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Abstract

To optimally use wind farms, thorough understanding of wind patterns is needed. Recently, a lot of
attention in the scientific community is turned to the Current FeedBack effect, where oceanic currents
influence the atmosphere above. It has been shown that this also applies to tidal currents in the English
Channel where the induced tidal winds have an amplitude of one-third of the underlying current. In
this report focus is moved to the Dutch coast. Using a numerical integration model of a vertical
grid, the horizontal wind speeds above a small area of the Dutch coast are modelled. The model
is based on the 1-dimensional Navier-Stokes equations in combination with Prandtl’s mixing length
model to account for turbulence. The horizontal wind speeds are found to reach up to one-fourth of
the amplitude of the tidal currents at a height of z = 10m above the sea surface and 1/20 at z = 50m.
This is similar to what was found in earlier research, but a lot of assumptions were made in this
model. Therefore, further research could focus on addressing some of these assumptions such that the
understanding of tidal induced wind velocities can be even better understood.
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Introduction

In the fight against climate change, the energy transition plays a crucial role. To reduce CO2 emissions
and conserve our resources, we need clean and renewable energy. To achieve the EU goal of being
climate neutral by 2050 [6], the Netherlands is investing in wind power. Currently, almost a quarter of
the electricity demand is met by wind farms, with 37% of that coming from offshore installations [3].
By 2030, the Dutch government aims to make offshore wind energy the largest source of electricity in
the country [7]. This means many new wind farms will be installed in the coming years. To optimally
use these wind farms, understanding wind patterns along the coast is essential for improving weather
forecasting.

Weather forecasting is a very complex process. As much data as possible is gathered, which is then
put in mathematical models that simulate the atmospheric behaviour. Data assimilation techniques
combine these models with observations to come to the best forecast[11]. As the atmosphere is very
chaotic and complex, using the right initial conditions and boundary conditions, such as the sea, is
of utmost importance. Recently, air-sea interactions at the atmospheric mesoscale(scales of 10 − 100
km and 10− 100 days) have gained increasing interest from the scientific community[4][17]. Foremost,
this applies to the Current FeedBack(CFB) effect, in which the surface currents lose energy to the
atmosphere above[12]. This way the atmosphere acts as an energy sink for the sea[14]. The other way
around, the sea acts as an energy source for overlying winds. Now, the sea-atmosphere interaction
cannot only be seen as a one-way interaction, but as an exchange of energy in both directions.

However, the effect this has on tidal currents and induced tidal winds has not received as much
attention. Renault and Marchesiello addressed this and investigated the tidal induced winds in the
English Channel. They found that these tidal winds at 10m high can reach speeds approximately
one-third of the underlying tidal currents [13]. To this day though, tidal currents are not yet used as
part of the surface boundary condition in modern forecasting models[5].

In this report we will focus on an area at the Dutch coast. We will look into the influence of
tidal currents on wind speeds above the coast of the Netherlands. We will numerically simulate the
surface layer using the 1-dimensional Navier-Stokes equations in combination with a relatively simple
turbulence model, Prandtl’s mixing length model. We will first run our simulations assuming the
atmosphere is laminar because we can solve this analytically as well. This way we can check whether
our numerical integration is validated or not. Afterwards we will run some simulations with turbulent
flow on the Dutch coast to see if we get a tidal induced wind of one-third the underlying tidal current
as well.

This report first introduces the atmospheric boundary layer and explores the relevant physics in
the next chapter, introducing the mixing length model used to simulate turbulent air flow as well. It
also elaborates on the analytical solutions to the problem. Following this chapter, the results will be
presented. The report concludes with a discussion and a conclusion.
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Model

2.1 Atmospheric boundary layer

In the following section we will describe the atmospheric boundary layer and the analysis of turbulent
motion inside it using [9]. The atmospheric boundary layer is the lowest layer of our atmosphere. It
is highly influenced by the interaction with the Earths’ surface and reacts rapidly to surface changes
such as friction, solar heating and evaporation. Therefore, the boundary layer is highly turbulent.
Because the boundary layer is connected to the surface, it is influenced a lot by the diurnal cycle of
surface heating through the day, and cooling through the night. This means that during the day the
atmospheric boundary layer is very unstable because the air close to the surface is heated which results
in an unstable boundary layer. To determine wind speeds we have to solve the Navier Stokes equations,
however in most turbulent flow these cannot be solved analytically. Therefore, we have to turn to
numerically solving the equations. Turbulent flow is characterised by irregular quasi-random motions
that span a continuous spectrum of spatial and temporal scales. These are in most cases impossible to
simulate numerically on the smallest scales, therefore we are looking at the time averaged momentum
equations. We assume that the velocity field is characterised by a slowly varying mean field u and
rapidly changing turbulent motions u′ and v′. These turbulent motions disappear if we time average,
however their covariance typically does not. We are considering a neutrally stratified atmosphere, such
that we can neglect buoyancy influences.

