TU Delft

System Call Sandboxing
Analysis of PWD and NGINX system call policy generation using dynamic and static techniques

Jakub Jarostaw Pataluch
Supervisor: Alexios Voulimeneas

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Jakub Jarostaw Patatuch

Final project course: CSE3000 Research Project
Thesis committee: Alexios Voulimeneas, Przemystaw Pawetczak

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

System call sandboxing represents a pivotal secu-
rity measure in the contemporary digital landscape,
where reducing the attack surface of applications
is crucial to mitigate potential cyber threats. This
paper investigates the efficacy of static versus dy-
namic system call filtering techniques across dif-
ferent execution phases of selected applications,
namely PWD and NGINX. Employing automated
tools such as sysfilter, and chestnut, we collected
comprehensive data through strace to delineate es-
sential system calls required for each application
phase. Our analysis compares these results with
the policies generated by the automated tools, pro-
viding insights into the strengths and limitations
of static and dynamic sandboxing methodologies.
This study ultimately seeks to refine system call
policies and balance robust security with necessary
application functionality.

1 Introduction

Context and Importance of System Call Sandboxing
System calls are the essential interface between an applica-
tion and the OS kernel, allowing for file handling, process
control, and network communications [4]. Through these
calls, applications request the kernel to perform restricted
tasks. This is crucial for the efficiency and functionality of
the software. However, the capabilities of system calls also
make them prone to exploitation. Malicious actors can uti-
lize syscalls to execute arbitrary code, escalate privileges, or
perform unauthorized actions, often resulting in significant
security threats [1].

System call sandboxing is a security technique to mitigate
these risks by limiting applications to a minimal set of sys-
tem calls [6]. This restricted environment aims to prevent
malicious or buggy code from executing harmful operations
by reducing an application’s attack surface.

Motivation for Research

Currently, the complexity and connectivity of applications
are rapidly increasing. Modern applications, often web-based
and distributed, depend heavily on external communications
and data exchanges [7]. This complexity not only enhances
the capabilities of software but also increases its vulnerability
to cyberattacks. The reliance on multiple system calls makes
applications particularly prone to such.

Significant incidents like the Heartbleed bug and the Eter-
nalBlue exploit have demonstrated how vulnerabilities in sys-
tem operations can lead to security disasters [3; 11]. These
incidents highlight the need for effective system call manage-
ment and monitoring techniques.

Research Objectives and Questions

This research aims to evaluate and compare static and dy-
namic system call sandboxing techniques. Static sandboxing
employs predefined policies that restrict application behavior
without adaptation during runtime, while dynamic sandbox-
ing adjusts permissible system calls in response to the appli-
cation’s context [10]. The primary objective is to determine

which methodology more effectively reduces the attack sur-
face without impacting the functionality or significantly im-
pacting the performance of the application.

The specific research questions this study addresses are:

* What are the essential system calls required for the cor-
rect operation of selected applications (PWD and NG-
INX) across various execution phases?

* How do static system call filtering techniques compare
to dynamic techniques in terms of accuracy, security,
and performance?

* Can dynamic system call sandboxing adjust more ef-
fectively to the operational context of an application,
thereby providing enhanced security without impacting
system performance?

By addressing these questions, this research aims to pro-
vide an understanding of system call sandboxing’s impact on
application security and provide actionable insights for opti-
mizing these techniques in real-world applications.

The remainder of this paper is organized as follows: Sec-
tion 2 provides an overview of related work and existing liter-
ature. Section 3 outlines the methodological approach, while
Section 4 presents experimental results. Section 5 discusses
responsible research, and Section 6 offers a discussion that
concludes with future directions. An appendix is included for
key results and generative Al usage.

2 Background and Literature review

2.1 Overview of System Call Sandboxing
Techniques

Static Sandboxing Methods:

Static system call sandboxing involves defining a fixed set
of rules or policies that specify which system calls an ap-
plication can execute. These policies are typically estab-
lished based on the analysis of the application’s code or its
binary and remain unchanged during runtime. The primary
advantage of static sandboxing lies in its simplicity and pre-
dictability. It provides a stable security environment that
can be thoroughly tested and verified. However, one signif-
icant drawback of static methods is their overapproximation
issue. Static methods cannot adapt to application behavior
changes or respond to emerging threats. Since these methods
rely just on static information, they often permit more sys-
tem calls than the application requires during execution. This
can lead to policies that are too permissive, potentially leav-
ing exploitable gaps. Tools like sysfilter and Binalyzer from
chestnut utilize such static techniques.

