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SUMMARY

Underground tunnels are important infrastructures due to diverse applications in civil
engineering. The dynamic behavior of the underground tunnels when exposed to seis-
mic waves or the passage of high-speed moving trains is of particular interest. Amplifica-
tions of displacements and stress concentrations may occur due to wave scattering and
wave interference. Engineers concern about the vibration stability of moving trains as
so-called anomalous Doppler waves may be generated when trains move at high speeds;
the corresponding energy is fed into the vibration of the vehicle. Therefore, the train-
track-soil interaction should be properly considered to predict when the vehicle vibra-
tion becomes unstable.

This thesis aims to present a semi-analytical solution for the response of a half-space
with an embedded tunnel subject to seismic waves and to analyse the vibration stability
of high-speed trains moving through that underground tunnel. Previous studies indicate
that the method of conformal mapping is a promising analytical method to solve the
two-dimensional (2D) wave scattering problem due to its computational efficiency and
accuracy. Thus, the first objective of this thesis is to extend the method of conformal
mapping to three-dimensional (3D) case and systematically evaluate its performance.
Results reveal that inaccurate results maybe obtained, particularly at high frequencies.
This observation motivates the second objective of this thesis, which focuses on verifying
the accuracy of the specific application of the method of conformal mapping in which
the waves scattered from the half-space surface are represented by cylindrical waves that
originate from an image source of a priori unknown intensity. To this end, a simpler 2D
model is considered, involving a cylindrical cavity embedded in an elastic half-space
subject to a harmonic anti-plane shear wave. The performance of the indirect Boundary
Element Method (indirect BEM) is evaluated too for this model in view of the choice of
the appropriate solution method for the second type of dynamic problem considered in
this thesis. For this second type of dynamic problem, due to the identified inaccuracies
at high frequencies for the 3D problem, the indirect BEM is utilised to investigate the
stability of vibrations of an oscillator moving at high speeds through a tunnel embedded
in soft soil, which is the third objective of this thesis.

Regarding the first objective, the 3D problem of a cylindrical tunnel embedded in an
elastic half-space subject to plane harmonic compressional and shear waves is consid-
ered. Both the tunnel and soil are modelled as an elastic continuum. Conformal map-
ping is employed to transform the original physical domain with boundary surfaces of
two different types onto an image domain with surfaces of the same type. The total wave
field in the half-space consists of incident and reflected (from the half-space surface)
plane waves, as well as directly and secondary scattered cylindrical waves, while the total
wave field in the tunnel consists of refracted cylindrical waves. The secondary scattered
waves, generated when the cylindrical waves directly scattered from the tunnel meet the
half-space surface, are represented by cylindrical waves that originate from an image

xi
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source of a priori unknown intensity, which is in line with the spirit of the method of
images. The unknown amplitude coefficients of the cylindrical waves are determined
from the boundary and continuity conditions of the tunnel-soil system by projecting
those onto the set of circumferential modes, which results in a set of algebraic equa-
tions. Results show that the present method converges for a small number of circum-
ferential modes. A good agreement is observed between the obtained results and those
in literature. It is shown in a systematic evaluation that the method works well for the
frequency band of seismic waves, as well as for the complete considered ranges of the
tunnel/soil stiffness ratio, the embedded depth of the tunnel, the vertical incident angle
and the tunnel thickness. The reason for the inaccuracy at high frequencies probably lies
in the fact that the secondary scattered waves in the soil are represented by cylindrical
waves and not by plane waves, while the latter are most likely more suitable to repre-
sent the responses at the flat ground surface at high frequencies. In addition, the results
obtained for a moderate tunnel-soil stiffness contrast under the incident compressional
wave are inaccurate when Hankel functions are used to represent the cylindrical waves
in the tunnel, which is due to the refracted shear waves in the tunnel transitioning from
propagating to evanescent. These inaccuracies can be perfectly overcome by represent-
ing the waves in the tunnel by Bessel functions. Furthermore, the present method gener-
ally works better for the incident compressional wave than for the incident shear wave,
as the condition number of the coefficient matrix (related to the mentioned algebraic
equations) is often larger in the latter case. To conclude, the extension of the method of
conformal mapping to the 3D case is successful and the present method can be used in
preliminary design so as to avoid pronounced resonances, and to assess stress distribu-
tions and ground vibrations. In view of engineering practice, the tunnel is safer when the
surrounding soil is stiffer, the tunnel is thicker and the vertical incident angle is larger.

With regard to the second objective, the 2D problem of a cavity embedded in an elas-
tic half-space subjected to a harmonic anti-plane shear wave is considered. Main focus
is the comparison of three methods: the method of images, the method of conformal
mapping and the indirect BEM. The closed-form solutions obtained by the method of
images serve as benchmark solutions for the other two methods. Convergence tests and
validation examples are provided to assess the accuracy of the methods. It is shown in
a comparative study that both the method of conformal mapping and the method of
images require a similar number of circumferential modes to achieve converged results.
In terms of computational efficiency, the method of images outperforms the method of
conformal mapping, whereas the indirect BEM is the least efficient one among the three.
A systematic evaluation demonstrates that both the method of conformal mapping and
the indirect BEM accurately work within the complete considered ranges of the dimen-
sionless frequency, the embedded cavity depth and the vertical incident angle. This is in
contrast to the 3D case, where converged results could not be obtained at high frequen-
cies for the method of conformal mapping. The findings suggest that representing the
waves scattered from the free surface by cylindrical waves (originating from an image
source of a priori unknown intensity) in the method of conformal mapping is indeed the
cause of the inaccuracies at high frequency in the 3D problem. As no inaccuracies are ob-
served for the current 2D anti-plane shear problem, the inaccuracy for the 3D problem is
likely due to the use of cylindrical waves (instead of plane waves) that are apparently not
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fully able to capture all wave conversions taking place at the free surface. Furthermore,
a parametric study reveals significant effects of the system parameters on the responses.
The system response curves display nearly equally spaced resonances, which is in line
with those of the one-dimensional (1D) shear layer subject to bedrock motion, while
similar response curves for the 3D case do not display equally spaced resonances.

Regarding the third objective, the stability of vertical vibrations of an object moving
at constant speed through a tunnel embedded in soft soil is investigated. The soil is mod-
eled as an elastic continuum, while the tunnel is modelled by the Flügge shell. The mov-
ing object is modelled as a mass-spring system or as the limiting case of a single mass.
By utilising the indirect BEM, the equivalent dynamic stiffness of the tunnel-soil system
at the point of contact with the moving object is computed numerically. The concept of
equivalent stiffness is employed to reduce the original 2.5D model to an equivalent dis-
crete model, whose parameters depend on the vibration frequency and the object’s ve-
locity. The critical velocity beyond which the instability of the object vibration may occur
is found, and it is the same for both models of the moving object. This critical velocity
is much larger than the operational velocity of high-speed trains and ultra-high-speed
transportation vehicles, which indicates that the model adopted in this thesis predicts
the vibrations of Maglev and Hyperloop vehicles to be stable. Furthermore, the critical
velocity for instability is found to be much larger than the critical velocity for resonance,
contrary to the literature finding for the model of a railway track founded on top of the
elastic half-space. For both models (i.e., tunnel embedded in the half-space, and track on
top of the half-space), the critical velocity for resonance is slightly smaller than the veloc-
ity of Rayleigh waves, and the fact that the critical velocity for instability is so much larger
in the current model is due to the large stiffness of the tunnel and the radiation damp-
ing of the waves excited in the tunnel. A parametric study shows that the thickness and
material damping ratio of the tunnel, the stiffness of the soil and the burial depth have
a stabilising effect, while the damping of the soil may have a slightly destabilising effect
(i.e., lower critical velocity for instability). The D-decomposition method is utilised to in-
vestigate the stability of the moving object for velocities exceeding the identified critical
velocity for instability. Instability domains in the space of system parameters are found,
as well as the dependency of the critical mass and stiffness on the velocity. Results show
that the higher the velocity, the smaller the mass of the object should be to ensure sta-
bility (single mass case); moreover, the higher the velocity, the larger the stiffness of the
spring should be when a spring is added (oscillator case). Finally, in view of the stability
assessment of Maglev and Hyperloop vehicles, the approach presented in this thesis can
be applied to more advanced models with more points of contact between the moving
object and the tunnel, which resembles reality even better.