Therefore turbulence models focus on approximating the behaviour of these covariances. Away from
horizontal inhomogeneities we can assume that these turbulent motions are horizontally homogeneous
so we only have to consider vertical differentiation.

∂u

∂t
=

∂

∂z
(ν
∂u

∂z
− u′v′) (2.1)

In our case we will look at the lowest part of the atmospheric boundary layer, the surface layer which
spans typically 10%, so on average approximately 100 m. In this surface layer we can approximate the
wind to be horizontal, parallel to the surface of the sea. The surface layer is maintained entirely by
vertical momentum transfer by turbulent eddies. Therefore in our model, we will simplify the problem
to a vertical grid from the sea surface z0 to the top of the surface layer ztop where we determine the
wind speeds using boundary conditions at the surface and at the top of our surface layer.
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Figure 2.1: Representation of the situation in which we have brought it down to a vertical grid in which
we numerically determine the wind speeds using two boundary conditions indicated by the bottom
and top red arrows at z0 and ztop. The blue arrows indicate the numerically determined wind speeds
at the different grid points.

2.2 Prandtl’s mixing length model

We will describe the mixing length model analogous to [9] and [16]. Prandtl’s mixing length model is
one of the oldest and simplest models for the u′v′ covariance term in equation 2.1. In neutrally stratified
boundary layers, the wind speeds varies significantly with height. In the surface layer, in order to
analyse the turbulent flow use is made of the eddy viscosity concept. It builds on the Boussinesq’s
eddy viscosity concept, which characterises the turbulent flow by an eddy viscosity similar to molecular
viscosity, however eddy viscosity depends on the flow itself.

u′v′ = −νt
∂u

∂z
(2.2)

The mixing length model, introduced by Ludwig Prandtl, assumes that a parcel of fluid is vertically
displaced over a characteristic length lm carrying the mean properties of its original level before mixing
with its surroundings. Therefore the eddy viscosity is proportional to the product of this characteristic
length and a velocity scale.

νt ∝ V̂ L (2.3)

Prandtl proposed that the velocity component is equal to the mean velocity gradient times the
mixing length lm, so V̂ = lm

∣∣∂u
∂z

∣∣. This mixing length lm is also the characteristic length L. This leads
to

νt = l2m

∣∣∣∣∂u∂z
∣∣∣∣ (2.4)

In the surface layer this length scale is linearly dependent on the distance from the surface, the
height z, and proportional to the Von Kármán constant κ. So lm = κz which results in

∂u

∂t
=

∂

∂z
[(ν + κ2z2

∣∣∣∣∂u∂z
∣∣∣∣)∂u∂z ] (2.5)

Equation 2.5 can be divided into two parts, one where the time derivative of the wind speed is a
function of the spatial derivative of the stress and a function for the stress

∂u

∂t
=

1

ρ

∂τ

∂z
(2.6)
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τ = ρ(ν + κ2z2
∣∣∣∣∂u∂z

∣∣∣∣)∂u∂z (2.7)

2.3 Numerical integration

Equation 2.5 with appropriate boundary and initial conditions cannot, generally, be solved analytically.
Therefore, we will solve these equations numerically. For the coding in this report we use Python. For
the numerical integration we use integrate.solve ivp, this is a numerical solver from the scipy library.
It can solve a system of ordinary differential equations. This solver can use different methods to come
to a solution but in this report the Radau method has been used. This is an implicit Runge-Kutta
method of the Radau IIA family of order 5 [8]. It was found that this was the most reliable and quickest
integration method. The solution is influenced by the number and distribution of grid points we put in
and by the tolerances atol and rtol, the relative and absolute tolerances respectively, which determine
the time step size. The function itself calculates an estimate error with a third-order embedded formula
and it keeps this error under atol+ rtol|y| where y is the solution at the desired point. By decreasing
atol and rtol we can increase the accuracy.

