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An Evaluation of the Merging Interaction between
Humans and Interaction-Aware Vehicles

Federico Scarì
Department of Cognitive Robotics, Delft University of Technology, Faculty of 3mE

Abstract—As autonomous vehicle (AV) technology progresses, the necessity for a comprehensive understanding of interactions
between AVs and human-driven vehicles (HVs) becomes paramount, particularly in critical manoeuvres such as merging. Mastering
merging interactions is essential for enhancing road safety. Existing research in this field focuses on how the AV performs the merging
manoeuvre but often fails to assess how they influence these interactions. By drawing inspiration from Human-Robot Interaction and
Human Aware Navigation, this study aims to bridge this gap by examining how these interactions influence driver workload, measured
through fixations duration, perceived safety and drivers’ subjective perception during merging scenarios. We employed a Virtual Reality
environment to simulate realistic driving conditions and measure driver responses. We conducted an experiment where participants
engaged in merging manoeuvres with each other and, subsequently and without being informed, with the AV described in “Planning for
cars that coordinate with people” [1]. This approach allowed for an unbiased assessment of natural driver reactions to AV behaviours.
Our findings reveal significant increases in driver workload and decreases in perceived safety during HV-AV interactions, compared to
HV-HV interactions. These results suggest that current AV algorithms may not fully account for the complexity of human-AV
interactions, highlighting a need for interaction evaluation in the AV development. Participants’ subjective feedback indicates a
recognition of and negative reaction to AV driving behaviours, emphasizing the importance of designing AVs that are both efficient and
intuitive for human drivers. The study’s implications suggest improving AV controllers’ evaluations by including their interactions with
human drivers. By integrating interaction evaluation, AV technologies can achieve smoother and more successful integration into
existing road systems, enhancing predictability and driver acceptance. This study marks a step towards understanding the interactions
between AVs and HVs, offering insights that could steer future research and development in autonomous driving technologies.

Index Terms— Human-Human Interaction, Human-AV Interaction, Workload, Perceived Safety

✦

1 INTRODUCTION

AUTONOMOUS vehicles (AV) are recognized as the fu-
ture of transportation, with experts discussing their

advantages and disadvantages [2, 3]. While consensus on
the timeline and implementation of fully autonomous ve-
hicles is lacking, a gradual increase in automation levels is
anticipated, resulting in a mixed traffic flow with manually,
semi-autonomously, and fully autonomously driven cars [4].
This shift will transform driving habits, impacting safety,
efficiency, and traffic flow. The integration of autonomous
vehicles into the existing road system relies on acceptance
by human drivers in human-driven vehicles (HV). The con-
cept of “acceptance” in the context of AVs is an important
term that plays a crucial role in the interaction between AVs
and HVs [5]. Acceptance encompasses a variety of intricate
concepts like perceived ease of use, attitude, social norm,
trust, perceived usefulness, perceived risk, compatibility [5]
as well as the predictability of AV behaviour, also called
legibility [6]. Understanding and enhancing this acceptance
is crucial, as it directly impacts the effectiveness of AV
integration into our transportation systems and influences
the overall safety and efficiency of road traffic [5, 7]. The
importance of perceived safety in human-AV interactions
[5], in influencing HV-AV interactions, is a key aspect that
researchers must consider, similarly to the safety of human-
robot interactions in broader contexts [8].

However, there is a notable gap in the current field of
research about the interaction between humans and AVs [9].

Recent advancements in AV technology in this field
have led to the development of interaction-aware controllers
(IACs) [10]. These IACs integrate a predictive model of
human driver behavior into their systems, enabling them to
predict potential responses from human drivers to the AV’s
manoeuvres. Leveraging these predictions and a reward
function that prioritizes aspects like safety and comfort, the
IAC identifies the most appropriate action for the AV. Many
studies that focus on AV controllers and IACs for merging
manoeuvres [1, 11–19], claiming to enhance AV-HV interac-
tions, lack empirical validation in real-world settings or con-
trolled simulations with human participants that represent
these reality-like conditions, and thus overlooking the dy-
namics of road interactions. This raises concerns about the
validity of their generalizability to actual traffic scenarios,
as showcasing a proposed controller in a simulated traffic
setting does not adequately indicate its effectiveness in real-
world conditions. In fact, assessments of an AV controller
for merging (lane change and intersections) focus on vehicle
speed and acceleration profiles [1, 11, 17], execution time
[12, 17], safety margins [1, 15, 16], and velocity adjustments
to minimize a cost function [17], with evaluations primarily
conducted through simulations without involving human
drivers. This approach overlooks real-world interactions
with human drivers, failing to account for the AV’s impact
on human behaviour and their mutual interaction. How-
ever, understanding and smoothing out these interactions is
crucial, as they directly impact road safety, traffic efficiency,
and the overall user experience for both AV users and HV
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drivers. The absence of effective communication between
AVs and HVs can lead to misunderstandings or misinterpre-
tations of intent, potentially causing hazardous situations.

Hence, the challenge lies in creating and evaluating
AV systems that not only excel in autonomous navigation
but also in ’social’ driving skills. These skills encompass
understanding and anticipating human driver behaviours,
communicating intentions implicitly or explicitly, and mak-
ing decisions that are predictable and comprehensible to
human drivers. Not only designing but being able to eval-
uate these aspects is paramount to ensure seamless and
safe integration of AVs into our road systems, particu-
larly in (highways) merging scenarios where high speeds,
complex driving patterns and their impact on road safety
(lane-changing and merging manoeuvres contribute to over
450000 accidents in the United States alone (2015) [16]) ne-
cessitate a deeper level of coordination and cooperation [20]
between all vehicles on the road. In fact, tasks such as lane
changing and merging fall within the first and second levels
of Michon’s model [21], the most widely used framework to
explain driving behaviour, and play a crucial role in driving
outcomes. Especially the tactical level directly influences the
interactions between vehicles, impacting the overall high-
level success of merging manoeuvres. In summary, current
research overlooks interactions between autonomous and
human-driven vehicles, neglecting crucial elements like hu-
man acceptance, human perceived safety, and anticipatory
behaviour. An alternative way to evaluate AV is to address
the interaction of AV and HV by evaluating the impact
of AVs on HVs. There are fields like HRI and HAN that
already address the interaction between humans and robots.
Drawing inspiration from these fields, this work aims to
evaluate the impact of the controller proposed in [1] on an
HV based on two key assessment criteria. These criteria –
workload and perceived safety – are chosen for their rele-
vance in assessing not only the technical efficacy but also the
effectiveness of passive communication and interaction be-
tween autonomous vehicles and human drivers. In addition
to evaluating perceived safety, comparing workload levels
between human-human (HV-HV) and human-autonomous
vehicle (HV-AV) interactions is vital. While autonomous
vehicles aim to reduce the workload of drivers, they should
not inadvertently lead to an increased workload for human
drivers.

1.1 This Study
This work aims to answer the following research questions:

1) How does the merging behaviour of interaction-
aware controllers for autonomous vehicles compare
to that of human drivers influence the high-level
merging outcomes, as measured by:

a) the number of collisions, and
b) the percentage of merges in front of the other

vehicle?

2) How does the merging interaction between
interaction-aware controllers for autonomous vehi-
cles and human-driven vehicles compare to interac-
tions between two human-driven vehicles, in terms
of:

a) the human driver’s workload, and
b) the human driver’s perceived safety?

3) How do human drivers perceive and distinguish the
driving behaviours of autonomous vehicles com-
pared to those of human-driven vehicles in a merg-
ing manoeuvre?

To answer these research questions, we conducted a
driving experiment where two participants had to interact
with each other in a merging scenario. The experiment
took place in a Virtual Reality (VR) environment, where
eye movements were recorded and used to measure the
driver’s workload. Furthermore, although the participants
were told that they would interact with each other, in
half of the experiment, they interacted with AVs instead
of with other participants. This approach was adopted to
avoid any possible bias that participants could have towards
AVs. During these experiments, the AV’s impact on the hu-
man drivers during the merging manoeuvre was evaluated
through the participants’ workload, perceived safety, and
questionnaires. When simplifying a two-vehicle merging
manoeuvre, the scenario can be conceptualized as involving
two distinct agents: one merging onto the highway and
the other already cruising on it. In this context, the study
focuses on analyzing the participants’ perceived safety and
workload in both cruising and merging roles, to find any
differences between human-human (HV-HV) and human-
autonomous vehicle (HV-AV) interactions.

Our initial hypotheses are the following:
1) In the context of merging manoeuvres, the high-level

merging outcomes between autonomous vehicles with
interaction-aware controllers and human-driven vehicles,
as compared to interactions between two human-driven
vehicles, will result in:

a) similar number of collisions
b) similar percentage of merges in front of the other

vehicle
2) In the context of merging manoeuvres, the interaction be-

tween autonomous vehicles with interaction-aware con-
trollers and human-driven vehicles, as compared to inter-
actions between two human-driven vehicles, will result
in:

a) an increased workload for the human driver
b) a decreased perceived safety for the human driver

3) Human drivers will be able to recognize differences
in driving behaviour between autonomous vehicles
and human-driven vehicles and will perceive the AV
driving behaviour differences as unsettling, bothersome
or dangerous

The idea behind the first hypothesis relies on the fact that
such an AV controller is already evaluated based on similar
technical parameters and thus optimized for such evalua-
tion. Nevertheless, the rationale behind the other hypothe-
ses is grounded in the behavioural patterns and decision-
making processes of AVs, which could be unfamiliar and
potentially unsettling for human drivers [22]. Furthermore,
human drivers are likely to recognize and react negatively
to these behavioural differences [23]. This study aims to
investigate these hypotheses, thereby contributing to the
understanding of human-AV interaction dynamics.
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2 EXAMPLE OF INTERACTION-AWARE CON-
TROLLER

The controller proposed in [1] was selected as the controller
for this experiment for its on-paper technical capabilities
and its potential for seamless interactions with human
drivers. Additionally, the selection was influenced by the
availability of its code on the author’s GitHub repository,
making it easily accessible for assessment.