SAMENVATTING

Ondergrondse tunnels zijn belangrijke infrastructuur wegens de diverse toepassingen
binnen de civiele techniek. Het dynamische gedrag van ondergrondse tunnels is van be-
lang met name wanneer ze blootgesteld worden aan seismische golven of wanneer een
hogesnelheidstrein passeert. Verplaatsingen en spanningsconcentraties kunnen name-
lijk versterkt worden door weerkaatsing en interferentie van de seimische golven. Inge-
nieurs bekommeren zich verder om de stabiliteit van de trillingen van rijdende treinen
omdat zgn. abnormale Dopplergolven kunnen worden gegenereerd bij hoge snelheden;
de bijhorende energie voedt de trilling van het voertuig. Hierom moet de trein-spoor-
grond interactie goed beschouwd worden om de mogelijke instabiliteit van het voertuig
te voorspellen.

Deze dissertatie presenteert enerzijds een semi-analytische oplossing voor het ge-
drag van een halfruimte met ingebedde tunnel, geëxciteerd door seismische golven. Daar-
naast wordt ook de stabiliteit van de trilling van hogesnelheidstreinen in een onder-
grondse tunnel bestudeerd. Eerdere onderzoeken geven aan dat de methode van con-
forme afbeeldingen een veelbelovende analytische methode is om het twee-dimensionale
(2D) golfweerkaatsingprobleem op te lossen vanwege de rekenkundige efficiëntie en nauw-
keurigheid. Daarom is het eerste doel van deze dissertatie het uitbreiden van deze me-
thode naar drie dimensies (3D) en het systematisch evalueren van hoe goed de methode
presteert. Het blijkt dat de uitkomsten onnauwkeurig kunnen zijn, met name bij hoge
frequenties. Dit gegeven is de motivatie achter het tweede doel van deze dissertatie. Dit
tweede doel is het verifiëren van de nauwkeurigheid van de specifieke toepassing van
de methode van conforme afbeeldingen. In deze toepassing worden golven die wor-
den weerkaatst aan het oppervlak van de halfruimte namelijk gerepresenteerd door ci-
lindrische golven gegenereerd door een gespiegelde bron met een a priori onbekende
intensiteit. Voor dit tweede doel wordt een 2D model van een cilindrische holte inge-
bed in een elastische halfruimte gebruikt, dat geëxciteerd wordt door een harmonische
uit-het-vlak-gepolariseerde afschuifgolf. Ten behoeve van de keuze voor een accurate
oplossingsmethode voor het bovengenoemde tweede dynamische probleem wordt de
nauwkeurigheid van de indirect Boundary Element Method (BEM) ook geëvalueerd voor
dit model. Wegens de eerder genoemde onnauwkeurigheden bij hoge frequenties wordt
voor het tweede dynamische probleem de indirect BEM gebruikt om de stabiliteit van
de trilling van een op hoge snelheid bewegende oscillator door een in slappe grond in-
gebedde tunnel onderzocht; dit is het derde doel van deze dissertatie.

Met het oog op het eerste doel wordt het drie-dimensionaal (3D) model van een cilin-
drische, in een elastische halfruimte ingebedde tunnel geëxciteerd door vlakke harmo-
nische druk- en afschuifgolven beschouwd. Zowel de tunnel als de grond worden gemo-
delleerd als een elastisch continuüm. De methode van conforme afbeeldingen wordt ge-
bruikt om het originele fysieke domein met randoppervlakken van twee verschillende ty-
pes te transformeren naar een afbeeldingsdomein met oppervlakken van hetzelfde type.

xv
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Het totale golfveld in de halfruimte bestaat uit inkomende en door het oppervlak van de
halfruimte gereflecteerde vlakke golven alsmede uit direct en secundair weerkaatse cilin-
drische golven, terwijl het totale golfveld in de tunnel bestaat uit brekende cilindrische
golven. De secundair weerkaatse golven, die ontstaan doordat cilindrische golven die di-
rect door de tunnel weerkaatst zijn het oppervlak van de halfruimte bereiken, worden ge-
representeerd door cilindrische golven gegenereerd door een gespiegelde bron met een
a priori onbekende intensiteit. Het gebruik van deze gespiegelde bron is geïnspireerd op
de spiegelmethode (“method of images”). De onbekende amplitudecoëfficiënten van de
cilindrische golven worden bepaald op basis van de rand- en continuïteitsvoorwaarden
van het tunnel-grond systeem; door deze te projecteren op de set van omtrekstrilvor-
men wordt een stelsel van algebraïsche vergelijkingen verkregen. Volgens de resultaten
convergeert de gebruike rekenmethode (van conforme afbeeldingen) bij een klein aantal
omtrekstrilvormen. De verkregen resultaten komen goed overeen met die in de gerela-
teerde literatuur. In een systematische evaluatie wordt aangetoond dat de methode goed
werkt voor frequenties die kenmerkend zijn voor seismische golven en ook voor het ge-
hele beschouwde bandbreedtes van de verhouding tussen tunnel- en grondstijfheid, de
ingebedde diepte van de tunnel, de verticale invalshoek en de tunneldikte. De reden
voor de onnauwkeurigheid bij hoge frequenties ligt waarschijnlijk aan het feit dat de se-
cundair weerkaatste golven in de grond worden beschreven door cilindrische golven en
niet door vlakke golven. Vlakke golven zijn waarschijnlijk beter geschikt om het gedrag
aan het vlakke grondoppervlak bij hoge frequenties te beschrijven. Resultaten verkregen
voor een gematigde verhouding tussen tunnel- en grondstijfheid zijn ook onnauwkeu-
rig bij een inkomende drukgolf in het geval dat Hankelfuncties gebruikt worden om de
cilindrische golven in de tunnel te beschrijven. Dit gebeurt als brekende afschuifgolven
in de tunnel overgaan van voortplatend naar ‘evanescent’. De onnauwkeurigheid kan
omzeild worden door Besselfuncties te gebruiken om de brekende golven in de tunnel
te beschrijven. Verder werkt de gebruikte methode over het algemeen beter voor de in-
komende drukgolf dan voor de inkomende afschuifgolf omdat het conditiegetal van de
coëfficiëntenmatrix (gerelateerd aan de eerder genoemde algebraïsche vergelijkingen)
vaak groter is in het laatste geval. Als conclusie kan gesteld worden dat de uitbreiding van
de methode van conforme afbeeldingen naar het beschouwde 3D scenario succesvol is;
de methode kan gebruikt worden voor het voorlopig ontwerp van tunnels om resonan-
ties te voorkomen en ook om spanningsverdelingen en grondtrillingen te beoordelen.
Met het oog op de praktijk kan verder gesteld worden dat de tunnel veiliger is bij een
relatief stijvere grond, een dikkere tunnelwand en een grotere verticale invalshoek.

Met het oog op het tweede doel wordt het 2D probleem van een cilindrische holte
ingebed in een elastische halfruimte beschouwd, geëxciteerd door een harmonische
uit-het-vlak-gepolariseerde afschuifgolf. De nadruk ligt op de vergelijking tussen drie
methodes: de spiegelmethode, de methode van conforme afbeeldingen en de indirect
BEM. De analysitische oplossing verkregen met de spiegelmethode dient als referentie
voor de andere twee methodes. Convergentietesten en validaties worden uitgevoerd om
de nauwkeurigheid van de methodes te beoordelen. De vergelijking van de drie me-
thodes laat zien dat zowel de methode van conforme afbeeldingen als de spiegelme-
thode een vergelijkbare hoeveelheid van omtrekstrilvormen nodig hebben om gecon-
vergeerde resultaten te krijgen. In termen van numerieke efficiëntie overtreft de spie-
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gelmethod de methode van conforme afbeeldingen, terwijl de indirect BEM in dat op-
zicht het minst presteert van de drie. Een systematische evaluatie laat zien dat zowel
de methode van conforme afbeeldingen en de indirect BEM nauwkeurig zijn binnen de
beschouwde bandbreedtes van de dimensieloze frequentie, de ingebedde diepte en de
verticale invalshoek. Dit is in tegenstelling tot het 3D probleem, eerder beschouwd met
het oog op het eerste doel. Daar kunnen geen geconvergeerde, en dus nauwkeurige, re-
sultaten verkregen worden voor de hoge frequenties bij het gebruik van de methode van
conforme afbeeldingen. De bevindingen suggereren dat het representeren van de weer-
kaatste golven afkomstig van het vrije oppervlak door cilindrische golven (afkomstig van
een spiegelbron met a priori onbekende intensiteit) bij de methode van conforme af-
beeldingen inderdaad de reden is voor de onnauwkeurigheden bij hoge frequenties in
het 3D vraagstuk. Omdat geen onnauwkeurigheden zijn waargenomen voor het 2D pro-
bleem, wordt gesteld dat de onnauwkeurigheid in het 3D probleem waarschijnlijk ver-
oorzaakt worden door het feit dat de gebruikte cilindrische golven (in plaats van vlakke
golven) niet in staat zijn om alle optredende golfconversies bij het vrije oppervlak te be-
schrijven. Een parametrische studie m.b.v. het 2D model laat verder significante effecten
zien van de systeemparameters op de responsies. De responsiecurves vertonen resonan-
ties op nagenoeg gelijke afstanden van elkaar. Dit komt overeen met de responsiecurves
van een één-dimensionale (1D) afschuifslaag geëxciteerd door een beweging van het on-
derliggende gesteente. De responsiecurves behorende bij het 3D model vertonen geen
resonanties op gelijke afstanden van elkaar.