2.3.1 Grid

In our study we will make use of two kinds of grids. First, we will disregard turbulence and therefore
equation 2.5 becomes linear, calling for a linear grid. When we later do consider turbulence, this
calls for a logarithmic grid, due to the z2 term in equation 2.5. In both cases we will use a staggered
grid, where we alternate between points where we calculate the stress and where we calculate wind
speed. We first set all the zτ , the points where we want to know the stress. Then a second grid is
determined for the heights for which we want to determine u, these grid points lie exactly in between
two consecutive zτ grid points. So

zu,i = (zτ,i + zτ,i+1)/2 (2.8)

The stress points for the linear grid are determined by

zτ,i = z0 + (
1

2
+ i)

ztop − z0
n

(2.9)

where we have n grid points with i running from 0 to n− 1. For the logarithmic grid, we use

zτ,i = ztop(
ztop
zo

)
i−n+1
n−1 (2.10)

where again we have n grid points with i running from 0 to n− 1.

Figure 2.2: Representation of the grid points. On the left we have a linear grid, on the right a
logarithmic grid. The gray lines represents the zu points, whereas the dashed red lines represent the
zτ points.
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We also begin with a certain initial condition u(z, t = 0).

2.3.2 System of ODE’s

Every iteration the solver takes, it first determines all the stresses τ

τi = (ν + κ2z2tau,i

∣∣∣∣ ui+1 − ui
zu,i+1 − zu,i

∣∣∣∣) ui+1 − ui
zu,i+1 − zu,i

(2.11)

where ui are the computed wind speeds at the last known time. We assume ρ to be constant so
therefore we can omit it from equations 2.6 and 2.7. With these stresses we can determine the change
in wind speed for every grid point zu

∂ui
∂t

=
τi − τi−1

zτ,i − zτ,i−1
(2.12)

with these ∂ui

∂t we can determine the new ui.

2.4 Considered Flows

To first validate our model, we turn to analytically solvable situations. We first consider laminar flow
because we can solve it for transient cases as well. We start with constant velocity at one boundary
and work our way up to periodically oscillating velocity at both boundaries. Thereafter we will turn
to turbulent flow, where we can still determine the equilibrium solution for constant velocity at both
boundaries. We will conclude by using real data from the Dutch coast to simulate the behaviour of
the tide induced wind speeds

• Laminar flow

– Constant velocity bottom boundary

– Periodically oscillating velocity at bottom boundary

– Periodically oscillating velocity at both boundaries

• Turbulent flow

– Constant velocity at top and bottom boundaries

– Periodically oscillating flow at bottom boundary

– Boundary conditions taken from real measurements

2.4.1 Laminar flow

When laminar flow is considered we can set κ = 0. This reduces equation 2.5 to

∂u

∂t
= ν

∂2u

∂z2
(2.13)

Constant velocity at top and bottom boundaries

When considering constant velocities at the boundaries, we start from an initial condition where
velocity is 0 everywhere. It can be seen that only the difference between the top and bottom boundary
matters, so we set the top boundary to 0 as well. We get boundary conditions and initial condition

u(z0, t) = A

u(ztop, t) = 0

u(z, 0) = 0

(2.14)

using these boundary conditions we can solve 2.13 using separation of variables, see Appendix A.
Which leads to the solution
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u(z, t) = A
ztop − z

ztop − z0
−

∞∑
n=1

2A

nπ
sin(nπ

z − z0
ztop − z0

)e
−ν( nπ

ztop−z0
)2t

(2.15)

This solution cannot be calculated exactly due to the infinite sum but if we take n high enough the
solution will be a good enough approximation. Note that for t→ ∞ the solution will converge to the
first term on the right-hand side of the equation. The term with n = 1 will vanish the slowest with a

time scale of
(ztop−z0)2

π2ν .

Periodically oscillating velocity at bottom boundary

For periodically oscillating flow at the bottom boundary, the exact solution is a lot more difficult to
determine. Therefore, we will only look at the boundary conditions and not consider a particular
initial condition. After computing the exact solution to the boundary conditions, we can set the initial
condition such that it already satisfies the solution to the boundary conditions. It can be argued
that the effect of the initial condition will disappear over time, such that we are computing a limiting
periodic solution. This leads to boundary conditions

u(z0, t) = Acos(ωt)

u(ztop, t) = 0
(2.16)

The solution to this problem is the following, see appendix A for a detailed derivation

u(z, t) =
A

2
(eiωt

sin((ztop − z)(1 + i)
√

ω
2ν )

sin((ztop − z0)(1 + i)
√

ω
2ν )

+ e−iωt
sinh((ztop − z)(1 + i)

√
ω
2ν )

sinh((ztop − z0)(1 + i)
√

ω
2ν )

) (2.17)

Although it seems as if this solution is complex, it can be seen that this is an addition of a complex

function and it’s complex conjugate, which is a real function. Note that if ∆z2ω
2ν = ∆z2π

νT = C with C
a constant, the solution remains mathematically similar, where ∆z = ztop − z0. This is equivalent to

the case with a constant boundary, where if ∆z2

π2νT = C, the solution remains mathematically similar.

