVD and
the resulting out-of-sample is obtained, using notations from Chapter 2, as:

ŨJ ,A = f −1
A (X A)VAΣ

−1
A VM ,AΣ

−1

ŨJ ,B = f −1
B (XB )VBΣ

−1
B VM ,BΣ

−1
. (6.1)

6.1.3. IMPLICATIONS AND POTENTIAL NEW APPLICATIONS OF PERCOLATE
The results of our study suggest that the Percolate predictors perform better than a stan-
dard model for a subset of drugs. As gene expression is laborious and costly to ob-
tain, and as it suffers from severe batch effects, being able to obtain better predictions
from DNA-based measurements can have an important clinical impact. For instance,
the Hartwig Medical Foundation (HMF) has spearheaded the systematic whole-exome-
sequencing profiling of metastatic patients who have exhausted all lines of treatment.
An improved mutation-based predictor of drug response could be a powerful compan-
ion for clinicians in their complex decision making process.
Finally, non-gaussian multi-modal data is absolutely ubiquitous: many areas, for in-
stance in climate science or supply chain optimization, study phenomenon which are
intrinsically non Gaussian. Should experts in these fields be interested in a similar data
aggregation strategy, we believe that our tool could easily be applied. Our software im-
plementation has been specifically thought out to be easily adaptable to new classes of
data.

6.2. TRANSFERRING PREDICTORS OF DRUG RESPONSE FROM

CELL LINES TO TUMORS
As gene expression offers the highest predictive performance compared to other data-
types, we then set out to correct gene expression to translate drug response biomarkers
from pre-clinical models to tumors. In chapter 3, we developed PRECISE, a linear do-
main adaptation technique which extracts the biological signal present in both cell lines
and tumors. To account for complex biological mechanisms, we subsequently derived
TRANSACT (chapter 4) exploiting the notion of kernel machines (Subsection 1.3.1). We
present two clinical and two technical limitations of these two approaches, and propose
a potential road-map to accelerate the improvement, and potential adoption, of such
methodologies in a clinical setting.
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6.2.1. CLINICAL LIMITATIONS
The results presented in chapters 3 and 4 improve significantly on existing approaches.
However, the results are still far from warranting a clinical applicability and several lim-
itations would need to be addressed in future work. First, there is a mismatch between
the clinical data used to assess the accuracy of our prediction and the pre-clinical train-
ing data (Subsection 4.2.4). The two clinical datasets used in our approach, TCGA and
HMF, have been gathered over extensive periods of time and are the product of clinical
decisions. To increase the likelihood of response in patients, the standard-of-care usu-
ally consists of giving drugs in combination; for instance, BRAF-mutated lung adeno-
carcinoma are usually treated jointly with Trametinib (MEK inhibitor) and Dabrafrenib
(BRAF inhibitor), and metastatic colorectal cancers are treated with a combination of
Irinotecan, 5-Fluorouracil and Leucovorin [230]. As a result, an important portion of pa-
tients in these datasets have been treated with more than one drug. The comparison
we performed between the different method is therefore incomplete, but could not be
much improved in absence of large-scale monotherapy-treated patient panels. Recent
combination screens, where a comparable number of cell lines are screened for various
drug combinations, could help refine our framework [231].
Another limitation stems from cell lines themselves. PRECISE and TRANSACT compu-
tationally correct for differences between pre-clinical and clinical data, but these two
methods cannot account for complex effects not observed in-vitro. Interplay between
cancer cells and surrounding stromal and immune cells cannot for instance be modeled,
although these are key determinants of response [232]. Recent work attempted to repli-
cate in-vitro the effect of the immune system, for instance by co-culturing cancer cells
and T-cells [233], paving the way for large-scale datasets which could help improve the
performance of our approach. As discussed in Subsection 1.1.4, more advanced model
systems like organoids could also be instrumental in improving the clinical relevance of
drug response prediction models, but their current cost prohibits the formation of large-
scale data.

6.2.2. TECHNICAL LIMITATIONS
TRANSACT is by design a kernel method, and thus heavily relies on the choice of kernel.
For our study, we exploited the Gaussian kernel, which forms a very standard choice.
The Gaussian kernel has however a major drawback: it is isotropic, meaning that pertur-
bations with equal norms will yield the same similarity to a given sample. For instance,
a knock-down of P53 will be as distant to a cancer cell as the same perturbation diluted
along all the genes, while one would expect the former to be more distant than the latter.
To circumvent this issue, prior knowledge can be incorporated inside the kernel, for ex-
ample, by considering only interactions between genes and their transcription factors.
Another strategy consists of considering kernels involving small subsets of genes known
to be involved in similar processes; these kernels could then be combined using Multiple
Kernel Learning, as is proposed in PIMKL [154] or PAMOGK [234].
Finally, by design, PRECISE and TRANSACT were restricted to gene expression. Although
gene expression recapitulates a significant portion of the signal from DNA-based mea-
surements (Chapter 2), other important molecular features are not taken into account.
This is the case for post-translational modifications like ubiquitylation or phosphoryla-



6.2. TRANSFERRING PREDICTORS OF DRUG RESPONSE FROM CELL LINES TO TUMORS

6

99

tion which critically measure the activity of important pathways, e.g., the MAPK activ-
ity (Subsection 1.2.1). Although complementing large-scale cell line panels with such
molecular measurements is hindered by the current cost of existing technologies, we
envision that such molecular features could markedly help improve the clinical perfor-
mance of our method. Sustained efforts in technological development plead in favor of
optimism when it comes to the availability of such data in the foreseeable future

6.2.3. A ROAD-MAP TO CLINICAL ADOPTION
Although these limitations are all individually complex, we believe them to be surmount-
able. To reach clinical applicability, i.e. the massive adoption of such predictive tools in
standard clinical practice, we here advocate for the following strategy which entails sev-
eral iterations between experiments and computational advances. As explained above,
a key technical limitation lies in the choice of a kernel and no existing kernel, to the best
of our knowledge, would be relevant to our problem. To design a relevant kernel, or sim-
ilarity function, we must set out to find a vast amount of data. A natural idea consists of
increasing the number of cell lines. Unfortunately, this may be out of reach: given the
complexity to establish a cell line, the number of available pre-clinical models will most
likely not scale to more than a few thousands, at least not in the foreseeable future.
This first issue can be tackled by harnessing the wealth of data provided by recent ad-
vances in single cell sequencing. Recently published panels indeed scale to more than
100 000 cells and, as costs rapidly decrease, we believe panels consisting of millions of
cells to be soon available. Such datasets are however unlabelled, i.e., the drug response of
each cell is unknown, which calls for new methods for designing the kernel. We advocate
for a deep kernel learning strategy where the kernel, or similarity function, is learned in
an unsupervised manner and only then applied in the TRANSACT framework. For this
purpose, we propose to exploit the model presented by Wilson et al [235] which com-
bines a neural network with a Gaussian kernel (Table [? ]) in a Gaussian-Process regres-
sion model. As our model must be unsupervised, we present in Chapter E an adaptation
of the notion of Gaussian Process Latent Variable Model (GP-LVM) [76] which allows to
train such deep kernel without labels. This procedure can then first be used using abun-
dant scRNA-seq data to learn the kernel function. The resulting kernel would incorpo-
rate as much prior-knowledge as possible and would therefore be much more specific
than the vanilla Gaussian kernel we employed. Such kernel, with probable modifica-
tions due to differences in library size, would then directly be used in the TRANSACT
framework with bulk-RNA-seq data, i.e. computing the consensus features between cell
lines and tumors and training a regression models after projection onto these consensus
features. As the deep kernel is already low-rank, refinements in the TRANSACT align-
ment procedure are also possible.
This strategy presents many scientific opportunities as countless questions are still open,
for instance:

• How to efficiently translate single-cell-level to bulk-level models ?

• How to integrate different multi-omic measurements in a transferable predictor ?

• How to extend the methodology to combine cell line, mouse and organoids, and
subsequently transfer to humans ?
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• Is the level of intra-tumor heterogeneity in model systems sufficient to properly
model the diversity observed in patients ?

• How to prioritize cell lines and conditions to generate data relevant for improving
the model ?

6.3. COMPARING CELL LINES AND TUMORS AT SINGLE-CELL

RESOLUTION

6.3.1. SOBOLEV ALIGNMENT RECAPITULATES THE BIOLOGY COMMON TO

TUMORS AND CELL LINES
As explained in Subsection 1.1.1, tumors never form monoclonal populations and large
deviations are observed within any tumor [236]. To increase the granularity of the pre-
vious analyses (Chapters 3 and 4), we compared cell lines and tumors at a single cell
resolution, and developed a novel computational tool, Sobolev Alignment (Chapter 5).
We first discuss some important biological and technical limitations of our approach,
alongside some directions to improve our work. As Sobolev Alignment critically relies
on the notion of Sobolev space, we then take a step back and discuss the reasons be-
hind this particular technical choice. Finally, we explain how our methodology can be
employed in any field where generative models have proven useful.

6.3.2. BIOLOGICAL AND TECHNICAL LIMITATIONS
Similarly to Chapters 3 and 4, our study is limited to gene expression. Recent tech-
nologies, such as chromatin accessibility (scATAC-seq), spatial transcriptomics (FISH),
(phospho-)proteomics (CITE-seq) or ribosomal activity (Ribo-seq) could offer comple-
mentary information. Such combined analysis could for instance be useful when study-
ing drug resistance to BRAF inhibition in skin melanoma. Shaffer and colleagues [236]
have indeed shown that, upon induction of Vemurafenib (Table 1.1), a small subset of
cells undergo an epigenetic reprogramming which renders them insensitive to BRAF in-
hibition. Drug perturbation screens combined with measurements of gene expression,
methylation levels and chromatin accessibility would be instrumental to better under-
stand this mode of drug resistance, and persistence in general [237, 238]. Recent deep
generative models have been designed for such combined data, e.g. MultiVI [209] or To-
talVI [210], and our framework and software could easily be modified to accommodate
such models.
Furthermore, the latent variable model we exploit, scVI, does not encode any prior
knowledge about the gene regulatory network. As a result, the model relies on all of the
associations present in the data and is therefore prone to spurious correlations ; such
a phenomenon is exemplified in computer vision, where neural networks have been
shown to exploit shortcuts [239]. On top of limiting the generalization of the model, these
shortcuts can potentially harm an analysis by selecting wrong associations. Recent work
successfully developed ways to inject prior knowledge in the neural network. An exam-
ple are visible neural networks [240], like DrugCell [241, 242], where gene-ontology is
exploited to build the neural network architecture. Associations between non-related
genes would therefore be discarded, limiting the impact of spurious correlations. This
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line of research has been further developed in other recent work, like BDKANN, expiMap
[243] or GLUE [244]. Another example, coming from computer vision, is the study and
the design of inductive biases: the Hough transform, for instance, hardcodes the notion
of lines in a neural network [245]. Devising inductive biases relevant for genomic data
could similarly help the model focus on relevant patterns and limit the impact of short-
cuts.
Our study is also limited in scope by the absence of drug response data in patients. Al-
though we could recapitulate known modes of action in the McFarland multiplexed drug
screen, such perturbations could not readily be translated to the patients as no drug re-
sponse was, at the time of study, available. As the costs of scRNA-seq technologies and
experiments decrease, we expect large-scale atlases of cells extracted from cancer pa-
tients to become available for researchers in a near future, ideally containing pre- and
post-treatment data. These datasets could be employed in our workflow, and cell-line
perturbations could be subsequently predicted using recent computational approaches
like scGen [246] or refinements of recent differential abundance testing methods, e.g.
MILO [247] or MELD [248]. One important open problem would, in our opinion, still
remain: to have clinical impact, the biological effect of any given perturbation would
need to be systematically inferred, e.g., cell-cycle arrest, senescence, immune activation
and apoptosis. In Dr.VAE [51], Rampasek and colleagues have shown that perturbation
data can help improve drug response prediction when using bulk RNA-seq data; extend-
ing this model to scRNA-seq data and to more cellular phenotypes could help tackle this
first problem.
Finally, we focused our study on NSCLC, a lung cancer sub-type for which a wealth of
data is available, rendering it conducive to deep generative modelling. However, for rare
cancers where such large datasets are virtually non-existent, we would not recommend
using our methodologies, as VAEs require large training datasets to converge to a mean-
ingful representation. Few-shot learning [225, 226], or meta-learning [224], could offer a
solution in such small sample regimes. Ma and colleagues have for instance proposed a
method, TCRP [124], which learns drug response cancer-type by cancer-type and adapts
the model to cancer sub-types with a small amount of samples. A similar strategy could
replace the current dimensionality reduction step, with a VAE trained on NSCLC, breast
and skin cell lines, and subsequently adapted to a rare cancer type.

6.3.3. ON THE TECHNICAL CHOICE OF SOBOLEV SPACES
Our methodology is built on several mathematical concepts, and we here present and
discuss the thought-process and explain the decisions which led to our derivation. Start-
ing from the idea that we wish to compare encoder functions of a VAE à la PRECISE and
TRANSACT, we looked for a way to compute a measure of similarity between such func-
tions. We specifically turned to inner products in Hilbert spaces as these offer attrac-
tive mathematical properties (positive-definiteness, linearity, symmetry) and are partic-
ularly amenable to the framework developed in Chapter 5. Several functional Hilbert
spaces have been proposed in the literature, but these rely on the computation of an in-
tegral in a high-dimensional space, thereby suffering from the curse of dimensionality.
Interestingly, Reproducing Kernel Hilbert Spaces (RKHS, Subsection 1.3.1), used in the
derivation of TRANSACT, have an associated inner product which can be computed in
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closed-form for kernel machines. We therefore reasoned that writing VAE encoder func-
tions as kernel machines would be a fruitful avenue.
The choice of an RKHS, and thus its associated kernel, is crucial. Indeed, it condi-
tions the similarity measure used to compare functions: it needs to be computationally
tractable, and the associated space must be large enough to provide a good approxima-
tion of the encoding functions. Interestingly, Matérn kernels provide a good solution
to these three requirements. First, the norm associated to the Matérn kernel is equiva-
lent to a Sobolev norm, which corresponds to the L2 inner product between high-order
derivatives and is frequently used in the literature to compare functions. Second, the
Matérn kernels can efficiently be computed for a large number of samples, using the
kernel trick. Last, but certainly not least, the RKHS of a Matérn kernel, which we denote
by H for the rest of this section, corresponds to a Sobolev space, which is dense in L2.
This last argument means that any function in L2 can be approximated by a sequence
of functions from the Matérn kernel RKHS; formally, if f ∈ L2 (Rp ), then there exists a
sequence f1, f2, ..,∈H such that∥∥ fn − f

∥∥
L2(Rp ) −→

n→+∞ 0. (6.2)

If we generate a sequence of kernel machines f1, f2, .., then with a large enough n, fn

would provide a good approximation of f in L2-norm sense, which we could use in a
mathematical framework similar to the one developed for TRANSACT. Generating such
a sequence faces two other challenges: the poor-scalability of kernel methods and the
absence of sufficient training data. The second point is particularly critical: as we ex-
ploit VAEs for their high-expressivity, one must not expect a kernel machine trained on
the same data to recapitulate the richness of the VAE’s representation. To tackle this
problem, we exploit the idea that VAEs can generate points from the data distribution it
models. We can therefore generate a very large number of cells, possibly as much as one
wants, and thereby establish a training data set composed of the artificial gene expres-
sion profiles, used as input to construct the encoding function in a kernel ridge regressor
(KRR). To tackle the scalability-issue of kernel methods, we turned to randomized ker-
nel methods, and specifically Falkon [179, 180], based on the Nyström approximation.
We show that the KRR approximation provides good concordance with the original VAE
encoding functions. We finally exploited the attractive properties of RKHS referred to
above to compare the encoding functions.
This journey into the construction of Sobolev Alignment highlights key technical deci-
sions we made, which are subject to discussion and improvements. A first very funda-
mental issue lies in the choice of a Sobolev Space as the approximation RKHS. These
spaces constitute, we believe, a natural first choice, especially due to the expressivity of
the Laplacian kernel [212, 213] and the explicit characterization of the Gaussian kernel
RKHS [169]. A richer RKHS could be used to increase the fidelity with which the VAE
encoder functions are approximated, using for instance an exponential power kernel
[213, 249], defined, for γ> 0 and σ> 0, as:

∀x, y ∈Rp , Kγ

(
x, y

) = exp

(
−

∥∥x − y
∥∥γ

σ

)
. (6.3)
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As the RKHS of the exponential power kernel contains, for γ< 1, the RKHS of the Lapla-
cian kernel [213], we expect the approximation, and therefore the alignment, to be more
informative. More theoretically, we could extend the RKHS employed in our alignment
by using the notion of Powers of RKHS [250], which is defined based on the Mercer-
decomposition of the kernel. Although, to the best of our knowledge, Matérn kernels do
not admit analytical closed-form definitions for the kernel associated with the powers of
RKHS, random features could offer an interesting technical option [251].
Finally, an important source of improvement lies in the regression model. Although it
already provides a good approximation, Kernel ridge regression has a major drawback:
its is locally adaptive, meaning that the function will present the same degree of smooth-
ness for all gene expression profiles. Deep neural networks, on the contrary, can be very
rough in selected areas of the gene expression space and very smooth in others, as is
exemplified by recent works [252, 253]. One way to circumvent the issue while conserv-
ing the kernel ridge regression could be to preferentially select points harboring a high
gradient’s Frobenius norm.

6.3.4. IMPLICATIONS IN MACHINE LEARNING
Although we applied our methodology to a specific application in genomics and com-
putational biology, we believe our approach to have implications beyond bioinformatics
or cancer research. Our work indeed provides a general framework for comparing and
interpreting sets of deep generative models, which are increasingly being used or re-
searched in fields like computer vision, fluid mechanics [254], inverse problems [255]
or physics [256]. Should a scientist want to compare the generative models associated
with two different datasets, the modularity of our supporting software package would
allow them to apply our methodology with a minimal amount of overhead. Further-
more, although we focused here on Variational Auto-Encoders, a similar strategy to ours
could be employed with other generative models, such as Generative Adversarial Net-
works (GAN). Finally, the interpretability scheme we developed could similarly be read-
ily translated to other applications.
More theoretically perhaps, we believe our framework to be relevant for the empirical
study of learning dynamics [215, 257]. As observed in Chapter 4, deep neural networks
heavily rely on their initialization, and their optimization is at the heart of current ma-
chine learning research. Our framework provides a way to quantitatively assess the simi-
larity between two neural networks, for instance trained on the same data but with differ-
ent initialization, or at different steps of the learning procedure. Another example of in-
triguing behavior is the so-called double-descent phenomenon [258–261] which shows
that the learning curve for certain classes of learners happen to contradict the classi-
cal bias-variance trade-off. Comparing deep generative models with increasing capacity
could be an interesting direction to study this phenomenon.

6.4. SPECULATIONS ON THE FUTURE OF DRUG RESPONSE PRE-
DICTION

We believe predicting drug response in patients to be a complex task: state-of-the-art
predictive performance in model systems are low, and transferring these predictors lead
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to even lower performance. Nonetheless, solving this problem is of utmost importance
on the road towards precision medicine, as it would allow physicians to offer cancer
patients bespoke lines of treatment with high probability of success. We here discuss
two potential future directions in this field.

6.4.1. A SHIFT IN PERSPECTIVE IN THE DESIGN OF MACHINE LEARNING

MODELS
Machine learning, and especially deep learning, have recently gathered a significant
amount of attention due to impressive breakthrough research in computer vision [262],
natural language processing [263] or reinforcement learning [264, 265]. Inspired by these
very impressive results, and strongly helped by high-quality software packages like Py-
Torch [83], we, as researchers in drug response prediction, have naturally attempted to
transfer these successes to our field. Although this scientific strategy is sensible, I here
argue that there is a fundamental reason why these models do not achieve in drug re-
sponse prediction, and genomics more broadly, the same success they met in the afore-
mentioned fields.
Computer vision and natural language processing aim at automating a task humans
know how to perform. On the contrary, there is no gold-standard on how to gener-
ally treat a patient, on how a cell would respond to a given stimuli, or even on how
gene expression is regulated. In genomics, machine learning is therefore used to un-
derstand and generate knowledge on processes we incompletely understand. The suc-
cessful models developed in computer vision and natural language processing, on top
of relying on significantly larger datasets, are loaded with design biases (often uncon-
scious) which are not necessarily applicable to the problem computational biologists try
to solve. As a consequence, complex models from other fields are useful as inspiration,
but should not be expected to directly solve any task they are being tried on. Instead,
the synergy between expertise is, in our opinion, the best path towards success in our
field. The impressive results obtained by the AlphaFold team provide a compelling ex-
ample [266]: by building a diverse team and using tools from different fields, DeepMind
managed to leapfrog advances in protein folding prediction.