Met het oog op het derde doel wordt de stabiliteit van de verticale trilling beschouwd
van een object dat met constante snelheid beweegt door een tunnel in slappe grond.
De grond is gemodelleerd als een elastisch continuüm, terwijl de tunnel is gemodelleerd
met behulp van de Flüggeschaal. Het bewegende object is gemodelleerd als een massa-
veer-systeem, waarbij ook gekeken is naar het scenario van een enkele massa (zonder
contactveer) als limietgeval. Door gebruik te maken van de indirect BEM wordt de equi-
valente dynamische stijfheid van het tunnel-grond-systeem op het contactpunt met het
bewegende object numeriek berekend. Het concept van de equivalente stijfheid wordt
gebruikt om het originele 2.5D model te reduceren tot een discreet model. De para-
meters van dit discrete model zijn afhankelijk van de trillingsfrequentie en de snelheid
van het bewegende object. De kritische snelheid waarboven de trillingen van het ob-
ject instabiel kunnen zijn wordt gevonden, en deze is hetzelfde voor beide modellen van
het object (massa-veer-systeem en enkele massa). Deze kritieke snelheid (voor instabi-
litiet) is veel groter dan de operationele snelheid van hogesnelheidstreinen en van ultra-
hogesnelheid transportvoertuigen; het model gebruikt in deze dissertatie geeft dus aan
dat de trillingen van Maglev en Hyperloop voertuigen stabiel zullen zijn. Verder is de kri-
tieke snelheid (voor instabiliteit) veel groter dan de kritieke snelheid voor resonantie; dit
correspondeert niet met bevindingen in de literatuur voor het model van een spoorweg
bovenop een elastische halfruimte. Voor beide modellen (d.w.z. een tunnel ingebed in
de halfruimte en een spoorweg bovenop de halfruimte) is de kritische snelheid voor re-
sonantie iets kleiner dan de snelheid van Rayleighgolven. Het feit dat de kritieke snelheid
voor instabiliteit zoveel groter is in het huidige model wordt veroorzaakt door de grote
stijfheid van de tunnel en de stralingsdemping van de golven die zich langs tunnel voort-
planten. Een parametrische studie toont dat de dikte en de materiaaldempingsratio van
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de tunnel, de stijfheid van de grond en de ingebedde diepte een stabiliserend effect heb-
ben, terwijl de demping van de grond een licht destabiliserend effect heeft (d.w.z. een la-
gere kritische snelheid voor instabiliteit). Met behulp van de D-decomposititiemethode
is de stabiliteit van het bewegende object onderzocht voor snelheden boven de kritische
snelheid. Het instabiliteitsdomein in de ruimte van de systeemparameters wordt ge-
vonden, evenals de afhankelijkheid van de kritische massa en stijfheid van de snelheid.
Resultaten tonen dat hoe hoger de snelheid is, hoe lager de massa van het object behoeft
te zijn om de stabiliteit te garanderen (in het geval van de enkele massa). En hoe groter
de snelheid, hoe groter de stijfheid van de veer moet zijn als deze wordt aangebracht (in
het geval van het massa-veer systeem) om stabiliteit te garanderen. Tenslotte, met het
oog op het beoordelen van de stabiliteit van Maglev- en Hyperlooptreinen, de methode
ontwikkeld in deze dissertatie kan ook gebruikt worden voor geavanceerdere modellen
waarbij meer contactpunten tussen de bewegende massa en de tunnel beschouwd wor-
den; hierdoor de zou de realiteit nog beter beschreven worden.



1
INTRODUCTION

1.1. BACKGROUND AND MOTIVATION
Underground structures play a pivotal role in modern society, serving as vital infrastruc-
tures with a broad range of applications in civil engineering. The growth of rapid transit
systems, commonly known as metro and high-speed trains, has led to the emergence of
numerous embedded tunnels. These tunnels serve as efficient transportation networks
within urban areas. Additionally, underground structures are utilised for housing and
safeguarding utility infrastructure such as water and sewage pipelines, electrical cables,
telecommunication networks and gas distribution systems. In most cases these systems
are buried in the ground to prevent damages from external factors and reduce visual
clutter in urban environment. Furthermore, underground structures are used to pro-
tect individuals or sensitive equipments as well as power plants. These are just a few
examples of the diverse applications of underground structures in civil engineering. It
is obvious that underground infrastructures are valuable assets in modern urban de-
velopment. Therefore, it is of utmost importance to ensure the proper design of these
structures, enabling them to withstand both externally and internally applied dynamics
loads, including seismic waves and the passage of moving trains.

An earthquake, characterised by a sudden release of energy within the earth, gener-
ates seismic waves that propagate through the earth’s layers. Such seismic events can
cause severe damage to structures both above and beneath the ground surface. Recent
examples include the occurrence of induced seismicity in the Netherlands. These in-
duced events, although typically small with magnitudes not exceeding 4, possess the
potential to inflict harm upon residential properties, infrastructures and public accep-
tance [Muntendam-Bos et al., 2022]. The scattering of earthquake waves by embedded
inclusions or local topographies in the ground has been an important topic in geotech-
nical engineering and seismology [Mow and Pao, 1971; Achenbach, 1973; Graff, 1975; Aki
and Richards, 2002]. Extensive site investigations and theoretical studies have revealed
that amplifications of displacements at the ground surface and dynamic stress concen-
trations at the surfaces of structures may occur due to the scattering of the incident and
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reflected waves (generated at the ground surface) by the embedded inclusions [Mow and
Pao, 1971; Ariman and Muleski, 1981; Hashash et al., 2001; Moore and Guan, 1996].

The fast development of high-speed trains makes the dynamics of moving loads an-
other important research topic. The dynamic effects associated with modern high-speed
trains are of significant importance due to the generation of propagating waves in both
the railway track and subsoil. Engineers primarily focus on two main concerns: envi-
ronmental vibrations induced by moving trains (e.g., [Kaynia et al., 2000; Di et al., 2016;
Degrande et al., 2006]) and the stability of moving trains themselves (e.g., [Denisov et al.,
1985; Bogacz et al., 1986; Metrikine, 1994; Metrikine and Dieterman, 1997; Mazilu et al.,
2012]).

1.2. STATE OF THE ART

1.2.1. SCATTERING OF SEISMIC WAVES

It is widely acknowledged that the presence of underground structures can lead to sub-
stantial amplifications of ground motion and dynamic stress concentrations when sub-
jected to seismic waves [Mow and Pao, 1971]. These dynamic responses arise from wave
scattering and wave interference occurring between the ground surface and surfaces of
the embedded inclusions [Lee and Trifunac, 1979].

The ground is often modelled by a half-space, which consists of an infinite domain
beneath a flat stress-free surface. The challenges in solving the boundary value prob-
lem of a cylindrical tunnel embedded in a half-space are as follows: (1) The half-space
domain is infinite, and it is often computationally expensive and challenging to satisfy
the boundary conditions at large distance when applying numerical methods [Stamos
and Beskos, 1995]; (2) The boundary surfaces are of two different types (i.e. flat and
cylindrical), and it is difficult to deal with this issue especially when applying analytical
methods; (3) It can be very difficult to get accurate results due to ill-conditioned matrices
encountered for specific solution methods [Luco and de Barros, 1994a].