Periodically oscillating flow at both boundaries

If we consider a periodically oscillating flow at both boundaries we have the following boundary con-
ditions

u(z0, t) = Acos(ωt)

u(ztop, t) = Bcos(ψt+ ϕ)
(2.18)

Let u′ and u′′ such that they both satisfy the partial differential equation and the boundary
condition at z0 and ztop respectively. For the other boundary condition we set them equal to 0, so

u′t = u′zz u′′t = u′′zz (2.19)

u′(z0, t) = Acos(ωt) u′′(z0, t) = 0 (2.20)

u′(ztop, t) = 0 u′′(ztop, t) = Bcos(ψt+ ϕ) (2.21)

Now we can see that u = u′ + u′′. The solution for u′ we already computed in the last section.
For u′′ we only have to account for the extra phase factor ϕ. However we can just take this in the
exponent with the ωt term. So the solution is

u(z, t) =
A

2
(eiωt

sin((ztop − z)(1 + i)
√

ω
2ν )

sin((ztop − z0)(1 + i)
√

ω
2ν )

+ e−iωt
sinh((ztop − z)(1 + i)

√
ω
2ν )

sinh((ztop − z0)(1 + i)
√

ω
2ν )

)

+
B

2
(eiψt+ϕ

sin((z − z0)(1 + i)
√

ψ
2ν )

sin((ztop − z0)(1 + i)
√

ψ
2ν )

+ e−iψt−ϕ
sinh((z − z0)(1 + i)

√
ψ
2ν )

sinh((ztop − z0)(1 + i)
√

ψ
2ν )

) (2.22)
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2.4.2 Turbulent flow

When considering turbulent flow, we cannot set κ to 0. κ is empirically determined to be 0.4. Therefore,
for the turbulent flow case, we need to use equation 2.5. Turbulent flow does not reach the surface
itself, there is a very small viscuous sublayer and a transition zone to turbulent flow. Therefore it is
common to take the bottom boundary a little bit above the surface, for the sea z0 = 0.01m can be
used[13]. This roughness usually relates to wind waves over sea, but it is very small compared to the
wave height.

Constant velocity at top and bottom boundaries

We notice that even though the eddy viscosity νt depends on uz and z, mathematically it is still
only the difference between the speed at z0 and ztop that matters. So we will again only use one
inhomogeneous boundary condition. We note that equation 2.5 is very hard to solve for the transient
case. Therefore we will only solve for the steady state solution. We can set the initial speed to 0.

u(z0, t) = A

u(ztop, t) = 0

u(z, 0) = 0

(2.23)

The steady state solution is the following, see appendix A for the derivation.

uss(z) = A
log( z

ztop
)

log( z0
ztop

)
(2.24)

for all the other cases with turbulent flow we do not have any analytical solutions.
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Results

3.1 Laminar flow

Laminar flow is not realistic for the atmospheric boundary layer, however we use it to validate the
model because we are still able to compute an analytical solution for it. We therefore do not have to
use realistic values, so we set A = 1 for all laminar cases. For the laminar cases we will also use a
linear grid, as equation 2.13 is linear.

3.1.1 Constant velocity at bottom boundary

For constant velocities at both boundaries, which was found to be analogous to only one boundary
with velocity, we cannot compute an exact solution due to the infinite sum in 2.15. However, we can

approximate it by taking n large enough. We used n = 100 and ν = 1m
2

s and ∆z = 50m with 50
evenly spaced grid points such that every grid point is 1m.

Figure 3.1: Wind speed in m
s plotted against the height z in m for t = 1, 10, 100, 1000s. 50 grid

points have been used for the numerical solution and the infinite sum in the analytical solution is
approximated till n = 100. atol = 10−4, rtol = 10−5. The penetration distance at t = 10, 100 is shown
by the dashed lines

It can be seen that the numerical solution accurately follows the analytical solution because the
dashed line is almost exactly on top of the solid line. If the Fourier number Fo = νt

∆z2 < 0.1 we can

use penetration theory to determine the penetration depth δt =
√
πνt [1]. For t = 10s, δ10 = 5.6m
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and for t = 100s, δ100 = 17.7m with Fo10 = 4 ∗ 10−3 and Fo100 = 0.04. If we look at the numerically
and analytically derived penetration depth, where the dashed lines end at u = 0, these correspond to
5.6m for t = 10s and 17.7m for t = 100s. Exactly what we determined with penetration theory. For
t = 1000s, Fo = 0.4 > 0.1 so we cannot use penetration theory anymore. At t = 1000s the solution
seems to have reached the equilibrium solution.