The controller proposed focuses on enhancing the in-
teraction between AVs and HVs. It acknowledges that AV
actions influence HV reactions, which can lead to coordi-
nation between AVs and HVs. Unlike most AV controllers,
which treat HVs as obstacles, this controller is designed to
enable AVs to positively impact HV responses, improving
efficiency and cooperation.

To achieve this, the AV-HV interaction is framed as a par-
tially observable stochastic game (POSG). However, to let
the controller estimate the HV’s reward function online, the
problem was converted into a partially observable Markov
decision process (POMDP).

This approach allows the AV to choose a trajectory
and anticipate HV responses by knowing only the HV’s
initial values. Furthermore, the AV can "probe" the human’s
reactions through an information gain term in the reward
function, optimizing for expected reward and considering
the effects of its actions on observations. Active information
gathering also involves testing the human’s reactions based
on the collision avoidance parameter. Model Predictive Con-
trol (MPC) is utilized to perform these optimizations. This
approach is based on the main concept outlined in the paper,
which is to emphasize the "coordination" between the AV
and the HV in such scenarios. Although the HV is not
merely seen as an obstacle by this AV controller, as the AV
is the first to initiate action, it may come across as assertive
or even aggressive towards the HV, potentially harming the
interaction and leading to increased workload and reduced
perceived safety

3 METHODS

3.1 Experimental design
To gather experimental data, we conducted a merging ex-
periment wherein participants were instructed to adhere
to their typical driving behaviour while engaging in in-
teractions with each other. It is crucial to highlight that
participants were informed they would only interact with
each other, with no mention of interactions with AVs. Verbal
communication was expressly prohibited, and participants
were equipped with noise-cancelling headphones to enforce
communication restrictions. To get used to the experimental
environment, vehicle dynamics, and the methodology for
assessing perceived safety, participants underwent a series
of ten training trials. Initial conditions were systematically
randomized to account for potential learning effects and to
mitigate the influence of uncontrolled variables.

The driving experiment featured a first-person perspec-
tive within the vehicle, as shown in Figure 1 and encom-
passed two straight roadway segments, a parallel merging
junction, and an additional straight road. Initially, in the
straight roadway segment, the vehicles were operating un-
der cruise control, where the participant could only steer the

vehicle. At the beginning of the parallel merging junction
which occurs at the exact same time and position for both
interacting agents, participants assumed control upon visual
cues provided by road signage, accompanied by auditory
cues from their headphones. The trial ended with the par-
ticipant being able to fully control the vehicle on the last
straight road. Figure 2 shows the complete track from a top-
down view.

Figure 1: Participants’ Point of View inside of their vehicle during the
experiment. In the middle of the steering wheel the participant can see
the value of their Perceived Safety

3.2 Setup
The experimental setup involved a virtual reality simulated
driving environment. The visual environment of the exper-
iment was developed using Unreal Engine 4.26, CARLA
0.9.13 [24], an open-source simulator specifically designed
for autonomous driving research. Additionally, JOAN, an
open-source software framework [25], was utilized in con-
junction with CARLA.

Participants used a USB steering wheel with pedals to
control their vehicle (Logitech Driving Force GT). Addition-
ally, the participants used two buttons on the back of the
steering wheel to select the perceived safety value.

The Varjo VR3 VR headset was selected for its high-
resolution display, immersive capabilities, and advanced
tracking features.

Figure 3 provides a visual representation of the complete
experimental setup.

3.2.1 Initial Conditions
The starting positions are characterized by variations in
initial lane positions and interaction partners. These posi-
tions were designed to allow participants to experience both
roles in the merging manoeuvre: as the merging agent ("On-
Ramp") and as the agent in the highway lane ("Highway").
Additionally, to compare HV-HV and HV-AV interactions,
participants either interacted with another human ("with
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Figure 2: Track used for the experiment, with merging lane and highway lane. Where xstart shows the starting positions, xcontrol shows where
the participants get control and xend shows the end of the merging lane

Figure 3: Experimental setup. Two participants taking part in the experiment each with a steering wheel, pedals and VR headsets

human" in Table 1) driver or an AV ("with AV" in Table 1).
Each participant interacted with both interaction partners
in all the lateral positions. For clarity, in our experimental
design, the naming of the conditions in Table 1 are primarily
focused from the perspective of driver 1. It’s important to
note that in the condition "Highway with human" the data
of driver 2 is concurrently captured and categorized as the
condition "On-Ramp with Human".

Each vehicle was designated by a specific colour code
(yellow, blue, green, and grey). Yellow and blue corre-
sponded to the vehicles operated by the participants, with
participant 1 assigned to the yellow car and participant 2
assigned to the blue car. The AVs’ colours were green and
grey. Participants interacted with all interaction partners,
thus with three different coloured-coded vehicles. After the
experimental sessions, participants were asked to complete
a questionnaire to describe any behavioural distinctions
between the different coloured vehicles.

Each experimental condition was executed ten times per
session, organized in a randomized sequence, yielding a
total of 40 iterations. Throughout the experiment, the speed
limit was consistently set at 80 km/h (kilometres per hour).
Participants were explicitly instructed to exceed this speed
limit exclusively under critical circumstances.

Condition Driver 1 Driver 2 AVs Interaction
Highway with Highway On- - HV-HV

Human lane Ramp
On-Ramp with On- On- Highway AV-HV

AV Ramp Ramp lane
On-Ramp with On- Highway - HV-HV

Human Ramp lane
Highway with Highway Highway On- AV-HV

AV lane lane Ramp

Table 1: Conditions and interaction type from the perspective of
Driver 1

3.3 Exclusion Criteria
All 14 (7% of the total data) data gathered from trials with
collisions were excluded by the analysis and marked as
failed interaction. This is motivated by two main reasons.
Firstly, our primary research interest lies in understand-
ing the dynamics of successful AV-HV interactions during
merging manoeuvres. Collisions represent extreme cases
where the interaction fundamentally breaks down, thereby
not providing useful insights into the normal range of
interactions we aim to study. Secondly, including collision
data could introduce significant outliers and thus affect the
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results, leading to misinterpretations about typical driver
behaviour and interaction patterns. By focusing on non-
collision trials, we ensure that our analysis remains consis-
tent and relevant to typical driving scenarios.

Additionally, all the data were analysed only in the time
window between the drivers starting to control their vehicle
until the merging manoeuvre was successfully completed.
This was decided to only analyse the data where the inter-
action that influences the manoeuvre took place.

3.4 Assessment of human-robot interactions

3.4.1 Merging Outcome
To compare how the high-level outcome of the interaction
differs between HV-HV and HV-AV interactions we evalu-
ated the number of collisions and the percentage of merges
in front of the other vehicle. The latter metric shows which
vehicle was in front when the merging vehicle crossed the
dashed middle line.

3.4.2 Workload
Workload is a key parameter used to assess the cost of task
completion within human-machine systems [26]. It can be
influenced by various factors, including task complexity,
time constraints, equipment quality, working conditions,
task performance, operator skills, strategies, experience, and
perception. There are multiple methods to measure work-
load empirically.

• Self-assessment: Workload is often evaluated
through questionnaires, with the NASA-Task Load
Index (NASA-TLX) [27] being a common choice.
However, it is important to consider potential bias
in questionnaire responses [28] due to participants’
trust in technology.

• Secondary tasks: Another approach involves evalu-
ating workload through performance on secondary
tasks, where the ability to perform a secondary task
reflects residual workload [29]

• Psychophysiological methods: Workload can also
be assessed using psychophysiological indicators,
including:

– Cardiovascular Measures: Workload can be mea-
sured through cardiovascular indicators such
as heart rate [30] and heart rate variability [30])

– Brain Activity: Workload can be measured
through brain activity (EEG) [31], but this ap-
proach may be costly and intrusive

– Respiratory Activity: Workload can be mea-
sured through respiratory rate [32]

– Eye Tracking: Eye-tracking technology, readily
available in many VR headsets, offers a cost-
effective and non-intrusive means of workload
assessment. It can provide data on eye move-
ment (e.g., gaze coordinates and fixations)[33–
35], blink rate [36], blink duration [37]), pupil
diameter [38], making it a recommended op-
tion for workload evaluation [33]

Eye-tracking technology provides a non-intrusive and
cost-effective way to assess workload. One effective method

for collecting eye-tracking data during experimental studies
is through the use of VR technology. Previous studies have
demonstrated the effectiveness of VR in capturing driver
performance data, including eye-tracking metrics [39]. Ad-
ditionally, the use of VR technology in experiments can
significantly enhance participant engagement by creating
a more immersive experience. Furthermore, VR offers a
cost-effective alternative to more expensive setups, such
as moving-base simulators. It is also noteworthy that VR
experiments have been found to induce motion sickness
in participants, an effect similar to that experienced in
traditional simulators [39]. The immersive quality of 3D-
VR environments has yielded results comparable to those
obtained from other types of simulation environments. The
added benefit of integrated eye-tracking capabilities in VR
headsets makes 3D VR a more economical choice for con-
ducting experiments.