6.4.2. GENOMIC EQUIVARIANCES FOR TACKLING THE SMALL-DATA REGIME
Predicting drug response is bound to face a small data-regime, as the number of cancer
patients will hopefully never reach the size of datasets like ImageNet. On top of few-
shot learning approaches previously discussed, data-augmentation schemes have been
recently proposed to tackle this lack of data. For instance, Yoon and colleagues [267] pro-
posed VIME, a method tailored to tabular data which elegantly exploits corrupted inputs
to increase the size of the training set. This data-augmentation strategy, however, does
not exploit much prior knowledge, contrary to recent developments in machine learning
which exploit symmetries, and more broadly equivariance [268], with particular success
in medical imaging [269].
Translating such success in genomics is however not trivial, as there exists no clear geo-
metrical invariant for gene expression or other genomic profiles. Nonetheless, we argue
that such equivariance must exist, starting, for instance, from the cell cycle. Geomet-
ric deep learning [270] offers a comprehensive framework for modelling such behaviors,
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and we believe that the design of inductive biases for genomic data is one key to unlock
the success of drug response prediction models.

6.4.3. THE PATH TOWARDS AN INTEGRATED MODEL FOR CLINICAL PREDIC-
TION

Finally, we would like to highlight a political aspect of drug response prediction which,
we believe, will be crucial in the years to come. As discussed at length in this chap-
ter, improvements over existing methods would require the integration of heterogenous
datasets coming from different molecular levels, different technologies, but also, and
perhaps more importantly, from different labs scattered all across the globe, and often-
times competing with one another. Such tasks cannot be completed without the es-
tablishment of clear guidelines for data generation and processing and a complete co-
operation between international research institutes. Only then, in our opinion, will we as
a field be ready to bring about an actionable drug response prediction tool which could
accurately and cost-effectively find the best cure for each patient.
Most of the research presented in this thesis was performed during the Covid-19 pan-
demic, during which scientists from all countries have joined forces to accelerate scien-
tific discoveries. Let it provide us with optimism on our collective capacity to tackle the
aforementionned political issues in the coming years.
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CHAPTER 2

A.1. NEGATIVE BINOMIAL PARAMETRIZATION

A.1.1. COMMON PARAMETRIZATION
The Negative Binomial distribution is commonly defined using two parameters:

• r > 0, called the inverse-dispersion.

• p ∈ [0,1], called the success probability.

The negative binomial distribution models the number of successes observed when con-
secutive Bernoulli experiments with probability p are carried out and stopped after r
failures. Its probability distribution is defined on N as follows,

∀k ∈N, P (X = k) = Γ (k + r )

Γ (k +1)Γ (r )

(
1−p

)r pk , (A.1)

where Γ stands for the Gamma-distribution defined as

∀z > 0, Γ (z) =
∫ +∞

0
t z−1e−t d t . (A.2)

If we re-write Equation (A.1) in an exponential form, we obtain:

∀k ∈N, P (X = k) = Γ (k + r )

Γ (k +1)Γ (r )
exp

[
r ln

(
1−p

)+k ln p
]

. (A.3)

In Equation (A.3), we easily recognise an exponential form when r is fixed with p as pa-
rameters. However, this formulation is computationally challenging, as observed values
of p tends to accumulate around 1. This leads to instabilities in the optimisation and
motivate the utilisation of another parametrization.
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A.1.2. PARAMETRIZATION EMPLOYED IN OUR APPROACH
We turned to the parametrization proposed by Risso et al [181], which construction we
present here. This parametrization stems from the observation that, if Z follows a Nega-
tive Binomial distribution with parameters p and r , then E (Z ) = pr

1−p . This expectation

belongs toR+ which still contains one constraint. This constraint can easily be alleviated
by log-transform, leading to the following parametrization:

θ = ln
pr

1−p
. (A.4)

Equivalently, we have p = r
eθ+r

, which combined with Equation (A.3) yields the expo-
nential form presented in the main text.

A.1.3. TECHNICAL IMPLEMENTATION
The Negative Binomial distribution NB(θ,r ) depends on two parameters θ ∈R and r > 0.
When the r parameter, called inverse-dispersion, is fixed, the Negative Binomial distri-
bution belongs to the exponential family. We use the parametrization used by Risso et
al [181] which yields, with fixed-parameter r > 0, the exponential-family functions ex-
plicited in Supp. Table 1. We compute for each gene (feature) j ∈ {

1, .., p
}

a dispersion pa-
rameter r j using DESeq2 [271]. Once these dispersion parameters set, the parametriza-
tion can be exploited in Percolate.

A.2. BETA PARAMETRIZATION

A.2.1. COMMON PARAMETRIZATION
The Beta distribution is commonly parametrized by two parameters, α > 0 and β > 0,
called shape parameters. If a random-variable Z follows the Beta distribution with pa-
rameters α and β, then its probability density function f

(·;α,β
)

is defined as

∀z ∈ [0,1] , f
(
z;α,β

) = Γ
(
α+β)

Γ (α)Γ
(
β
) zα−1 (1− z)β−1 . (A.5)

Noting that E [Z ] = α
α+β , we can use another parametrization which brings the saturated

parameters to be the data-expectation, as is the case for other distributions like Gaus-
sian, Bernoulli, Poisson or Negative-Binomial.

A.2.2. PARAMETRIZATION EMPLOYED IN OUR APPROACH
Using the parametrization from Equation (A.5), we define the two parameters θ and ν

as:
θ = α

α+β and ν =α+β. (A.6)

The re-parametrization from Equation (A.6) can be reversed, yielding α = θν and β =
(1−θ)ν. The probability density function from Equation (A.5) then becomes

∀z ∈ [0,1] , f (z;θ,ν) = 1

1− z
exp

[[
θν

(1−θ)ν

]T [
ln z

ln(1− z)

]
− ln

Γ (θν)Γ ((1−θ)ν)

Γ (ν)

]
.

(A.7)
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From Equation (A.7), one can easily derive the A, T and η functions listed in Table 1 of
the main manuscript.

A.2.3. COMPUTING SATURATED PARAMETERS

Let x ∈ [0,1] and ν> 0, the saturated parameter θ̃ solves the following equation

d f

dθ

(
x; θ̃,ν

) = 0. (A.8)

We denote byψ the digamma function defined as the derivative of the log-Gamma func-
tion:

∀t > 0, ψ(t ) = d lnΓ

d t
(t ) = 1

Γ (t )

dΓ

d t
(t ) . (A.9)

Combining Equations (A.7) and (A.9), and noting that r > 0, the saturated parameter θ̃ is
the solution of

ln
x

1−x
+ ψ ((1−θ)ν) − ψ (θν) = 0. (A.10)

We define g as g : θ 7→ ln x
1−x + ψ ((1−θ)ν) − ψ (θν). We have:

∀θ > 0,
d g

dθ
(θ) = −ν[

ψ(1) ((1−θ)ν) + ψ(1) (νθ)
]

, (A.11)

where ψ(1) represent the first-order derivative of the digamma function. ψ(1) can be effi-
ciently computed using its integral representation:

∀z > 0, ψ(1) (z) = −
∫ 1

0

t z−1

1− t
ln t d t (A.12)

Using Equation (A.12), we obtain

∀θ > 0,
d g

dθ
(θ) = ν

[∫ 1

0

tθν−1 + tν−θν−1

1− t
ln t d t

]
≥ 0. (A.13)

Using the monotonicity of g , we easily solve Equation (A.8) by means of a dichotomy. A
Newton method would have also been possible, but would have required to set a learning
rate. Our approach allows to avoid such additional hyper-parameters.

A.2.4. TECHNICAL IMPLEMENTATION
The Beta distribution B (θ,ν) depends on two parameters θ ∈ [0,1] and ν> 0 and belongs
to the exponential family, defined, for x ∈ [0,1] as in Table A.1. Since the Beta distribution
has two natural parameters, we took inspiration from the Negative Binomial and fixed
ν at the gene-level: since θ can be intuitively understood as the mean of the distribu-
tion, we reasoned that it would act as a good parameter for GLM-PCA. We computed the
parameters ν1, ..,νp by maximizing the likelihood for each gene and used the resulting
distributions in Percolate.
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A.3. BERNOULLI PARAMETRIZATION
The natural parameters from the Bernoulli distribution are either −∞ or ∞ and thus not
computationally tractable. Following Landgraf et al [82], we employ a thresholding at 25
for all entries of the matrix θ̃ ; this choice did not impact results (Supp. Figure 2).

A.4. DERIVATION OF THE OUT-OF-SAMPLE EXTENSION
The matrix M is defined in the main text as:

M = [
ŨA ,ŨB

] = UMΣM V T
M . (A.14)

Without loss of generality, we restrict to non-singular directions, i.e. Σi ,i > 0∀i . Using

the decomposition VM =
[

V T
M ,A V T

M ,B

]T
and the fact that V T

M VM = I proposed in the text,

we obtain directly:

UM = [
ŨA ,ŨB

][
VM ,A

VM ,B

]
Σ−1

M

= ŨAVM ,AΣ
−1
M + ŨB VM ,BΣ

−1
M .

(A.15)

If we further note that
(
θ̃A − µ̃A

)
Ṽ T

A ṼA = ŨAΣAW T
A and

(
θ̃B − µ̃B

)
Ṽ T

B ṼB = ŨBΣB W T
B (def-

inition of scores), we obtain:

ŨA = (
θ̃A − µ̃A

)
Ṽ T

A ṼAWAΣ
−1
A

ŨB = (
θ̃B − µ̃B

)
Ṽ T

B ṼB WBΣ
−1
B

. (A.16)

Combining Equations (A.15) and (A.16) yields the out-of-sample projection presented in
the main text.
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A.5. SUPPLEMENTARY FIGURES

Figure A.1 – Model selection for each data-type. For each data-type we compute the AIC on the complete
dataset for various hyper-parameters and report the best performance (i.e., lowest AIC) per number of com-
ponents. This model selection wass performed for (A) gene expression (negative binomial), (B) mutation
(bernoulli), (C) copy number (gamma) and (D) methylation (beta).

Figure A.2 – Impact of threhsolding for mutations. The infinity values in mutations are replaced by a large
number, called threshold. To measure the impact of this parameter on Bernoulli-GLM-PCA, we used the opti-
mal number of PCs set in Figure A.1 and fit a GLM-PCA for different threshold values. We then compared the
loadings (Equation 4) between experiments by reporting the average singular value of the dot-product matrix
; i.e. if V20 ∈ Rd×p and V30 ∈ Rd×p contain the loadings for threshold=20 and threshold=30 respectively, we
compute the spectrum (singular values) of V20V T

30 and returns the mean. Values can range from 0 to 1. For
threshold 40 or above, GLM-PCA does not converge due to gradient explosion.
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Figure A.3 – Copy-number results with log normal distribution. (A) AIC model selection for copy-number
with log normal noise model (B) Comparison of predictive performance for the joint signal between CNA and
GE for log-normal (x-axis) and gamma (y-axis) distribution. Each dot represents a single drug.

Figure A.4 – Relative difference in predictive performance between joint signal (full cross-validation) and
robust cell-view. For each data-type, we computed the relative difference in predictive performance between
the joint (p j ) and cell-view (pr ) as (p j −pr )/p j . We report results for (A) mutations, (B), copy-number and (C)
methylation.
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Figure A.5 – Analysis of mutation joint-signal predictors. Supporting Figure 5, we here report the predictors
build on the joint signal between mutation and gene expression (solely based on mutations). (A) Nutlin-3, (B)
Dabrafenib and (C) PLX-4720.
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SUPPLEMENTARY MATERIAL FOR

CHAPTER 3

B.1. ADDITIONAL INFORMATION

B.1.1. LIST OF DRUGS
TO ADD.

B.1.2. NOTES ON TRANSCRIPTOMICS DATA
Transcriptome levels have been measured using RNA-Seq Illumina HTSeq for both cell
lines, PDX as well as the tumors. For cell lines and tumors, RNA-Seq data was available
as read counts. For PDX and tumors, RNA-Seq data was available as FPKM. Since FPKM
values are corrected for gene length at the transcript level and already normalised for
library size, they cannot directly be compared to read counts. Consequently, we use two
separate pre-processing pipelines, following the recommendation in ([158, 159]). For
read counts, data is first normalized using TMM ([89]), then log-transformed and mean-
centered. For FPKM, data is log-transformed and mean-centered. Experiments involv-
ing cell line to human tumor transfer have been performed using read counts, while PDX
to human tumor transfer experiments have been performed using FPKM.

B.2. GEODESIC FLOW DERIVATION

B.2.1. ORIGINAL FORMULATION

We denote by G
(
d , p

)
the Grassmannian of d-dimensional subspaces within a p-

dimensional space. This is formally defined as the set with a Riemannian structure of
the d-dimensional subspaces within a larger p-dimensional space. The geometry of this
space is non-Euclidean and therefore the shortest paths to go from one point to another
are referred to as geodesic. The source domain-specific factors can be represented by one
point in the Grassmannian and so do the target domain-specific factors. The idea now is
to find this geodesic within G

(
d , p

)
that links the two. An analytical formulation of this
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curve is given in ([58]).
A SVD on the cosine similarity matrix yields the matrices U1 ∈ Rd×d and U2 ∈ R(p−d)×d

such that
PT

s Pt = U1ΓVT where Γ= diag(cos(θ1) , ..,cos(θd )) (B.1)

Let Rs ∈ Rp×(p−d) be the orthonormal complement of Ps (i.e. PT
s Rs = 0p−d ,d and RT

s Rs =
Ip−d ,p−d ). The cosine similarity matrix between the orthogonal complement of Ps and
the matrix Pt gives, after a SVD and a column-wise permutation on the right matrix:

RT
s Pt =−U2ΣVT where Σ= diag(sin(θ1) , .., sin(θd )) (B.2)

With these quantities, one can now define:

Proposition B.2.1 (Geodesic on the Grassmann manifold). The geodesic on the Grass-
mann manifold can be represented by the basesΦ defined as:

Φ : [0,1] −→G
(
d , p

)
τ 7−→ Ps U1Γ (τ)−Rs U2Σ (τ)

where Γ (τ) = diag (cos(τθ1) , ..,cos(τθd ))

and Σ (τ) = diag (sin(τθ1) , .., sin(τθd ))

(B.3)

As shown in (Equation B.3), this formulation requires a lot of computation since the or-
thogonal complement Rs has to be computed. What is more, it links the domain-specific
factors together, which is of limited interest for our study. Indeed, we would like to have
a formulation that directly links the principal vectors instead, in order to filter out irrele-
vant factors that are too dissimilar to be used in the regression model.

B.2.2. WRITING THE GEODESIC FLOW IN TERMS OF PRINCIPAL VECTORS IN-
STEAD OF PRINCIPAL COMPONENTS

We here derive a formulation of the geodesic Φ in terms of principal vectors. We only
make the assumption that θd < π

2 , which can easily be checked experimentally, which
generally holds for all practical purposes. For problems that nevertheless do not satisfy
this assumption, orthogonal principal vectors can be removed from the problem. They
indeed do not correspond to transferable features and can be discarded.

Proposition B.2.2 (Equivalent definition of the Geodesic). Let’s assume that θd < π
2 , then

the geodesic can equivalently be defined as

∀τ ∈ [0,1] , Φ (τ) = QsΠ (τ)+QtΞ (τ)

with Π (τ) = diag

(
sin((1−τ)θi )

sin(θi )

)
and Ξ (τ) = diag

(
sin(τθi )

sin(θi )

) . (B.4)

Proof. Since [Ps ,Rs ] forms a orthogonal basis of Rp , we have Ps PT
s +Rs RT

s = Ip . Sum-
ming up then (Equation B.1) and (Equation B.2) yields, after multiplying by PT

s and RT
s

respectively:
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Pt V = Ps U1Γ−Rs U2Σ (B.5)

We find that Φ (1) = Pt V = Qt , which means that the end point of the geodesic gives us
the basis of target principal vectors. Since θd < π

2 , then ∀i ∈ {1, ..,d} ,θi < π
2 . Σ will thus

be invertible and (Equation B.5) yields:

−Rs U2 = QtΣ
−1 −QsΓΣ

−1 (B.6)

Plugging (Equation B.6) into (B.3) yields the desired formula.

This way, the geodesic path is computed in O
(
p ×d

)
instead of O

(
p2

)
and does not re-

quire the computation of the orthogonal complement – which can be computationally
intensive. This formulation has the interest of taking the principal vectors as inputs,
instead of the principal components. It shows that the geodesic interpolates between
principal vectors within each pair by taking features forming a rotating arc between the
source and the target principal vectors. It therefore proves that our approach using all
the principal vectors is strictly similar to the approach proposed in ([58]) and in ([100]).

B.2.3. EQUIVALENCE BETWEEN GEODESIC FLOW SAMPLING AND PRINCI-
PAL VECTOR REGRESSION

As suggested by ([100]), a domain-invariant drug response predictor can be created by
sampling the interval [0,1], i.e. by taking a number M+1 of intermediate representations{
0, 1

M ...,1
}
, computing the corresponding intermediate features

{
Φ (0) ,Φ

( 1
M

)
...,Φ (1)

}
,

and finally projecting source and target data on these intermediate features. We show
here that it strictly equivalent to projecting on the principal vectors and learn a linear
regression model onto these principal vectors.

Proposition B.2.3 (Equivalence of estimators without penalization). Let ŷS be the linear
drug response estimator learnt without penalization by minimizing the loss function ` on
the interpolated coefficients, and let ŷPV be the linear estimator learnt by minimizing the
loss function ` on the principal vectors. Then, ŷS = ŷPV .

Proof. Let x ∈Rp be a sample - from either source or target. A linear model learnt on the
projected data will give a response of the form:

ŷS

(
x;

(
αi , j

)
1≤i≤d

0≤ j≤M

)

=
d∑

i=1

M∑
j=0

αi , j xT
(

Qs,iΠi ,i

(
j

m

)
+Qt ,iΞi ,i

(
j

m

))

=
d∑

i=1
xT

[
Qs,i

M∑
j=0

αi , jΠi ,i

(
j

m

)
+Qt ,i

M∑
j=0

αi , jΞi ,i

(
j

m

)]

=
d∑

i=1
xT [

βs
i Qs,i +βt

i Qt ,i
]

= ŷPV
(
x;

(
βs

i ,βt
i

)
1≤i≤d

)

(B.7)

with:
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• αi , j ∈R for all i ∈ {1, ..,d} and j ∈ {0, .., M } the coefficients of the linear model fitted
on the interpolated features.

• ∀i ∈ {1, ..,d} ,βs
i =

∑M
j=0αi , jΠi ,i

(
j

m

)
• ∀i ∈ {1, ..,d} ,βs

i =
∑M

j=0αi , jΞi ,i

(
j

m

)
Therefore, using this reciprocal correspondence, we can state that the non-regularized
minimization procedure, using any loss ` is equivalent for both set of parameters,
namely:

min
αi , j

1

n

n∑
k=1

`
(
yk , ŷS

(
xk ;αi , j

)) = min
βs

i ,βt
i

1

n

n∑
k=1

`
(
yk , ŷPV

(
xk ;βs

i ,βt
i

))
(B.8)

Penalization may change the matter and the solution of the two minimization procedure
might change slightly. However, we advocate for the latter penalized minimization pro-
cedure. Indeed, only 2d parameters have to be penalized. This in turn makes the mini-
mization procedure easier and numerically more stable. The former formulation would
require shrinking on way more features that are expressing the same content (same total
rank).

B.2.4. EQUIVALENT FORMULATION OF GEODESIC FLOW KERNEL MATRIX
The original definition of the Geodesic Flow Kernel is ([? ]):

∀x, y ∈Rp ,
∫ 1

0

(
Φ (τ)T x

)T (
Φ (τ)T y

)
dτ = xT Gy

with G = [
Ps U1 Rs U2

][
Λ1 Λ2

Λ2 Λ3

][
UT

1 PT
s

UT
2 RT

s

] (B.9)

As shown in (Equation B.9), computing the matrix G requires quadratic time in the num-
ber of covariates, which can be prohibitive in genomics (when p ∼ 20,000). We show
here how to improve this computation using the new formulation of (Equation B.4).