3.1.2 Periodically oscillating velocity at bottom boundary

If we are looking at periodically oscillating velocity, the quantity ∆z2ω
2ν = ∆z2π

νT = C starts to play a
role. Therefore we will look at situations where C = 0.1, 1, 10. We set the initial condition equal to
the analytical solution and then run for 100 periods. This way we still have an analytical solution but
mitigate the effect of starting with the perfect solution.

Figure 3.2: Wind speeds in m
s with C = 0.1, 1, 10 plotted against the height z in m for 8 evenly spaced

times in the 100th period. 50 grid points have been used. atol = 10−4, rtol = 10−5

In this figure we clearly see the periodic behaviour of the different solutions for C = 0.1, 1, 10. For
C = 0.1, π∆z2 is small compared to νT , so the solution is always almost in its equilibrium position.
For C = 1, π∆z2 and νT are equal, so although the boundary condition at z0 does penetrate the
entire altitude, it doesn’t reach its equilibrium position. For C = 10, π∆z2 is very large compared to
νT and so the boundary condition only influences the bottom part. In the following figure we see the
difference even better.
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Figure 3.3: The wind speed in m
s plotted against the height z in m for 8 evenly spaced times in the

100th period. Plotted for C = 0.1, 1, 10 with 100 grid points. For C = 0.01 there are also 8 times
plotted but 3 are almost exactly on another time t. atol = 10−4, rtol = 10−5

Again we see in both figures that the numerical solution seems to follow the analytical solution
very well.

For this numerically derived solution we analysed the error compared to the analytically determined
solution in equation 2.17. We looked at the mean deviation from this analytical solution, so

error =
1

n ∗N

n−1∑
i=0

N∑
j=0

∣∣ui,tj − u(zi, tj)
∣∣ (3.1)

where n is the number of grid points, N number of time steps. uk,t is the numerically determined
solution, whereas u(zk, t) is the analytically computed solution. We controlled the time step using a
max step in the solver.
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Figure 3.4: The mean error logarithmically plotted for the time step and grid size. The time step was
increased by a factor 2, 4 and 8. The grid size was decreased by a factor 1

2 ,
1
4 and 1

8 . In both cases a
quadratic relation is plotted as well.

It can be seen that the time step error follows the quadratic relation quite well whereas the grid size
error does converge but is quite flat. This could mean that the time step is what mainly determines
the error at this stage. We could decrease the time step even more but due to the time it takes to
perform a simulation, this was not done.

Periodic flow at both boundaries

For the periodic flow at both boundaries we should note that if we take A = B, ϕ = ψ, δ = π and ∆z
twice as large, we should get the same solution as with one boundary, now mirrored at z = 50.

Figure 3.5: Wind speed in m
s plotted against the height z in m for 8 evenly spaced times in the

100th period. The analytical solution is computed for a periodic flow at one boundary condition only.
Plotted for C = 0.1, 1, 10 with 100 grid points. atol = 10−4, rtol = 10−5

14



In this situation, the two periods are still the same. The solution should also work for two boundaries
that do something completely different. For the next simulation, we used A = 1ms and B = 3ms ,
T0 = 4300s period of the bottom and Ttop = 1900s period of the top, δ = 1. If we take a weighted
average of the periods, we can still approximate a C. So we still use C = 0.1, 1, 10 but then compared
to total weighted T

Figure 3.6: Wind speeds in m
s plotted against the height z in m for 8 evenly spaced times in the 100th

period of the bottom, so t : [99T0, 100T0]. The top amplitude is 3 times the bottom amplitude and
Ttop = 1900, T0 = 4300 with δ = 1. Plotted for C = 0.1, 1, 10 with 100 grid points. atol = 10−4,
rtol = 10−5

.

We see that still for periods, amplitudes and phase difference that aren’t ”nice”, the numerical
solution still follows the analytical solution. We see as well that with the weighted T , the behaviour
for the different values of C is still the same. So for C = 0.1, the boundary conditions influence up to
10m and for C = 10, the solution is almost in equilibrium position.