Dynamic Sandboxing Methods:

Contrasting with static methods, dynamic sandboxing adapts
to the application’s behavior in real-time. This approach in-
volves monitoring the application’s execution and dynami-
cally adjusting the set of permissible system calls based on
the current context and state of the application. Dynamic
methods, such as those implemented by confine and Dyna-
lyzer part of chestnut, offer the advantage of being more re-
sponsive to the application’s needs, reducing unnecessary re-
strictions and better mitigating unforeseen threats. The com-

plexity of implementing dynamic sandboxing, however, in-
troduces challenges in terms of performance overhead and the
potential for false positives, where legitimate actions might be
mistakenly blocked as the dynamic method may not cover all
possible execution paths.

2.2 Previous Research and Gap Analysis

Key Studies and Findings

System call sandboxing has been the focus of extensive re-
search. Canella et al.’s [2] work on chesmut emphasized au-
tomating seccomp filter generation by dynamically analyzing
Linux applications to detect necessary system calls. Ghavam-
nia et al. [5] introduced confine, which leverages static and
runtime analysis to refine system call policies based on the
containerized application’s behavior. Both studies illustrate
the growing precision in sandboxing technologies on a year-
by-year basis.

Research Gaps

Despite advancements, significant gaps remain in the adap-
tation of sandboxing policies to specific application phases
and in managing the performance impact. Most existing re-
search tends to generalize the application’s behavior across
all phases, which can lead to inefficiencies or security risks.
For instance, an application may only need certain system
calls during initialization, which is unnecessary and poten-
tially dangerous once it transitions to a serving phase (execve
syscall which is usually needed as the first instruction and
carries a risk of RCE - Remote Code Execution). Addition-
ally, the performance degradation associated with monitoring
and adjusting system call permissions in real-time is often in-
adequately addressed. A notable contribution in this area is
the study by Porter et al., presented in their paper Temporal
System Call Specialization for Attack Surface Reduction [9],
which is one of the first to propose separating system call fil-
tering into distinct phases based on application needs. This
approach significantly enhances the precision of sandboxing
policies, enabling more tailored security measures that adapt
to the varying requirements of each phase. By focusing on
phase-specific system call needs, this methodology not only
reduces the attack surface related to the use of so-called “dan-
gerous syscalls” (See Figure 1) but also addresses some of the
performance concerns highlighted in other studies.

2.3 Relevance of Automated Tools

Development and Contributions

Automated tools like sysfilter, confine, and chestnut repre-
sent significant steps forward in system call policy genera-
tion. Sysfilter uses binary analysis to determine which system
calls are likely to be used by an application, effectively re-
ducing the manual effort required in defining policies. Con-
fine extends this by incorporating runtime behavior to dynam-
ically adjust system call lists, thereby offering more granular
control tailored to the application’s operational context under
containerized environments. Chestnut provides two options:
Binalyzer and Dynalyzer which can do both.

Effectiveness and Accuracy in Real-World Scenarios
Evaluating these tools in real-world scenarios has shown var-
ied results. Chestnut’s approach to dynamically generate sec-

comp filters based on observed behavior presents a promising
method to reduce the attack surface while maintaining appli-
cation functionality. However, the real-world applicability of
these tools often confronts challenges such as the overhead of
dynamic analysis and the complexity of accurately predicting
application needs without prior extensive profiling.

To conclude, the literature on system call sandboxing high-
lights a critical evolution from static to dynamic methodolo-
gies, driven by the need for adaptive security measures in
complex application environments. Automated tools have
played a key role in advancing this field, though their deploy-
ment in real-world scenarios reveals both a lot of positives
and even more limitations. Continued research is necessary
to close the gap between theoretical effectiveness and practi-
cal usability, particularly in optimizing performance and en-
hancing the accuracy of dynamic sandboxing techniques.