Proposition B.2.4 (Equivalent definition of Geodesic Flow Kernel). If θd < π
2 , then there

exists σ1, ..,σd ∈R and ω1, ..,ωd ∈R such that

G =
[

Q̃s

Q̃t

]T [
Q̃s

Q̃t

]
with

Q̃s =
 Qs,1σ1 +Qt ,1ω1

..
Qs,dσd +Qt ,dωd

 and Q̃t =
 Qs,1ω1 +Qt ,1σ1

..
Qs,dωd +Qt ,dσd


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Proof. First, if x ∈ Rp , we define xs = xT Qs and xt = xT Qt as the projection of the point
x and the source and target principal vectors. Then, using flow formulation from (Equa-
tion B.4), we get: ∫ 1

0
xTΦ (τ)Φ (τ)T y dτ

=
∫ 1

0
xT [QsΠ (τ)+QtΞ (τ)]

[
Π (τ)QT

s +Ξ (τ)QT
t

]
y dτ

= xT
s

[∫ 1

0
Π2 (τ) dτ

]
ys

+ xT
t

[∫ 1

0
Ξ2 (τ) dτ

]
yt

+ xT
s

[∫ 1

0
Π (τ)Ξ (τ) dτ

]
yt

+ xT
t

[∫ 1

0
Ξ (τ)Π (τ) dτ

]
ys

= [
xT

s xT
t

][ ∫ 1
0 Π

2 (τ) dτ
∫ 1

0 Ξ (τ)Π (τ) dτ∫ 1
0 Ξ (τ)Π (τ) dτ

∫ 1
0 Ξ

2 (τ) dτ

][
ys

yt

]

(B.10)

With simple trigonometrical identities, we can show that :∫ 1

0
Π2 (τ)dτ =

∫ 1

0
Ξ2 (τ)d t =

(
θi − sin(θi )cos(θi )

2θi sin2 (θi )

)
i

(B.11)

∫ 1

0
Π (τ)Ξ (τ) dτ =

(
sin(θi )−θi cos(θi )

2θi sin2 (θi )

)
i

(B.12)

Since the matrix is diagonal, we now have a formulation that only requires O
(
d +d p

)
,

faster than the O
(
p2

)
that we had before since with d = 50 and p = 19000, we get a 8x

speed-up.
We can write the matrix G as a product of the principal vector instead :

G = [
QT

s QT
t

][
Λ µ

µ Λ

][
Qs

Qt

]
Λ= diag

(
θi − sin(θi )cos(θi )

2θi sin2 (θi )

)
µ= diag

(
sin(θi )−θi cos(θi )

2θi sin2 (θi )

) (B.13)

Let’s denote (λ1, ..λd ) the diagonal coefficients of Λ and
(
µ1, ..µd

)
the diagonal coeffi-

cients of µ. We can now define the coefficients σi and ωi for all i ∈ {1, ..,d} as

σi = 1

2

(√
λi +µi +

√
λi −µi

)
ωi = 1

2

(√
λi +µi −

√
λi −µi

) (B.14)
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and the matrix H as :

H =



σ1 ω1

... ..
σd ωd

ω1 σ1

... ..
ωd σd

 (B.15)

H is positive semi-definite (symmetric with eigenvalues σi +ωi > 0 and σi −ωi > 0) and
respect: [

Λ µ

µ Λ

]
= HT H (B.16)

Plugging this equality in (Equation B.13), we get:

G = [
QT

s QT
t

]
HT H

[
Qs

Qt

]
(B.17)

Let’s now define the two following matrices:

Q̃s =
 Qs,1σ1 +Qt ,1ω1

..
Qs,dσd +Qt ,dωd

 and Q̃t =
 Qs,1ω1 +Qt ,1σ1

..
Qs,dωd +Qt ,dσd

 (B.18)

We finally get:

G =
[

Q̃s

Q̃t

]T [
Q̃s

Q̃t

]
(B.19)

The geodesic flow kernel is therefore equivalent to projecting on 2d vectors that form
a basis equivalent to the source and target principal vectors. Using the same idea as
in Prop B.2.4, the ordinary least square estimate will be equivalent to the one obtained
using principal vectors.

B.3. COMPARISON OF FACTORS BETWEEN SOURCE AND TARGET

B.3.1. COMPARISON RESULTS FOR OTHER TISSUES
Following experiments from Fig. 3.2, we computed the cosine similarity and the variance
explained for other tissues. Results can be found in Fig. B.1.

B.3.2. SIGNIFICANCE OF THE COSINE SIMILARITY VALUES
To show that these cosine similarity values are significant, we performed a permutation
test at the gene level. These cosine similarity values are supposed to reflect some shared
structure in the data. If we permute the source genes while keeping the target data intact,
this structure should be destroyed. The source principal components would be different
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Figure B.1 – Cosine similarity matrices between pre-clinical models and tumors for different tissues. Each
box represents the analysis carried out on one tissue type. Within each box, the top panel represents the cell
line analysis and the bottom one represents the PDX results. Cosine similarity values between source (cell lines
or PDXs) and target (tumors) are displayed on the left. Ratio of target variance explained by source principal
components is displayed on the right panel.
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and the cosine similarity values should be impacted. We permuted the genes order at
the source level only and computed the resulting cosine similarity matrix and variance
explained 1000 times to create a meaningful comparison on 5 tissues : breast, colorectal,
lung, skin and pancreas. The results are displayed in Fig. B.2.

B.3.3. COMPARISON WITH RANDOM SIGNALS
Gene-level permutation, although yielding useful insights as shown in Subsect. B.3.2, re-
stricts the pool of principal components values to the feature-level permutations. To go
one step further in the identification, we used a random signal to quantify the common-
ality. We computed the cosine similarity values and the tumor variance explained for 250
random covariance matrices using the following protocol:

1. A random covariance matrix was sampled uniformly from the positive semi-
definite matrices.

2. 1000 data points were drawn from the Gaussian distribution with 0-mean and the
covariance matrix drawn in 1.

3. Principal components were computed from the these data points and cosine sim-
ilarity values were computed alongside the tumor explained variance and com-
pared to real data.

Although the second step could be removed and principal components could be com-
puted directly using the randomly drawn covariance matrix, we decided to use sampled
data to be the closest possible to our original setting. 1000 corresponds to the total num-
ber of cell lines available and is therefore comparable to our settings. Results are shown
in Fig. B.3.

B.4. PRINCIPAL VECTORS ANALYSIS FOR DIFFERENT SET OF

TISSUES

B.4.1. BREAST VS BREAST FOR PDX
In Fig. 3.3, we compared breast cancer cell lines to human breast tumors. The same
experiment was run using PDXs instead of cell lines and results are shown in Fig. B.5.

B.4.2. BREAST VS ALL
In Fig. 3.4, PRECISE was trained using all cell lines in order to enhance the sample size to
around 1000 – only 52 breast cancer cell lines are available. We compared the making of
the principal vectors between all cell lines and the breast tumors to make sure that these
principal vectors still show some enrichment. Results are shown in Fig. B.5.

B.4.3. SKIN VS SKIN
We repeated the experiment of Fig. 3.3 to another tissue: skin. As shown in Fig. B.6, the
same behavior as in breast appears, with immune related pathways mostly enriched in
the least similar PVs.
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Figure B.2 – Gene-level permutation results. For each (source, target) couple, genes have been permuted in
the source data. Cosine similarity values and target variance explained have then been computed as in Sub-
sect. 3.3.1. For each tissue, the top row represents results between cell lines and tumors while the bottom one
represents results for PDX and tumors. The left column represents the histogram of cosine similarity values
while the right column shows the variance explained by target, source and gene-level-permuted source princi-
pal components. 1000 permutations have been employed to arrive to these results. For every tissue, the cosine
similarity values for the permuted source data range from 0 to 0.05, while certain cosine similarity values are
as large as 0.2 for almost every tissue. It suggests that the cosine similarity values encountered in Fig. 3.2 and
Fig. B.1 are not the product of non-comparable signals. When it comes to the variance explained, the variance
explained by permuted source principal components is consistently two to three orders of magnitude lower
than when the tumor data is projected on the non-permuted source data. Two notable exceptions: colorectal
PDXs and and Pancreatic PDXs for which some permuted principal components show variance explained only
one order of magnitude lower than the non-permuted one.
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Figure B.3 – Random signal results. For each (source, target) couple, 250 positive semi-definite matrices were
drawn randomly. For each matrix, 1000 data points were then drawn from a Gaussian distribution with this
matrix as covariance. Cosine similarity and tumor variance explained were finally computed. These purely
random signals are here compared to the real results. For each tissue, the top panel represents the comparison
for cell lines while the bottom represents the results for PDXs. On the left are compared the cosine similarity
values and on the right the tumor variance explained ratio. The random cosine similarity values appear to be
consistently ranging between 0 and 0.02 while cosine similarity between tumors and real source data are as
large as 0.2 for some principal components. It indicates that the similarity values between pre-clinical systems
and tumors are not the product of the comparison of two random signals. In terms of variance explained, the
variance explained by random principal components is two to five orders of magnitude lower than the tumor
variance explained by real source principal components. This result is consistent across all tissue type and
once again indicate the existence of some common structure between source and target.



B.4. PRINCIPAL VECTORS ANALYSIS FOR DIFFERENT SET OF TISSUES

B

125

Figure B.4 – Principal vectors (PVs) computed from breast PDXs and breast tumors from 20 principal com-
ponents.. (A) Cosine similarity matrix between PDX and tumor principal vectors. As shown on the diagonal,
the similarity is higher than in Fig. 3.3A for a similar sample size. This is encouraging since PDXs are expected
to mimic human tumors more closely than cell lines. (B) Spearman Correlation between PDX and tumor PV
Normalized Enrichment Score (NES) for several gene set collections. The spearman correlation is almost 1 up
to the 8th PV, suggesting that the same pathways get enriched. The last PV pair shows a negative correlation, in
accordance with the almost null similarity. (C) The NES based on the Canonical Pathways for each PV pair with
the NES for the source PV on the left and the NES for the target PV on the right (separated by a dashed line).
Non-significant gene sets are represented as white cells. For this figure panel, we selected the ten gene sets
that were most highly enriched in the first five PVs, the ten gene sets that showed the highest enrichment in
the bottom PVs as well as all the gene sets related to extra-cellular matrix. The top PVs are exclusively enriched
in pathways related to cell cycle. Immune system-related pathways are enriched in the middle and bottom PVs
and PVs at the bottom tend to show enrichment for the target PVs only. Compared to results of Fig. 3.2C, the
gene sets related to the immune system appear to be again enriched only in the less similar PVs, while extra-
cellular matrix related pathways are this time showing some enrichment for the top PVs. (D) The NES for each
PV as displayed in (C), for the CHARAFE and VANTVEER gene sets. The top principal vectors are significantly
enriched in sets associated with breast cancer subtypes.
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Figure B.5 – Principal vectors (PVs) computed from breast cell lines and breast tumors from 70 principal
components... (A) Cosine similarity values between the top 70 principal vectors. A zoom is performed on the
top 20, showing that similarity is as high as 90% for the top pair. (B) Spearman correlation between Normalised
Enrichment Scores (NES) within each pair of PVs. Correlations close to 1 in the top 30 PV show that gene sets
get the same enrichment in cell line and tumor PV and indicate an important structural similarity. (C) The
NES based on the Canonical Pathways for each PV pair with the NES for the source PV on the left and the NES
for the target PV on the right (separated by a dashed line). Non-significant gene sets are represented as white
cells. For this figure panel, we selected the ten gene sets that were most highly enriched in the first five PVs,
the ten gene sets that showed the highest enrichment in the bottom PVs as well as all the gene sets related to
extra-cellular matrix. (D) The NES for each PV as displayed in (C), for the CHARAFE and VANTVEER gene sets.
The top principal vectors are significantly enriched in sets associated with breast cancer subtypes.
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Figure B.6 – Principal vectors (PVs) computed from skin cell lines and skin tumors from 20 principal compo-
nents.. (A) Cosine similarity matrix between cell lines and tumor principal vectors. (B) Spearman Correlation
between PDX and tumor PV Normalized Enrichment Score (NES) for several gene set collections. For the skin,
the spearman correlations between NES are lower than for breast, although they remain larger than 0.8 for the
top 10 PVs. (C) The NES based on the Canonical Pathways for each PV pair with the NES for the source PV on
the left and the NES for the target PV on the right (separated by a dashed line). Non-significant gene sets are
represented as white cells. For this figure panel, we selected the ten gene sets that were most highly enriched
in the first five PVs, the ten gene sets that showed the highest enrichment in the bottom PVs. Although two
immune-related pathways are enriched in the top PVs, the same pattern as in Fig. 3.3 appears with several
pathways enriched exclusively in the last principal vectors.
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B.4.4. OTHER TISSUE
We computed the similarity scores for other tissues: skin, lung, pancreas and colorectal.
Results are shown in Fig. B.7 for both cell lines and PDXs.

B.5. CHOICE OF THE HYPER PARAMETERS FOR THE EXPERI-
MENTS

B.5.1. VARIANCE-BASED APPROACH FOR SELECTING THE NUMBER OF

PRINCIPAL COMPONENTS
We selected the number of domain-specific factors (PCs) based on the variance ex-
plained by the cell line principal components. Since the sample size is always larger
for tumors, this cut-off point is lower for cell lines than for tumors and we only showed
the cell line behavior. As shown in Fig. B.8, we took 20 PCs when the same tissue is used
for source and for target ; we took 70 PCs when all cell lines are used as source data.

B.5.2. COMPARISON TO THE RANDOMLY-SAMPLED DATA FOR DETERMIN-
ING THE SIMILARITY CUT-OFF POINT

Once the number of PCs had been settled, we needed to determine the number of PVs
to select. For that purpose, we computed the similarity between tumor data and data
drawn from a gaussian distribution with a random covariance matrix. We repeated this
experiment 250 times and got 250 similarity profiles. We took as threshold the maximum
random similarity and selected PVs with similarity at least as large. As shown in Fig. B.8,
it yields 15 PVs when only one tissue is used for source, and 40 when all cell lines are
taken into account.
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Figure B.7 – The cosine similarity matrix between principal vectors for other tissues with 20 principal com-
ponents. (A) Similarity values when target is set as skin tumors and source set as skin cell lines (left) or skin
PDXs (right). (B) Similarity values when target is set as pancreatic tumors and source set as pancreatic cell lines
(left) or pancreatic PDXs (right). (C) Similarity values when target is set as lung tumors and source set as lung
cell lines (left) or lung PDXs (right). (D) Similarity values when target is set as colorectal tumors and source set
as colorectal cell lines (left) or colorectal PDXs (right).
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Figure B.8 – Choice of hyperparameters d f and dpv . The top panel shows the cumulative variance explained,
while the bottom panel shows the similarity between the resulting PVs computed from the number of PCs
found with the top panel. (A) shows results for breast cell lines (with breast tumors), (B) shows results for
skin cell lines (with skin tumors), and (C) shows results for all cell lines (with breast tumors). For selecting
the number of PCs, we drew a line corresponding to the asymptotic behavior of the cumulative variance and
selected the principal components for which the cumulative variance explained does not follow this behavior.
This gives a cut-off slightly before 20 for breast, slightly above 20 for skin and around 70 for all. Since we want
to use the same number of PCs for all experiment having one tissue for the source, we settled for 20 that makes
consensus between skin and breast. We settled to 70 for experiments with all cell lines. Once this number of
PCs had been settled, we needed to determine where to put the PV threshold. For that, we sampled data from
random covariance matrix 1000 times and compute 1000 similarity profiles following a similar idea than in
Fig. B.3. We take the top similarity as cut-off, which yields 15 PVs for breast, slighlty more for skin and around
40 for PVs. Based on this experiment, we decided to settle for 15 PV when one tissue of the cell line is taken
and 40 PVs when all cell lines are taken into account.
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B.6. COMPARISON WITH KNOWN BIOMARKERS

B.6.1. PRECISE CORRELATION WITH OTHER KNOWN MECHANISMS
We repeated the experiment of Fig. 3.4 with other known biomarker-drug associations.
We also repeated the same experiments but took only one tissue for the cell lines. Results
shown in Fig. B.9 indicate than PRECISE successfully recapitulates known associations
coming from independent data sources.

B.6.2. BIOMARKER CORRELATION FOR RIDGE REGRESSION WITHOUT ANY

DOMAIN ADAPTATION OR WITH COMBAT AS PREPROCESSING STEP
We compared PRECISE results to the scenario where no domain adaptation is used and
a Ridge regression is trained on the cell lines and directly transferred on the human tu-
mors. We also compared PRECISE to the pipeline used in ([52]), where the difference be-
tween cell lines and human tumors is modelled as a batch effect. As shown in Fig. B.10,
most of the associations are still recapitulated by the two scenarios, but PRECISE offers
a higher discriminative power on most of the biomarkers.
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Figure B.9 – Comparison to other known biomarkers. Following the same experimental procedure as in
Fig. 3.4, we compared IC50 predicted by PRECISE with some known biomarkers. Using all cell lines as source
data, we show that PRECISE prediction are validated in (A) Dabrafenib (sensitive to BRAFV600E mutation), (B)
Vemurafenib (sensitive to BRAFV600E mutation), (C) Imatinib (sensitive to BCR/ABL translocation), (D) Ola-
parib (sensitive to BRCA1 deletion) and (E) Talazoparib (sensitive to BRCA1 deletion). We repeated the experi-
ment using only one tissue type in cell lines with all of the investigated drugs. We show that using only breast
cell lines reduces the predicted power of ERBB2 in Lapatinib (F) and of BRCA1 in Talazoparib (L). However, it
increases the power of BRAFV600E mutation in all the MEK inhibitors considered (G,H,I), completely discrim-
inates BCR/ABL translocated tumors for Imatinib (J) and increases the power of BRCA1 deletion in Olaparib
(K).
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Figure B.10 – Stratification with a Ridge regression on the bulk set of genes or with ComBat as domain adap-
tation. We compared the results of Fig. 3.4 and Fig. B.9 to two scenarios: one without any domain adaptation
between cell lines and tumors, and one with ComBat as the domain adaptation step. (A) Lapatinib predicted
response correlation with ERBB2 amplification is comparable to PRECISE, whether ComBat is used or not.
(B) Trametinib sensitivity to BRAFV600E mutation, however, is not predicted. When using ComBat, a slight dis-
crimination is observed between wild type and mutated tumors but the regression model fails to discriminates
between V600E and other mutations. In Dabrafenib (C) and Vemurafenib (D), Ridge regression and ComBat
successfully indicate the sensitivity to BRAFV600E mutation, but the power is lower than PRECISE. BCR/ABL
is not discriminated by neither Ridge nor ComBat + Ridge (E). Finally, PARP inhibitors Olaparib (F) and Tala-
zoparib (G) are also recovered, but with correlations two to three times lower than with PRECISE.