The existing approaches to study the scattering of waves by underground structures
can be divided into two categories: analytical methods and numerical methods. These
two types of methods have their own pros and cons. Analytical methods are compu-
tationally efficient but can only deal with structures of simple geometries. Numerical
methods, on the other hand, can handle structures of complex geometries but are of-
ten computationally expensive because of the large domains that need to be discretised.
In addition, when dealing with dynamic problems that involve nonlinear inelastic be-
haviour, one must turn to numerical methods for solutions. The most often used nu-
merical methods are Finite Element Methods (FEM), Finite Difference Methods (FDM),
Boundary Element Methods (BEM) and combinations of those. A comprehensive over-
view of the features of these different methods applied to the problem of wave scattering
by underground structures in a half-space can be found in Stamos and Beskos [1995].

With the development of more powerful computers, numerical methods have been
widely applied to investigate the dynamic amplifications induced by the scattering of
plane waves by underground structures and canyons at the ground surface. In this con-
text, the BEM has gained widespread application in the analysis of wave scattering in
elastodynamics due to its ability to automatically satisfy the far-field wave radiation con-
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ditions by utilizing Green’s functions of the full-space or the half-space medium. For ex-
ample, Manolis and Beskos [1983] employed the isoparametric BEM formulated in the
Laplace transformed domain to investigate the dynamic stress concentration in the lin-
ing of a tunnel. Luco and de Barros [Luco and de Barros, 1994a,b; de Barros and Luco,
1993; Luco and de Barros, 1993; de Barros and Luco, 1994] employed the indirect BEM
to examine the two-dimensional (2D) and three-dimensional(3D) responses of infinitely
long cylindrical inclusions embedded in a layered poroelastic half-space. A simplified
Donnell shell theory was used to model pipelines. Applications of the indirect BEM to
other wave scattering problems can be found in the work by Dravinski and Mossessian
[1987]. The advantage of the indirect BEM is that (integrable) singularities of the Green’s
functions are eliminated by locating the source positions away from the integral surface
at which the observation positions are located. A special direct BEM was used by Stamos
and Beskos [1995, 1996] to determine the 3D dynamic response of underground struc-
tures in a half-space. In their paper, quadratic isoparametric boundary line elements
and an advanced numerical integration technique for the treatment of singular integrals
were used to produce results of high accuracy. Furthermore, the combination of BEM
and FEM was applied by Liu et al. [1991] to study the 3D response of pipelines buried
in a half-space. The above mentioned methods are all frequency-domain based. Some
work conducted in the time domain employing FEM or BEM can be found on other ref-
erences [Israil and Banerjee, 1990; Hatzigeorgiou and Beskos, 2010; Alielahi et al., 2015,
2016; Panji and Ansari, 2017]. In the context of wave scattering problems in poroelas-
tic media, Zimmerman and Stern [1993], and Liu et al. [2017] obtained boundary ele-
ment solutions. Note that the BEM is often more efficient compared to other numerical
methods, as explicit expressions for the employed Green’s functions are available (in the
frequency-wavenumber domain), and only surfaces need to be discretised. For that rea-
son, the BEM in this thesis is perceived as semi-analytical method.

Analytical methods are usually based on wave-function expansions. Using the meth-
od of separation of variables, wave functions satisfying the wave or Helmholtz equations
in Cartesian or cylindrical coordinates are obtained. The unknown coefficients in the
wave-function expansions (i.e., general solutions) can be determined based on bound-
ary conditions. Wave functions were first used by Mow and Pao [1971] to study the wave
scattering from a cavity in a full-space. To solve the unknown coefficients for more com-
plicated problems involving a half-space, additional techniques need to be employed.
For the 2D SH wave scattering problem in a half-space with an embedded tunnel, the
method of images was used to obtain a closed-form steady-state solution [Lee and Tri-
funac, 1979; Balendra et al., 1984]. However, it is important to note that the application
of the method of images is limited to the simple problem of the 2D anti-plane case only.
The P-SV problem in a half-space is more complicated to solve due to mode conversions
between the P and SV waves at the half-space surface and at the tunnel. To tackle this,
Datta, EL-Akily and Shah [Datta and El-Akily, 1978; El-Akily and Datta, 1980, 1981; Datta
and Shah, 1982] employed a method of matched asymptotic expansions and a method
of successive reflections to calculate the response of the considered half-space system.
Lee and Zhu [2014] employed Legendre polynomials to represent both P and S wave
functions so that zero-stress boundary conditions at the half-space surface can be sat-
isfied. Other examples of analytical solutions to solve the wave scattering problems can
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be found in Wong et al. [1986a,b].

To circumvent the difficulty arising due to the two different bounding surfaces in the
problem of cylindrical structures embedded in a half-space, Cao and Lee [1990], and Lee
and Karl [1992] proposed to approximate the flat half-space boundary by an almost flat
circular boundary of a large radius. The aim of the current thesis is to present a semi-
analytical solution without employing this approximation. To cope with the challenge of
the two different boundary surfaces, the method of conformal mapping (which employs
the complex-variable theory) is used; it transforms a domain with flat and cylindrical
boundary surfaces into a domain with cylindrical surfaces only [Muskhelishvili, 1966].
Liu et al. [1982] were the first to apply the method of conformal mapping to solve the
2D full-space wave scattering by a cavity problem. Then, Verruijt [1998] also used this
method to solve the problem of a circular cavity in an elastic half-space with prescribed
static loads acting on the cavity surface. Later on, the method was used by Liu et al. to
solve the 2D problem of two closely-spaced circular cavities subject to plane harmonic
waves in a full-space [Liu and Wang, 2012], and to solve the 2D dynamic problem of a
tunnel embedded in an elastic half-space subjected to seismic waves [Liu et al., 2013].
The method of conformal mapping has also been applied to solve the wave scattering
problems with non-circular tunnel [Kargar et al., 2014; Zhang et al., 2019] and in the
poroelastic media[Wang et al., 2009; Fang and Jin, 2017; Liu et al., 2022; Yue and Liu,
2023a,b].

1.2.2. DYNAMICS OF HIGH-SPEED MOVING TRAINS

The study of dynamics of train-track-soil interactions has been of interest to researchers
for decades. Popp et al. [1999] gave a comprehensive review of the existing models that
can be used to study dynamic train-track-soil interaction.

In general, studies on moving trains fall into two categories. The first category is
environmental vibrations induced by moving trains to assess vibration hindrance and to
ensure the safety of nearby structures. The second category is the stability of vibrations
of moving trains to ensure the safety and comfort of the passengers in the trains. For
the former category, the steady-state regime is assumed when investigating the dynamic
amplification due to resonance [Kaynia et al., 2000; Di et al., 2016; Degrande et al., 2006].
Other studies in the first category are devoted to transition radiation which occurs when
a train passes an inhomogeneity [Varandas et al., 2017; Fărăgău et al., 2019].

For studies falling into the second category, the train is usually modelled as a single-
or muti-degree of freedom system [Ouyang, 2011]. When instability occurs, the free vi-
bration (i.e., the vibration in the absence of an external force) of the train grows expo-
nentially, resulting in an infinite displacement when time goes to infinity, which implies
that a steady-state solution does not exist. This is very different from resonance, which
happens when steady-state response as induced by an external moving load is extreme
(either bounded or not depending on the presence of damping). Both phenomena come
with a certain critical velocity. The critical velocity for resonance is defined as the velocity
at which the steady-state response induced by a moving load is extreme (i.e., resonance
takes place at certain specific velocities) [Dimitrovová, 2016, 2017], while the critical ve-
locity for instability is defined as the velocity beyond which instability can occur (i.e.,
instability occurs in a range of velocities). Another crucial difference between resonance
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and instability is that resonance can be totally removed by increasing damping, while
damping mostly shifts the instability domain, for example, to a region of larger velocities
[Denisov et al., 1985; Metrikine and Dieterman, 1997].

The first study on stability of vibrations is that of a mass that moves uniformly along
an elastically supported beam [Denisov et al., 1985]. The physical explanation of in-
stability was given by Metrikine [1994] who argued that the instability is caused by the
radiated anomalous Doppler waves [Ginzburg, 1979] which increase the energy of the
vibrating object. In addition, the physical mechanism of instability was discussed us-
ing the laws of conservation of energy and momentum [Metrikine, 1994; Kononov and
De Borst, 2002].