3 Methodology

3.1 Experimental Setup

Docker Environment Configuration

To ensure reproducibility and control over the testing envi-
ronment, each application, PWD and NGINX, was housed
in its own Docker container. The docker host was run on a
Ubuntu 24.04 LTS machine equipped with Intel 15-8250U,
16GB DDR3 RAM, and SSD drive with 60GB of storage and
8GB of RAM dedicated for the docker. Ubuntu 18.04 LTS
was selected as the base operating system for these contain-
ers. The choice of Ubuntu 18.04 LTS, the latest Long-Term
Support version available at the time when both the chestnut
and sysfilter papers were published, was strategic. This ver-
sion provides a stable and widely supported platform, ensur-
ing that the OS would not introduce variables into the sand-
boxing experiments due to its inconsistencies. Additionally,
this version of OS is recommended by the papers’ authors.

Application Selection and Configuration

The selection of applications was aimed at examining a
system-call sandboxing across a wide spectrum of complex-
ity and operational behavior. PWD, a simple utility, provides
a clear base case of predictable system call usage. NGINX,
in contrast, is a robust, high-performance web server and re-
verse proxy, offering a complex case study with multiple ex-
ecution phases and a rich set of system call interactions. For
this study, NGINX was configured to run with a single worker
to simplify the analysis and focus more on its system call be-
havior. It was set up to serve a static index page under “/in-
dex.html”, but was accessed by the client browser not through
a direct path like “/index.html,” but via ”/”” using match rules,
further adding complexity to its behavior.

3.2 Data Collection Techniques

System Call Monitoring with strace

The strace tool was indispensable for monitoring and log-
ging the system calls invoked by PWD and NGINX. System
call data were collected and analyzed across different phases
of application operation. This phase-specific monitoring was
crucial for identifying which system calls were essential to
each part of the application lifecycle/runtime.

Threat level Dangerous system calls

1. Full control of the system chmod, fchmod, chown, fchown, Ichown, execve, mount, rename, open,

link
umount, mkdir, rmdir, umount2, ioctl, nfsservctl, truncate, ftruncate,
quotactl, dup, dup2, flock, fork, kill. iopl. reboot, ioperm, clone

2. Denial of service

3. Used for subverting the
invoking process

read, write, close, chdir, Iseek, dup, fentl, umask, chroot, select, fsyne,
fehdir, llseek, newselect, readv, writev, poll, pread, pwrite, sendfile,
putpmsg, utime

4. Harmless getpid, getppid. getuid. getgid. geteuid. getegid. acct, getpgrp, sgetmask,

getrlimit, getrusage, getgroups, getpriority, sched getscheduler, sched
getparam, sched get

Figure 1: Threat model of syscalls

Categorization and Analysis of System Calls

The system calls logged by strace were categorized accord-
ing to their operational significance in each application phase.
This analysis not only facilitated a deeper understanding of
application behavior but also helped in formulating a mini-
mal and precise set of necessary system calls for each stage,
thereby enhancing both security and performance. We tried to
avoid too much granularity, as theoretically everything can be
scoped down to each syscall but to keep it on the operational
(human-readable) level.

3.3 Application of Automated Tools

Use of Automated Tools

Despite initial considerations, the confine was ultimately not
used due to its dependency issues, reliance on deprecated
packages, and the potential variability in results arising from
different execution environments compared to other tools.
The analysis thus focused on employing chestnut and sysfilter
to generate system call policies. These tools were applied to
analyze the behavior of both PWD and NGINX within their
respective Docker environments.

Criteria for Evaluating Generated Policies

The policies generated by chestnut and sysfilter were evalu-
ated based on several key criteria:

Completeness: Ensuring that the policies included all
essential system calls identified during the manual trac-
ing process.

Minimality: Limiting the policies to only include nec-
essary system calls, thereby preventing excessive per-
missiveness that could increase security risks.

Security Efficacy: Assessing the effectiveness of each
policy in minimizing the potential attack surface by re-
stricting access to non-essential system calls. We em-
brace the following threat model for the syscalls (See
Figure 1) from the study “Assessing vulnerability ex-
ploitability risk using software properties” [8]

L]

Performance Impact: As we didn’t consider the ac-
tual dynamic analysis tool (due to focus on Binalyzer
for chestnut), we assessed how long the generating pol-
icy took before the first execution.