The driver’s gaze angle is an important metric for eye-
tracking and it is the sum of the driver’s head rotation and
eye movement: αgaze = αhead + αeye. Figure 4 visually
represents how the gaze angle is computed.

Figure 4: Visual representation of the computation of the driver’s
gaze. The angle αhead represented in blue depicts the head angle
relative to the origin. The angle αeye coloured in green represents the
angle of the driver’s eye, which is relative to the driver’s face. Finally
in red the angle αgaze shows the gaze angle computed by summing
the two aforementioned angles. It is important to note that since the
eye angle is relative to the driver’s face, with the same head angle we
can compute different gaze angles depending on where the driver is
looking at. Furthermore, the angles in Varjo and JOAN follow the
left-hand rule, the head movement to the left is a negative angle as
well as the angle between the cars is negative for the vehicle in the
on-ramp

Whenever the absolute value of αgaze exceeded αvehicle1

(refer to Figure 5) for Driver 1 (αvehicle2 for Driver 2) or
exceeded a fixed threshold of 50 degrees (Threshold for vehicle
1 for Driver 1 and Threshold for vehicle 2 for Driver 2), it was
interpreted as the driver verifying the presence of the other
vehicle. It is important to note that any eye-tracking data
recorded after the completion of the merging manoeuvre
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was excluded from the analysis. This exclusion was guided
by two considerations: firstly, the primary focus of the study
was on the workload related to the merging manoeuvre
itself; secondly, fixation patterns on the other vehicle were
potentially altered following the completion of a merge by
the other car.

The evaluation of workload was based on two key
metrics:

1) Number of times the participants checked the
presence of the other vehicle: A higher number of
times is indicative of increased workload [34].

2) Total time the participants checked the presence
of the other vehicle: Longer duration suggests that
drivers require more time to comprehend the be-
haviour of other cars, signifying a higher workload
[34].

3.4.3 Perceived Safety
Safety, a critical aspect of user comfort, is often categorized
into physical and perceived (also known as psychological)
safety in the literature. In AV-HV interaction where colli-
sions are not accepted as possible outcomes, only perceived
safety is considered, which plays a pivotal role in human-
robot interaction (HRI) comfort, significantly influencing
attitudes and trust in technology.

Psychological safety encompasses perceived safety and
stress levels. Typically, questionnaires are employed to as-
sess the user’s perceived psychological safety, focusing on
aspects such as the absence of obstructions, the ability to
maintain preferred velocity in the robot’s presence, and
overall impressions of the interaction. Common question-
naires include the Godspeed questionnaire [40], the Robotic
Social Attributes Scale (RoSAS) [41] (derived from the God-
speed questionnaire), and the BEHAVE-II instrument [42].

Combining questionnaires with real-time tracking of
physiological signals like heart rate, heart rate variability,
and eye gaze is often recommended [8]. Heart rate is
considered a crucial biomarker linked to the autonomic
nervous system’s activation, providing insights into stress
and fear. Eye gaze monitoring is valuable since individuals
tend to focus less on potential sources of danger when they
feel safe. It can also be combined with pupillary dilation
measurements [8].

Beyond questionnaires and physiological signal evalu-
ation, alternative methods for assessing perceived safety
include the use of direct input devices [8]. Direct input de-
vices, resembling joysticks, serve a purpose similar to ques-
tionnaires in terms of data collection during experiments.
However, they offer a distinct advantage by providing real-
time feedback, which is not possible with questionnaires.
Nevertheless, it must be noted that these devices can poten-
tially be distracting and invasive for the driver. Therefore,
their design and suitability for the driving experiment are
paramount considerations.

In this work, perceived safety will be analysed through
direct input devices. During the experiment, participants
continuously self-evaluated this metric using the gear pads
on the steering wheel. The assessment method was based
on a "tick event" approach, where any event altering their
safety perception prompted an update of the perceived

safety value. This value was also visually displayed on the
steering wheel, typically in the location of the horn, ensuring
that drivers had constant visibility of their safety status.

To compare how the participant perceived the situation,
the drivers’ perceived safety at the exact moment when the
merging vehicle crossed the dashed line was compared. This
focus was chosen for several reasons. First, the conclusion of
the merging manoeuvre represents an important, if not the
most important point of the interaction, reflecting the out-
comes of the merging manoeuvre. Second, by standardizing
the analysis to this specific moment, we can more accurately
compare perceived safety levels across different trials by
uniforming the metric. The evaluation scale employed for
this metric was -1, 0, and 1, categorizing perceived safety
into three states: unsafe (-1), normal (0), and safe (1).

3.4.4 Questionnaire
After the trials, each participant was asked to fill in a
questionnaire. This was done with the rationale of assessing
if the drivers noticed any difference in behaviour between
the colour-coded vehicles. The following questions were
asked:

1) To which extent were you able to understand the
other participant’s intentions?

2) Have you noticed any differences in behaviour be-
tween cars of different colours?

3) How large were which differences in behavior that
you noticed?

4) How exactly did the behaviour of the other cars
differ depending on their colour?

5) How did the different behaviours of the other cars
influence your interaction with them?

Question 1 was answered using a scale of 1 to 5 with
1 being "I could not understand it at all" and 5 being "I
was able to understand very well". Furthermore, only the
participants who answered "Yes" to question 2 were able to
answer the remaining questions. Again, question 3 was to
be answered based on a scale from 1 to 5, with 1 standing
for "Very minor differences" and 5 standing for "Major
differences", while the last two questions were open-ended.

Although participants were told they would interact
only with each other subsection 3.1, we asked through
the questionnaires if they noticed any difference in driving
behaviour. Although this might be unintuitive, the expec-
tation was that if participants could independently notice
differences in driving behaviours without prior knowledge
of the type of vehicle they were interacting with, it would
suggest that there are observable and distinguishable be-
havioural patterns associated with AVs compared to HVs.
For this reason, the use of colour-coded vehicles was a
deliberate methodological choice, serving a primary pur-
pose; in instances where a vehicle exhibited particularly
notable behaviour, the colour association was intended to
aid participants in recalling and linking these behaviours to
specific vehicles during the post-experiment questionnaires.
If the driving behaviour of the interacting vehicles would
not differ extremely, the colour association was probably
disregarded. Additionally, not mentioning the participants
the AVs served different purposes. Firstly, the experiment
aimed to simulate a real-world scenario where drivers might
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Figure 5: The angle of the two vehicles is computed by taking the driver’s position inside of his/her vehicle to the first part of the other vehicle
where the driver can see if the vehicles are parallel. For the car on the highway lane (yellow car in this example) the angle αvehicle1 is between
the driver’s position and the front left part of the blue vehicle. Conversely, for the vehicle in the on-ramp, the angle αvehicle2 is computed
between the driver’s position and the most front-right part of the other vehicle. In addition to the angles αvehicle1 and αvehicle2 a threshold for
the driver’s gaze is introduced. Both thresholds, Threshold for vehicle 1 and Threshold for vehicle 2, have a value of 50º.

not always know if they are interacting with an AV or
an HV. Secondly, the setup allowed for the observation of
natural responses to behavioural cues rather than responses
influenced by participants’ attitudes or beliefs about AVs.
Thirdly, the experiment aimed to prevent the participants
from consciously or subconsciously seeking out differences
between AVs and HVs. The concern was that if participants
were informed about the involvement of AVs, they might
actively look for distinctions, which could lead to biased
observations or exaggerated perceptions of differences that,
under normal traffic conditions, might not be noticeable or
significant.

3.5 Controller’s Adjustments

For this specific experiment, we modified the model of the
car’s dynamics in [1] to suit Unreal Engine, the simulator
utilized in this study. Precisely, we replaced the point-mass
model with a bicycle model to allow integration in Unreal
Engine. Furthermore, through testing in Unreal Engine, we
computed the maximum acceleration and deceleration val-
ues alongside the maximum steering angle. We integrated
these constraints into the model of the car dynamics pri-
marily for algorithm validation. This validation ensures the
accuracy and effectiveness of the AV’s controller by confirm-
ing its ability to respond appropriately to the vehicle’s ca-
pabilities within the simulated environment. Furthermore,
these constraints play a role in enhancing realism within
the simulation by adding authenticity to the simulation and
thereby providing a reliable testing ground for the AV.

Once the model was adjusted to the simulator, the values
of the reward function weights were estimated. This is be-
cause the whole environment for the algorithm simulation
changed from a 2D world into a first-person view 3D world
(Figure 1) with different physics. It is important to note that
both adjustments were estimations and estimated through
several trials. Following the implementation of the algo-
rithm, we designed the experimental track and environment
around the integration and evaluation of the algorithm’s
interaction performance. Finally, we implemented the con-
troller which was executed on a Linux computer connected
to the simulator server.