After the pioneering works on the instability phenomenon [Denisov et al., 1985; Bo-
gacz et al., 1986], several aspects that influence the stability of an object have been dis-
cussed. For example, the effect of thermal stresses in the structure was studied con-
sidering different models of moving oscillators [Metrikine and Dieterman, 1997; Zheng
et al., 2000; Zheng and Fan, 2002]. Other papers considered the effect of more than
one contact point between the object and the structure [Zheng and Fan, 2002], and of
contact nonlinearities [Mazilu et al., 2012]. Moreover, a more accurate beam model
to represent the rail was considered and a comparison between the Timoshenko and
Euler-Bernoulli beam models was given [Metrikine and Verichev, 2001]. Four different
beam and plate models were considered in Kononov and De Borst [2002]. Furthermore,
Verichev et al. introduced other complexities in their model, i.e., a bogie model which
consists of a rigid bar of finite length on two identical supports [Verichev and Metrikine,
2002]. More recently, Mazilu studied the stability of a train of oscillators moving along
an infinite Euler-Bernoulli beam on a viscoelastic foundation [Mazilu, 2013]. Another
work focused on the stability of a moving mass in contact with a system of two paral-
lel elastically connected beams, with one of them being axially compressed [Stojanović
et al., 2017]. Later, the stability of vibrations of a railway vehicle moving along an infinite
three-beam/foundation system has been considered, with an emphasis on the effect of
the damping and stiffness of the secondary suspension of the railway vehicle [Stojanović
et al., 2018]. For a more simple model, Dimitrovová presented a semi-analytical solution
for the evolution of the beam deflection shapes and oscillator vibrations [Dimitrovová,
2019]. In that paper, not only the onset of instability, but also the severity is addressed.

1.3. AIM AND SCOPE
As discussed in Sections 1.1 and 1.2, this thesis is dedicated to addressing two distinct
types of dynamic problems: the dynamic response of an elastic half-space with an em-
bedded tunnel subjected to seismic waves, and the stability of vibrations of high-speed
trains moving through that underground tunnel. The aim of this thesis is to present
semi-analytical solutions to these problems. Spurred by its promising potential demon-
strated in previous studies [Liu and Wang, 2012; Liu et al., 2013, 2014, 2019], the method
of conformal mapping is the first candidate to be applied for both problems.

With regard to the seismic wave scattering problem, the method of conformal map-
ping has already been employed to solve the 2D scenario involving a tunnel embedded
in an elastic half-space [Liu et al., 2013]. The accuracy and efficiency of the method of
conformal mapping have been demonstrated for a particular set of material parameters.
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Consequently, the first objective of this thesis is to extend the method of conformal map-
ping to 3D case. Additionally, this thesis aims to provide a comprehensive assessment of
the method’s performance across a wide range of system parameters, an aspect that is
lacking in previous studies. The potential inaccuracies of the method that were found,
particularly at high frequencies, motivate the second objective of this thesis to verify the
accuracy of the specific application of the method of conformal mapping in which the
waves scattered from the half-space surface are represented by cylindrical waves that
originate from an image source of a priori unknown intensity. To this end, a simpler
2D model is considered, involving a cylindrical cavity embedded in an elastic half-space
subject to a harmonic anti-plane shear wave. The performance of the indirect BEM is
evaluated too for this model in view of the choice of the appropriate solution method for
the second type of dynamic problem considered in this thesis.

Regarding this second type of dynamic problem concerning high-speed moving trains,
the indirect BEM is employed due to the limitation of the method of conformal mapping
in providing accurate solutions at high frequencies. Previous studies on stability analysis
employing 3D models of railway tracks focused on trains moving on a track founded on
the ground surface [Metrikine and Popp, 1999; Metrikine et al., 2005]. It has been shown
that, for such configurations, the critical velocity for instability of the moving object is
close to the Rayleigh wave speed in the soil. However, the stability of trains moving
through an underground tunnel using a 3D model has not been analysed yet. There-
fore, the third objective of this thesis is to conduct a stability analysis for the vibration of
an oscillator moving through a tunnel embedded in soft soil. It is of particular interest
to investigate whether the critical velocity for instability of the moving object in both a
shallow and deep tunnel is also close to the Rayleigh wave speed in the soil. These ques-
tions hold practical relevance, especially for contemporary high-speed railway tracks as
well as for upcoming ultra-high-speed transportation systems such as Maglev and Hy-
perloop, respectively [Rote and Cai, 2002; Abdelrahman et al., 2017; Janzen, 2017].

1.4. THESIS OUTLINE
The structure of this thesis is outlined as follows. Chapter 2 presents a semi-analytical
solution for the 3D problem of a cylindrical tunnel embedded in an elastic half-space
subject to plane harmonic compressional and shear waves. Both the tunnel and soil are
modelled as an elastic continuum. The method of conformal mapping is employed to
transform the original domain with boundary surfaces of two different types onto an
image domain with surfaces of the same type. The total wave field in the half-space con-
sists of incident and reflected plane waves, as well as directly and secondary scattered
cylindrical waves, while the total wave field in the tunnel consists of refracted cylindri-
cal waves. The unknown amplitude coefficients of the cylindrical waves are determined
from the boundary and continuity conditions of the tunnel-soil system by projecting
those onto the set of circumferential modes, resulting in a set of algebraic equations.
Convergence tests and validations are given, as well as a systematic evaluation of the
accuracy of the present method. The accuracy is analysed for varying dimensionless fre-
quency, the stiffness ratio of the tunnel to soil, the embedded depth of the tunnel, the
vertical incident angle and the thickness of the tunnel. The effects of these five impor-
tant factors on the system response are briefly addressed.
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In Chapter 3, the 2D dynamic response of an elastic half-space with a cylindrical cav-
ity subject to a harmonic anti-plane shear wave is investigated. The soil is modelled as an
elastic continuum. It is observed in Chapter 2 that inaccurate results may be obtained
by the method of conformal mapping, particularly at high frequencies. This observa-
tion motivates the study in Chapter 3, which aims to verify the accuracy of the specific
application of the method of conformal mapping (in which the waves scattered from
the half-space surface are represented by cylindrical waves that originate from an image
source of a priori unknown intensity) and of the indirect BEM. To achieve this aim, a
comparison of three methods is conducted: the method of images, the method of con-
formal mapping and the indirect BEM. Convergence tests and validation examples are
provided to assess the accuracy of these methods. The comparison of the three methods
is made regarding two aspects: the requirement for converged results and the computa-
tional efficiency. The closed-form solutions obtained by the method of images serve as
benchmark solutions for the other two methods. The study validates the accuracy of the
specific application of the method of conformal mapping and of the indirect BEM, not
only for specific parameters but also through a systematic evaluation. Specifically, the
evaluation is conducted with respect to varying dimensionless frequency, the embedded
depth of the cavity and the vertical incident angle. In addition, the effects of these three
important factors on the system response are briefly discussed.

Chapter 4 is devoted to the stability analysis of vertical vibrations of an object mov-
ing through a tunnel embedded in soft soil. The soil is modelled as an elastic continuum,
whereas the tunnel is modelled by an infinitely long cylindrical Flügge shell. The moving
object is either modelled as a mass-spring system or as a limiting case of a single mass.
The concept of the equivalent dynamic stiffness is employed, which reduces the original
2.5D model to an equivalent discrete model. As indicated in Chapter 3 that the method
of conformal mapping is not applicable for high frequency loadings, we thus utilise the
indirect BEM to obtain the equivalent dynamic stiffness of the tunnel-soil system at the
point of contact with the moving object. Prior to that, the indirect BEM is validated for
two specific problems. Using the equivalent stiffness, the critical velocity beyond which
the instability of the object may occur is found. The critical velocity for instability is the
most important result of the stability analysis. A parametric study is conducted to ex-
amine the effect of the tunnel thickness, the material damping ratio in the tunnel-soil
system, the Lamé parameters of the soil and the burial depth of the tunnel on the critical
velocity. The D-decomposition method is used to investigate the stability of the moving
object for velocities exceeding the identified critical velocity for instability. The instabil-
ity domains in the space of the system parameters is found, as well as the dependency of
the critical mass and stiffness on the velocity.