4 Experimental Results

Detailed data can be accessed
https://github.com/kubapat/Research-project

publicly at:

4.1 Analysis of System Call Data

PWD System Call Analysis
The application PWD was observed using strace to log its
system call usage across various operational phases. The crit-
ical system calls were found to be mostly involved with file
and environment handling. The Table 1 summarizes the es-
sential system calls for each distinguished operational phase.
Both sysfilter and chestnut static analyses overestimated
the required system calls, including those not utilized dur-
ing the application’s standard operation. Respectively 41 for
chestnut and 49 for sysfilter, whereas at most 31 calls were
required. Most of the syscalls that were above the necessity
were syscalls classified in the Level 4 - Harmless category
(see Figure 1), but there were also a few of the ones classi-
fied on Level 2. See Appendix 1 for those generated syscall
policies.

NGINX System Call Analysis

NGINX, being a complex web server, exhibited a diverse
range of system call usages across its lifecycle, significantly
more varied than those of PWD. The phase-specific sys-
tem calls are detailed in the table (See Table 2). We man-
aged to divide the NGINX lifecycle into 11 phases that pro-
vide the best balance between granularity and functional-
ity, namely each phase represents a high-level feature while
it’s not scoped to the system call level so it’s achievable to
be created by humans and distinguished by a dynamic fil-
ter. The identification and division of these phases were
achieved through manual analysis of the triggered syscalls
using strace. By looking at the specific syscalls, their argu-
ments, and their order of call and by following the NGINX
codebase we were able to come up with the following phases:

» Execution initiation

* Loading shared libraries

* reading configuration files
* initialization of logger

e set up of worker processes (analyzed just for single
worker process)

* open of necessary files and directories

e creating and configuring sockets

* setting up signal handlers

» worker process initialization

* entering event loop

* accepting and serving requests (just static content)

As for the PWD once again chestnut and sysfilter
whitelisted way too many system calls. We came up with just
52 unique system calls while chestnut with 107 syscalls and
sysfilter with 115 sycalls. See Appendix 2 for those generated
syscall policies.

4.2 Tool Efficacy Comparison

The evaluation of sysfilter and chestnut highlighted signifi-
cant differences in their effectiveness across various applica-
tion scenarios:

Execution Phase

System Calls Involved

Execution Initiation

execve, brk

Loading Shared Libraries

access, openat,

fstat, mmap, close

Memory and Environment

arch_prctl, mprotect,

Setup munmap, brk

Reading Configuration getcwd, stat

Output Handling fstat, write, close
Error Handling write

Process Termination

close, exit_group

Table 1: Essential system calls for PWD across different execution

phases.

Execution Phase System Calls Involved
Execution Initiation execve, brk,
arch_prctl

Loading Shared Li-
braries

access, openat, read,
fstat, mmap, close,
mprotect

Reading Configura-

openat, fstat,

tion Files pread64

Initializing Logging | openat, fstat, futex
Setting Up Worker | clone,

Processes set_robust_list,

getpid, close,
setsid, umask, dup2,
rt_sigprocmask,
socketpair, ioctl,
fcntl

Opening Necessary
Files and Directories

openat, fstat,
pread64, getdents64,
close

Creating and Config-
uring Sockets

socket, setsockopt,
ioctl, bind, listen

Setting Up Signal
Handlers

rt_sigaction

Worker Process Ini-
tialization

setgid, setuid,
prctl, rt_sigprocmask

Entering Event Loop

epoll_create,
eventfd2, epoll _ctl,

socketpair
Accepting and Serv- | epoll wait,
ing Requests gettimeofday,

accept4, recvfrom,
stat, openat, fstat,
writev, write, close,
setsockopt

Table 2: Essential system calls for NGINX across different execu-

tion phases.

Sysfilter’s analysis:

Sysfilter, while effective for static applications like PWD, of-
ten included unnecessary system calls in its policies for NG-
INX. This not only resulted in overly permissive policies but
also increased the risk of security vulnerabilities by not adapt-
ing to the unique needs of each phase.

Chestnut’s analysis via Binalyzer:

Although Chestnut did not employ dynamic techniques be-
yond its static analysis capabilities, it offered a more refined
system call policy for NGINX by identifying and limiting
system calls more closely aligned with those observed in
manual analysis. However, the lack of dynamic adjustment
meant that unforeseen runtime behaviors could not be effec-
tively mitigated.