3.2 Turbulent flow

For turbulent flow κ = 0.4 and not 0, so equation 2.5 is not linear anymore, ν = 1.5 ∗ 10−5m2

s . We
therefore have to consider whether a linear grid is still preferable or if we should use a logarithmic
grid to ensure a better resolution for lower heights. In the Model chapter we already argued that a
logarithmic grid would work better in this case.

3.2.1 Constant velocity at bottom boundary

We again only look at the bottom boundary having a velocity larger than 0. We note that the
equilibrium wind speeds should follow equation 2.24. When comparing a linear to a logarithmic grid
we evaluate how it converts to this equilibrium solution.

15



Figure 3.7: Turbulent wind speeds for constant velocity u(z0) = 1ms with left a linear grid and right
a log grid. The grid points are visualized by horizontal dashed gray lines. The solution is plotted for
increasing t such that the solution moves to an equilibrium. For the logarithmic grid this solution
converges to the analytical equilibrium solution in blue. For the linear plot it does not converge to the
analytically computed equilibrium.

As we can see, the solution with a linear grid overshoots the solution whereas the logarithmic solu-
tion seems to exactly convert to the equilibrium position. Therefore it is believed that the logarithmic
grid works better for turbulent flow so from now on we will use a logarithmic grid point distribution.

3.2.2 Boundary conditions taken from real measurements

For the data driven measurements we have taken the current speed at BuitenbankenWest for 5 days[15].
We first simulated it for utop = 0 at ztop = 100m. The last day is shown in the figure below.

16



Figure 3.8: Simulated turbulent wind speeds plotted for the last day after 5 days for z = 0.01, 1.0, 10, 50
and 100m. At z = 10m the amplitude seems to be approximately 1/4 of the tidal current amplitude.
The boundary condition at z = 0.01m is a measurement and the wind velocity at the 100m is set to
0ms . The values shown for z = 1.0, 10 and 50m are simulated with the numerical model.

In this simulation, the tidal wind at z = 10m has an amplitude of one-fourth the amplitude of the
boundary condition at the sea surface. At z = 50m it can be seen that the influence of the bottom
boundary condition is very small, approximately an amplitude of 1/20 of the tidal current amplitude.

Using data from the Dutch Offshore Wind Atlas [10], it was found that the wind velocity at 100m
was around 10ms in amplitude and an approximate period of 1−2 days. The wind is converted to only
one direction, aligned with the surface current. We will simulate the same 5 days but then with a top
boundary with amplitude 10ms and a period of 1 day. Now we will evaluate the difference between two
simulations with and without sea current velocity. So for the first simulation we use the measured sea
current and for the second we set the current speed to 0, we plot the difference.
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Figure 3.9: Simulated difference in turbulent wind speeds plotted for the last day after 5 days for
z = 1.0, 10 and 50m. The difference between a simulation with moving bottom boundary and velocity
0 as bottom boundary is plotted. The boundary condition at z = 0.01m in the first simulation is again
a measurement with an approximate amplitude of 0.4ms , in the second simulation it is 0ms . The top
boundary at z = 100m is now a periodic velocity with amplitude 10ms and a period of 1 day. The
approximate amplitude at 10m is 0.13ms and at 50m the amplitude is approximately 0.03ms .

We would expect that with higher wind speeds and thus a higher velocity gradient, we would have
a larger influence of the tidal currents, due to the dependence on the gradient. However, at z = 10m
it can be seen that the amplitude difference is still one-fourth of the tidal current amplitude. For
z = 50m it is around one-sixteenth.
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Discussion

We have to note that in our study we made a lot of assumptions. Turbulent flow is very hard to
model, especially when in our case we wanted to keep it very simple. The mixing length model is a
relatively simple model compared to other turbulence models[8]. By the creator itself, Prandtl, it was
called ”only a rough approximation”[2]. However in a lot of boundary layer problems it does work
surprisingly well. The mixing length hypothesis is conceptually analogous to the concept of mean
free path in thermodynamics. A fluid parcel will travel a characteristic length before mixing with
the surrounding fluid and losing it’s original properties. However for this to work in the atmospheric
boundary layer, the boundary layer needs to be neutrally stratified. Although this can happen, the
atmosphere is very chaotic and certainly not always neutrally stratified. Buoyancy effects and pressure
gradients most of the time play a large role in the atmospheric boundary layer as well. Furthermore,
the influence of solar heating and latent heat was neglected.
When we look at the error measurement that was done for the laminar case with a periodic velocity
at the bottom boundary, we see that the error scales quadratically with the time step as expected.
However, the error did not significantly decrease for different grid sizes. This was most probably due
to the fact that it was limited by the time step error. If we had more computing power or time, it
would have been interesting to use even smaller time steps. In the error measurement, the tolerances
were set really high such that they did not have an influence. In the actual simulations they were set
to atol = 10−4 and rtol = 10−5 but this only had a positive effect on the error, the error decreased.
The biggest assumption comes from assuming that the wind and the current are in the same direction.
In the data used from measurements, the wind was converted to only one direction. In reality this is
not the case most of the times. The wind at lower heights may be mostly horizontal but it is certainly
not limited to one direction. Therefore, the most logical next step for this model would be to expand
it such that you consider two horizontal wind directions u and v. This way we can account for the
angle the wind direction and the surface current make. Furthermore, the maximum height could be
increased such that the solution can be determined for larger heights than 100m. This does however
add new complexities such as the Coriolis force.
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Conclusion