Finally, in Chapter 5, all the important conclusions of this thesis and recommenda-
tions are presented.
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SEMI-ANALYTICAL SOLUTION FOR

THE 3D RESPONSE OF A TUNNEL

EMBEDDED IN AN ELASTIC

HALF-SPACE SUBJECT TO SEISMIC

WAVES

This chapter presents a semi-analytical solution for the 3D problem of a cylindrical tun-
nel embedded in an elastic half-space subject to plane harmonic compressional and shear
waves. Both the tunnel and soil are modelled as an elastic continuum. Conformal map-
ping is employed to transform the original physical domain with boundary surfaces of
two different types onto an image domain with surfaces of the same type, which makes
the problem easier to solve. The total wave field in the half-space consists of incident and
reflected (from the half-space surface) plane waves, as well as directly and secondary scat-
tered cylindrical waves, while the total wave field in the tunnel consists of refracted cylin-
drical waves. The secondary scattered waves, generated when the cylindrical waves di-
rectly scattered from the tunnel meet the half-space surface, are represented by cylindrical
waves that originate from an image source, which is in line with the spirit of the method
of images. The unknown amplitude coefficients of the cylindrical waves are determined
from the boundary and continuity conditions of the tunnel-soil system by projecting those
onto the set of circumferential modes, which results in a set of algebraic equations. Results
show that the present method converges for a small number of circumferential modes. We
observe very good agreement between the obtained results and those in literature. In a sys-
tematic evaluation, we demonstrate that the method works well for the frequency band

This chapter has been published as a journal paper in Soil Dynamics and Earthquake Engineering 174, 108171
(2023) [Zhao et al., 2023]. Minor changes have been made.
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of seismic waves, as well as for the complete considered ranges of the tunnel/soil stiffness
ratio, the embedded depth of the tunnel, the vertical incident angle and the tunnel thick-
ness. However, the results obtained for a moderate tunnel-soil stiffness contrast under the
incident compressional wave are inaccurate when Hankel functions are used to represent
the cylindrical waves in the tunnel, which is due to the refracted shear waves in the tunnel
transitioning from propagating to evanescent (in the 3D case). These inaccuracies can be
perfectly overcome by representing the waves in the tunnel by Bessel functions. We also
find that the present method generally works better for the incident compressional wave
than for the incident shear wave, as the condition number of the matrix (related to the
mentioned algebraic equations) is often larger in the latter case. In view of engineering
practice, we conclude that the tunnel is safer when the surrounding soil is stiffer, the tun-
nel is thicker and the vertical incident angle is larger. Finally, the present method, which
is in general fast, elegant and accurate, can be used in preliminary design so as to avoid
pronounced resonances, and to assess stress distributions and ground vibrations.
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2.1. INTRODUCTION
This chapter focuses on the dynamic problem of wave scattering caused by seismic waves
interacting with an underground tunnel. Correctly understanding the dynamic behaviour
of tunnel-soil system and efficiently obtaining reliable results are crucial for engineer-
ing practices. Consequently, the primary objective of this chapter is to present a semi-
analytical solution for a three-dimensional (3D) problem.

The method of conformal mapping has been successfully employed to solve various
two-dimensional (2D) wave scattering problems. For example, researchers utilised this
method to solve the 2D full-space wave scattering by a cavity [Liu et al., 1982], the scat-
tering of plane harmonic waves by two closely-spaced circular cavities in a full-space [?],
and the 2D dynamic problem of a tunnel embedded in an elastic half-space subjected
to seismic waves [Liu et al., 2013]. These studies have demonstrated the accuracy and
computational efficiency of the method of conformal mapping. However, there remains
a gap in the literature regarding the extension of this method to the 3D case and a sys-
tematic evaluation of its performance. Addressing this gap, the current chapter aims
to extend the method of conformal mapping to a 3D problem and provide a compre-
hensive assessment of its capabilities. In addition, the extension of the conformal map-
ping method to 3D also serves the purpose ("second objective") of determining the right
computation method for the stability analysis of high-speed trains moving through an
underground tunnel in the Chapter 4.

This chapter is organised as follows. In Section 2.2, the statement of the considered
problem is presented. Section 2.3 presents incident and reflected plane-wave fields in
the soil, and scattered and refracted cylindrical-wave fields in the soil and tunnel, re-
spectively. Stress and displacement expressions in terms of complex variables are given
in Section 2.4. The conformal mapping functions are introduced in Section 2.5. In Sec-
tion 2.6, the unknown coefficients of potentials related to the cylindrical waves are de-
termined. After having solved the problem, convergence tests and validations of the
proposed method are given in Section 2.7. Furthermore, an evaluation of the accuracy
of the present method is given in Section 2.8. The accuracy is analysed for varying di-
mensionless frequency, the stiffness ratio of the tunnel to soil, the embedded depth of
the tunnel, the vertical incident angle and the thickness of the tunnel. The effects of
these five important factors on the response of the system are briefly addressed as well.
Finally, Section 2.9 presents the conclusions.

2.2. PROBLEM STATEMENT
In this chapter, we consider the three-dimensional model shown in Fig. 2.1. An infinitely
long tunnel embedded in an elastic half-space is subjected to seismic waves with the
wave propagation direction being arbitrary. The tunnel has a circular cross-section, and
the longitudinal axis of the tunnel is parallel to the half-space surface. Both the tunnel
and the half-space are modelled as an elastic continuum which is assumed isotropic and
linearly elastic.

Regions Ω1 and Ω2 shown in Fig. 2.1 refer to the domains of the soil and tunnel, re-
spectively. For the analysis, it is convenient to use six coordinate systems: global Carte-
sian (ỹ , z̃, x̃) and cylindrical (r̃ ,θ, x̃) coordinates with origin at the free surface of the half-
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x̃ ỹ

z̃ r̃
θ

õ

ỹ1

z̃1
r̃1

θ1

H̃

õ1

ỹ2

z̃2
r̃2

θ2

H̃

õ2

R̃o

R̃i

Ω1 Ω2

A+A−

incident seismic waves

Figure 2.1: A 3D model of a tunnel embedded in an elastic half-space subjected to seismic waves and the
employed coordinate systems.

space, local Cartesian (ỹ1, z̃1, x̃1) and cylindrical (r̃1,θ1, x̃1) coordinates with origin at the
centre of the tunnel, and local Cartesian (ỹ2, z̃2, x̃2) and cylindrical (r̃2,θ2, x̃2) coordinates
with origin at the centre of the image of the tunnel. The centre of the tunnel õ1 is located
beneath the free surface at a depth of H̃ , and the inner and outer radii of the tunnel are
denoted as R̃i and R̃o, respectively. The image of the tunnel is symmetrically positioned
with respect to the free surface. As shown in Fig. 2.2, the vertical incident angle θv is
defined as the angle between the wave propagation direction and the positive vertical
z̃ axis, while the horizontal incident angle θh is the angle between the projection of the
wave propagation direction on the horizontal plane (i.e., (x̃, ỹ)-plane) and the negative
x̃ axis. Throughout this chapter, a tilde is used to denote that parameters, coordinates,
variables and operators are dimensional.

2.2.1. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS
As we are interested in the steady-state solution to the problem, we assume that both
the excitations and the responses of the system are harmonic and proportional to e+ iω̃t̃ ,
where i is the imaginary unit, t̃ time, ω̃= 2π f̃ the angular frequency and f̃ the frequency
in Hz. In what follows, the factor e+ iω̃t̃ is left out from all the expressions for brevity.
The governing equations of motion of the soil medium and the tunnel in the frequency
domain, without external forces, read [Achenbach, 1973; Aki and Richards, 2002](

λ̃(i ) + µ̃(i )
)
∇̃∇̃ · ũ(i ) + µ̃(i )∇̃2ũ(i ) =−ω̃2ρ̃(i )ũ(i ), (2.1)

where λ̃(i ) and µ̃(i ) signify the Lamé constants, and ρ̃(i ) the material density; the su-
perscript i = {1,2} indicates the soil or tunnel, respectively; ∇̃ is the three-dimensional
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(a)

ỹ

z̃

θv

(b)

ỹ

x̃

θh

ỹ = R̃o

Figure 2.2: Incident angles: (a) vertical incident angle and (b) horizontal incident angle.

gradient vector (for Cartesian coordinates, as an example, ∇̃ = (∂ỹ ,∂z̃ ,∂x̃ )), ∇̃2 is the

Laplace operator (e.g., ∇̃2 = ∂2
ỹ +∂2

z̃ +∂2
x̃ ), and ũ(i ) is a displacement vector (e.g., ũ(i ) =

(ũ(i )
ỹ , ũ(i )

z̃ , ũ(i )
x̃ )).