C
SUPPLEMENTARY MATERIAL FOR

CHAPTER 4

C.1. SUPPLEMENTARY FIGURES

135



C

136 C. SUPPLEMENT TRANSACT

Figure C.1 – TRANSACT: Generating non-linear manifold representations to transfer predictors of response
from pre-clinical models to human tumors. (A) Samples are compared using a similarity function yielding
similarity matrices between pre-clinical models (source, Ks ), between tumors samples (target, Kt ) and be-
tween pre-clinical models and tumors (Kst ). (A) Using non-linear PCA, the pre-clinical and tumor similarity
matrices are independently decomposed into non-linear principal components (NLPCs) geometrically repre-
sented by “sample importance scores” (Supp. Figure C.2A) that represent the importance of each sample in
each NLPC (αs and αt , for source and target space, respectively). (C) Geometrical comparison of pre-clinical
and tumor NLPCs results in a non-linear cosine similarity matrix MK . (D) Alignment of NLPCs using the no-
tion of principal vectors (Supp. Figure C.2B). (E) Interpolation within each pair of vectors to select one vector
per PV-pair that balances the effect of pre-clinical and tumor signals: the consensus features (Supp. Figure
C.2C). (F) Projection of each tumor and pre-clinical sample on the consensus features to obtain consensus
scores: scores that correspond to the activity of processes conserved between tumors and pre-clinical models.
(G) Finally, these scores can be used as input to any predictive model, for instance to predict drug response
based on these consensus scores.
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Figure C.2 – Visual explanation of geometric alignment. (A) Difference between importance scores (αs ,αt )
and projected scores. Since the space induced by the similarity function K is intractable, we use a dual rep-
resentation of the NLPC in terms of samples: the importance scores. To project samples on NLPCs, one needs
to compute the similarity between this sample and all of the samples used to gauge the NLPC. The projected
score is obtained by taking the vector-product between this similarity vector and the importance scores. The
same rational yields principal vectors that are represented by γs and γt . (B) Visual example of principal vectors
(PV). We here consider 3 genes (features) and 2 NLPCs. The pre-clinical (source) and tumor (target) NLPCs in-
tersect in one direction, which form the pair of closest vectors: the first PV forms the pair of the two red vectors
– although these are identical. The second pair of PVs is defined orthogonally to the red pair. This defines the
green vectors (with a swap in direction for visual purposes). These pairs reconstruct the original NLPC spaces
and are ordered by similarity. (C) Interpolation between PVs. For one pair of PVs – e.g. the green one in (B)
– source and target vectors are different. In order to generate one robust vector out of these two and avoid
redundancy, we draw an arc between these two vectors. We then project source and target datasets onto these
interpolated vectors and select one intermediate representation where source and target projected signals are
maximally matched. This optimal intermediate vector is called the consensus feature.

Figure C.3 – Composition of the GDSC dataset (cell lines). We make use of the GDSC1000 cell line panel [9].
(A) Number of cell lines per tissue type. (B) Number of cell lines screened for each drug that we used in our
experiments.
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Figure C.4 – Composition of the NIBR PDXE dataset (patient derived xenografts). We make use of the NIBR
PDXE patient derived xenograft panel [93]. (A) Number of PDXs per tissue type. (B) Number of unique PDXs
screened for each drug that we used in our experiments.

Figure C.5 – Structure of the TCGA dataset (primary tumors). We make use of the TCGA dataset for primary
tumors. (A) Number of samples per cancer type. (B) For each drug, number of samples with known response.
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Figure C.6 – Structure of the HMF dataset (metastatic lesions). We make use of the Hartwig Medical Founda-
tion (HMF) dataset for metastatic lesions. (A) Number of samples per cancer type (primary tumor location).
(B)) For each patient, number of response measurements made. For further analysis, we considered the first
response measure – i.e. first measure after treatment start. (C)) Histogram of number of weeks between treat-
ment start and response measurement. (D)) For each protein coding gene, we measure the Spearman corre-
lation between read counts obtained using Salmon and STAR alignment tools using all samples in the HMF
dataset. We then ranked genes based on the obtained Spearman correlation (x-axis) and plotted it against the
mean-expression of these genes obtained using Salmon (y-axis). Since lowly concordant genes tend to have
low expression, we put a threshold at corr=0.5 and discarded genes below this threshold. (E)) After the previous
selection, we computed the sample-level Pearson and Spearman correlations between read counts obtained
with STAR and Salmon. All samples but five show a correlation above 0.8 – these were discarded. We finally
further restricted to genes from the mini-cancer genome.
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Figure C.7 – Analysis of consensus features between cell lines (GDSC) and PDXs with γ = 0.0005. We use a
Gaussian similarity matrix with hyper-parameter γ= 0.0005 and run TRANSACT. (A) Cosine similarity between
the 20 top source and target NLPCs. (B) Similarity between principal vectors (blue line) alongside the similarity
obtained after gene-level permutation on GDSC (boxplots). (C) For each consensus feature, proportion of
offset, linear and interaction term. (D) UMAP of data projected on the consensus features, colored by tissue
of origin. (E) For each tissue type in PDXs, we compare the distances between corresponding PDXs with cell
lines from the same tissue of origin (blue), or from another tissue (orange). (F) For the first consensus feature,
sorted contribution of each linear features (i.e. gene, left) and interaction terms (right). (G) For the second
consensus feature, sorted contribution of each linear features (i.e. gene, left) and interaction terms (right).
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Figure C.8 – Tissue clustering without domain adaptation and with PRECISE alignment between GDSC and
PDXE. (A) UMAP plot of cell lines and PDXs colored by tissue type without any domain-adaptation. Data was
normalized prior to performing UMAP: cell lines and PDXs were independently mean-centered and scaled
to unit variance. (B) UMAP plot of cell lines and PDXs colored by tissue type after projection on consensus
features obtained with linear PRECISE. (C) Comparison of distances between PDXs and cell lines from the
same tissue type (blue) or from a different tissue type (orange) without domain adaptation. (D) Comparison
of distances when using linear PRECISE. We zoom in on lung (NSCLC) without domain adaptation (E), with
linear PRECISE (F) or with TRANSACT (G).
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Figure C.9 – Choice of the number of NLPCs and consensus features between GDSC and TCGA. (A) Cumula-
tive sum of eigenvalues of (K̃s ) (GDSC) with γ= 5×10∗∗−4. The cumulative sum increases steeply, reaches an
inflection point and then follows an almost-linear behavior. We select all the NLPCs before this almost-linear
zone, corresponding to 75 NLPCs. (B) Cumulative sum of eigenvalues of (K̃t ) (TCGA) with γ = 5× 10∗∗−4.
Following similar reasoning as in (A), we restrict the study to the first 150 NLPCs. (C) Similarity between PVs
when 75 NLPCs are considered for GDSC and 150 for TCGA. We observe that the 33 first PVs have a similarity
above 0.5 (our cut-off) and round the selection to 30 PVs.

Figure C.10 – Choice of the number of NLPCs and consensus features between GDSC and HMF. (A) Cumula-
tive sum of eigenvalues of (K̃s ) (GDSC) with γ= 5×10∗∗−4. The cumulative sum increases steeply, reaches an
inflection point and then follows an almost-linear behavior. We select all the NLPCs before this almost-linear
zone, corresponding to 75 NLPCs. (B) Cumulative sum of eigenvalues of (K̃t ) (HMF) with γ = 5× 10∗∗−4.
Following similar reasoning as in (A), we restrict the study to the first 150 NLPCs. (C) Similarity between PVs
when 75 NLPCs are considered for GDSC and 150 for HMF. We observe that the 33 first PVs have a similarity
above 0.5 (our cut-off) and round the selection to 30 PVs.
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Figure C.11 – Pan-cancer consensus features between cell lines and tumors conserve tissue type informa-
tion. (A) UMAP plot of metastatic lesions (HMF) and cell lines, colored by primary tissue for both HMF and
GDSC. For both UMAP plots, the full legend can be found in panel B. (B) Legend of UMAP plots for Figure 4.3D-
E. (C) UMAP plot of HMF metastatic lesions (same as Figure 4.3E) colored by metastatic site. (D) In TCGA, for
each tumor type, distance between tumors and cell lines from similar (blue) and non-similar (orange) tissue.
(E) In HMF, for each primary tumor type, distance between metastatic sample and cell line from similar and
non-similar tissue of origin. (F) In HMF, for each metastatic site, distance between metastatic sample and cell
line from tissue of origin similar (blue) or dissimilar from the metastatic site.
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Figure C.12 – Impact of initialization on results for the Deep Learning (DL) approach. For each drug on TCGA
and HMF, we considered the architecture and the set of hyper-parameters with the lowest Mean Squared Error
on GDSC given an initialization. We then randomly generated 50 independent initializations of the resulting
networks and trained them using the GDSC data. Each of these trained networks was then employed to predict
the TCGA or HMF response. The resulting prediction accuracies (area under the ROC) are plotted for the
different drugs on the TCGA and HMF data. (A) Pearson correlation of the Mean Square Error of the predictor
on GDSC to the Area under the ROC of the same predictor on TCGA. (B) Pearson correlation on HMF between
MSE (GDSC) and Area under the ROC (HMF).
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Figure C.13 – Impact of initialization on results for the ComBat+DL approach. For each drug on TCGA and
HMF, we considered the architecture and the set of hyper-parameters with the lowest Mean Squared Error
on GDSC given an initialization. We then randomly generated 50 independent initializations of the resulting
networks and trained them using the GDSC data. Each of these trained networks was then employed to predict
the TCGA or HMF response. The resulting predictions accuracies (area under the ROC) are plotted for the
different drugs on the TCGA and HMF data. (A) Pearson correlation of the Mean Square Error of the predictor
on GDSC to the Area under the ROC of the same predictor on TCGA. (B) Pearson correlation on HMF between
MSE (GDSC) and Area under the ROC (HMF).
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Figure C.14 – Comparison of clinical status and AUC predicted by TRANSACT for HMF patients. Using
TRANSACT and a predictive model trained solely on GDSC response data, we predicted the response of HMF
patients to six different drugs (y-axis). These predicted values are then compared to clinical response which
fall into three possible categories: PR (Partial Response), SD (Stable Disease) or PD (Progressive Disease). Pa-
tients treated with six drugs were considered: Trastuzumab (A), Carboplatin (B), Gemcitabine (C), Irinotecan
(D), Paclitaxel (E) and 5-Fluorouracil (D).
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Figure C.15 – Pathway enriched for resistant linear coefficients in GDSC-to-TCGA Gemcitabine drug re-
sponse predictor. Additional pathways significantly enriched in the linear part of the GDSC-to-TCGA pre-
dictor.
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C.2. NOTATIONS AND SETTINGS
In our scenario, we have two datasets living in the same space – i.e. represented by the
same p features (genes, SNPs, methylation probes, ...):

• A source dataset Xs =
{

xs
1, xs

2, .., xs
ns

}⊂Rp , with labels Ys =
{

y s
1, ...y s

ns

}
.

• A target dataset Xt =
{

x t
1, x t

2, .., x t
nt

}⊂Rp usually unlabelled.

We represent the source (resp. target) data as a matrix Xs ∈Rns×p (resp. X t ∈Rnt×p ) with
samples in the rows and features in the columns.
We consider a similarity function, or kernel, K : Rp ×Rp 7→ R that we will assume for
the sequel to be positive semi-definite. Using the theory of Reproducible Kernel Hilbert
Space [272], K is represented by the following dual formulation.

Proposition C.2.1 (Reproducing Hilbert Space). There exists a unique functional Hilbert
space (H ,〈·, ·〉H ), with H ⊂F (Rp ,R) (functions from Rp to R), and a mapping function
ϕ :Rp 7→H such that:

∀x, y ∈Rp , K
(
x, y

) = 〈ϕ (x) ,ϕ
(
y
)〉H . (C.1)

The mapping ϕ furthermore satisfies the Reproducing property:

∀ f ∈H , f : x ∈Rp 7→ 〈ϕ (x) , f 〉H . (C.2)

We refer to ds (resp. dt ) the number of low-rank components we reduced the source
data (resp. target data) to. We set d as the maximum number of principal vectors, d =
min(ds ,dt ).
Superscript s is used for source items and superscript t for target items. K (x, ·) , for
x ∈ Rp , is the function y ∈ Rp 7→ K

(
x, y

)
. We use the superscript ·T as the transposition

operation.
Finally, we define the following kernel matrices:

Definition C.2.2 (Kernel matrices). We define the following four matrices:

• Source kernel matrix Ks : Ks =
[

K
(
xs

i , xs
j

)]
1≤i , j≤ns

∈Rns×ns .

• Target kernel matrix Kt : Kt =
[

K
(
x t

i , x t
j

)]
1≤i , j≤nt

∈Rnt×nt .

• Source-target kernel matrix Kst : Kst =
[

K
(
xs

i , x t
j

)]
1≤i≤ns ,1≤ j≤nt

∈Rns×nt .

• Target-source kernel matrix : Kt s as Kt s = K T
st ∈Rnt×ns .

C.3. KERNEL-MEAN CENTERING
We set out to work in the Hilbert space H after embedding the data with the mapping
ϕ. Prior to any statistical processing, we first need to mean-center the data in the kernel
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feature space H . For that purpose, we define two means, the mean source embedding µs

and the mean target embedding µt , as follows:

µs = 1

ns

ns∑
i=1

ϕ
(
xs

i

) = 1

ns

ns∑
i=1

K
(
xs

i , ·)
µt = 1

nt

nt∑
i=1

ϕ
(
x t

i

) = 1

ns

nt∑
i=1

K
(
x t

i , ·) (C.3)

Using the means computed in Equation (C.3), we define two sets of corrected embed-
dings as follows:

Definition C.3.1 (Mean-centered embedding and kernel function). The source centered
kernel embedding ϕ̃s is defined as:

∀x ∈Rp , ϕ̃s (x) = ϕ (x)−µs = K (x, ·)−µs . (C.4)

We then defined the source-centered kernel function K̃s as:

∀x, y ∈Rp , K̃s
(
x, y

) = 〈ϕ̃s (x) ,ϕ̃s
(
y
)

.〉 (C.5)

We define equivalently the target centered kernel embedding ϕ̃t and corresponding target-
centered kernel function K̃t .

We use the mean-centered kernel functions defined in Definition C.3.1 to correct the
kernel matrices from Definition C.2.2 and define the following four matrices.

Definition C.3.2 (Centered Kernel matrices). We define the following four matrices:

• Source-centered kernel matrix K̃s : K̃s =
[

K̃s

(
xs

i , xs
j

)]
1≤i , j≤ns

∈Rns×ns .

• Target-centered kernel matrix K̃t : K̃t =
[

K̃t

(
x t

i , x t
j

)]
1≤i , j≤nt

∈Rnt×nt .

• Source-target-centered kernel matrix K̃st : K̃st =
[
〈ϕ̃s

(
xs

i

)
,ϕ̃t

(
x t

j

)
〉
]

1≤i≤ns ,1≤ j≤nt
∈

Rns×nt .

• Target-source kernel matrix : K̃t s as K̃t s = K̃ T
st ∈Rnt×ns .

To get a relation between matrices given in Definition C.3.2 and Definition C.2.2, we
define the centering matrix of size n, denoted as Cn :

Definition C.3.3 (Centering matrix). Let n ∈N∗. We define the centering matrix of size n,
denoted Cn as:

Cn = In − 1

n
1n 1T

n , (C.6)

where In is the identity matrix of size n and 1n is the n-sized vector constituted solely of 1.
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Proposition C.3.4 (Computation of centered kernel matrices). We have the following
equalities:

K̃s = Cns KsCns ,

K̃t = Cnt Kt Cnt ,

K̃st = Cns Kst Cnt .

(C.7)

C.4. KERNEL PCA ON SOURCE AND TARGET
We use Kernel PCA to compute directions of maximum variance in the embedded space
[167], yielding kernel Principal Components, also called non-linear principal compo-
nents (NLPCs) in the main text. These NLPCs for source and target are respectively
defined as linear combinations of source and target samples’ embeddings (after mean-
centering) in the kernel feature space.

Definition C.4.1 (Non-linear source and target principal components [167]). Non-linear

principal components for source
(

f s
1 , .., f s

ds

)
and target

(
f t

1 , .., f t
dt

)
are defined as linear

combinations of source and target embedded samples respectively. Denoting as αs the ds

top eigenvectors of K̃s andαt the dt top eigenvectors of K̃t , we have the following equality:
f s

q =
ns∑

i=1
αs

q,i ϕ̃s
(
xs

i

)
for q ∈ {1, ..,ds } ,

f t
q =

nt∑
i=1

αt
q,i ϕ̃t

(
x t

i

)
for q ∈ {1, ..,dt } ,

. (C.8)

These non-linear principal directions satisfy some orthogonality constraints on the kernel
space H :

∀x ∈ {s, t } , ∀k, l ∈ {1, ..,d} , 〈 f x
k , f x

l 〉H = δk,l , (C.9)

where δ is the equality indicator function. These constraints are equivalent to:

αs K̃sα
s T = Ids and αt K̃tα

t T = Idt (C.10)

The two matrices αs ∈ Rds×ns and αt ∈ Rdt×nt correspond to factors by samples matri-
ces, but do not represent the projected score. Instead, they are equivalent to the feature
loadings in linear PCA and correspond to a dual representation of the features in H that
can not be explicitly computed due to the high-dimensions of H . We refer to them as
sample importance loadings to explicit the difference these have with projected scores.

C.5. VARIATIONAL DEFINITION OF PRINCIPAL VECTORS
We define the first pair of principal vectors between source and target NLPCs as the two
unitary vectors s1 and t1, with s1 in source NLPCs span and t1 in target NLPCs span,
such that their similarity is maximized. This extends in H the principal vectors defined
by Golub and Van Loan in [104] and are mathematically formalized using the following
variational definition:
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s1, t1 = argmax
s∈span

(
f s

1 ,.., f s
ds

)
,

t∈span
(

f t
1 ,.., f t

dt

)
〈s, t〉H

s.t 〈s, s〉H = 〈t , t〉H = 1

. (C.11)

We further define the principal vector by adding an orthogonality constraint, as in [104].

Definition C.5.1 (Kernel Principal Vectors). We define the d pairs of principal vectors
(s1, t1) , (s2, t2) , .., (sd , td ) as, for all k ∈ {1, ..,d} :

sk , tk = argmax
s∈span

(
f s

1 ,.., f s
ds

)
,

t∈span
(

f t
1 ,.., f t

dt

)
〈s, t〉H

s.t 〈s, s〉H = 〈t , t〉H = 1,

and ∀l < k, sl ⊥ s, tl ⊥ t

. (C.12)

C.6. COMPUTATION OF PRINCIPAL VECTORS
The first step towards computing principal vectors is to compare the principal compo-
nents defined in Definition C.4.1. We define for that purpose the cosine similarity matrix
between source and target NLPCs and present a closed-form solution for computing it
based on centered kernel matrices (Definition C.3.2) and NLPCs’ coefficients (Definition
C.4.1).
The cosine similarity matrix is a standard way to compare orthonormal basis of vectors
and has already been used to compare linear principal components in subspace-based
domain adaptation [58–60]. We here extend it to kernel-based non-linear dimensionality
reduction.

Definition C.6.1 (Cosine similarity matrix). We define the cosine similarity matrix MK

between source and target kernel principal components as:

MK = [〈 f s
k , f t

l 〉H
]

1≤k≤ds ,1≤l≤dt
∈Rds×dt . (C.13)

Proposition C.6.2 (Computation of cosine similarity matrix). MK can be computed using
the matrices αs , αt and KST as:

MK = αs K̃stα
t T

= αsCns Kst Cntα
t T

.
(C.14)

Proof. Let 1 ≤ k, l ≤ d , then using Equation C.8,

〈 f s
k , f t

l 〉 =
ns∑

i=1

nt∑
j=1

αs
k,iα

t
l , j 〈ϕ̃s

(
xs

i

)
,ϕ̃t

(
x t

j

)
〉 = αs

k,:
T K̃stα

t
l ,: (C.15)

which put together as a matrix gives the wanted result.
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Similarly to the linear setting, we use this cosine similarity matrix to NLPC by means of
SVD of MK .

Theorem C.6.3 (SVD computation of Principal Vectors). Let βs ∈Rds×d (resp. βt ∈Rdt×d )

be the first d left (resp. right) singular vectors of MK , i.e. MK ≈ βsΣβt T . Then, for all
1 ≤ q ≤ d:

sq =
ds∑

k=1

ns∑
i=1

βs
k,qα

s
k,i ϕ̃s

(
xs

i

)
and tq =

dt∑
l=1

nt∑
j=1

βt
l ,qα

t
l , j ϕ̃t

(
x t

j

)
(C.16)

Proof. Let s1, .., sd ∈ span
(

f s
1 , .., f s

ds

)
and t1, .., td ∈ span

(
f t

1 , .., f t
dt

)
with norm 1, there ex-

ists βs ,∈Rds×d and βt ∈Rdt×d such that, for all q ∈ {1, ..,d},

sq =
ds∑

k=1
βs

k,q f s
k =

ns∑
i=1

ds∑
k=1

αs
k,iβ

s
k,q ϕ̃s

(
xs

i

)
and tq =

dt∑
l=1

βt
l ,q f t

l =
nt∑

j=1

dt∑
l=1

αt
l , jβ

t
l ,q ϕ̃t

(
x t

j

)
.

(C.17)
The orthogonality constraint 〈sk , sl 〉H = 〈tk , tl 〉H = δk,l , for 1 ≤ k, l ≤ d coupled with the

orthogonality constrains from Equation (C.9) is then equivalent to βs Tβs =βt T
βt = Id .