3.6 Statistical Analysis

Statistical significance for Workload and Perceived Safety
was assessed using Mixed Effects Module between the
conditions. We set the significance level for the statistical
analysis at p < 0, 05. All statistical analyses were conducted
using Python.

3.7 Participants

The experiment was structured into ten sessions, each in-
volving a randomly assigned pair of participants, resulting
in a total of 20 participants (10 pairs). The selection criteria
for participants included the ability to drive without the use
of corrective glasses or contact lenses, as this was necessary
for the use of Virtual Reality Headsets, and the possession of
a valid driver’s license. All the participants gave informed
consent to do the experiment and were compensated with a
€15 gift card for their participation. The average age of the
participants was 25,7 years with a standard deviation of 4,23
years. Six participants (30%) identified themselves as female
while 14 (70%) identified themselves as male. The average
years of possessing a driving license was 7 years with a
standard deviation of 3,78 years. Most of the participants
were students and researchers of TU Delft, specifically of the
Faculty of Mechanical Engineering and thus already familiar
with the concept of autonomous vehicles, autonomous vehi-
cles’ algorithms and the field of Human-Robot Interaction.
The experiment received ethical approval from the ethical
committee of TU Delft.

3.8 Data

To assess all the aforementioned metrics, many different
data were recorded through JOAN and the Varjo headset.

3.8.1 Vehicle Data

We collected the vehicles’ data through JOAN. We collected
the timestamps, the drivers’ inputs through the steering
wheel such as brake, gear, steering angle and throttle, as
well as the vehicle data such as acceleration and velocity
(both in Vehicle frame and in World frame), and the vehicles’
transform comprehending position (X, Y, Z) and angles



8

(Yaw, Pitch, Roll). Joan collects data with a frequency of
100HZ.

Due to technical reasons, the value for Perceived Safety
changed by the participants was saved under "gear input"
in JOAN.

3.8.2 Eye Tracking Data

We used the native Varjo SDK for all the eye-tracking
data. We measured the timestamps, the participants’ head
movement and the participants’ eye coordinates. Through
the native SDK, data is gathered at a frequency of 100HZ.

4 RESULTS

We compared the condition in which participants merge in
a human-human (HV-HV) interaction to the condition in
which they merge in a human-autonomous vehicle (HV-AV)
interaction. Additionally, we compared the condition where
participants were in the highway lane in an HV-HV interac-
tion to the condition where they were in the highway lane
in an HV-AV interaction. In summary, we were comparing
condition "Highway with human" to "Highway with AV"
and condition "On-Ramp with human" to "On-Ramp with
AV". This comparison allowed us to evaluate the workload
and perceived safety associated with the same manoeuvres
(merging or staying in the lane) in both HV-HV and HV-AV
interactions.

4.1 Merging Outcome

4.1.1 Number of Collisions

The total number of collisions was 14 which represents the
1,75% of the total trials.

In scenarios involving human drivers, whether in the
"Highway" or "On-Ramp" conditions, collisions were the
least frequent, occurring in only 2 and 1 instances out of
200 trials (refer to Table 2), respectively. This suggests a
relatively low impact on overall safety in human-to-human
interactions.

On the other hand, interactions with the AV resulted in
a higher number of collisions, with 5 and 6 collisions out of
200 trials for "Highway" and "On-Ramp," respectively.

Highway Highway On-Ramp On-Ramp
with human with AV with human with AV

Total 200 200 200 200
trials
Total 2 5 1 6

collisions
Collision 1% 3% 1% 3%

rate

Table 2: Total number of collisions and collision rate per condition

There is no statistically significant difference between the
number of collisions in the different conditions (p = 0, 494
and p = 0, 055, respectively).

4.1.2 Percentage of Merges in front of the other Vehicle
There are differences in the results of the percentage of
merges in front of the other vehicle between the conditions
"Highway" and "On-Ramp". In the "Highway" conditions,
with both interaction partners "with human" and "with AV",
the vehicle already on the highway stayed in front most
of the time and let the merging vehicle merge behind. The
difference between these two conditions is relatively small,
in the "Highway with human" condition, 79% of the time
the vehicle in the highway was in front when the merging
vehicle merged in, while in the condition "Highway with
AV", this happened 72% of the time (refer to Figure 6).
These results led to no statistically significant difference
(p = 0, 422).

Obviously, in "On-Ramp" scenarios with both interaction
partners, "with human" and "with AV", the merging vehicle
tends to merge in front of the other vehicle fewer times,
21% and 34%, respectively (refer to Figure 6). In contrast
to the "Highway" conditions, the difference between these
conditions is statistically significant (p = 0, 024).

Figure 6: Percentage of merges in front of the other vehicle per
condition

4.2 Workload
Figure 7 shows a visual representation of how the data was
analysed for each repetition in each trial of the experiment.
The plot shows the data gathered for Driver 1 in the con-
dition "Highway with Human". This visual representation
aids in comprehending how and when drivers were mon-
itoring the presence of the other vehicle during the trials.
In this example, we can see that the driver checked the
other car’s presence during the cruise control twice and,
more importantly, several times (4) after taking control of
the vehicle. Furthermore, it indicates a decrease in the angle
between the vehicles, suggesting a change in their relative
positions due to speed variation. This leads to the other
vehicle merging in front, as shown by an approximately 5-
degree angle at the merging point.

In our results, participants checked more times the other
vehicle’s presence when interacting with the AV in the
"Highway" condition, meaning that the way the AV merges
and interacts while merging necessitates more glances (refer
to Figure 8). For the condition "On-Ramp" there doesn’t
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Figure 7: The row data of the driver’s eye tracking. The orange line shows the driver’s gaze angle and her/his foveal region, and the blue line
stands for the angle between the two vehicles, in this case, the angle is positive because the condition was "Highway with Human" and thus the
recorded data shows the eye-tracking for the driver on the highway. The green line shows if the driver checked the other’s vehicle presence,
every time the driver’s gaze angle was higher than the thresholds or higher than αvehicle1 the green line has a value of 20. This line is only used
to have visual feedback on the data. As we can see from the plot the driver was checking the other vehicle’s presence for about 2,22s, sometimes
by looking at the other vehicle directly and sometimes only by checking its presence.

Figure 8: Numbers of time of fixations on the other vehicle as a
function of experimental condition and interaction type

appear to be any difference in the number of times the
participant checks the other vehicle’s presence (refer to Fig-
ure 8). This might suggest that the AV is better at interacting
when it is in the highway lane. We saw a difference in
the total time spent by the driver looking at the other
vehicle in both conditions "Highway" and "On-ramp" when
interacting with the AV compared to interacting with the
HV (refer to Figure 9). These results might suggest that
the driver needs more time to understand the AV in both

Figure 9: Total duration of fixations on the other vehicle as a function
of experimental condition and interaction type

conditions.
The statistical analysis did reveal a significant difference

(p = 0, 002) only between the conditions "Highway with hu-
man" and "Highway with AV" in terms of workload, which
was measured based on the frequency of drivers checking
the presence of other vehicles (Table 3). As expected, when
looking at Figure 8 the frequency of drivers checking the
presence of other vehicles is significantly higher with the
AV merging compared to when it was another HV that was
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Conditions z P-value>|z|
"Highway with human" and 3,056 0,002

"Highway with AV"
"On-ramp with human" and 0,948 0,343

"On-ramp with AV"

Table 3: Mixed Effects Module test for Workload measured through
the number of times the driver was checking for the other’s vehicle
presence between conditions "Highway with human" and "Highway
with AV" and between conditions "On-Ramp with human" and
"On-Ramp with AV"

merging. This means that the drivers had to glance more
often towards the AV when it was merging. There is no
statistically significant difference in the frequency of drivers
checking the presence of other vehicles when comparing the
two "On-Ramp" conditions.

Conditions z P-value>|z|
"Highway with human" and 2,429 0,015

"Highway with AV"
"On-Ramp with human" and 2,012 0,044

"On-Ramp with AV"

Table 4: Mixed Effects Module test for Workload measured through
total time spent by the driver on checking for the other’s vehicle
presence between conditions "Highway with human" and "Highway
with AV" and between conditions "On-Ramp with human" and
"On-Ramp with AV"

The analysis of workload measured through the total
time spent by the driver on checking for the other’s ve-
hicle presence indicates a statistically significant difference
between conditions "Highway with human" and "Highway
with AV" (p = 0, 015) and between conditions "On-ramp
with human" and "On-Ramp with AV" (p = 0, 044) (Table 4).

The results for workload confirm the hypothesis that
drivers need more time to understand the AV’s behaviour
in a merging scenario.

4.3 Perceived Safety
Perceived Safety data was captured as a continuous signal
throughout the experimental trials. Figure 10 illustrates
how this raw data was collected during a representative
trial, specifically in the ’On-Ramp with AV’ condition. The
figure illustrates a shift in the driver’s perceived safety,
highlighting a marked decrease once the merging process
started. This visual representation underscores the interac-
tion’s impact on the driver’s perceived safety, particularly
at the moment when the merging vehicle crosses the middle
dashed line.

The results of our study showed that drivers gener-
ally felt less safe when interacting with the AV (refer to
Figure 11). The average Perceived Safety was lower when
participants were interacting with the AV, especially in the
condition "On-Ramp", suggesting a perception of lower
safety in this condition.