It’s worth noticing that NGINX has way more use scenar-
ios than we covered and most probably results have such a
significant gap (over 50% compared to just 30% in the case
of PWD) due to rather specific use case applied in the manual
policy crafting compared to capabilities of NGINX that were
discovered by static analyzers while crafting the policy. But
the key difference in the case of NGINX wasn’t overestima-
tion of allowed syscalls but non-phase specific syscall policy
which doesn’t consider setup stages and thus exposes a lot of
dangerous (Level 1 and 2 - See Figure 1) syscalls to the appli-
cation that has direct interface with the outer environment.

5 Responsible Research

Cybersecurity research and its innovative developments are
benefiting greatly from utilizing open-source tools and soft-
ware especially when practiced in support of the very princi-
ples of transparency and collaboration. The very fact that is
the nature of open-source technology which requires commu-
nity input to improve the security and stability of projects via
collective expertise is its best feature. The research, where we
used such open-source tools as strace, sysfilter, and chestnut
on open-source Linux platform are considered the best ethi-
cal methods of promoting the ability to replicate the research
and the trust in the results. These are not only available to
other researchers but also to the public at large. The latter
can make use of them in a variety of ways: duplicate stud-
ies, affirm results and push the limit of the analysis to new
and original directions. The broad availability of information
thus ensures that users are informed and able to secure their
systems against evolving threats, which is undoubtedly of pri-
mary importance, overshadowing any monetary interests.
Contrarily, the implementation of systems with strict se-
curity measures like syscall sandboxing, on the one hand, is
a vital aspect that includes extensive ethical considerations.
Whereas the main purpose of security measures is to prevent
the system from unauthorized access or preventing its mis-
use, the same restrictions can sometimes have other implica-
tions like disturbing the livelihood of legitimate users or var-
ious privacy issues. Moreover, for instance, the introduction
of over-restrictive sandboxing might result in less effective
applications, which, in turn, can cause low performance and
frustration in users’ interaction with the system. The even
more serious matter would be that, if implemented inappro-
priately, these measures can be used as tools for surveillance

or control if not strictly in terms of carrying out just the nec-
essary security operations safety protocols besides them.

6 Discussion, Conclusions and Future
Research

6.1 Implications of Findings

The findings of this study underscore the intricate balance
between system security and application performance that
system-call sandboxing seeks to manage. By analyzing the
behavior of applications through manual and automated sys-
tem call filtering tools like sysfilter and chestnut, it is evi-
dent that static tools, while useful, may not fully capture the
dynamic nature of complex applications like NGINX, where
range of the syscalls is so wide that runtime-wide filter may
be too broad. Conversely, the manual approach, although
more labor-intensive, often results in more finely tuned secu-
rity policies, but doesn’t apply to everyday work and doesn’t
scale to bigger, more complex applications. It also may differ
per OS that we run our software on.

The research highlights the significant advantage of a hy-
brid sandboxing approach, where static analysis is comple-
mented by dynamic adjustments based on real-time applica-
tion behavior. Such an approach could potentially offer the
best of both worlds: the efficiency and predictability of static
tools with the adaptability of dynamic monitoring. In real-
world applications, this could translate to enhanced security
without a significant compromise in performance, especially
in environments where applications undergo frequent updates
and changes.

Integrating a hybrid approach in operational settings, how-
ever, would require tools that can seamlessly transition be-
tween static analysis and dynamic monitoring. The poten-
tial for such tools could be revolutionary, providing a robust
framework for securing applications in a manner that is both
proactive and reactive to emerging threats.

6.2 Reflection on the Study’s Conclusions

The conclusions of this study were drawn from a rigorous
analysis of system call data collected via strace and the sub-
sequent comparison of this data with the policies generated
by both sysfilter and chestnut. This method allowed for a
detailed understanding of the strengths and limitations of ex-
isting tools and paved the way for considering more complex
and flexible approaches like hybrid sandboxing, which joins
the performance of static analysis with the adaptability of dy-
namic scenario.

The process underscored the importance of considering the
operational context of applications when designing security
measures. For instance, the distinct behaviors observed in
PWD versus NGINX during the study illustrate that a one-
size-fits-all approach to sandboxing is NOT feasible. Cus-
tomization and adaptability are crucial for effective security.