Computing inner product between source and target PV therefore yields

[〈sk , tl 〉]1≤k,l≤d = βs T
αs K̃stα

t T
βt T = βs T MKβt . (C.18)

Therefore, the maximization problem from Equation (C.11) is equivalent to the follow-
ing:

max
βs∈Rds×d ,
βt∈Rdt ×d

βs T MKβt

s.t. βs T
βs =βt T

βt = Id

, (C.19)

which unique solutions are the left and right orthogonal vectors of MK , obtained by SVD.

In order to work at the sample-level for each principal vector, we define the PV sample-
importance loadings as follows.

Definition C.6.4 (Principal Vector sample importance loadings). We define the source
(resp. target) sample importance loadings ρs ∈Rd×ns (resp. ρt ∈Rd×nt ) as:

ρs =βs T
αs and ρt =βt T

αt . (C.20)

These PV importance loadings are related to the source and target PVs as follow:

Proposition C.6.5. Source and target principal vectors have the equivalent following def-
inition:

∀q ∈ {1, ..d} ,


sq =

ns∑
i=1

ρs
q,i ϕ̃s

(
xs

i

)
,

tq =
nt∑

i=1
ρt

q,i ϕ̃t
(
x t

i

)
.

(C.21)
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We finally defined the similarity between the principal vectors as cosines of angles re-
ferred to as principal angles.

Definition C.6.6 (Principal Angles). Let 1 ≤ q ≤ d. We define the q-th principal angle as
the unique θq ∈ [

0, π2
]

that satisfies:

cosθq = 〈sq , tq 〉H . (C.22)

Proposition C.6.7 (SVD computation of Principal Angles). Let Σ be the diagonal matrix
obtained by SVD of MK (as in Proposition C.6.2), then:

∀q ∈ {1, ..,d} , cosθq = Σq,q . (C.23)

Proof.

cosθq = 〈sq , tq 〉H = βs
:,q

T MKβt
:,q = Σq,q , (C.24)

by definition of the SVD.

We showed how to compute the PVs as functions in H and gave a closed-form solution
for the evaluation in Rp . We finally show that the evaluation of PVs correspond to a
projection of the embedded vector, keeping the same intuition than in linear setting.

Proposition C.6.8 (Evaluation of principal vectors). Let x ∈Rp . For q ∈ {1, ..d}, the evalu-
ation of source and target principal vectors sq and tq is equivalent to the projection of the
embedding of x on these vectors:

sq (x) = 〈sq ,ϕ (x)〉H and tq (x) = 〈tq ,ϕ (x)〉H (C.25)

Proof. Combining Equations (C.3), (C.4) and (C.21), source PV are sum of elements of
H :

sq =
ns∑

i=1
ρs

q,i ϕ̃s
(
xs

i

)
with, ∀i ∈ {1, ..,ns } , ϕ̃s

(
xs

i

) ∈H . (C.26)

Therefore sq ∈ H since H is an Hilbert space. Using the reproducing property of the
RKHS and the definition of ϕ (Equation (C.1), we obtain

∀x ∈Rp , sq (x) = 〈
sq ,ϕ (x)

〉
H

. (C.27)

Following the same idea, we obtain the equivalent equality for target PVs.
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C.7. INTERPOLATION SCHEME
The Principal Vectors are pairs of vectors (one form source, one from target) that are geo-
metrically similar. We select only the pairs above a certain threshold of similarity in order
to restrict to directions shared by the two signals. Therefore, within each pair, source and
target vectors show an important correlation and using the two into a predictive model
would not be optimal. We therefore set out to construct a single vector out of each pair by
interpolating between the two vectors. This interpolation is the geodesic flow between
PVs and is defined as follows.

Definition C.7.1 (Angular interpolation function). Let q ∈ {1, ..,d}, we define the angular
interpolation functions Γq and ξq between the q th pair of principal vector as:

∀τ ∈ [0,1] , Γq (τ) = sin
(
(1−τ)θq

)
sinθq

and ξq (τ) = sinτθq

sinθq
. (C.28)

Definition C.7.2 (Geodesic flow between principal vectors). Let q ∈ {1, ..,d}, we define
the interpolation φq between the q th pair of principal vector as:

∀τ ∈ [0,1] , φq (τ) = Γq (τ) sq + ξq (τ) tq . (C.29)

Since H is a Hilbert space, φq ∈H .

Proposition C.7.3 (Estimation using PV sample importance loadings). Let q ∈ {1, ..,d}
and φq be the geodesic between the q th pair of principal vectors. The geodesic defined in
Equation (C.29) has the following equivalent formulation:

∀τ ∈ [0,1] , φq (τ) = Γq (τ)
ns∑

i=1
ρs

q,i ϕ̃s
(
xs

i

) + ξq (τ)
nt∑

j=1
ρt

q, j ϕ̃t

(
x t

j

)
. (C.30)

Proof. Combining the definition of the geodesic from Definition C.7.2 with the equiva-
lent principal vector formulation of Proposition C.6.5 yields the result.

The formulation of the geodesic from Proposition C.7.3 can easily be written down as
a matrix product (for computation purposes) for each sample. We define the matrix
angular interpolation function as follow.

Definition C.7.4 (Matrix angular interpolation function). We define the matrix angular
interpolation functions Γ and Ξ

∀τ ∈ [0,1]d , Γ (τ) = diag
[
Γq

(
τq

)]
1≤q≤d and Ξ (τ) = diag

[
ξ
(
τq

)]
1≤q≤d . (C.31)

Proposition C.7.5 (Matrix estimation of principal vectors). Let’s denote by s (resp. t ) the
vectors of d source (resp. target) principal vectors ordered by similarity. We define S s and
S t as the matrices that contain the source principal vectors values evaluated on source
and target data respectively:
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S s =
[

s
(
xs

1

)T , .., s
(
xs

ns

)T
]T ∈Rns×d , (C.32)

S t =
[

s
(
x t

1

)T
, .., s

(
x t

nt

)T
]T ∈Rnt×d . (C.33)

We define similarly T s ∈ Rns×d as the matrix that contains the target principal vectors
evaluated on the source data – and T t ∈ Rnt×d as the matrix that contains the target
principal vectors evaluated on the target data. These matrices can be computed as follows:{

S s = K sCnsρ
s T ,

S t = K st Cnsρ
s T ,

and

{
T t = K t sCntρ

t T
.

T t = K t Cntρ
t T

.
(C.34)

Proof. Using the definition of principal vectors with ρ coefficients from Equation (C.21),
we get, for l ∈ {1, ..,ns } and q ∈ {1, ..,d}:

sq
(
xs

l

) =
ns∑

i=1
ρs

q,i

[
K

(
xs

i , xs
l

)− 1

ns

ns∑
j=1

(
xs

j , xs
l

)]

=
ns∑

i=1

(
ρs

q,:

)
i

[
K s

i ,l −
1

ns

(
1ns 1T

ns
K s)

i ,l
.

] (C.35)

Using the centering matrix defined in Definition C.3.3, we get:

sk
(
xs

l

) = [
ρsCns K s]

k,l , (C.36)

and therefore S s = (
ρsCns K s

)T . The other equalities follow from the same proof.

Let’s finally define the geodesic matrix between source and target at interpolation time
τ ∈ [0,1] as the estimation of both source and target on the geodesic in the kernel feature
space.

Theorem C.7.6. We define as Fst (τ) for as the matrix of geodesic values evaluated at in-
terpolation time τ ∈ [0,1]d , i.e.:

Fst (τ) =



φ (τ)
(
xs

1

)
...

φ (τ)
(
xs

ns

)
φ (τ)

(
x t

1

)
...

φ (τ)
(
xs

nt

)

 ∈R(ns+nt )×d . (C.37)

. Then Fst (τ) can be computed as follow:

Fst (τ) =
[
S s T s

S t T t

][
Γ (τ)
Ξ (τ)

]
. (C.38)
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This formulation is equivalent to:

Fst (τ) =
[

K s K st

K t s K t

][
Cns 0ns×nt

0nt×ns Cnt

][
ρs T 0ns×d

0nt×d ρt T

][
Γ (τ)
Ξ (τ)

]
. (C.39)

Proof. Direct by combining Definition C.7.4 and Proposition C.7.5.

In order to get zero-centered projected source and target samples, we can use two so-
lutions. On one hand, we can perform a consensus-feature-level mean-centering inde-
pendently on source and target after projection. Equivalently, we can also left-multiply
by centering matrix the projected matrix Fst (τ).
We finally show that the evaluation of the consensus features functions is equivalent to
the projection of embedding in the feature space H .

Proposition C.7.7. Let x ∈Rp , q ∈ {1, ..d} and τq ∈ [0,1], then:

φq
(
τq

)
(x) = 〈

φq
(
τq

)
,ϕ (x)

〉
H

. (C.40)

Proof. Using Proposition C.6.8,

φq
(
τq

)
(x) = Γq

(
τq

)
sq (x)+ξq

(
τq

)
tq (x)

= 〈
Γq

(
τq

)
sq +ξq

(
τq

)
tq ,ϕ (x)

〉
H

= 〈
φq

(
τq

)
,ϕ (x)

〉
H

.

(C.41)

C.8. GENE SET ENRICHMENT ANALYSIS OF CONSENSUS FEA-
TURES

In order to gain insight into the making of consensus features, we use a Taylor expansion
of the Gaussian kernel [169]. The Gaussian kernel can be expressed as outer-product of
the following basis functions.

Definition C.8.1. Let i ≤ 0 be an integer. We define as ei :R 7→R the basis function defined
as:

∀x ∈R, ei (x) =
√

2γi

i !
xi exp

(−γx2) . (C.42)

Proposition C.8.2 (Countable orthonormal basis of H [169]). Let’s define for
(
i1, .., ip

) ∈
Np the following function

e(i1,..,ip ) = x ∈Rp 7→ ei1 (x1)×ei2 (x2)×· ·×eip

(
xp

)
. (C.43)

Then,
(
e(i1,..,ip )

)
(i1,..,ip )∈Np

is an orthonormal basis of H , and for x, y ∈Rp ,

exp
(−γ||x − y ||2) = ∑

i1,..,ip∈Np
e(i1,..,ip ) (x)e(i1,..,ip )

(
y
)

.

= ϕ̂ (x)T ϕ̂
(
y
)

,
(C.44)
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with ϕ̂ : x 7→
(
e(i1,..,ip ) (x)

)
(i1,..,ip )∈Np

.

Let’s consider this approximation map ϕ̂. We extract three different features of interest
for our analysis: the offset (sum of indices is 0), the linear terms (sum of indices is 1) and
the interaction terms (sum of indices is 2). We define them as follows:

Definition C.8.3 (Offset, linear and interaction terms).
We define the offset feature eO as e0Np , i.e. when all indices are 0.

For each gene (feature k ∈ {
1, .., p

}
), we define the k th linear feature ek as eδk

where δk is
the vector of zeros with a single 1 on k th position.
For each combination of genes (feature k, l ∈ {

1, .., p
}
), we define the (k, l )th interaction

feature ek,l as eδk,l
where δk,l is the vector of zero with one 1 on k th and l th position only

if k 6= l , and 2 on k th position if k = l .

Definition C.8.4 (Offset, linear and interaction terms for consensus features).
We define the offset contribution to consensus feature q as Oq = 〈eO ,φq

(
τ∗q

)
〉.

For k ∈ {
1, .., p

}
, we define the k th linear contribution to consensus feature q as Lq,k =

〈ek ,φq

(
τ∗q

)
〉.

For k, l ∈ {
1, .., p

}
), we define the (k, l )th interaction contribution to consensus feature q

as Iq,k,l = 〈ek,l ,φq

(
τ∗q

)
〉.

We now compute the contribution of each of these features to the consensus features.
We first rewrite the different contributions to the consensus features for readability.

Definition C.8.5. For q ∈ {1, ..,d}, we define σs
q = Γq

(
τ∗q

)
ρs

q and σt
q = ξq

(
τ∗q

)
ρt

q .

We finally define the source and target mean centered features.

Definition C.8.6. We define the source (resp. target) mean-centered offset feature for the
q th consensus feature ẽ s

O (resp. ẽ t
O) as:

ẽ s
O = eO − 1

ns

ns∑
i=1

eO
(
xs

i

)
and ẽ t

O = eO − 1

nt

nt∑
i=1

eO
(
x t

i

)
. (C.45)

For k ∈ {
1, .., p

}
, we define the source (resp. target) mean-centered linear feature for the

q th consensus feature ẽ s
k (resp. ẽ t

k ) as:

ẽ s
k = ek −

1

ns

ns∑
i=1

ek
(
xs

i

)
and ẽ t

k = ek −
1

nt

nt∑
i=1

ek
(
x t

i

)
. (C.46)

For k, l ∈ {
1, .., p

}
, we define the source (resp. target) mean-centered linear feature for the

q th consensus feature ẽ s
k,l (resp. ẽ t

k,l ) as:

ẽ s
k,l = ek,l −

1

ns

ns∑
i=1

ek,l
(
xs

i

)
and ẽ t

k,l = ek,l −
1

nt

nt∑
i=1

ek,l
(
x t

i

)
. (C.47)
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Proposition C.8.7. The differents contribution Oq Lq,i and Iq,i , j for the q th consensus
feature can be computed as follow:

Oq =
ns∑

i=1
σs

q,i ẽ s
O

(
xs

i

) +
nt∑

i=1
σt

q,i ẽ t
O

(
x t

i

)
, (C.48)

Lq,k =
ns∑

i=1
σs

q,i ẽ s
q,k

(
xs

i

) +
nt∑

i=1
σt

q,i ẽ t
q,k

(
x t

i

)
, (C.49)

Iq,k,l =
ns∑

i=1
σs

q,i ẽ s
q,k,l

(
xs

i

) +
nt∑

i=1
σt

q,i ẽ t
q,k,l

(
x t

i

)
. (C.50)

Proof. Combining the expression of consensus features as mean-centered source and
target embedding from C.7.3, Definition C.8.5 and Definitions ?? and C.8.6 gives the
wanted results.

Definition C.8.8. For the q th consensus feature, we define the offset proportion as Oq =
O2

q , the linear contribution as Lq = ∑p
k=1 L 2

q,k and the interaction contribution as Iq =∑
1≤k≤l≤p I 2

q,k,l .

Finally, we define the higher-order contribution as Rq = 1−Oq −Lq − Iq .

We now restrict to one gene set to measure the effect of this gene set on interactions and
linear effects.
We here restricted to the Gaussian kernel. However, our results would easily be extended
to any kernel, provided the feature space H has a known orthonormal basis.

C.9. EQUIVALENCE WITH GEODESIC FLOW KERNEL
In this section we showed the equivalence with the previously published linear version
of the algorithm, the so-called PRECISE model [131]. We recall the main steps of the
algorithm.

Definition C.9.1 (Linear Principal Vectors). Let Ps ∈Rds×p and Pt ∈Rdt×p be two families
of orthonormal vectors, i.e. Ps P T

s = Ids and Pt P T
t = Idt . We define the cosine similarity

matrix M as:
M = Ps P T

t . (C.51)

Let d ≤ min(ds ,dt ) and let UΣLV T be the d− rank SVD approximation of M. We define
the d source (resp. target) principal vectors as the matrix Qs ∈Rd×p (resp. Qt ∈Rd×p ) as:

Qs = U T Ps and Qt = V T Pt . (C.52)

Samples can be projected on these four matrices (Ps ,Pt ,Qs and Qt ) by inner-product, i.e.
canonical projection operator in Euclidean space.

Ps and Pt are here defined generally as two families of orthonormal vectors. In particular,
we consider for the rest that they are the results of PCA on respectively the source and
the target covariance matrices X T

s Cns C T
ns

Xs and X T
t Cnt C T

nt
X t . Using the linear PVs from

Definition C.9.1, we define a linear interpolation scheme as follows.
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Definition C.9.2 (Linear Interpolation). Using notations from Definition C.9.1, we define
the linear principal angles as:

∀q ∈ {1, ..,d} , cosθL
q =ΣL

q,q . (C.53)

For the PV pair q ∈ {1, ..,d}, we define the interpolation function φL
q as follows:

φq : τq ∈ [0,1] 7→ sin
(
1−τq

)
θq

sinθq
(Qs )q + sinτqθq

sinθq
(Qt )q (C.54)

Before stating the main result, we need the following well-known lemma.

Lemma C.9.3 (Equivalence of spectrum). Let X ∈ Rn×p . We denote by S+ = {(
λ+

1 , v+
1

)
,

..,
(
λ+

d+ , v+
d+

)}
the non-singular spectrum of X X T and S− = {(

λ−
1 , v−

1

)
, ..,

(
λ−

d− , v−
d−

)}
the

non-singular spectrum of X T X , i.e. λ1 ≥λ2 ≥ .. ≥λd > 0 in both spectrum. Then d+ = d−
and

∀i ∈ {
1, ..,d+}

, λ+
i = λ−

i , v+
i = X v−

i and v−
i = X T v+

i (C.55)

We consider two scenario using the same source and target datasets: linear PRECISE,
and our kernelized approach with a linear kernel. We consider all other parameters set
to the same values.

Proposition C.9.4 (Equality of cosine similarity matrixes). Let M and MK be the cosine
similarity matrices obtained respectively using linear PRECISE (Definition C.9.1) and the
kernelized version with a linear kernel (Definition C.6.1), all hyperparameters equal. Then
M = MK.

Proof. We here use notations from Definitions C.6.1 and C.4.1. We define X̃s = Cns Xs

and X̃ t =Cnt X t . We also use K̃s = X̃s X̃s
T

and K̃t = X̃ t X̃ t
T

.

By definition of PCA, Ps contains the top ds eigenvectors of the matrix X̃s
T

X̃s , while

αs K̃
1
2

s contains the top ds eigenvectors of X̃s X̃s
T

. Using the result from C.9.3, we have

Ps =αs K̃s

1
2 X̃s . Similarly, we obtain on the target Pt =αt K̃t

1
2 X̃ t . Using Proposition C.6.2,

M = αs K̃s

1
2 X̃s X̃ t

T
K̃t

1
2αt T = αs X̃s X̃ t

T
αt T = MK , (C.56)

using the fact that αs K̃
1
2

s and αt K̃
1
2

t is an eigenvector of K̃s and K̃t respectively.

From Proposition C.9.4 follows directly this equivalence.

Theorem C.9.5. With all hyperparameters equal, PRECISE and the kernelized version
with a linear kernel are equivalent.

Theorem C.9.5 shows that all results obtained in linear case [131] hold for TRANSACT
with a linear similarity function, and in particular the correspondence with the Geodesic
Flow Kernel.
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C.10. DIFFERENCE WITH CCA ON THE GENES
Another data-strategy used in single-cell data analysis consists in using the gene-level
correspondence to perform a Canonical Correlation Analysis (CCA) on the genes. Using
the same notations as in Section C.2, this approach boils down to solve the following
maximization procedure:

s1, t1 = argmax
s∈Rns ,sT s=1,
t∈Rnt ,t T t=1

sT Xs X T
t t

(C.57)

and the subsequent directions defined orthogonally to these directions. This procedure
find directions of maximum covariance at the gene-level between source and target. It
will find two combinations of samples (one for source, and one for target) that show the
maximum covariance among genes. It differs markedly from our methods on several
aspects. First, from a computational standpoint, the SVD-equivalent definition of PVs
(Theorem C.6.3) consists in breaking down a relatively small matrix (ds × dt ) and not
a sample-sample similarity matrix. Second, by performing a PCA on source and target
independently, we restrict our analysis to a low-rank view of source and target data –
which provides a first step filtering. Finally, although there are similarities in the max-
imization procedures from Equations C.11 and C.57, the product of our maximization
procedure gives geometrical weights, and not directly the scores used in the regression.
Although we maximize the same objective function, the constraints are different, which
would make the final vectors surely different.
We believe our approach to be better suited for our specific problem for several reasons.
First because it uses a low-rank representations of source and target. As shown in Figure
1 of main text, the kernel matrices Ks and Kt contain larger values than Kst which would
increase signal-to-noise ratio. Our sample-size is small – compared to single cell studies
at least – and penalization is expected to focus on important signal. Second, our ap-
proach gives us a direct access to the geometric components (PV) which we can analyze
to understand the making of the common signal. Finally, using PVs allow us to interpo-
late and get a projection on a single component that would be shared across source and
target.
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C.11. ALGORITHM WORKFLOW

Algorithm 2 TRANSACT

Require: source data Xs , target data Xt , number of domain-specific factors ds and dt ,
p.s.d. kernel K , number of principal vector d .
Ks ← source kernel matrix.
Kt ← target kernel matrix.
Kst ← source-target kernel matrix.
αs ← Kernel Principal Components of source (from Ks ).
αt ← Kernel Principal Components of source (from Kt ).
MK ←αsCns Kst Cntα

t T.