The excitations of the system are seismic waves coming from below the tunnel. There-
fore, we have stress-free boundary conditions at both the free surface of the half-space
and the inner surface of the tunnel. We assume that the soil and tunnel are perfectly
bonded, which implies that we have continuity conditions at the tunnel-soil interface.
Accordingly, these stress-free boundary and continuity conditions are written as follows:

σ̃(1)
z̃ z̃ = σ̃(1)

z̃ ỹ = σ̃(1)
z̃ x̃ = 0, z̃ = 0,

σ̃(2)
r̃1 r̃1

= σ̃(2)
r̃1θ1

= σ̃(2)
r̃1 x̃1

= 0, r̃1 = R̃i,

ũ(1)
r̃1

= ũ(2)
r̃1

, ũ(1)
θ1

= ũ(2)
θ1

, ũ(1)
x̃1

= ũ(2)
x̃1

, r̃1 = R̃o,

σ̃(1)
r̃1 r̃1

= σ̃(2)
r̃1 r̃1

, σ̃(1)
r̃1θ1

= σ̃(2)
r̃1θ1

, σ̃(1)
r̃1 x̃1

= σ̃(2)
r̃1 x̃1

, r̃1 = R̃o.

(2.2)

2.2.2. APPLICATION OF THE HELMHOLTZ DECOMPOSITION
It is noted that the displacement components in Eq. (2.1) are coupled. For ease of finding

solutions, we apply the Helmholtz decomposition ũ(i ) = ∇̃φ̃(i ) +∇̃× Ψ̃(i )
, which reduces

the elastodynamic equation of motion to two uncoupled Helmholtz equations:

∇̃2
φ̃(i ) +

(
k̃(i )

P

)2
φ̃(i ) = 0, (2.3)

∇̃2
Ψ̃

(i ) +
(
k̃(i )

S

)2
Ψ̃

(i ) = 0, (2.4)

where Eq. (2.3) is a scalar potential equation, and Eq. (2.4) is a vector potential equa-

tion; φ̃(i ) and Ψ̃
(i )

are potentials related to dilatational and rotational motions, respec-
tively; k̃(i )

P = ω̃
/

c̃(i )
P and k̃(i )

S = ω̃
/

c̃(i )
S are the compressional and shear wavenumbers;

c̃(i )
P =

√
(λ̃(i ) +2µ̃(i ))/ρ̃(i ) and c̃(i )

S =
√
µ̃(i )/ρ̃(i ) are the propagation velocities of the com-

pressional and shear waves.
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The vector potential Ψ̃
(i )

needs to satisfy the gauge condition ∇̃·Ψ̃(i ) = 0, so that only

two of the three components of Ψ̃
(i )

are independent. We split up the vector potential

Ψ̃
(i )

as follows [Aki and Richards, 2002; Kausel, 2006]:

Ψ̃
(i ) = Ψ̃(i )

1 + Ψ̃(i )
2 ,

Ψ̃
(i )
1 = ψ̃(i )ex̃ +

(
k̃(i )

S

)−2 ∇̃
(
∂ψ̃(i )

∂x̃

)
,

Ψ̃
(i )
2 =

(
k̃(i )

S

)−1 ∇̃×
(
χ̃(i )ex̃

)
,

(2.5)

in which ex̃ is the unit vector along x̃ axis. The vector potential Ψ̃
(i )
1 is defined such that

the associated particle motion is polarized only in the vertical plane (i.e., (ỹ , z̃)-plane);

the other vector potential Ψ̃
(i )
2 is defined such that the associated particle motion is po-

larized in all directions. This can be observed in the displacement expressions in Section
2.2.3 (see Eq. (2.10), contributions of ψ(i ) and χ(i )).

By defining the vector potentials as in Eq. (2.5), the equation for the vector potential,
Eq. (2.4), can be reduced to two uncoupled scalar potential equations:

∇̃2
ψ̃(i ) +

(
k̃(i )

S

)2
ψ̃(i ) = 0,

∇̃2
χ̃(i ) +

(
k̃(i )

S

)2
χ̃(i ) = 0.

(2.6)

2.2.3. NON-DIMENSIONALISATION

For the analysis of the problem, we introduce non-dimensional parameters, coordinates,
variables and operators. These are defined as

{x, y, z, x1, y1, z1, x2, y2, z2,r,r1,r2} = {x̃, ỹ , z̃, x̃1, ỹ1, z̃1, x̃2, ỹ2, z̃2, r̃ , r̃1, r̃2}
/

H̃ ,

{H ,Ri,Ro,u(i )} = {H̃ , R̃i, R̃o, ũ(i )}
/

H̃ ,

{c(i )
P ,c(i )

S } = {c̃(i )
P , c̃(i )

S }
/

c̃(1)
S , t = t̃ c̃(1)

S

/
H̃ , ω= ω̃H̃

/(
πc̃(1)

S

)
,

{k(i )
P ,k(i )

S } = {k̃(i )
P , k̃(i )

S }H̃ , {φ(i ),ψ(i ),χ(i )} = {φ̃(i ),ψ̃(i ), χ̃(i )}
/

H̃ 2,

{λ(i ),µ(i )} = {λ̃(i ), µ̃(i )}
/
µ̃(1), ρ(i ) = ρ̃(i )

(
c̃(1)

S

)2 /
µ̃(1).

(2.7)

Accordingly, the dimensionless Helmholtz equations are obtained as

∇2φ(i ) +
(
k(i )

P

)2
φ(i ) = 0,

∇2ψ(i ) +
(
k(i )

S

)2
ψ(i ) = 0,

∇2χ(i ) +
(
k(i )

S

)2
χ(i ) = 0.

(2.8)
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The boundary and continuity conditions (see Eq. (2.2)) of the problem in terms of di-
mensionless variables and parameters are as follows:

σ(1)
zz =σ(1)

z y =σ(1)
zx = 0, z = 0,

σ(2)
r1r1

=σ(2)
r1θ1

=σ(2)
r1x1

= 0, r1 = Ri,

u(1)
r1

= u(2)
r1

, u(1)
θ1

= u(2)
θ1

, u(1)
x1

= u(2)
x1

, r1 = Ro,

σ(1)
r1r1

=σ(2)
r1r1

, σ(1)
r1θ1

=σ(2)
r1θ1

, σ(1)
r1x1

=σ(2)
r1x1

, r1 = Ro.

(2.9)

Based on the dimensionless Helmholtz decomposition u(i ) = ∇φ(i ) +∇×Ψ(i ) and the
definition of the vector potential (see Eq. (2.5)), the displacement components can be
expressed in terms of the three dimensionless scalar potentials φ(i ), ψ(i ) and χ(i ):

u(i )
y = ∂φ(i )

∂y
+ ∂ψ(i )

∂z
+ 1

k(i )
S

∂2χ(i )

∂x∂y
,

u(i )
z = ∂φ(i )

∂z
− ∂ψ(i )

∂y
+ 1

k(i )
S

∂2χ(i )

∂x∂z
,

u(i )
x = ∂φ(i )

∂x
+ 1

k(i )
S

((
k(i )

S

)2
χ(i ) + ∂2χ(i )

∂x2

)
.

(2.10)

The 3D problem is reduced to a 2D one by letting ∂/∂x = 0 (i.e., k(1)
x = 0, k(1)

x is intro-
duced later, in Eq. (2.13)), corresponding to the case when θh = 90° or θv = 0°. From the
displacement expressions shown in Eq. (2.10), we observe that the scalar potential ψ(i )

in the 2D case is related to the well-known SV wave becauseψ(i ) only contributes to mo-
tions (u(i )

y and u(i )
z ) in the vertical plane (y, z); on the contrary, the other scalar potential

χ(i ) is related to the SH wave because χ(i ) only contributes to the horizontally polarized
out-of-plane motion u(i )

x . Therefore, the 3D problem is reduced to decoupled 2D plane-
strain (P-SV) and 2D anti-plane (SH) problems when ∂/∂x = 0. However, in the 3D case,
we cannot uniquely relate the potentials ψ(i ) and χ(i ) to SV and SH waves, respectively,
although ψ(i ) still only contributes to motions in the (y, z)-plane for the 3D case (while
the associated wave generally propagates in all directions).