In this report we investigated the influence of tidal currents on wind speeds above the coast of the
Netherlands. For this purpose a numerical model was developed based on the 1-D Navier-Stokes
equations in combination with the mixing length turbulence model, to solve for the horizontal wind
speeds in a vertical grid with boundary condition at the bottom, the sea surface, and the top of the
surface layer. The model was first validated with laminar flow using analytically computed solutions.
Then it was used for turbulent flow to model the actual behaviour of the atmosphere above the coast.
In the result it was found that tidal currents do have an influence on overlying wind patterns. At a
height of z = 10m above the sea level the amplitude of the wind speed that was induced by the velocity
of the water surface was approximately one-fourth of the underlying tidal current. For z = 50m it was
already only 1/20 for the simulation without wind and 1/16 for the simulation with top boundary wind
velocity. As wind farms are typically a couple hundred meters tall, the effect tidal winds will have
on them will be very small according to this result. A factor of one-fourth at 10m is reasonably close
to the found one-third in the English Channel by Renault and Marchesiello[13]. However if we look
closely at our model, we have to realise that a lot of assumptions were made. A lot of boundary layer
effects such as surface heating, latent heat and waves at the sea surface were ignored. Moreover, the
wind velocity and tidal current direction were assumed to be aligned in the same direction. In reality
this is of course almost never entirely true. Therefore, in order to improve on the model, the addition
of a second wind velocity could be considered such that all horizontal winds can be simulated. This
way you can account for the different angles between the wind and the tidal currents. Furthermore,
we have only simulated up to 100m, in order to expand the top boundary could be increased to for
example 500m or even more. This would add a lot of complexity though, because at higher altitudes
different effects come in to play such as the Coriolis effect.
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Appendix A

A.1 Analytical solutions

In this chapter we will elaborate on the analytical solutions given in the report

A.1.1 Laminar flow constant boundary

We start by restating our problem for the laminar problem with one constant boundary

ut = νuzz

u(z0, t) = A

u(ztop, t) = 0

u(z, 0) = 0

(A.1)

we will solve this using separation of variables starting by formulating a new u′ = u − A
ztop−z
ztop−z0 .

This changes the problem to

u′t = νu′zz

u′(z0, t) = 0

u′(ztop, t) = 0

u′(z, 0) = −A ztop − z

ztop − z0

(A.2)

performing separation of variables u′ = ϕ(z)h(t) leads to

1

νh
ht =

1

ϕ
ϕzz = −λ (A.3)

which gives a set of new ordinary differential equations

ϕzz = −λϕ ht = −νλh

ϕ(z0) = 0 ϕ(z)h(0) = −A ztop − z

ztop − z0

ϕ(ztop) = 0

Solving for ϕ gives ϕn = Cnsin(nπ
z−z0
ztop−z0 ), so λn = ( nπ

ztop−z0 )
2. Solving for h gives hn(t) =

cne
−ν( nπ

ztop−z0
)2t

. This results in

u′(z, t) =

∞∑
n=1

Cnsin(nπ
z − z0
ztop − z0

)e
−ν( nπ

ztop−z0
)2t

(A.4)

From the initial condition we get
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Cn =

∫ ztop
z0

−A ztop−z
ztop−z0 sin(nπ

z−z0
ztop−z0 ) dz∫ ztop

z0
sin(nπ z−z0

ztop−z0 )
2 dz

Cn = − 2A

ztop − z0

∫ ztop

z0

ztop − z

ztop − z0
sin(nπ

z − z0
ztop − z0

) dz

Cn = − 2A

ztop − z0

ztop − z0
nπ

Cn = −2A

nπ

(A.5)