βsΣβt ← d-rank SVD of MK , i.e. MK ≈βsΣβt T .
Fst ← [

F st (0) ,F st (0.01) , ..,F st (1)
]

defined as in Theorem C.7.6.
for q ← 1 to d do

Sq ← [
Fst [0]1:ns ,q ,Fst [0.01]1:ns ,q , ..,Fst [1]1:ns ,q

]T

Tq ← [
Fst [0]ns :ns+nt ,q ,Fst [0.01]ns :ns+nt ,q , ..,Fst [1]ns :ns+nt ,q

]T

Dq ← {
D

(
Sq [0],Tq [0]

)
,D

(
Sq [0.01],Tq [0.01]

)
, ..,D

(
Sq [1],Tq [1]

)}
.

τ∗q ← argminτDq .
end for
F ← [Φ1 (τ1) ,Φ2 (τ2) , ..,Φd (τd )]

τ∗ ←
[
τ∗1 , ..,τ∗q

]
.

X pr o j
s ← Fs t [τ∗]1:ns .

X pr o j
t ← Fs t [τ∗]ns :ns+nt .

Train a regression model on X pr o j
s

Apply it on the projected target data X pr o j
t
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Figure D.1 – (Supporting Figure 5.1) Existence of systematic differences between cell lines and tumors hin-
ders batch effect correction. (E) Composition of the Kim dataset by donors (L/B and tLung: primary lung
lesion; PE: pleural fluids; mLN: metastatic lymph node; mBrain: brain metastasis; nLung: healthy lung; nLN:
healthy lymph node). (B) Composition of the Kim dataset by cell types. (C) Composition of the Kinker dataset
by tissue types. (D) UMAP of the Seurat corrected gene expression profiles for patient data (Kim dataset) di-
vided between epithelial tumor cells (left) and other cells (right), colored by patients. (E) UMAP of the Har-
mony corrected gene expression profiles for patient data colored by patients. (F) UMAP of the LIGER corrected
gene expression profiles for patient data colored by patients.
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Figure D.2 – (Supporting Figure 5.2) Technical supplement on the Sobolev Alignment algorithm. (A) General
presentation of an Auto-Encoder. A scRNA-seq profile is used as input into a first neural network, called “en-
coder”, which compresses the data to a small number of “latent factors”. These latent factors are then fed into a
second neural network, called a “decoder”, which maps the latent factors back to the original space. The Auto-
Encoder is trained by modifying the weights of both neural networks so that the difference between the input
and the output is minimal. A Variational Auto-Encoder (VAE) offers a probabilistic extension of this framework
with a more complex architecture which allows the incorporation of prior knowledge; it however still relies on
this “encoder-decoder” scheme. (B) We trained a single scVI model on the concatenated data (Methods) and
used scVI native batch correction to account for batch effect, both within and between datasets. (C) Using
UMAP, we project and visualize the resulting latent factors. (D) Complete workflow of Sobolev Alignment. In
a first step, the hyperparameters of the scVI models (dropout rate, likelihood, weight decay, network archi-
tecture, learning rate, learning rate scheduler, early stopping) are set by minimizing the reconstruction error
employing Bayesian Optimisation (Hyperopt). In a second step, we set the parameters of the Matérn kernel to
be used in Sobolev Alignment. To do so, we first set the scale parameter (σ) as the median distance observed
between source and target single cell profiles. We then train different KRR models on cell line and tumor data
with varying values of ν. We use artificial points as training data, and we select ν as the parameter provid-
ing the largest Spearman correlation between the embedding values and the KRR values predicted from the
scRNA-seq dataset (not used to train the KRR). In a third step, we set the penalty parameter of the cell line
KRR model by aligning the trained cell line scVI model to itself. As we align the exact same model to itself, the
SPVs should have a similarity close to one. However, small penalization values would lead to overfitting and
therefore decrease this observed similarity – overfitting artifacts have a limited chance to be shared between
source and target. We train KRR models with different regularization values and select the lowest value past
a certain threshold of self-similarity (by default set to 0.9). We proceed similarly for the tumor regularization
parameter. Finally, we perform the whole alignment as explained in Figure 5.2.
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Figure D.3 – (Supporting Figure 5.3) Analysis of model I. (A) UMAP obtained after Seurat correction between
source (cell lines) and target (tumor). (B) Contributions of different order features for source (left) and target
(right) SPVs. (C) Spearman correlations between the linear weights of source SPVs (x-axis) and target SPVs
(y-axis). (D) Spearman correlations between the interaction weights of source SPVs (x-axis) and target SPVs
(y-axis). (E) Square contributions of linear and interaction features to each SPV, restricted to the top 10 highest
contributions and colored as in Figure 5.3.
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Figure D.4 – (Supporting Figure 5.3) Analysis of model II. (A) UMAP obtained after Seurat correction between
source (cell lines) and target (tumor). (B) Contributions of different order features for source (left) and target
(right) SPVs. (C) Spearman correlations between the linear weights of source SPVs (x-axis) and target SPVs
(y-axis). (D) Spearman correlations between the interaction weights of source SPVs (x-axis) and target SPVs
(y-axis). (E) Square contributions of linear and interaction features to each SPV, restricted to the top 10 highest
contributions and colored as in Figure 5.3.
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Figure D.5 – (Supporting Figure 5.3) Analysis of model III. (A) UMAP obtained after Seurat correction between
source (cell lines) and target (tumor). (B) Contributions of different order features for source (left) and target
(right) SPVs. (C) Spearman correlations between the linear weights of source SPVs (x-axis) and target SPVs
(y-axis). (D) Spearman correlations between the interaction weights of source SPVs (x-axis) and target SPVs
(y-axis). (E) Square contributions of linear and interaction features to each SPV, restricted to the top 10 highest
contributions and colored as in Figure 5.3.
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Figure D.6 – (Supporting Figure 5.4) Schematic of the interpolation scheme between similar Sobolev Prin-
cipal Vectors (SPV). SPVs correspond to pairs of vectors ordered by decreasing similarity. (A) When projecting
on the top SPVs, it is unclear which of the two vectors to choose: selecting any of the two induces a bias towards
either cell lines or tumors. To design a vector which balances the effect of cell lines and tumors, we employ the
following interpolation scheme. (B) By drawing an arc between the cell line and the tumor vector, we obtain
intermediate vectors of same norm. We discretize this arc, e.g., by selecting 100 points equally spaced on this
arc, and project cell line and tumor data onto each of these intermediate vectors. (C) For each of these interme-
diate vectors, we compare the cell line and tumor projected data using the Kolmogorov-Smirnoff distance: the
lower the distance, the closer the two projected datasets. We select the intermediate vector which minimizes
this distance and refer to this vector as the consensus feature. This procedure is performed independently for
each SPV pair. Such a procedure is inspired from earlier works and stems from an equivalent definition of the
geodesic curves in the Grassmann manifold.
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Figure D.7 – (Supporting Figure 5.4) Sobolev Alignment allows an effective co-clustering of cell lines and tu-
mors. (A) Histograms of Spearman correlations between scVI embeddings and KRR approximations by Falkon.
(B) Similarity between the Sobolev Principal Vectors (SPV) alongside the maximum similarity value observed
after 100 gene permutations (dashed line). (C) UMAP visualization of Kinker and Kim datasets after Sobolev
Alignment and MNN correction (Figure 5.4C) colored by patients (left) and cell line (right). (D) Boxplots of
distances between cells from the same patient or cell line. Distances are computed as cosine distances be-
tween the cells embedded using Sobolev Alignment and MNN correction. (E) Median intra-sample distances
observed in panel E.
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Figure D.8 – (Supporting Figure 5.4) Comparison of integration obtained using standard batch-effect cor-
rection tools. We performed the same integration task using 3 state-of-the-art batch effect correction tools.
After integration with each method, we projected the data in two dimensions using UMAP. (A) Results obtained
using Seurat v3. (B) Results obtained using Harmony. (C) Results obtained using LIGER.
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Figure D.9 – (Supporting Figure 5.4) External biomarkers validation of Sobolev Alignment. (A) 10-fold cross-
validation negative mean squared error (NMSE) obtained on cell line data when training k-Nearest-Neighbors
(kNN) regression models on “EGFR signaling” levels (Reactome) for various numbers of neighbors. “Uniform”
indicates that neighbors were similarly weighted for prediction, while “distance” indicates an inverse-distance
weighting. (B) Predicted EGFR signaling level for tumor cells broken down by EGFR mutations. (C-D) 10-
fold cross-validation NMSE on cell lines when training kNN regression models on G2/M scores. (E) 10-fold
cross-validation NMSE on cell lines when training kNN regression models on S-phase scores. (F) Boxplots
of predicted S-phase score on tumor cells compared to S-phase scored measured using Seurat v3 cell-cycle
regression tool. Spearman and Pearson correlation are computed between the continuous (non-binned) val-
ues. (G) 10-fold cross-validation NMSE on tumors when training kNN regression models on “KRAS UP” levels
(Hallmarks). (H) Predicted “KRAS UP” level for tumor cells broken down by KRAS mutations.
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Figure D.10 – (Supporting Figure 5.6) Structure of the employed perturbation screen (McFarland dataset).
(A) Heatmap indicating whether a cell line (column) has been screened for a certain anti-cancer compound
(row). (B) Heatmap indicating the number of cells retrieved for each condition.
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Figure D.11 – (Supporting Figure 5.6) Sobolev Alignment between the McFarland and Kim datasets. (A) His-
tograms of spearman correlations between scVI embeddings and KRR approximations by Falkon. (B) Similarity
between the Sobolev Principal Vectors (SPVs) alongside the maximum similarity value observed after 100 gene
permutations (dashed line). (C) UMAP of cell lines and tumors after projection on the top SPVs, interpolation
and MNN correction.
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Figure D.12 – (Supporting Figure 5.6) Analysis of drug perturbations after projection on SPVs common
between cell lines and tumors. (A) To determine the significant effect size threshold, we used the DMSO-
treated cells. For each cell line, we randomly sampled 1000 pairs of cells from the pool of DMSO-treated cells
and computed the absolute difference in gene weights for all genes. We then took the 95% percentile of all
these differences as our effect-size threshold. A gene up- or down-regulation is therefore deemed significant
if the Mann-Whitney FDR-corrected p-value is below 0.05 and if the effect size lies above random sampling
in DMSO-treated cells. (B) Number of perturbed genes, for each cell line, after Everolimus induction. (C)
Number of perturbed genes for each cell line after Trametinib induction. (D) Number of perturbed genes for
each cell line after BRD3379 induction. (E) Number of perturbed genes for each cell line after JQ1 induction
(BRD4-inhibitor). (F) Boxplot of q-values obtained when analyzing JQ1 using the Reactome gene sets.
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D.2. NOTATIONS
In all of this work, we use gene expression profiles characterized by p genes (or
features). Elements referring to the source data are characterized by an X sub-
script/superscript, while elements referring to the target data are characterized by a Y
subscript/superscript.
Source data is comprised of nX samples, yielding a data matrix X ∈ RnX ×p ; target data
is comprised of nY samples, yielding a data matrix Y ∈RnY ×p .

D.3. KERNEL METHODS AND ASSOCIATED FEATURE SPACE
We here briefly review mathematical and technical details on kernel methods useful to
understand the workflow and derivation of Sobolev Alignment. For a longer and detailed
presentation of these approaches, we refer the interested reader to [127, 273, 274]. In
particular, [275] contains references and proofs to all results listed below.

D.3.1. KERNEL AND ASSOCIATED FEATURE SPACE (RKHS)
Definition D.3.1 (Positive Definite Kernel). A kernel K is a function which takes as inputs
two samples and return a scalar value, formally: K : x, y ∈Rp →R.
A kernel K is positive-definite (p.d. in short) if, and only if:

• K is symmetric, i.e., for all x, y ∈Rp ,K
(
x, y

) = K
(
y, x

)
.

• All kernel matrices are positive definite, i.e.,

∀n ∈N∗,∀x1, ..., xn ∈Rp ,∀λ1, ..,λn ∈R,
n∑

i=1

n∑
j=1

λiλ j K
(
xi , x j

)≥ 0. (D.1)

A positive-definite kernel can be implicitly understood as an inner product in an Hilbert
space. This property is interesting as it allows to perform linear algebra operations in
a higher-dimensional space where direct computation would be potentially intractable.
Working in an higher-dimensional space allows to incorporate non-linearities which is
often needed to model complex processes. This property is usually referred to as the
"kernel-trick", and is formalized by the Aronszajn theorem.

Theorem D.3.2 (Aronszajn). K is positive-definite if and only if there exists a Hilbert space
H and a mapping function φ :Rp 7→H such that:

∀x, y ∈Rp , K
(
x, y

) = 〈
φ (x) ,φ

(
y
)〉

H . (D.2)

This feature space is a Reproducing Kernel Hilbert Space, or RKHS in short, and is an
intrinsic property of the kernel 1. By construction, an RKHS corresponds to a functional
space and each sample embedding φ (x) (for x ∈ Rp ) can be understood as a function

1The RKHS is actually defined by adding two more hypothesis, which we do not list for sake of simplicity. We
refer the reader to [273] for a complete construction of the RKHS.
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Rp → R. The elements of H are both vectors in a high-dimensional space and func-
tions. This duality allows us to approximates encoder functions in such an RKHS, and
also apply linear algebra and compare encoders as vectors. This is formalized by the
Reproducing property.

Proposition D.3.3 (Reproducing property). Let K be a p.d. kernel with RKHS H . Then
H is a set of functions, i.e. H ⊂ {

f :Rp →R
}

with the two following properties:

• ∀x ∈H , Kx =̂ y 7→ K
(
y, x

) ∈H

• ∀ f ∈H ,∀x ∈Rp , f (x) = 〈
Kx , f

〉
H

We will now define the three (p.d.) kernels we employ in our study, alongside their fea-
ture spaces.

D.3.2. GAUSSIAN, MATÉRN AND LAPLACIAN KERNEL AND ASSOCIATED

RKHS
We consider three different kernels in our work. We here define them and we will show
in a subsequent part how these three are related.

Definition D.3.4 (Laplacian kernel). Let σ > 0 we define the Laplacian kernel K L
σ on Rp

as:

∀x, y ∈Rp , K L
σ

(
x, y

) = exp

(
−‖x − y‖

σ

)
. (D.3)

Definition D.3.5 (Matérn kernel [276]). Let ν> 0 and σ> 0, we define the Matérn kernel
K M
ν,α on Rp as:

∀x, y ∈Rp , K M
ν,σ

(
x, y

) = 21−ν

Γ (ν)

(p
2ν‖x − y‖

σ

)ν
Kν

(p
2ν

σ
‖x − y‖

)
, (D.4)

where Γ is the Gamma function, and Kα the modified Bessel function of second kind of
order α.

A few interesting examples of Matérn kernels are the following:

Order 1/2: k 1
2 ,σ

(
x, y

) = exp

(
−‖x − y‖

σ

)
Order 3/2: k 3

2 ,σ

(
x, y

) =
(

1+
p

3‖x − y‖
σ

)
exp

(
−
p

3‖x − y‖
σ

)

Order 5/2: k 5
2 ,h

(
x, y

) =
(

1+
p

5‖x − y‖
σ

+ 5‖x − y‖2

3σ2

)
exp

(
−
p

5‖x − y‖
σ

) (D.5)

Definition D.3.6 (Gaussian kernel). Letσ> 0, we define the Gaussian kernel K L
σ on Rp as:

∀x, y ∈Rp , K G
σ

(
x, y

) = exp

(
−‖x − y‖2

2σ2

)
. (D.6)
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D.3.3. EQUIVALENCE OF THE THREE KERNELS AND HYPER-PARAMETERS
As already hinted at by the first line of Equation (D.5), the Gaussian, Matérn and Lapla-
cian kernels are related.

Proposition D.3.7 (Equivalence of Gaussian, Matérn and Laplacian kernels). Let σ > 0,
we have the following equalities:

Equivalence between Matérn and Laplacian : K M
1
2 ,σ

= K L
σ . (D.7)

Equivalence between Matérn and Gaussian : lim
ν→+∞K M

ν,σ = K G
σ . (D.8)

D.3.4. RELATIONSHIP BETWEEN MATÉRN FEATURE SPACES AND SOBOLEV

SPACES
We first start by a general definition of the RKHS of Matérn kernel, which is related to the
Gaussian and Laplacian kernels (Proposition D.3.7). Matérn kernels are related to the so-
called Sobolev spaces which are functional spaces used in various areas of mathematics
and physics.

Definition D.3.8 (Weak differentiation operation). Let β ∈ Np and
∣∣β∣∣ = ∑

1≤i≤n βi . Let
f be a function from Rp to R, β-weakly differentiable. We denote by Dβ f the βthweak
differential of f .
In the particular case when f is

∣∣β∣∣-times differentiable, we have the following equality:

Dβ f = ∂|β|
∂xβ1

1 ...∂x
βp
p

f . (D.9)

Definition D.3.9 (Space of continuous integrable functions). We define as L2 (Rp ) the
space of continuous functions defined as follows:

L2
(
Rp) =

{
f :Rp →R |

∫
Rp

f (x)2d x <+∞
}

, (D.10)

endowed with the following inner-product.

∀ f , g ∈ L2
(
Rp)

, 〈 f , g 〉L2(Rp ) =
∫
Rp

f (x)g (x)d x. (D.11)

It defines a Hilbert space2, which we denote as L2 in the sequel. .

Using these two bricks, we define a Sobolev spaces as follows:

Definition D.3.10 (Sobolev spaces). Let s > 0 be an integer. We define the Sobolev space
of order s, denoted noted W s

2 as:

W s
2 =

{
f ∈ L2 | ∑

β∈Np ||β|≤s

∥∥∥Dβ f
∥∥∥2

L2
<+∞

}
, (D.12)

2L2 is actually a quotient space defined up to an equivalent class related to the Lebesgue-measure used on Rp .
We defined it here as a functional space for sake of clarity.
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endowed with the following inner product:

∀ f , g ∈W s
2 , 〈 f , g 〉W s

2
= ∑

β∈Np ||β|≤s

〈Dβ f ,Dβg 〉L2
. (D.13)

These Sobolev spaces can approximate any function in L2, as shown by the following
proposition.

Proposition D.3.11 (Density of W s
2 in L2). Let f ∈ L2 and s > 0 be an integer. There exists

f1, f2, ... ∈W s
2 such that: ∥∥ fn − f

∥∥
L2

−−−−−→
n→+∞ 0 (D.14)

Proposition D.3.12 (Matérn feature space). Let ν > 0 and σ > 0. If ν+ p
2 is an integer,

then K M
ν,σ has for RKHS Hν,σ =W

ν+ p
2

2 , and the associated norms are equivalent, i.e. there
exists c1,c2 > 0 such that:

∀ f ∈W s
2 , c1‖ f ‖W s

2
≤ ‖ f ‖Hν,σ ≤ c2‖ f ‖W s

2
. (D.15)

The result of Proposition D.3.12 shows that the feature space associated to the Matérn
kernel is equivalent to a Sobolev space. Any kernel-based algorithm which employs the
Matérn kernel therefore implicitly operates on functions which lie on a Sobolev space.
By definition, the Sobolev inner product of order s between two functions compares
all the derivatives of order s or lower using an Euclidean distance. Due to this natural
(and standard) way of comparing functions, coupled with the density argument from in
L2 (Proposition D.3.11), we decided to use Sobolev spaces to approximate our encoder
functions, and therefore turned to Matérn kernel machines. Although directly using the
L2 space would have been ideal, we were here hindered by the fact that L2 is not an RKHS
and therefore not amenable to approximation by kernel machines.

D.4. TRAINING OF VARIATIONAL AUTO-ENCODERS ( VAE)
Definition D.4.1 (Space of probability measures). We define by P (Rp ) the space of all
Borel probability measures on Rp .