6.3 Possible Explanations of Results

The differential effectiveness of sysfilter and chestnut ob-
served in the study could be attributed to the inherent design
of these tools. Sysfilter’s and chestnut tendencies to include
unnecessary system calls in its policies might be due to its

reliance solely on static analysis, which does not account for
the dynamic operational states of applications like NGINX.
Chestnut’s better performance, in some cases, suggests that
even limited use of dynamic insights (as in static analysis in-
formed by some runtime data) can enhance policy accuracy.

The superior results of the manual analysis demonstrate
that current automated tools still lack some of the nuanced
decision-making capabilities of human analysts, particularly
in complex scenarios. This suggests that possibly further de-
velopment in Al and machine learning, which could draw
conclusions like humans from the manual work and decide
upon the possible importance of selected syscall could be a
way to go in advancing the field of automated system call
policy generation.

6.4 Limitations and Challenges

This study is not without its limitations. The scope was
confined to a comparative analysis of sysfilter and chestnut
against manual methods, which might not fully represent the
broader array of tools available in the field. Furthermore, the
experimental setup was limited to Docker environments and
might not entirely mimic the operational conditions found in
varied real-world scenarios.

Implementing dynamic sandboxing effectively in high-
performance environments poses several challenges, primar-
ily related to the computational overhead and potential la-
tency introduced by real-time system call monitoring and pol-
icy adjustment. This can be particularly problematic in envi-
ronments that handle large volumes of transactions or data,
where even minimal delays can accumulate significant oper-
ational impacts.

In conclusion, while the current tools and methodologies
for system call sandboxing offer substantial security benefits,
there is a compelling case for developing more advanced sys-
tems that integrate the precision of manual analysis with the
efficiency of automated tools.

References

[1] David Brumley et al. Automatic detection of security
vulnerabilities in system calls. Journal of Computer Se-
curity, 16(5):569-594, 2008.

[2] C. Canella et al. Automating seccomp filter genera-
tion for linux applications. In Proceedings of the Cloud
Computing Security Workshop (CCSW), Orlando, FL,
2021.

[3] Zakir Durumeric et al. The matter of heartbleed. Pro-
ceedings of the ACM SIGSAC Conference on Computer
and Communications Security, 2014.

[4] Dawson R. Engler et al. System call analysis and secu-
rity. In Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA, USA, 2003.

[5] S. Ghavamnia et al. Confine: Automated system call
policy generation for container attack surface reduction.
In Proceedings of the Annual Symposium on Research
in Attacks, Intrusions, and Defenses (RAID), London,
UK, 2020.

[6] Tan Goldberg et al. A secure environment for untrusted
helper applications: Confining the wily hacker. In Pro-
ceedings of the 6th USENIX Security Symposium, San
Jose, CA, USA, 1996.

[7] Sandeep Kumar et al. Complexity and vulnerability:
Perspectives in software systems security. IEEE Trans-
actions on Software Engineering, 36(4):516-529, 2010.

[8] Awad A Younis Mussa, Yashwant Malaiya, and Indrajit
Ray. Assessing vulnerability exploitability risk using
software properties. volume 24, page 11, 04 2015.

[9] Donald et al. Porter. Temporal system call specialization
for attack surface reduction. In Proceedings of the 2020
IEEE Symposium on Security and Privacy, San Fran-
cisco, CA, USA, 2020.

[10] Niels Provos. Improving host security with system call
policies. In Proceedings of the 12th USENIX Security
Symposium, Washington, D.C., USA, 2003.

[11] Richard Smith et al. Eternalblue: A prominent tool in
significant cyber incidents. Journal of Internet Security,
25(13):748-760, 2017.