So we get u′ and thus also u

u′(z, t) = −
∞∑
n=1

2A

nπ
sin(nπ

z − z0
ztop − z0

)e
−ν( nπ

ztop−z0
)2t

u(z, t) = A
ztop − z

ztop − z0
−

∞∑
n=1

2A

nπ
sin(nπ

z − z0
ztop − z0

)e
−ν( nπ

ztop−z0
)2t

(A.6)

A.1.2 Laminar flow periodic boundary

We start again by restating the problem

ut = νuzz

u(z0, t) = Acos(ωt)

u(ztop, t) = 0

u(z, 0) = f(z)

(A.7)

we note that we expect the solution to be independent of the initial condition for t→ ∞, so

u(z, t) = v(z, t) + uqss(z, t) (A.8)

where v(z, t) → 0 for t → ∞ is due to the initial condition and uqss(z, t) = A(z)cos(ωt + ϕ(z)) is
the quasi-steady state solution. Note that if we take f(z) = uqss(z, 0) we don’t have to look at the
initial condition at all. We will now solve for uqss. First we will start to use complex exponentials, as
they are easier to work with

uqss(z, t) = A(z)cos(ωt+ ϕ(z))

uqss(z, t) = Re{A(z)eiϕ(z)eiωt}
uqss(z, t) = Re{U(z)eiωt}

uqss(z, t) =
1

2
(U(z)eiωt + U∗(z)e−iωt)

(A.9)

substituting in the partial differential equation gives

iω

2
(U(z)eiωt − U∗(z)e−iωt) = ν

1

2
(Uzz(z)e

iωt + U∗
zz(z)e

−iωt)

(iωU(z)− νUzz(z))e
iωt − (iωU∗(z) + νU∗

zz(z))e
−iωt = 0

iωU(z)− νUzz(z) = 0

Uzz(z) =
iω

ν
U(z)

(A.10)

where we used that if aeiωt+ be−iωt = 0 for all t > 0, then a = b = 0 (Hier nog bron). Substituting
A.9 into the boundary conditions gives
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1

2
(U(z0)e

iωt + U∗(z0)e
−iωt) =

A

2
(eiωt + e−iωt),

1

2
(U(ztop)e

iωt + U∗(ztop)e
−iωt) = 0 (A.11)

(U(z0)−A)eiωt + (U∗(z0)−A)e−iωt = 0, (A.12)

U(z0) = A, U(ztop) = 0 (A.13)

where we again used a = b = 0 if aeiωt + be−iωt = 0 for t > 0.
Now we have an ordinary differential equation for U . Note that iω

ν = (
√

ω
2ν (1 + i))2. Solving the

ordinary differential equation gives

U(z) = c1cos(

√
ω

2ν
(1 + i)(ztop − z)) + c2sin(

√
ω

2ν
(1 + i)(ztop − z)) (A.14)

using A.13 we get c1 = 0 and c2 = Acsc(
√

ω
2ν (1 + i)(ztop − z0)), where csc(x) = 1

sin(x) is the

cosecant function. Substituting the equation for U(z) in equation A.9, we get

uqss(z, t) =
A

2
(
sin(

√
ω
2ν (1 + i)(ztop − z))

sin(
√

ω
2ν (1 + i)(ztop − z0))

eiωt +
sinh(

√
ω
2ν (1 + i)(ztop − z))

sinh(
√

ω
2ν (1 + i)(ztop − z0))

e−iωt) (A.15)

where we used that sin(α(1 + i))∗ = sinh(α(1 + i)) with α real.

A.1.3 Turbulent flow constant boundary

We start by restating the problem

ut =
∂

∂z
[(ν + κ2z2|uz|)uz]

u(z0, t) = A

u(ztop, t) = 0

u(z, 0) = 0

(A.16)

we are only looking for a steady state solution, so ut = 0 and we do not have to look at the initial
condition. Because we are considering the solution from z0, which is slightly above the actual sea
surface at 0, we can neglect the influence of the dynamic viscosity ν which only plays a large role right
at the boundary layer near z = 0, so

0 ≈ ∂

∂z
[(κ2z2|uz|)uz]

κ2z2|uz|uz = C2

uz =
C

κz

u = C1log(
z

C2
)

(A.17)

with C, C1, C2 arbitrary constants. If we now implement the boundary conditions we can see that
C2 = ztop such that u(ztop) = 0. By the boundary condition at z0 we can determine C1 which gives
us as a steady state profile

uss(z) = A
log( z

ztop
)

log( z0
ztop

)
(A.18)
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