Definition D.4.2 (VAE models). We define the following two sets of models:

µX :Rp 7→RdX , ΣX :Rp 7→RdX and g X :RdX 7→ P
(
Rp)

µY :Rp 7→RdY , ΣY :Rp 7→RdY and g Y :RdY 7→ P
(
Rp) . (D.16)

g X and g Y outputs probability distributions on Rp and are referred to as decoders (or
stochastic decoders). The families (µX ,ΣX ) and (µX ,ΣX ) are referred to as encoders (or
stochastic encoders).
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The two functions g X and g Y can be tailored to specific problems. In the particular case
of scVI, the decoder is constructed based on a zero-inflated negative binomial (ZINB),
which models well the scRNA-seq data structure.

Definition D.4.3 (Latent factors sampling). We assume that the latent factors follow a
multivariate normal prior, i.e.,

zX ∼N
(
0dX , IdX

)
and zY ∼N

(
0dY , IdY

)
. (D.17)

Given two datapoints x ∈Rp and y ∈Rp , its latent factors are computed by sampling from
the following multivariate normal posterior:

zX |x ∼N
(
µX (x) ,diag

(
ΣX (x)

))
and zY |y ∼N

(
µY (

y
)

,diag
(
ΣY (

y
)))

. (D.18)

Considering a multivariate normal prior over the latent factors is a standard design
choice, particularly attractive due to the so-called re-parametrization trick [178]. The
original paper of scVI ([182]) contains additional information on the specific model we
used.

D.5. COMPARING ENCODERS BY KERNEL RIDGE REGRESSION

APPROXIMATION
The VAE models presented in Section D.4 concentrate a high-dimensional signal into a
few latent factors. Understanding how the latent factors from the source model compare
to the ones from the target model is however a difficult task. As presented in the main
text, we propose to approximate each VAE model by means of Matérn kernel machines
and present here our approach in greater mathematical details.
Our approach stems from the rationale that a wide class of function can be approximated
by a Matérn kernel machine, provided enough data-points are available – we say that the
Matérn kernel is a universal approximator. As generative models can generate their own
data points, this allows us to exploit the consistency of kernel machines to our advantage
by attempting to get as close as possible to the asymptotic limit.
Once the functions have been approximated, we can work in the Matérn kernel feature
space (i.e. Sobolev space, Proposition D.3.12) and align these functions using the Repre-
senter Theorem formulation of the approximated functions.

Definition D.5.1 (Mean function of the VAE). As explicited in Definition D.4.2, the en-
coder of a VAE is parametrized by two sets of functions: one for the means and one for
the standard-deviations. We here consider the mean embedding given to each sample and
define, following notations from Equation(D.16):

∀t ∈ {X ,Y } , ∀i ∈ {1, ..,dt } , f t
i =µt

i . (D.19)

Following the scVI model, we here assume that the latent factors follow a multivariate-
normal prior.
We have two sets of encoders we want to align – we will approximate them using two
distinct Matérn kernel ridge regression defined as follows.
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D.5.1. DEFINITION OF KERNEL RIDGE REGRESSION
In this subsection, we succintly present some results about Kernel Ridge Regression. For
the sake of presentation only, we refer to an hypothetical dataset D = {(x̂1, ẑ1) , .., (x̂N , ẑN )}
with x̂i ∈ Rp and ẑi ∈ R. This dataset does not refer to cell lines or tumors and is given
purely for illustrative purposes.

Definition D.5.2 (Matérn Kernel Ridge Regression (KRR)). We approximate a function
f :Rp →R by performing Kernel Ridge Regression with the Matérn kernel K M

ν,σ. This yields,
for λ> 0, the function θ∗ ∈Hα,h solution of:

θ∗ = argmin
θ∈Hα,h

1

N

N∑
i=1

(
f (x̂i )−θ (x̂i )

)2 + λ‖θ‖2
Hν,σ

. (D.20)

The Kernel Ridge Regression problem from Definition D.5.2 can be solved in closed form.

Proposition D.5.3 (Solution of KRR). The solution of Equation (D.20) is:

θ∗ =
N∑

k=1
αk K M

ν,σ (x̂k , ·) , with


K = (

K M
ν,σ

(
x̂i , x̂ j

))
1≤i , j≤N

ẑ = [ẑ1, .., ẑN ]

α = (K +λN IN )−1 ẑ

(D.21)

Solving the problem from Definition (D.5.2) therefore requires inverting a N ×N matrix,
which becomes intractable as soon as N reaches approximately a few tens of thousands.
To scale our approach to millions of samples, we exploit recent advances in kernel ma-
chines such as Falkon.

Proposition D.5.4 (Falkon approximation of KRR). The solution of Equation (??) can be
approximated by:

θ̂ =
M∑

k=1
αk K M

ν,σ (x̃k , ·) , (D.22)

with M < N and α coefficients computed by the Nyström approximation. The M points
x̃1, .., x̃M are referred to as Falkon anchor points, and correspond to a subset of the train-
ing points x̂1, .., x̂N .

Proposition D.5.4 shows that the weight vector α from Proposition D.5.3 can be approx-
imated using the Nyström approximation, which is the strategy employed in the Falkon
package. We refer the reader to the original Falkon paper for details on how to perform
this approximation, as it is not necessary for our derivation. The sum expansion of Equa-
tion (D.21) is the cornerstone of all these methods.
Importantly, the Nyström approximation does not correspond to performing KRR by re-
stricting to M subsampled points. The remaining N −M points are influencing the so-
lution and are present in the weights α: their influence has been factored in during the
training process.
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D.5.2. APPROXIMATION OF ENCODERS BY LARGE-SCALE KRR
We consider one Matérn kernel K M

ν,σ which we refer to as K in the rest of the text. The
RKHS Hν,σ is also referred to as H for ease of notation.

Definition D.5.5 (Model Samples). Let N ∈N. Using cell line (resp. tumor) VAE (Section
D.4), we sample N points, called Model Samples, as follows:

• z X
1 , .., z X

N ∼N
(
0, IdX

)
(resp. zY

1 , .., zY
N ∼N

(
0, IdY

)
)).

• Passing the random points through the decoder, we obtain x̂ X
1 , .., x̂ X

N ∈ Rp (resp.
x̂Y

1 , .., x̂Y
N ).

• We pass these sample points into the encoders to get the embeddings ẑ X
1 , .., ẑ X

N ∈RdX

(resp. ẑY
1 , .., ẑY

N ∈RdY ).

A VAE is not bijective: we should therefore expect that the ẑ X
i will differ from the z X

i .
Since we are here interested to approximate the encoder functions, we computed the
output of the Model Points by each encoder function. Furthermore, using the latent
values sampled from the multivariate normal prior distribution would have led to errors
in the approximation due to the stochasticity of the VAE: the random points are sampled
from a distribution specific to each latent value and are not deterministic.

Definition D.5.6 (KRR Approximation). We use the Model Samples (Definition D.5.5) as
training data to train dX (resp. dY ) Falkon KRR models for cell lines (resp. tumors), which
we termed θX

1 , ..,θX
dX

(resp. θY
1 , ..,θY

dY
) (Definition D.5.2, Propositions D.5.3 and D.5.4),

with M < N . We define the two matrices αX ∈RdX ×M and αY ∈RdY ×M as the KRR sample
weights:

∀t ∈ {X ,Y } , ∀k ∈ {1, ..,dt } , θt
k =

M∑
i=1

αt
k,i K

(
x̃ t

i , ·) , (D.23)

where x̃ X
1 , · · · , x̃ X

M and x̃Y
1 , · · · , x̃Y

M are selected from the training data.

In Definition D.5.6, the M Falkon anchor points correspond to M model points selected
at random from the training data (x̂ X

1 , · · · , x̂ X
M and x̂Y

1 , · · · , x̂Y
M ). We refer the reader to

[180] for a presentation and discussion on the methods used to sample these points.

D.5.3. COSINE SIMILARITY MATRIX
Definition D.5.7 (Un-normalized cosine similarity). We define the un-normalized cosine
similarity matrices between X and Y as the matrix M̃X ,Y :

M̃X ,Y =
[
〈θX

i ,θY
j 〉H

]
1≤i≤dX
1≤ j≤dY

, (D.24)

and the cosine similarity matrices of X (resp. Y ), denoted M̃X (resp. M̃Y ), as:

M̃X =
[
〈θX

i ,θX
j 〉H

]
1≤i≤dX
1≤ j≤dX

and M̃Y =
[
〈θY

i ,θY
j 〉H

]
1≤i≤dY
1≤ j≤dY

. (D.25)
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Definition D.5.8 (Similarity matrices). We define KX ∈ RN×N , KY ∈ RN×N and KX ,Y ∈
RM×M as:

KX =
(
K

(
x̃ X

i , x̃ X
j

))
1≤i , j≤M

KY =
(
K

(
x̃Y

i , x̃Y
j

))
1≤i , j≤M

KX ,Y =
(
K

(
x̃ X

i , x̃Y
j

))
1≤i , j≤M

. (D.26)

Proposition D.5.9 (Computation of un-normalized cosine similarity matrices). We have
the following equalities:

M̃X = αX KXα
X T

M̃Y = αY KY α
Y T

M̃X ,Y = αX KX ,Y α
Y T

. (D.27)

Proof. We here show the proof for M̃X ; the two other equalities follow from the same
idea.
We first recall the first reproducing property of the kernel K :

∀x, y ∈Rp ,
〈

K (x, ·) ,K
(
y, ·)〉H = K

(
x, y

)
. (D.28)

Let i , j ∈ {1, ..,dX }, we have:

〈θX
i ,θX

j 〉H =
M∑

k=1

M∑
l=1

αX
i ,kα

X
j ,l K

(
x̃ X

k , x̃ X
l

)
, (D.29)

using the bi-linearity of the Hilbertian norm, the fact that αX is real-valued, and the first
reproducing property.
Combining Equation (D.29) with the definition of the similarity matrix KX (Definition
D.5.8), we obtain the desired property.

Using these notations, we define the cosine similarity matrix as follows.

Definition D.5.10 (Cosine similarity matrix). We define the cosine similarity matrix MK

as:

MK = (
M̃X

)−1/2
M̃X ,Y

(
M̃Y

)−1/2
. (D.30)

D.6. ENCODER ALIGNMENT BY KERNEL PRINCIPAL VECTORS

D.6.1. GENERAL DEFINITION OF PRINCIPAL VECTORS
We define the Principal Vectors (PVs) between source and target VAEs as the pairs of
vectors (one from source, one from target) with a maximal inner-product in H .
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Definition D.6.1 (Principal Vectors). Let d̂ = min(dX ,dY ). We define the d̂ Principal Vec-
tors (PVs) (s1, t1) , ..,

(
sd̂ , td̂

) ∈H ×H as the functions that maximise the similarity between
source and target subspaces, i.e.,

∀k ∈ {1, .., d̂}, sk , tk = argmax
s∈span

(
θX

1 ,..,θX
dX

)
,

t∈span
(
θY

1 ,..,θY
dY

)
〈s, t〉H s.t


〈s, s〉H = 〈t , t〉H = 1

∀i < k, si ⊥ s

∀i < k, ti ⊥ t

(D.31)

D.6.2. COMPUTATION OF PVS

Theorem D.6.2 (Matérn PVs). Let MK = UΣV T be the Singular Value Decomposition
(SVD) of the cosine similarity matrix (Definition D.5.10). Let’s define γX and γY as:

γX =U T (
M̃X

)−1/2
αX and γY =V T (

M̃Y
)−1/2

αY (D.32)

Then the PVs (Definition D.6.1) can be computed as follows:

∀k < d̂ , sk =
M∑

i=1
γX

k,i K
(
x̃ X

i , ·) and tk =
M∑

i=1
γY

k,i K
(
x̃Y

i , ·) . (D.33)

Proof. By definition of s1, .., sd̂ and t1, .., td̂ (Equation (D.31)), there exist ξX ∈ Rd̂×dX and

ξY ∈Rd̂×dY such that:

∀k ∈ {1, ..,d} , sk =
dX∑
l=1

ξY
k,lθ

X
k and tk =

dY∑
l=1

ξY
k,lθ

Y
k . (D.34)

Using the bi-linearity of the inner product, we have:

∀k, l ∈ {1, ..,d} ,


〈sk , tk〉 = ξX

k
T

M̃X ,Y ξY
k

〈sk , sl 〉 = ξX
k

T
M̃X ξX

l

〈tk , tl 〉 = ξY
k

T
M̃Y ξY

l

. (D.35)

Combining Equations (D.34) and (D.35) in Equation (D.31) yields the following:

∀k ∈ {1, .., d̂}, ξX
k ,ξY

k = argmax
uX ∈RdX ,
uY ∈RdY ,

uX T
M̃X ,Y uY s.t



uX T
M̃X uX = 1

uY T
M̃Y uY = 1

∀i < k, uX T
M̃X ξ

X
i = 0

∀i < k, uY T
M̃Y ξ

Y
i = 0

. (D.36)

H is an Hilbert space, therefore, assuming that basis functions are linearly indepen-
dent, M̃X and M̃Y are symmetric and positive-definite and thus admit a square-root and
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an inverse-square-root.
Let’s define κX = γX M̃1/2

X and κY = γY M̃1/2
Y . The PV definition by linearisation (Equation

(D.36)) is then equivalent to the SVD of M̃−1/2
X M̃X ,Y M̃−1/2

Y = MK defined as MK =UΣV T .

We therefore have κX = U T and κY = V T , which turns to ξX = U T M̃−1/2
X and ξY =

V T M̃−1/2
Y .

Using the Representer Theorem (Definition D.5.6), we obtained desired formula.

Corollary D.6.2.1. Using same notation as Theorem D.6.2 with MK =UΣV T :

∀k ∈ {1, .., d̂}, 〈sk , tk〉H = Σk,k ∈ [0,1]. (D.37)

These values can be understood as the cosine values of angles, called principal angles.

D.7. INTERPRETING THE LATENT FACTORS BY TAYLOR EXPAN-
SION OF KERNEL APPROXIMATION

We here present our interpretability scheme, which aims at understanding which genes,
or combinations thereof, contribute the most to the latent factors. Our scheme relies
on the Taylor expansion of the kernel used for the approximation. Unfortunately, to the
best of our knowledge, no analytical form of an orthonormal basis for the Matérn RKHS
exists in the literature. We are therefore limited to the Gaussian kernel of length-scale σ,
which we refer to as Kσ in the sequel ; we refer to its RKHS as Hσ.

D.7.1. ORTHONORMAL BASIS OF GAUSSIAN FEATURE SPACE
We here summarise the construction of the orthonormal basis (ONB) which we exploit.
Its complete derivation can be found in [169].

Definition D.7.1 (Univariate basis function). Let j ∈ {
1, .., p

}
and k ∈ N. We define the

univariate basis function ek
j :Rp 7→R as:

∀x ∈Rp , ek
j (x) =

xk
j

σk
p

k !
exp

(
−

x2
j

2σ2

)
(D.38)

Definition D.7.2 (Gaussian basis function). Let I = (
I1, . . . , Ip

) ∈Np , we define the Gaus-
sian basis function G I as:

∀x ∈Rp , G I (x) =
p∏

j=1
e

I j

j (x) =
 p∏

j=1

x
I j

j

σI j
√

I j !

exp

(
−‖x‖2

2σ2

)
. (D.39)

Proposition D.7.3 (Orthonormal basis). Let I , J ∈Np and II ,J be the dirac function (equals
to one if all values of I and J are equal, zero otherwise). We have:〈

G I ,G J
〉
Hσ

= II ,J , (D.40)
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which shows that the (G I )I∈Np defines an orthonormal family of Hσ.
This family furthermore defines a basis of H , i.e.,

∀x, y ∈Rp , Kσ

(
x, y

) = ∑
I∈Np

G I (x)G I
(
y
) = 〈

Gσ (x)Gσ

(
y
)〉

Hσ
, (D.41)

with Gσ (x) =∑
I∈Np G I (x)G I .

Proof. See Theorem 3 and Theorem 4 of Steinwart et al [169] for the proof of this propo-
sition.

D.7.2. FEATURE ATTRIBUTION SCORES
Using results from Proposition D.7.3, we highlight three kinds of Gaussian basis func-
tions (Definition D.7.2) of interest: linear, interaction and higher-order interaction
terms.

Definition D.7.4 (Dirac vector). Let k ∈ {
1, .., p

}
. We define as δk ∈Np the vectors of zeros,

with a single one at the k-th position.

Definition D.7.5 (Linear weights). Let θ ∈Hσ and k ∈ {
1, .., p

}
. We define the k-th feature

weight of θ, termed Lk , as the projection on Gδk
:

Lk (θ) = 〈
θ,Gδk

〉
Hσ

. (D.42)

This quantity intuitively corresponds to the weight of a single-feature (the k-th) modu-
lated by the squared exponential term.

Definition D.7.6 (Interaction weight). Let θ ∈ Hσ and let k, l ∈ {
1, .., p

}
. We define the

k, l -interaction weight of θ, termed Ik,l , as the projection on Gδk+δl
:

Ik,l (θ) = 〈
θ,Gδk+δl

〉
Hσ

. (D.43)

This quantity intuitively corresponds to the weight of an interaction term, i.e. the prod-
uct of two genes, modulated by the squared exponential term. We can observe that,
when k = l , the interaction terms corresponds to a quadratic term.

Definition D.7.7 (I -higher order weight). Let θ ∈Hσ be an element of the Gaussian ker-
nel RKHS. Let I ∈ Np with |I | = ∑p

i=1 Ii ≥ 3. The I -higher-order-interaction weight of θ,
termed I+

I , is defined as the projection on G I :

I+
I (θ) = 〈θ,G I 〉Hσ

. (D.44)

Using these three kinds of contributions, we can define the global contribution of linear,
interaction and higher order interactions as follows.
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Definition D.7.8 (Linear, interactions and higher order interactions contributions). Let
θ ∈ Hσ. We define the linear, interactions and higher-order interactions contributions,
called L , I and I+ respectively, as the squared norm of the associated vector weights,
i.e.:

L (θ) =
p∑

k=1
Lk (θ)2 , I (θ) = ∑

1≤k≤l≤p
Ik,l (θ)2 and I+ (θ) = ∑

I∈Np

|I |≥3

I+
I (θ)2 . (D.45)

D.7.3. COMPUTATION OF GENE-LEVEL CONTRIBUTION (LINEAR)
We now present how to compute the linear weights. These rely on the artificial samples
(Definition D.5.5) used for approximating the latent factor (Definition D.5.6).

Definition D.7.9 (Offset matrices). We define the two offset matrices O X ∈ RM and OY ∈
RM as

O X = diag

[
exp

(
−‖x̃ X

i ‖2

2σ2

)]
1≤i≤M

and OY = diag

[
exp

(
−‖x̃Y

i ‖2

2σ2

)]
1≤i≤M

(D.46)

Definition D.7.10 (Model points matrices). We define the two artificial sample matrices
A X ∈RM×p and A Y ∈RM×p as:

A X = [
x̃ X

1 , .. , x̃ X
M

]T
and A Y = [

x̃Y
1 , .. , x̃Y

M

]T
(D.47)

Theorem D.7.11 (Computing individual contributions). We have the following equali-
ties, for all t ∈ {X ,Y }:

L t
f act = (

L j
(
θt

i

))
1≤i≤dt
1≤ j≤p

= 1

σ
αt O t A t .

L X
SPV = (

L j (si )
)

1≤i≤dX
1≤ j≤p

= 1

σ
γX O X A X .

L Y
SPV = (

L j (ti )
)

1≤i≤dY
1≤ j≤p

= 1

σ
γY OY A Y .

(D.48)

Proof. We first recall the second reproducing property of the kernel Kσ:

∀ f ∈H ,∀x ∈Rp ,
〈

K G
σ (x, ·) , f

〉
Hσ

= f (x) . (D.49)

Let 1 ≤ i ≤ dt and 1 ≤ j ≤ p. Using Definitions D.5.6 Definition D.7.5 and the aforemen-
tionned second reproducing property, we have:

L j
(
θt

i

) =
M∑

k=1
αt

i ,k

〈
K G
σ

(
x̃ t

k , ·) ,Gδ j

〉
Hσ

=
M∑

k=1
αt

i ,kGδ j

(
x̃ t

k

)
. (D.50)
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Using the definition of the Gaussian basis functions (Definition D.7.2), we obtain:

L j
(
θt

i

) =
M∑

k=1
αt

i ,k

x̃ t
k, j

σ
exp

(
−

∥∥x̃ t
k

∥∥2

2σ2

)
, (D.51)

which, put in matrix format, gives the desired result.
Same idea gives the other two results, using the expansion of Theorem D.6.2 instead of
Definition D.5.6.