A Appendices

A.1 Appendix One
Policies generated for PWD

e Chestnut: Found 41 syscalls [0, 1, 3, 4, 5, 6, 8, 9, 10,
11, 12, 13, 14, 15, 17, 20, 21, 28, 36, 38, 39, 60, 62,
63, 72, 79, 80, 81, 89, 96, 158, 164, 186, 201, 202,
217, 228, 231, 234, 257, 262] read write close stat fstat
Istat Iseek mmap mprotect munmap brk rtsigaction rt-
sigprocmask rtsigreturn pread64 writev access madvise
getitimer setitimer getpid exit kill uname fentl getcwd
chdir fchdir readlink gettimeofday archprctl settimeof-
day gettid time futex getdents64 clockgettime exitgroup
tgkill openat newfstatat

bind listen getsockname socketpair setsockopt getsock-
opt clone fork execve exit kill uname shmdt fentl ftrun-
cate getcwd chdir rename mkdir rmdir link unlink read-
link chmod chown umask gettimeofday sysinfo getuid
setuid setgid geteuid getppid setsid capget statfs setpri-
ority schedsetparam schedsetscheduler schedgetpriori-
tymin mlock prctl archpretl settimeofday gettid time fu-
tex schedsetaffinity epollcreate getdents64 settidaddress
fadvise64 clockgettime clocknanosleep exitgroup epoll-
wait epollctl tgkill utimes openat newfstatat setrobustlist
accept4 eventfd2 pwritev prlimit64

* Sysfilter: [0,1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,24,2.
50,51,52,53,54,55,56,58,59,60,61,62,63,72,77,78,79,80,82,83,84,87,¢
114,115,116,117,119,126,130,137,141,143,144,145,146,147,157,186
257,262,273,288,290,296,302,307,318]

A.3 Appendix Three

Generative Al (specifically ChatGPT) was used as an aid dur-
ing writing of this paper. It was mainly used for the sake of
explaining hard concepts to me, explaining C++ errors and
ETEXformatting. Some of the prompts that were used:

e Can you explain to me the difference between SCM-
PACTKILLPROCESS and SCMPACTKILL in the sec-
comp library?

* Can you format the following excel table into I&EXone?
(It was the table with aggregated syscalls per phase)

* I’'m running into issues installing docker on Ubuntu
24.04 for rootless access, can you troubleshoot?

* Can you convert this citation into IEEE .bib format?

 Sysfilter: [0,1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,20,24,25,28,32,39,41,42,44,45,47,49,51,54,60,62,72,78,79,80,81,96,99,186,

201,202,228,229,231,234,257,262,302]

A.2 Appendix Two
Policies generated for NGINX

e Chestnut: Found 107 syscalls [0, 1, 3, 4,5, 6,7, 8,9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24,
28, 29, 30, 32, 33, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47,48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 62, 63, 67,
72,717,779, 80, 82, 83, 84, 86, 87, 89, 90, 92, 95, 96, 99,
102, 105, 106, 107, 110, 112, 125, 137, 141, 142, 144,
147, 149, 157, 158, 164, 186, 201, 202, 203, 213, 217,
218, 221, 228, 230, 231, 232, 233, 234, 235, 257, 262,
273, 288, 290, 296, 302, 318] read write close stat fstat
Istat poll Iseek mmap mprotect munmap brk rtsigaction
rtsigprocmask rtsigreturn ioctl pread64 pwrite64 readv
writev access select schedyield madvise shmget shmat
dup dup?2 getitimer setitimer getpid sendfile socket con-
nect accept sendto recvfrom sendmsg recvmsg shutdown

	Introduction
	Context and Importance of System Call Sandboxing
	Motivation for Research
	Research Objectives and Questions

	Background and Literature review
	Overview of System Call Sandboxing Techniques
	Static Sandboxing Methods:
	Dynamic Sandboxing Methods:

	Previous Research and Gap Analysis
	Key Studies and Findings
	Research Gaps

	Relevance of Automated Tools
	Development and Contributions
	Effectiveness and Accuracy in Real-World Scenarios

	Methodology
	Experimental Setup
	Docker Environment Configuration
	Application Selection and Configuration

	Data Collection Techniques
	System Call Monitoring with strace
	Categorization and Analysis of System Calls

	Application of Automated Tools
	Use of Automated Tools
	Criteria for Evaluating Generated Policies

	Experimental Results
	Analysis of System Call Data
	PWD System Call Analysis
	NGINX System Call Analysis

	Tool Efficacy Comparison
	Sysfilter's analysis:
	Chestnut's analysis via Binalyzer:

	Responsible Research
	Discussion, Conclusions and Future Research
	Implications of Findings
	Reflection on the Study's Conclusions
	Possible Explanations of Results
	Limitations and Challenges

	Appendices
	Appendix One
	Appendix Two
	Appendix Three