Figure 12 presents bar plots illustrating the proportions
of time participants felt safe, neutral, or unsafe at the
aforementioned crucial moment across all conditions. The
plot distinctly reveals that participants felt unsafe more
frequently in "with AV" conditions than in "with human"
conditions at the critical moment of merging manoeuvre

Figure 10: Raw data of Perceived Safety for a representative trial
(’On-Ramp with AV’ condition). The continuous blue line represents
the Perceived Safety signal across the entire trial. The first dashed red
line indicates when the driver assumed control of the vehicle, and the
second dashed red line marks the point where the driver crossed the
end of the merging lane. The dashed grey line signifies the completion
of the merging manoeuvre

completion (red bars). Additionally, the drivers felt "safe"
fewer times during interaction with AV compared to inter-
action with HV (green bars), suggesting AV interaction or
behaviour is perceived more negatively than that of HVs.

Figure 12: Proportion of perceived safety when the merging vehicle
crossed the middle line.

To compare the results, we summarized the aggregated
instances where participants reported feeling unsafe at the
aforementioned moment across each experimental condi-
tion. This approach was crucial in capturing the immediate
perceived safety resulting from the merging manoeuvre.

The statistical results (Table 5), indicate a statistically sig-
nificant difference in the "On-Ramp" conditions (p = 0, 002),
whereas no significant difference was found between the
"Highway" conditions (p = 0, 099).
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Figure 11: Perceived Safety and its density for all 10 sessions, divided by condition. The left side of the figure shows the trials with human
interaction, and the right side depicts those with AV interaction. The top plots correspond to the "Highway" condition, while the bottom plots
represent the "On-Ramp" condition. Each dotted line in these plots represents an individual trial, while the continuous orange line and
surrounding shaded area illustrate the average and confidence interval, respectively, of the data for that condition. The grey dotted line marks
the end of the merging manoeuvre. The three statuses of perceived safety: "Unsafe", "Neutral" and "Safe" are on the y-axis. Furthermore, all the
datasets were shifted around the merging moment and shown between a fixed time window (in yellow), to have a better understanding and
comparison of the interaction at the same time. The plot above shows the lateral and the longitudinal positions of the vehicles during one
representative trial ("Highway with human"), it also shows the fixed time window in the global picture of one representative trial.

Conditions z P-value>|z|
"Highway with human" and 1,651 0,099

"Highway with AV"
"On-Ramp with human" and 3,036 0,002

"On-Ramp with AV"

Table 5: Mixed Effects Module test for Perceived Safety between
conditions "Highway with human" and "Highway with AV" and
between conditions "On-Ramp with human" and "On-Ramp with AV"

4.4 Questionnaires

The questionnaires aimed to measure if drivers perceived
behavioural differences across colour-coded vehicles and
connect these observations with objective data, enriching the
study’s insights with personal feedback.

Participants generally rated their understanding of other
drivers’ intentions as neutral, with an average score of
3.5 and a standard deviation of 0.69. A majority, 65% of
participants (13 out of 20), observed behavioural variances
between different coloured cars, with 61.6% considering
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these differences substantial (average rating of 3.75 and a
standard deviation of 1.22).

To better understand the following answers is good to
remember that the green and grey vehicles were AVs, while
the blue and the yellow ones were HVs. The The question
"How exactly did the behaviour of the other cars differ depending
on its colour?", three main descriptors noticed:

1) Not legible: Participants had difficulty in under-
standing the AV’s behaviour. Its implication is well
summarized by one participant’s answer: "the green
carfor example didnt know what he wanted to do, ac-
celerate or stop so that was annoying" (participant 2).
Another participant stated their difficulty in un-
derstanding the other vehicle’s behaviour without
specifying a colour-coded car "abrupt speed changes,
non predictable driving behaviour" (participant 15).

2) Technical driving: Some participants complained
about the technical driving capability of the AVs,
especially on how smooth the other vehicle felt,
by stating "grey car not seem to accelerate smoothly,
but that might also have been the other person driv-
ing"(participant 12), or "When merging, the green
and grey cars would slow down, skid" (participant 4).
Others didn’t specify any colour but only stated no-
ticed differences, so the following statements are not
clearly directed towards AVs: "abrupt speed changes"
(participant 15) and "sometimes abrubtly braking"
(participant 8).

3) Driving behaviour: Different participants described
the other vehicle’s behaviour without explicitly stat-
ing the colour "Some colours seemed to behave more
reckless and aggressive, sometimes abrubtly braking"
(participant 8), "The driving style (more or less ag-
gressive)" (participant 16) and "I don’t know how
they were different but I saw different behaviours and
expect them to be related to the colours" (participant
18). One participant (participant 20) clearly stated
the difference in behaviour by mentioning also the
colour of the vehicles "Yellow - normal behaviour;
Green or grey - aggressive, reckless, trying to get ahead".

In general, we can identify at least one of these three
descriptors in ten out of 13 participants. These different
results yield that, in our study, the majority of people see
differences in AV driving behaviour, though there is no
general consensus on what was really differing. Participants
expressed frustration with the AVs’ unclear intentions and
abrupt speed changes, indicating a need for improvement in
AV communication and behaviour predictability to enhance
safety and acceptance among human drivers.

The answer to the final question How did the different
behaviours of the other cars influence your interaction with them?
can be divided into two main groups:

1) Proactive Participants: Those who took the initia-
tive by speeding up: "Speed up and merge in front
of them" (participant 4), or overtaking, especially
when foreseeing potentially dangerous behaviour
from other vehicles: "when I could foresee a dangerous
behaviour because of the colour of the car I would tend
to take initiative to overtake it so that its behaviour and
speed changes does not affect me" (participant 15)

2) Cautious Participants: Those who responded more
conservatively, maintaining larger distances: "Larger
distance = safer perception" (participant 5) or waiting
for the other vehicle to act first: "waited for the
action of the other participant" (participant 7), espe-
cially when perceiving the behaviour as reckless
or aggressive: "was more cautious when the behaviour
seemed more reckless" (participant 8). Participant 20
summarises: "Was much more careful around the green
and grey cars, let them go ahead"

Five participants out of 13 reported that they took the ini-
tiative, while 7 participants described their reaction as more
conservative. None of the participants reported a complete
lack of change in their behaviour in response to the change
in the behaviour of other vehicles. However, one participant
did mention that their behaviour was only slightly influ-
enced, stating: "Not that much, I was more careful around the
grey car". Interestingly, the participants were nearly evenly
split between these two reactive approaches, five partici-
pants out of 13 took the initiative while seven out of 13
acted more cautiously, and one participant didn’t express a
clear answer. This spread highlights the diverse strategies
in response to perceived differences in the behaviours of
colour-coded vehicles. The results show that more than half
of our participants saw differences in behaviour, with many
describing the AV driving behaviour negatively.

5 DISCUSSION

We conducted a driving experiment to assess the difference
in interaction between the HV-AV interaction and the HV-
HV interaction through high-level outcomes, workload and
perceived safety, and to check if human drivers can recog-
nise differences in driving behaviour between autonomous
vehicles and human-driven vehicles. Workload was mea-
sured through two different metrics: the number of times
the participants checked the presence of the other vehicle
and the total time the participants checked the presence
of the other vehicle. We discovered significant differences
both in workload and in perceived safety in both conditions
for workload and in the "On-Ramp" condition for perceived
safety, respectively. Furthermore, the answers to the ques-
tionnaires reveal that human drivers perceive the evaluated
AV driving behaviour as different from an HV. Addition-
ally, the outcomes of the questionnaires provide valuable
insights into the participants’ perceptions and reactions
during the experiment and give a deeper understanding of
the two previously mentioned metrics.

The findings indicate a notable distinction in driver
workload and perceived safety when interacting with AVs
compared to when they were interacting with HVs. The
increase in workload, expressed as the total duration of
drivers checking the presence of the other vehicle, suggests
that AVs may require drivers to allocate more attention to
understand their behaviour, potentially leading to increased
cognitive demands [34]. Similarly, the decreased perceived
safety in "On-Ramp with AV" conditions highlights pos-
sible concerns about the predictability and smoothness of
AV driving patterns, affecting driver perceived safety and
drivers’ reactions to their behaviour as seen from the results
of the questionnaires. The findings cannot be generalized
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to all AV controllers, but, together with the lack of AVs’
interaction evaluation, highlight the necessity of a new
and different AV evaluation to identify and mitigate any
negative impacts of AVs on human drivers. Additionally,
Figure 11 shows a difference in drivers’ perceived safety
across the entire trial between these conditions and not
only at the end of the merging manoeuvre, meaning that
the whole interaction with AVs is badly influenced by AV-
driving behaviour.

The concerns raised by participants about the pre-
dictability and comprehensibility of the AVs could be a
contributing factor to the increased workload observed dur-
ing interactions with AVs. As drivers expend more effort
to understand the intentions and behaviours of AVs, there
is a rise in workload metrics we’ve previously covered.
Additionally, the perceived behaviours of AVs as "non pre-
dictable", "more aggressive" and "reckless", as described by
the participants, could account for the reduced perceived
safety in the "On-Ramp with AV" condition. This might
suggest a direct correlation between the participants’ subjec-
tive experiences and the quantitative findings of the study,
highlighting the impact of AV behaviour on human driver
responses.