It follows from Theorem D.7.11 that the global linear contribution can be computed as
follows.

Proposition D.7.12 (Computing global contributions). We have the following equalities:

∀t ∈ {X ,Y } ,∀i ∈ {1, ..,dt } , L
(
θt

i

) = 1

σ2

(
αt O t A t A t T

O tαt T
)

i ,i
. (D.52)

∀i ∈ {1, ..,dX } , L (si ) = 1

σ2

(
γX O t A t A t T

O tγX T
)

i ,i
. (D.53)

∀i ∈ {1, ..,dY } , L (ti ) = 1

σ2

(
γY O t A t A t T

O tγY T
)

i ,i
. (D.54)

Proof. Immediate by combining Theorem D.7.11 with Definition D.7.8.

D.7.4. COMPUTATION OF INTERACTION WEIGHTS

Definition D.7.13 (Gene expression product matrix). We define the matrices A X and A Y

as

A
X =

[
A X

:,i ◦A X
:, j

]
1≤i≤ j≤p

∈RM× p(p+1)
2

A
Y =

[
A Y

:,i ◦A Y
:, j

]
1≤i≤ j≤p

∈RM× p(p+1)
2

, (D.55)

where ◦ is the Hadamard (piece-wise) product between two vectors.

The product matrices presented in Definition D.7.13 correspond to the
products of columns of A X and A Y . The indices i and j are or-
dered by first setting i and then varying j in increasing order, i.e.
(1,1) , (1,2) , ..,

(
1, p

)
, (2,2) , ..,

(
2, p

)
, ..,

(
p −1, p −1

)
,
(
p −1, p

)
,
(
p, p

)
.

In order to keep track of the different interaction terms and avoid computing the same
interaction terms twice, we introduce the following interaction indexing.

Definition D.7.14 (Interaction indexing). We define the interaction indexing function Υ
as:

∀i , j ∈ {
1, .., p

}
, Υ

(
i , j

) =
(i −1)

(
p +1− i

2

)
+ j if i ≤ j

Υ
(

j , i
)

otherwise
. (D.56)
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Proposition D.7.15. The interaction weights can be computed as follows, for t ∈ {X ,Y }
and k ∈ {1, ..,dt }:

∀1 ≤ i < j ≤ p,

Ii , j
(
θt

k

) = 1

σ2

(
αt O t A

t
)

k,Υ(i , j)

Ii , j (sk ) = 1

σ2

(
γX O X A

X
)

k,Υ(i , j)

Ii , j (tk ) = 1

σ2

(
γY OY A

Y
)

k,Υ(i , j)

. (D.57)

D.7.5. INTERPRETRATION IN THE LAPLACIAN KERNEL
The orthonormal basis of the the Gaussian kernel of length-scale σ relies on the Hilber-
tian structure of the Gaussian RKHS σ. However, the Gaussian kernel Kσ and the Lapla-
cian kernel K L

σ correspond to the two extreme of the Matérn family: with ν going to in-
finity for the Gaussian and to 1

2 for the Laplacian kernel. We use this identity to transfer
the feature weights from the Gaussian setting to the Laplacian setting, which we present
here. This identification relies on two lemmas.

Lemma D.7.16. Let k, l ∈ {
1, .., p

}
with k 6= l , then〈

Gδk
,Gδl

〉
H L

σ
= 0 (D.58)

Proof. Let’s denote by F
[

f
]

the Fourier transform of a function f . Following [Kimel-
dorf et al] [277] (Lemma 3.1), the inner-product of the Laplacian RKHS is computed as
follows, for f and g two real functions:

〈
f , g

〉
σL = 1

(2π)p/2 Cσ,p

∫
Rp

F
[

f
]
F

[
g
](

2

σ2 +4π2‖ω‖2
) 1+p

2

dω, (D.59)

with · indicating complex conjugate. Noting that F
[
Gδk

]
(ω) =−i ωk

2σ2 exp
(
− ‖ω‖2

2σ2

)
by par-

tial derivation, we can write:

〈
Gδk

,Gδl

〉
H L

σ
= −1

(2π)p/2 Cσ,p

∫
Rp
ωkωl

(
2

σ2 +4π2‖ω‖2
) 1+p

2

exp

(
−‖ω‖2

σ2

)
. (D.60)

The integrated function is odd with regard to the plane ωk = 0, so
〈
Gδk

,Gδl

〉
H L

σ
= 0.

Lemma D.7.17. Let k1,k2, l1, l2 ∈
{
1, .., p

}
with (k1, l1) 6= (k2, l2),k1 < l1,k2 < k2, then〈

Gδk1+δl1
,Gδk1+δl1

〉
H L

σ

= 0 (D.61)

Proof. If k1 6= l1, we have:

F
[
Gδk1+δl1

]
= −ωk1ωl1

4σ2 exp

(
−‖ω‖2

2σ2

)
. (D.62)
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These two lemmas shows that the linear and interaction features – except quadratic
terms – form an orthogonal family of the Laplacian kernel RKHS. Their norm, however,
is not unit and computation thereof is analytically challenging and computationally un-
tractable due to the high dimensionality of the integration problem. In order to correct
and obtain a unit orthogonal family, we correct by using the linear and interaction con-
tributions from the Gaussian kernel (Definition D.7.8). Specifically, for a function f , we

multiply all the linear terms by
L ( f )
L L( f ) where L superscripts refers to the contribution in

the Laplacian kernel (no super-script for the gaussian kernel). We similarly multiply all

interaction terms by
I ( f )
I L( f ) .

D.8. DIFFERENCES AND COMPARISON WITH CANONICAL COR-
RELATION ANALYSIS (CCA)

Our methodology crucially relies on the notion of Principal Vectors (PV) in Hilbert
spaces. Since this notion also forms the backbone of Canonical Correlation Analysis
(CCA), and its kernel extension (k-CCA), it is natural to question the differences between
our approach and k-CCA. Apart from sharing the conceptual notion of Principal Vectors,
we believe our approach to markedly differ from CCA for two main reasons: a difference
in the input-pairing, and important differences in the maximization problem.

D.8.1. K-CCA IS UNSUPERVISED AND REQUIRES SAMPLE PAIRING

SHORT PRESENTATION OF KERNEL-CCA
Kernel CCA (k-CCA) takes as input:

• Two paired sets of samples x1, .., xn ∈X and y1, .., yn ∈Y , with X and Y two sets.

• Two kernels K A : X ×X −→ R and KB : Y ×Y −→ R with respective RKHS H A

(Theorem D.3.2).

K-CCA looks for the functions f A ∈H A and fB ∈HB with maximal correlation across the
samples, i.e., maximising

1
n

∑n
i=1 f A (xi ) fB

(
yi

)√
1
n

∑n
i=1 f A (xi )2

√
1
n

∑n
i=1 fB

(
yi

)2
. (D.63)

The solutions of this problem are of the form f A = ∑
1≤i≤nαi K A (xi , ·) and fB =∑

1≤i≤n βi KB
(
yi , ·), with α,β ∈ Rn . If we denote by KX = (

K A
(
xi , x j

))
1≤i , j≤n and KY =(

KB
(
yi , y j

))
1≤i , j≤n , α and β are the results of the following maximisation.

max
α,β∈Rn ,
αT K 2

Xα=1

βT K 2
Y β=1

αT KX KY β. (D.64)

This formulation shows that k-CCA is completely unsupervised, and does not readily
take into account the trained VAE. It can however be used between the model samples
which provide a larger training data for k-CCA.
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DIFFERENCE IN PAIRING

As shown in the previous section, k-CCA requires a sample-pairing. In our scenario, cell
line and tumor model samples (Definition D.5.5) constitute two independent sets; they
cannot therefore directly be used in k-CCA. Original cells from cell lines and tumors are
also not related, showing a first difference between k-CCA and Sobolev Alignment.
Cell line and tumor cells (and model samples), however, show a gene-level pairing. If
we consider the input data (Section D.2), we could exploit this pairing in CCA, yielding
functions f A and fB which take as input the values of a single gene across all cell line
and tumor samples, respectively. Such functions are therefore not living in the same
functional space as the one used in Sobolev Alignment (Definition D.5.6), and cannot be
easily used for assessing the similarity between cells from cell lines and tumors. Finally,
such procedure would require two sets of kernels (one for cell lines, one for tumors),
while Sobolev Alignment only requires one kernel.

D.8.2. DIFFERENCE IN OPTIMISATION PROBLEM
Even if we assume cells from cell lines and tumors to be paired, we argue that the opti-
misation problems in kernel-CCA and Sobolev Alignment markedly differ. Let us con-
sider the definitions of kernel-CCA (Equation D.64) and Sobolev Alignment (particularly,
Equation D.36). Both optimisations rely on finding a left- and a right-vector which max-
imise the spectrum of a certain non-symmetric matrix given some constraints. However,
the dimensions of the vectors differ between k-CCA and Sobolev Alignment, and, more
profoundly, Sobolev Alignment requires the computation of KX Y , which k-CCA does not:
it only relies on KX KY . Without further assumption on the hypothetical pairing between
cell line and tumor cells, it is not clear to us that these two matrices can be somewhat
related.
Finally, the constraints of the two problems strongly differ: K 2

X and K 2
Y are used in k-CCA

while only KX and KY are used for Sobolev Alignment.

D.9. ALGORITHM

D.10. GLOSSARY
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Algorithm 3 Sobolev Alignment

Require: Datasets X and Y , scVI parameters, number anchors M , number of artificial
points N , penalizations λX and λY , Matérn kernel Kν,σ.
Train scVI (VAE) model MX on X (dX hidden neurons).
Train scVI (VAE) model MX on Y (dY hidden neurons).
ZX ← N vectors sampled from N

(
0, IdX

)
.

X̂X ← decoding of ZX using decoder of MX

ẐX ← encoding of X̂X using encoder of MX

ZY ← N vectors sampled from N
(
0, IdY

)
.

X̂Y ← decoding of ZY using decoder of MY .
ẐY ← encoding of X̂Y using encoder of MY .
θX

1 , ...θX
dX

← KRR models between X̂X (input) and ẐX (label).

θY
1 , ...θY

dY
← KRR models between X̂Y (input) and ẐY (label).

αX ← Sample coefficients of θX
1 , ...θX

dX
.

αY ← Sample coefficients of θY
1 , ...θY

dY
.

KX ,KY ,KX Y ← Kernel matrices using Kν,σ on X̂X and X̂Y . {Definition D.5.8}.

M̃X ←αX KXα
X T

.
M̃Y ←αY KY α

X Y
.

M̃X ,Y ←αX KX ,Y α
Y T

.
M ← M̃−1/2

X MX ,Y M̃−1/2
Y . {Definition D.5.10}.

U ,Σ,V ← SVD decomposition of M {M =UΣV T }.
γX ←U T M̃−1/2

X αX .

γY ←V T M̃−1/2
Y αY . {Theorem D.6.2.}
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Symbol Meaning Reference

p Number of genes (features).
nX and nY Number of source (cell-lines) and target (tumors) samples.
R Real numbers.
Id Identity matrix of size d .
diag Diagonal matrix.
〈·, ·〉 Inner-product.
N

(
µ,Σ

)
Multivariate normal distribution, µ: mean, Σ: covariance.

XX and XY Source and target datasets, of sizes nX ×p and nY ×p.
K L
σ Laplacian kernel, σ:lengthscale. Definition D.3.4

K M
ν,σ Matérn kernel, ν:smoothness, σ:lengthscale. Definition D.3.5

K G
σ Gaussian kernel, σ:lengthscale. Definition D.3.6
Γ Gamma function
Kα Modified Bessel function of second kind of order α.
L2

(
Rp )

Space of continuous integrable functions. Definition D.3.9
W s

2

(
Rp )

Sobolev space of order s. Definition D.3.10
Hν,σ RKHS associated to the Matérn kernel K M

ν,σ. Proposition D.3.12
dX and dY Number of source and target latent variables. Definition D.4.2
µX

1 , ..,µX
dX

Mean embedding function for source VAE. Definition D.4.2

ΣX
1 , ..,ΣX

dX
Standard-deviation embedding function for source VAE. Definition D.4.2

f X
1 , .., f X

dX
Encoding (mean) functions for cell lines scVI model. Definition D.5.1

z X
1 , .., z X

N Points randomly sampled from noise (cell). Definition D.5.5
x̂ X

1 , .., x̂ X
N Decoded values of z X

1 , .., z X
N using cell line scVI model Definition D.5.5

ẑ X
1 , .., ẑ X

N Encoded values of x̂1 , .., x̂ X
N using cell line scVI model Definition D.5.5

θ̂t
k

KRR approximations for encoding functions f̂ t
k

Definition D.5.6
M Number of anchor points (Falkon approximation) Proposition D.5.4
αX and αY Sample weights for KRR approximations Definition D.5.6
M̃X Y Un-normalized cosine similarity matrix Definition D.5.10
M̃X and M̃Y Inner-product matrices between latent factors Definition D.5.10
KX ,KY , and KX Y Similarity matrices (between samples) Definition D.5.8
MK Cosine similarity matrix Definition D.5.10
d̂ Number of principal vectors (PVs) Definition D.6.1
s1 , ..., sd̂ Source principal vectors Definition D.6.1
t1 , ..., td̂ Target principal vectors Definition D.6.1

γX ,γY Sample-weights for source and target PVs Theorem D.6.2
GI , I ∈Np Gaussian basis function Definition D.7.2
Lk ,k ∈ {

1, .., p
}

Linear weights Definition D.7.5
Ik,l ,k, l ∈ {

1, .., p
}

Interaction weights Definition D.7.6
O X ,OY Offset matrices Definition D.7.9
A X ,A Y Model points matrices Definition D.7.10

A
X

,A
Y

Gene expression products matrix Definition D.7.14
Υ Interaction indexing Definition D.7.13
F Fourier transform.
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E.1. DEEP KERNEL LEARNING ON SINGLE CELL RNA-SEQ DATA
In this thesis, we have made an extensive use of kernel methods and have shown
their relevance when integrating cell line and tumor gene expression data. These non-
parametric methods offer several attractive properties which we exploited in TRANSACT
(Chapter 4) and Sobolev Alignment (Chapter 5). In both chapters, we employed kernels
from the Matérn family, a standard choice used in other studies [47, 73]. These Matérn
kernels however do not encode any prior knowledge on the data, which, we reasoned,
could help increase performance in drug response prediction by constraining the re-
gression model to focus on pre-selected patterns. Beyong drug response prediction, the
design of a biologically-informed kernel, understood as a similarity function, would have
implications for other analysis, e.g., clustering or lineage tracing.
As presented in Chapter 5, scRNA-seq datasets form a wealth of unlabelled data which
recapitulate important patterns of gene expression. Exploiting such expansive data to
design a similarity measure, or kernel, between gene expression profiles therefore offers
an enticing prospect. In order to model such similarity measure, we propose to use Deep
Kernel Learning, a learning framework which combines a standard kernel function with
a parametric neural network [235]. In the rest of this section, we present our approach:
we first define what a deep kernel consists of, and then present the cost-function to be
used.
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E. PERSPECTIVE: LEARNING A SUITABLE DISTANCE BETWEEN GENE EXPRESSION PROFILES

USING DEEP KERNEL LEARNING

Figure E.1 – Learning a Deep Kernel on scRNA-seq data.1 We propose an unsupervised extension of Deep
Kernel Learning which relies on a refinement of GP-LVMs. scRNA-seq profiles are given as input to a neural
network, yielding low-dimensional embeddings. These embeddings are then compared using a GP-LVM with a
Gaussian kernel on both input and embedding. As this complete procedure is differentiable, the cost function
can be minimized by back-propagation. The end-product of this computational routine is a similarity function
which can be used in other tasks, e.g., TRANSACT.
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E.2. DEEP KERNEL
Definition E.2.1 (Deep Kernel). Let p the number of genes studied and d ∈N. Let fω be a
neural network parametrized by the coefficients ω, of input-size p and output-size d. Let
Kθ be a kernel with parameter θ of input-size d. We define the deep kernel Kω,θ as:

∀x, y ∈Rp , Kω,θ = Kθ

(
fω (x) , fω

(
y
))

. (E.1)

We show that, provided the kernel Kθ is positive definite, then a deep kernel based on
Kω,θ would also be positive definite. Such property is important, as it shows that Kθ

corresponds to the inner product of two samples after embedding in a feature space.

Proposition E.2.2 (Kω,θ is p.d.). Let assume that Kθ is positive definite (p.d.). Then for
ω ∈Ω, Kω,θ is p.d.

Proof. Kθ is p.d. Following Aronszajn thereom, there exists a Hilbert space H and a
function φ :Rd 7→H such that:

∀x, y ∈Rd , Kθ

(
x, y

) = 〈
φ (x) , φ

(
y
)〉

H . (E.2)

Let ω ∈Ω. By combining Equations E.1 and E.2, we obtain:

∀x, y ∈RP , Kω,θ
(
x, y

) = Kθ

(
fω (x) , fω

(
y
))

= 〈
φ

(
fω (x)

)
,φ

(
fω

(
y
))〉

H .
(E.3)

Therefore, Kω,θ can be represented in space H with mapping φ◦ fω. It is thus p.d. .

In their seminal paper, Wilson and colleagues propose a supervised learning approach
to learn the parameters corresponding to a deep kernel Kω,θ , and specifically the neural
network weights ω. Unfortunately, the datasets we exploit here do not contain any con-
tinuous phenotype, preventing us from applying this strategy. In order to nonetheless
utilize the notion of deep kernels, we derived an unsupervised methodology based on
the notion of Gaussian-Process Latent-Variable Models (GP-LVM) [76].

E.3. REFINING THE GP-LVM LOSS FUNCTION FOR UNSUPER-
VISED TRAINING OF DEEP KERNELS

GP-LVM is a dimensionality reduction method which extends Kernel PCA, the backbone
of TRANSACT (Chapter 4). A GP-LVM is defined as follows.

Definition E.3.1 (Gaussian Process Latent Variable Model). Let d ∈ {
1, .., p

}
be an integer.

Let Kp be a kernel on Rp and Kd a kernel on Rd , both p.d. We define by S = Kp (X ) the
kernel matrix of the data using kernel Kp , and for any Y ∈ Rn×d , K = Kd (Y ) the kernel
matrix of Y using kernel Kd . The embedding Y ∗ are computed by matching the Gaussian
Processes associated to Kp and Kd :

Y ∗ = argmin
Y ∈Rn×d

KL[N (0,S) || N (0,K )]

= 1

2
log |K | − 1

2
log |S| + 1

2
Tr

(
SK −1) − n

2

(E.4)
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with KL the Kullback-Leibler divergence between distributions, and N the normal distri-
bution.

In the case where Kp and Kd are linear kernels, this formulation is strictly equivalent
to PCA. The KL-divergence from Equation E.4 can therefore be understood as a recon-
struction error. In the special case when Kd is linear, the solution is exactly equivalent to
Kernel PCA with kernel Kp .
In Equation E.4, the embedding computed by the GP-LVM is the solution of the opti-
misation problem. To learn our deep kernel Kω,θ, we reasoned that this embedding Y
could be replaced with the embedding produced by the neural network fω. The kernel K
would then be substituted by the matrix

(
Kω,θ

(
Xi , X j

))
1≤i , j≤n . As a direct consequence,

Equation (E.4) is replaced by a minimization with regards to the neural network weights
ω and the kernel hyper-parameter γ.

Definition E.3.2 (GP-LVM training for deep kernels). We define the objective function (or
loss function) for the GP-LVM estimation of the Deep Kernel, LGP−LV M defined as:

∀γ ∈Ω×Θ, LGP−LV M
(
γ
) = KL

[
N

(
0, X X T ) || N (

0,Kγ

)]
= 1

2
log

∣∣Kγ+σ2In
∣∣− 1

2
log

∣∣X X T ∣∣
+ 1

2
Tr

(
X X T (

Kγ+σ2In
)−1

)
− n

2
.

(E.5)

Removing the terms that are independent from γ, we get the following estimator:

γGP−LV M = argmin
ω,θ∈Ω×Θ

Tr
(

X X T (
Kγ+σ2In

)−1
)
+ log

∣∣Kγ+σ2In
∣∣ (E.6)

We summarise the complete mathematical workflow in Figure E.1.
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