These results have profound implications for the design
and operation of AVs. They underscore the necessity of
incorporating human factors, such as workload and per-
ceived safety, into AV controllers design to ensure that these
systems do not adversely affect the driving experience.

The results highlight a critical aspect of AV controllers’
current design, namely, the need to ensure that these sys-
tems are assessed also with a comprehensive evaluation of
their impact on their interactions with HVs. This underlines
the critical importance of incorporating safety perception
in AV algorithm design, as the success of AV integration
relies heavily on driver trust and acceptance. It is crucial for
AVs to be perceived as safe by human drivers to facilitate
their integration into current road systems and, even more
so, in future mixed traffic scenarios. If AVs are perceived
as unsafe, their acceptance by human drivers could be
compromised, limiting their benefits to AV users only. This
situation could hinder the widespread adoption and utility
of AVs in existing traffic ecosystems. Therefore, ensuring
that AVs are perceived as safe by all road users is essential
for their successful integration and functionality in mod-
ern transportation. The findings underscore the complexity
of human-AV interactions and highlight the need for de-
signing AVs that are intuitive and predictable to human
drivers. Additionally, the diversity in human responses also
emphasizes the importance of considering various human
behavioural patterns when developing and testing AV algo-
rithms, leading again to the importance of the human factor
when designing AVs. Lastly, our findings consistently show
that in merging scenarios, participants were always affected
by the behaviour of the AV underscoring once again, the
impact of AV driving behaviour on human drivers. This,
again, highlights the need for careful assessment of AV-HV
interaction during the design phase of AVs. Ensuring that
AVs are designed with a keen understanding of their impact
on human drivers is essential for their successful integration
into the transportation ecosystem.

Having highlighted the implications of our results, we

also reflected on the use of eye tracking to evaluate work-
load. Under workload, one can find different definitions -
cognitive, mental and physiological - in more recent studies,
all fall under the definition of driver’s workload (DW)
[43]. Researchers used different methods to measure DW.
Eye tracking, in particular, has been utilized in different
ways to assess workload, including blink rate [36], blink
duration [37]), pupil diameter [38], and fixations [33–35], all
recognized as significant indicators of DW [44].

Workload is already studied on AV and depending on
its level, automation has been shown to impact driver
workload negatively [45, 46] and positively [33].

Although used for workload, eye tracking, in the field of
driving, is also employed to measure situation awareness
(SA) [27, 47]. In this case, the focus is not just on the
cognitive load but on whether and how well drivers per-
ceive, comprehend, and anticipate environmental elements
[48]. Unlike the specific application in measuring workload,
situation awareness assessment encompasses a broader un-
derstanding of the situation. In other words, applied to our
experiment, SA would indicate if the drivers understand
that: a) the other vehicle wants to merge in, b) how it
will merge in and c) what will be the future manoeuvres.
However, DW, in our experiment, determines how much
time the driver needs to understand the aforementioned SA.

Most existing research on eye tracking and workload,
especially concerning automation, does not directly address
the impact on human drivers interacting with AVs. This
study innovates by focusing on the effect of AV automation
on the workload of HV drivers through eye tracking.

Given the simplified nature of our experimental de-
sign, featuring only two vehicles on the track without the
presence of non-driving related tasks (NDRT) that might
divert the driver’s attention, our focus shifts to quantify-
ing the time required by drivers to comprehend the in-
tentions of the other vehicle and to respond accordingly
to manoeuvre successfully. This approach aligns with our
objective of measuring workload, emphasizing the cognitive
effort required from drivers, as measured by the time they
need to invest, rather than assessing their overall situation
awareness. Furthermore, the consistent conditions across
trials should imply that any differences detected via eye-
tracking metrics, particularly fixations, reflect the workload
imposed on drivers rather than their understanding of the
situation. Hence, in this context, eye tracking serves as a tool
to quantify DW between HVs and AVs, marking a novel
approach in the exploration of automated vehicles’ impact
on human drivers.

Finally, the data gathered during the experiment demon-
strated that the AV was capable of executing merging
manoeuvres and allowing other vehicles to merge, with-
out resulting in a statistically significant higher number
of collisions. Additionally, the high-level dynamic of the
merging manoeuvre in terms of the percentage of merges in
front of the other vehicle showed only a slightly significant
difference in the "On-Ramp" conditions. If we had assessed
the AV only on these two metrics, our findings would sug-
gest that the AV can execute merging manoeuvres with an
"apparently" comparable level of safety to human drivers. If
only relying on these metrics, one might infer a comparable
safety level between AVs and human drivers. However, a
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comprehensive examination of additional metrics uncovers
substantial differences (as discussed above) that negatively
impact AV-human driver interactions.

6 LIMITATIONS AND FUTURE WORKS

Our study faced several limitations, including the absence
of rear-view mirrors in the VR setup, forcing participants
to rely on head movements for environmental assessment.
Due to the complexity of the setup (see Figure 3), the
addition of reflective surfaces such as rear-view mirrors
could lead to network lag and delayed visuals in the VR
headsets resulting in motion sickness for participants, thus
making the experiment unfeasible. Feedback from partici-
pants suggested that the lack of mirrors deviated from real-
world driving conditions and that the physical burden of
wearing a VR headset was tiring which may have caused a
reduction in head movements, especially towards the latter
part of the experiment, influencing our results. Since the
conditions were randomized there might be cases where
some conditions were repeated mostly towards the end
of the session. Thus, perhaps, participants were influenced
greatly by the physical burden of wearing the VR headset.

Our study also raises questions about the effectiveness of
using eye-tracking as the only method to evaluate drivers’
workload in quick manoeuvres such as merging. Consider-
ing the brevity of these manoeuvres, eye-tracking may not
capture all the differences in workload effectively. Alterna-
tive methods, as discussed in [49], such as brain activity
measured through electroencephalogram (EEG), could pro-
vide deeper insights. EEG has been proven effective in vari-
ous scientific experiments for assessing workload. Nonethe-
less, its application alongside VR technology may pose
challenges, given the invasiveness and physical discomfort
associated with wearing multiple head-mounted devices.
This concern was raised in feedback from participants about
the VR headset’s weight in our study. Future work could
also use other methods such as measuring cardiovascu-
lar activity, skin conductance, and respiratory rate. These
methods, compared to EGG may offer a balance between
accuracy and participant comfort, especially in immersive
VR environments. By assessing workload through cardio-
vascular activity, skin conductance, or respiratory rate, the
experiment could take place in a simulator with a moving
base which is comparable with real traffic scenarios [50],
to have an even better reality-like experience of HV-AV
interactions.

An additional limitation of this work is that we anal-
ysed only one controller from the wide array of controllers
discussed in the literature, preventing us from generalizing
our results to all controllers. However, we note that the
literature reviewed [1, 11–19] lacks evaluation of controllers
based on their interaction with HVs, a gap our study begins
to address. By highlighting this research gap, our study
not only begins to bridge the gap in understanding AV-HV
interactions but also underscores the importance for future
research to prioritize the evaluation of AV controllers in the
context of their interaction with human drivers, ensuring
safer and, for the driver, less cognitive demanding inte-
gration of autonomous vehicles. Moreover, the experiment
faced challenges in achieving perfect synchronization within

the simulator. This could be attributed to the fact that partic-
ipants were interacting with two computers connected over
the network. Additionally, the Linux computer responsible
for controlling the AV vehicles was also connected over
the network, potentially leading to minor delays in the
simulation. This occasionally resulted in slightly misaligned
lateral positions of vehicles at the moment of driver takeover
in some conditions. Such synchronization issues may have
influenced the precision and repeatability of our analysis
regarding vehicle interactions and drivers’ responses.

The trade-off encountered in the questionnaire design,
which involved the use of colour-coded vehicles without
disclosing the presence of AVs to participants, introduces a
limitation that could affect questionnaire outcomes. Specifi-
cally, this approach might have created a "human-like" driv-
ing behaviour expectation which led to an accentuation of
any "non-normal" behaviours, making them more noticeable
to participants. This heightened awareness could lead par-
ticipants to inadvertently emphasize anomalies, influencing
the overall perception and evaluation of driving behaviours
observed during the experiment. To address this limitation
and further understand the dynamics of human-AV inter-
action, the existing experimental setup could be augmented
through a comparative study. This would involve explicitly
informing a subset of participants about the presence of
AVs while keeping others unaware. This method allows
for a direct assessment of how prior knowledge about
AVs influences participants’ perceptions and behaviours. By
analyzing the differences between the responses of informed
and uninformed participants, we can also determine the
impact of awareness on the detection and interpretation of
driving behaviours.

This study also had a limited participant pool and most
of the participants were of TU Delft, specifically of the
Faculty of Mechanical Engineering and thus already familiar
with the concept of autonomous vehicles, their algorithms
and the field of Human Robot Interaction. Future research
should include a more diverse pool of participants.

In future research, a broader approach that encompasses
all moments of perceived "unsafety" could provide more
insightful results, since exploring the overall signal profile
during the entire interaction may offer a more complete un-
derstanding of drivers’ perceived safety. Another approach
might be to consider all the situations that are "not safe"
rather than focusing only on "unsafe" situations. This might
already yield interesting results. It is also worth consider-
ing other methodologies such as heart rate [8], and think-
aloud methods for gathering this metric. These alternative
approaches are recommended for exploration in subsequent
studies to deepen our understanding of perceived safety in
AV interactions.

Future research should focus not only on exploring di-
verse methods for assessing workload and perceived safety,
but also on considering different traffic scenarios, and exam-
ining how demographic factors, such as participants’ age,
gender and experience influence human-AV interaction.

Finally, this research has concentrated on two parameters
- workload and perceived safety - demonstrating their crit-
ical role in the assessment of AV interactions with human-
driven vehicles. The findings underscore the need for AV
algorithms that take into account these human factors.
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Future studies should extend this research by exploring
the additional evaluation parameters in [49] and assessing
various AV controllers. Such comprehensive evaluations are
essential to ensure the integration and acceptance of AVs in
our existing road systems, ultimately enhancing the safety
and efficiency of our transportation ecosystem.

7 CONCLUSION

In this study, we analysed the interaction dynamics be-
tween human-driven vehicles and autonomous vehicles in
merging scenarios, by evaluating the high-level outcome of
the merging manoeuvre, drivers’ workload and perceived
safety. Based on the experimental conditions and the analy-
ses that integrate both quantitative and qualitative data, we
assessed and concluded the following:

1) Merging Outcomes: Overall, collisions occurred in
1,75% of total trials, with fewer incidents in HV-
HV interactions compared to HV-AV interactions.
While no significant differences were found be-
tween collision rates in different conditions, merg-
ing behaviours varied, only in "On-Ramp" scenarios

2) Higher Workload in AV Interactions: The investi-
gation demonstrates an increase in driver workload
when interacting with the AV presented in [1] in a
merging scenario, characterized by a higher dura-
tion of checks for the presence of other vehicles.

3) Lower Perceived Safety in AV Interactions: Data
indicate a significant reduction in perceived safety
during interactions with the AV presented in [1]
in a merging scenario, especially when the human
driver had to merge in, underscoring concerns over
the predictability and legibility of AV behaviour
from a human driver’s perspective.

4) Perception of AV Driving Differences: The ques-
tionnaire results reveal that although participants
were told that they would interact with each other,
they perceived the AV’s driving behaviour as dif-
ferent. Furthermore, the different driving behaviour
of the AV, influenced the human driver since the
AV presented in [1] was considered unpredictable
compared to human drivers.

These findings highlight the important need for integrating
and thus evaluating human factors considerations, such as
workload and perceived safety, into the design of AVs to
ensure their successful integration into our current traffic
ecosystems. Additionally, these conclusions offer important
insights for the ongoing development and evaluation of AV
technologies, highlighting the importance of human users’
perceptions during their assessment phase.
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APPENDIX A
Appendix A shows the average lateral and longitudinal positions of the vehicles during experiment 1 divided by conditions
Figure 63, the boxplots for the fixation frequency for experiment 1 Figure 14, the boxplots for the total duration of the
fixation for experiment 1 Figure 15, the proportions of time of participants’ Perceived Safety when the merging vehicle
crossed the merging line for experiment 1 Figure 16 and the Perceived Safety during experiment 1 Figure 17.

Figure 13: Average Lateral and longitudinal positions of the vehicles during experiment 1

Figure 14: Numbers of time of fixations on the other vehicle as a function of experimental condition and interaction type for experiment 1
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Figure 15: Total duration of fixations on the other vehicle as a function of experimental condition and interaction type for experiment 1

Figure 16: Proportion of perceived safety when the merging vehicle crossed the middle line for experiment 1
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Figure 17: Perceived Safety and its density for experiment 1, divided by condition. The left side of the figure shows the trials with human
interaction, and the right side depicts those with AV interaction. The top plots correspond to the "Highway" condition, while the bottom plots
represent the "On-Ramp" condition. Each dotted line in these plots represents an individual trial, while the continuous orange line and
surrounding shaded area illustrate the average and confidence interval, respectively, of the data for that condition. The grey dotted line marks
the end of the merging manoeuvre. The three statuses of perceived safety: "Unsafe", "Neutral" and "Safe" are on the y-axis. Furthermore, all the
datasets were shifted around the merging moment and shown between a fixed time window, to have a better understanding and comparison of
the interaction at the same time.
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APPENDIX B
Appendix B shows the average lateral and longitudinal positions of the vehicles during experiment 2 divided by conditions
Figure 18, the boxplots for the fixation frequency for experiment 2 Figure 19, the boxplots for the total duration of the
fixation for experiment 2 Figure 20, the proportions of time of participants’ Perceived Safety when the merging vehicle
crossed the merging line for experiment 2 Figure 21 and the Perceived Safety during experiment 2 Figure 22.

Figure 18: Average Lateral and longitudinal positions of the vehicles during experiment 1

Figure 19: Numbers of time of fixations on the other vehicle as a function of experimental condition and interaction type for experiment 1
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Figure 20: Total duration of fixations on the other vehicle as a function of experimental condition and interaction type for experiment 1

Figure 21: Proportion of perceived safety when the merging vehicle crossed the middle line for experiment 1
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Figure 22: Perceived Safety and its density for experiment 1, divided by condition. The left side of the figure shows the trials with human
interaction, and the right side depicts those with AV interaction. The top plots correspond to the "Highway" condition, while the bottom plots
represent the "On-Ramp" condition. Each dotted line in these plots represents an individual trial, while the continuous orange line and
surrounding shaded area illustrate the average and confidence interval, respectively, of the data for that condition. The grey dotted line marks
the end of the merging manoeuvre. The three statuses of perceived safety: "Unsafe", "Neutral" and "Safe" are on the y-axis. Furthermore, all the
datasets were shifted around the merging moment and shown between a fixed time window, to have a better understanding and comparison of
the interaction at the same time.



24

APPENDIX C
Appendix C shows the average lateral and longitudinal positions of the vehicles during experiment 3 divided by conditions
Figure 23, the boxplots for the fixation frequency for experiment 3 Figure 24, the boxplots for the total duration of the
fixation for experiment 3 Figure 25, the proportions of time of participants’ Perceived Safety when the merging vehicle
crossed the merging line for experiment 3 Figure 26 and the Perceived Safety during experiment 3 Figure 27.

Figure 23: Average Lateral and longitudinal positions of the vehicles during experiment 1

Figure 24: Numbers of time of fixations on the other vehicle as a function of experimental condition and interaction type for experiment 1
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Figure 25: Total duration of fixations on the other vehicle as a function of experimental condition and interaction type for experiment 1

Figure 26: Proportion of perceived safety when the merging vehicle crossed the middle line for experiment 1
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Figure 27: Perceived Safety and its density for experiment 1, divided by condition. The left side of the figure shows the trials with human
interaction, and the right side depicts those with AV interaction. The top plots correspond to the "Highway" condition, while the bottom plots
represent the "On-Ramp" condition. Each dotted line in these plots represents an individual trial, while the continuous orange line and
surrounding shaded area illustrate the average and confidence interval, respectively, of the data for that condition. The grey dotted line marks
the end of the merging manoeuvre. The three statuses of perceived safety: "Unsafe", "Neutral" and "Safe" are on the y-axis. Furthermore, all the
datasets were shifted around the merging moment and shown between a fixed time window, to have a better understanding and comparison of
the interaction at the same time.
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APPENDIX D
Appendix D shows the average lateral and longitudinal positions of the vehicles during experiment 4 divided by conditions
Figure 28, the boxplots for the fixation frequency for experiment 4 Figure 29, the boxplots for the total duration of the
fixation for experiment 4 Figure 30, the proportions of time of participants’ Perceived Safety when the merging vehicle
crossed the merging line for experiment 4 Figure 31 and the Perceived Safety during experiment 4 Figure 32.

Figure 28: Average Lateral and longitudinal positions of the vehicles during experiment 1

Figure 29: Numbers of time of fixations on the other vehicle as a function of experimental condition and interaction type for experiment 1
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Figure 30: Total duration of fixations on the other vehicle as a function of experimental condition and interaction type for experiment 1

Figure 31: Proportion of perceived safety when the merging vehicle crossed the middle line for experiment 1
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Figure 32: Perceived Safety and its density for experiment 1, divided by condition. The left side of the figure shows the trials with human
interaction, and the right side depicts those with AV interaction. The top plots correspond to the "Highway" condition, while the bottom plots
represent the "On-Ramp" condition. Each dotted line in these plots represents an individual trial, while the continuous orange line and
surrounding shaded area illustrate the average and confidence interval, respectively, of the data for that condition. The grey dotted line marks
the end of the merging manoeuvre. The three statuses of perceived safety: "Unsafe", "Neutral" and "Safe" are on the y-axis. Furthermore, all the
datasets were shifted around the merging moment and shown between a fixed time window, to have a better understanding and comparison of
the interaction at the same time.
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APPENDIX E
Appendix E shows the average lateral and longitudinal positions of the vehicles during experiment 5 divided by conditions
Figure 33, the boxplots for the fixation frequency for experiment 5 Figure 34, the boxplots for the total duration of the
fixation for experiment 5 Figure 35, the proportions of time of participants’ Perceived Safety when the merging vehicle
crossed the merging line for experiment 5 Figure 36 and the Perceived Safety during experiment 5 Figure 37.

Figure 33: Average Lateral and longitudinal positions of the vehicles during experiment 1

Figure 34: Numbers of time of fixations on the other vehicle as a function of experimental condition and interaction type for experiment 1
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Figure 35: Total duration of fixations on the other vehicle as a function of experimental condition and interaction type for experiment 1

Figure 36: Proportion of perceived safety when the merging vehicle crossed the middle line for experiment 1
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Figure 37: Perceived Safety and its density for experiment 1, divided by condition. The left side of the figure shows the trials with human
interaction, and the right side depicts those with AV interaction. The top plots correspond to the "Highway" condition, while the bottom plots
represent the "On-Ramp" condition. Each dotted line in these plots represents an individual trial, while the continuous orange line and
surrounding shaded area illustrate the average and confidence interval, respectively, of the data for that condition. The grey dotted line marks
the end of the merging manoeuvre. The three statuses of perceived safety: "Unsafe", "Neutral" and "Safe" are on the y-axis. Furthermore, all the
datasets were shifted around the merging moment and shown between a fixed time window, to have a better understanding and comparison of
the interaction at the same time.
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APPENDIX F
Appendix F shows the average lateral and longitudinal positions of the vehicles during experiment 6 divided by conditions
Figure 38, the boxplots for the fixation frequency for experiment 6 Figure 39, the boxplots for the total duration of the
fixation for experiment 6 Figure 40, the proportions of time of participants’ Perceived Safety when the merging vehicle
crossed the merging line for experiment 6 Figure 41 and the Perceived Safety during experiment 6 Figure 42.

Figure 38: Average Lateral and longitudinal positions of the vehicles during experiment 1

Figure 39: Numbers of time of fixations on the other vehicle as a function of experimental condition and interaction type for experiment 1
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Figure 40: Total duration of fixations on the other vehicle as a function of experimental condition and interaction type for experiment 1

Figure 41: Proportion of perceived safety when the merging vehicle crossed the middle line for experiment 1
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Figure 42: Perceived Safety and its density for experiment 1, divided by condition. The left side of the figure shows the trials with human
interaction, and the right side depicts those with AV interaction. The top plots correspond to the "Highway" condition, while the bottom plots
represent the "On-Ramp" condition. Each dotted line in these plots represents an individual trial, while the continuous orange line and
surrounding shaded area illustrate the average and confidence interval, respectively, of the data for that condition. The grey dotted line marks
the end of the merging manoeuvre. The three statuses of perceived safety: "Unsafe", "Neutral" and "Safe" are on the y-axis. Furthermore, all the
datasets were shifted around the merging moment and shown between a fixed time window, to have a better understanding and comparison of
the interaction at the same time.
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APPENDIX G
Appendix G shows the average lateral and longitudinal positions of the vehicles during experiment 7 divided by conditions
Figure 43, the boxplots for the fixation frequency for experiment 7 Figure 44, the boxplots for the total duration of the
fixation for experiment 7 Figure 45, the proportions of time of participants’ Perceived Safety when the merging vehicle
crossed the merging line for experiment 7 Figure 46 and the Perceived Safety during experiment 7 Figure 47.

Figure 43: Average Lateral and longitudinal positions of the vehicles during experiment 1

Figure 44: Numbers of time of fixations on the other vehicle as a function of experimental condition and interaction type for experiment 1
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Figure 45: Total duration of fixations on the other vehicle as a function of experimental condition and interaction type for experiment 1

Figure 46: Proportion of perceived safety when the merging vehicle crossed the middle line for experiment 1
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Figure 47: Perceived Safety and its density for experiment 1, divided by condition. The left side of the figure shows the trials with human
interaction, and the right side depicts those with AV interaction. The top plots correspond to the "Highway" condition, while the bottom plots
represent the "On-Ramp" condition. Each dotted line in these plots represents an individual trial, while the continuous orange line and
surrounding shaded area illustrate the average and confidence interval, respectively, of the data for that condition. The grey dotted line marks
the end of the merging manoeuvre. The three statuses of perceived safety: "Unsafe", "Neutral" and "Safe" are on the y-axis. Furthermore, all the
datasets were shifted around the merging moment and shown between a fixed time window, to have a better understanding and comparison of
the interaction at the same time.
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APPENDIX H
Appendix H shows the average lateral and longitudinal positions of the vehicles during experiment 8 divided by conditions
Figure 48, the boxplots for the fixation frequency for experiment 8 Figure 49, the boxplots for the total duration of the
fixation for experiment 8 Figure 50, the proportions of time of participants’ Perceived Safety when the merging vehicle
crossed the merging line for experiment 8 Figure 51 and the Perceived Safety during experiment 8 Figure 52.

Figure 48: Average Lateral and longitudinal positions of the vehicles during experiment 1

Figure 49: Numbers of time of fixations on the other vehicle as a function of experimental condition and interaction type for experiment 1
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Figure 50: Total duration of fixations on the other vehicle as a function of experimental condition and interaction type for experiment 1

Figure 51: Proportion of perceived safety when the merging vehicle crossed the middle line for experiment 1
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Figure 52: Perceived Safety and its density for experiment 1, divided by condition. The left side of the figure shows the trials with human
interaction, and the right side depicts those with AV interaction. The top plots correspond to the "Highway" condition, while the bottom plots
represent the "On-Ramp" condition. Each dotted line in these plots represents an individual trial, while the continuous orange line and
surrounding shaded area illustrate the average and confidence interval, respectively, of the data for that condition. The grey dotted line marks
the end of the merging manoeuvre. The three statuses of perceived safety: "Unsafe", "Neutral" and "Safe" are on the y-axis. Furthermore, all the
datasets were shifted around the merging moment and shown between a fixed time window, to have a better understanding and comparison of
the interaction at the same time.
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APPENDIX I
Appendix I shows the average lateral and longitudinal positions of the vehicles during experiment 9 divided by conditions
Figure 53, the boxplots for the fixation frequency for experiment 9 Figure 54, the boxplots for the total duration of the
fixation for experiment 9 Figure 55, the proportions of time of participants’ Perceived Safety when the merging vehicle
crossed the merging line for experiment 9 Figure 56 and the Perceived Safety during experiment 9 Figure 57.

Figure 53: Average Lateral and longitudinal positions of the vehicles during experiment 1

Figure 54: Numbers of time of fixations on the other vehicle as a function of experimental condition and interaction type for experiment 1
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Figure 55: Total duration of fixations on the other vehicle as a function of experimental condition and interaction type for experiment 1

Figure 56: Proportion of perceived safety when the merging vehicle crossed the middle line for experiment 1
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Figure 57: Perceived Safety and its density for experiment 1, divided by condition. The left side of the figure shows the trials with human
interaction, and the right side depicts those with AV interaction. The top plots correspond to the "Highway" condition, while the bottom plots
represent the "On-Ramp" condition. Each dotted line in these plots represents an individual trial, while the continuous orange line and
surrounding shaded area illustrate the average and confidence interval, respectively, of the data for that condition. The grey dotted line marks
the end of the merging manoeuvre. The three statuses of perceived safety: "Unsafe", "Neutral" and "Safe" are on the y-axis. Furthermore, all the
datasets were shifted around the merging moment and shown between a fixed time window, to have a better understanding and comparison of
the interaction at the same time.
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APPENDIX J
Appendix J shows the average lateral and longitudinal positions of the vehicles during experiment 10 divided by conditions
Figure 58, the boxplots for the fixation frequency for experiment 10 Figure 59, the boxplots for the total duration of the
fixation for experiment 10 Figure 60, the proportions of time of participants’ Perceived Safety when the merging vehicle
crossed the merging line for experiment 10 Figure 61 and the Perceived Safety during experiment 10 Figure 62.

Figure 58: Average Lateral and longitudinal positions of the vehicles during experiment 1

Figure 59: Numbers of time of fixations on the other vehicle as a function of experimental condition and interaction type for experiment 1
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Figure 60: Total duration of fixations on the other vehicle as a function of experimental condition and interaction type for experiment 1

Figure 61: Proportion of perceived safety when the merging vehicle crossed the middle line for experiment 1
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Figure 62: Perceived Safety and its density for experiment 1, divided by condition. The left side of the figure shows the trials with human
interaction, and the right side depicts those with AV interaction. The top plots correspond to the "Highway" condition, while the bottom plots
represent the "On-Ramp" condition. Each dotted line in these plots represents an individual trial, while the continuous orange line and
surrounding shaded area illustrate the average and confidence interval, respectively, of the data for that condition. The grey dotted line marks
the end of the merging manoeuvre. The three statuses of perceived safety: "Unsafe", "Neutral" and "Safe" are on the y-axis. Furthermore, all the
datasets were shifted around the merging moment and shown between a fixed time window, to have a better understanding and comparison of
the interaction at the same time.
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APPENDIX K
Appendix K shows the average lateral and longitudinal positions of the vehicles during all experiments divided by
conditions Figure 63, the pie-chart showing the percentage of participants that reported to have noticed differences in
behaviour between the different coloured-coded cars,Figure 14, the boxplots for the total duration of the fixation for
experiment 1 Figure 64 and the distribution of the answers on how large the noted differences were Figure 65.

Figure 63: Average Lateral and longitudinal positions of the vehicles during experiment 1

Figure 64: Percentage of people reporting if they noticed any difference in behaviour between the different coloured-coded cars. In blue is the
percentage of participants who noticed a difference while in red is who didn’t
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Figure 65: Distribution of the answers on how large the noted differences were. 13 answers since 7 participants didn’t notice any difference
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