The Cartesian stress components in terms of potentials can be easily obtained us-
ing the well-known Hooke’s law [Graff, 1975]. The cylindrical displacement and stress
components in terms of potentials could be derived in a similar way as demonstrated
above (i.e., derived in Cartesian coordinates; see Eq. (2.10)). To do that, one would
need to consider the gradient vector, the Laplace operator and the displacement vector

in cylindrical coordinates (i.e., ∇ =
(
∂r ,

(
1/r

)
∂θ ,∂x

)T
, ∇2 = ∂2

r +
(
1/r

)
∂r +

(
1/r 2

)
∂2
θ
+∂2

x ,

u(i ) =
(
u(i )

r ,u(i )
θ

,u(i )
x

)T
) instead of those in Cartesian coordinates shown in Section 2.2.1.

As an alternative, we derive the cylindrical displacement and stress expressions by trans-
forming the ones in Cartesian coordinates using the following relations for the displace-
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ment vector u and stress tensor σ, respectively:ur

uθ
ux

= T

uy

uz

ux

 , T =

 cos
(
θ
)

sin
(
θ
)

0
−sin

(
θ
)

cos
(
θ
)

0
0 0 1

 , (2.11)

σr r σrθ σr x

σθr σθθ σθx

σxr σxθ σxx

= T

σy y σy z σy x

σz y σzz σzx

σx y σxz σxx

TT, (2.12)

where the superscript “(i )" is omitted for brevity, the cylindrical coordinate system (r,θ, x)
is defined based on y = r cos

(
θ
)

and z = r sin
(
θ
)
, T is the transformation matrix, and TT

is its transpose.

2.3. SOLUTIONS OF THE GOVERNING EQUATIONS
In this section, we aim to solve the governing equations specified in Eq. (2.8). These
Helmholtz equations can be solved using the method of separation of variables in the
Cartesian and cylindrical coordinate systems separately [Kausel, 2006]. The solutions
are used to construct the complete wave field in the system [Graff, 1975].

2.3.1. INCIDENT AND REFLECTED PLANE WAVES
Our ultimate goal is to solve the dynamic problem shown in Fig. 2.1. As the problem
of interest is linear, we first consider a submodel which is a half-space without a tunnel,
subject to seismic excitations, and find the wave field in the half-space based on the
stress-free boundary conditions at the free surface. Then, we add the embedded tunnel
in the half-space, and find the additional wave field due to the presence of the tunnel;
for this model the excitation is the response calculated in the previous submodel at the
factitious tunnel-soil interface. The sum of the two wave fields obtained in both models
form the total wave field.

Thus, considering first a half-space without the underground structure, we have har-
monic plane waves as the solutions to Eq. (2.8). Reflected waves are generated when
the incident wave meets the free surface of the half-space, and propagate away from the
free surface. The sum of the incident and reflected plane waves form the wave field in
the half-space. Three cases will be discussed in this subsection: incident compressional
(φ(1)

inc) and shear (ψ(1)
inc and χ(1)

inc) waves, where the subscript “inc" indicates the incident
wave.

Case 1: Incident compressional wave. The plane-wave solutions for the incident
(φ(1)

inc) and reflected waves (φ(1)
ref, ψ

(1)
ref, χ

(1)
ref) are given as

φ(1)
inc =φ0 exp

(
− ik(1)

x x − ik(1)
y y − ik(1)

z,Pz
)

,

φ(1)
ref = Rφ,φφ0 exp

(
− ik(1)

x x − ik(1)
y y + ik(1)

z,Pz
)

,

ψ(1)
ref = Rψ,φφ0 exp

(
− ik(1)

x x − ik(1)
y y + ik(1)

z,Sz
)

,

χ(1)
ref = Rχ,φφ0 exp

(
− ik(1)

x x − ik(1)
y y + ik(1)

z,Sz
)

,

(2.13)
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where the subscript “ref" indicates the reflected wave;φ0 is the amplitude of the incident
compressional wave, Rφ,φ, Rψ,φ and Rχ,φ (given in Appendix A) are amplitude ratios of

the reflected waves φ(1)
ref, ψ

(1)
ref and χ(1)

ref, to the incident compressional wave φ(1)
inc, respec-

tively. The wavenumbers k(1)
x and k(1)

y in the x and y directions are written as

k(1)
x = k(1)

x,P =−k(1)
P sin

(
θv

)
cos

(
θh

)
, k(1)

y = k(1)
y,P = k(1)

P sin
(
θv

)
sin

(
θh

)
. (2.14)

The wavenumbers k(1)
z,P and k(1)

z,S in the z direction for compressional and shear waves in
the soil medium are given as

k(1)
z,P =

√(
k(1)

P

)2 − (
k(1)

)2, k(1)
z,S =

√(
k(1)

S

)2 − (
k(1)

)2, (2.15)

where Re
(
k(1)

z,P

)
> 0 and Re

(
k(1)

z,S

)
> 0 are taken for propagating waves (assuming ω > 0).

Furthermore, the total wavenumber k(1) in the horizontal plane (x, y) is defined as

k(1) =
√(

k(1)
x

)2 +
(
k(1)

y

)2
. (2.16)

According to Snell’s law for elastic waves [Achenbach, 1973], the wavenumbers in the
x direction of the reflected compressional and shear waves are the same (equal to that
of the incident wave), that is, k(1)

x,P = k(1)
x,S = k(1)

x , as well as the wavenumbers in the y

direction, that is, k(1)
y,P = k(1)

y,S = k(1)
y .

Case 2: Incident shear wave typeψ. The plane-wave solutions for the incident (ψ(1)
inc)

and reflected waves (φ(1)
ref, ψ

(1)
ref, χ

(1)
ref) are given as

ψ(1)
inc =ψ0 exp

(
− ik(1)

x x − ik(1)
y y − ik(1)

z,Sz
)

,

φ(1)
ref = Rφ,ψψ0 exp

(
− ik(1)

x x − ik(1)
y y + ik(1)

z,Pz
)

,

ψ(1)
ref = Rψ,ψψ0 exp

(
− ik(1)

x x − ik(1)
y y + ik(1)

z,Sz
)

,

χ(1)
ref = Rχ,ψψ0 exp

(
− ik(1)

x x − ik(1)
y y + ik(1)

z,Sz
)

,

(2.17)

where ψ0 is the amplitude of the incident shear wave; Rφ,ψ, Rψ,ψ and Rχ,ψ (given in

Appendix A) are amplitude ratios of the reflected wavesφ(1)
ref,ψ

(1)
ref and χ(1)

ref, to the incident

shear waveψ(1)
inc, respectively. The wavenumbers in the x and y directions in this case are

given as

k(1)
x = k(1)

x,S =−k(1)
S sin

(
θv

)
cos

(
θh

)
, k(1)

y = k(1)
y,S = k(1)

S sin
(
θv

)
sin

(
θh

)
. (2.18)

Here, it is noted that under the incident shear waves (ψ(1)
inc and χ(1)

inc) there exists a

critical vertical incident angle, beyond which the wavenumber k(1)
z,P becomes imaginary

(see Eqs. (2.15) and (2.18)). This occurs when k(1)
P < k(1) = k(1)

S sin(θv). Therefore, the
critical vertical angle is defined as

θcrit
v = arcsin

k(1)
P

k(1)
S

= arcsin


√

1−2ν(1)

2−2ν(1)

. (2.19)
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Evanescent waves are generated when θv > θcrit
v , and for those waves it is required that

Im
(
k(1)

z,P

)
< 0.

Case 3: Incident shear wave type χ. The plane-wave solutions for the incident (χ(1)
inc)

and reflected waves (φ(1)
ref, ψ

(1)
ref, χ

(1)
ref) are given as

χ(1)
inc =χ0 exp

(
− ik(1)

x x − ik(1)
y y − ik(1)

z,Sz
)

,

φ(1)
ref = Rφ,χχ0 exp

(
− ik(1)

x x − ik(1)
y y + ik(1)

z,Pz
)

,

ψ(1)
ref = Rψ,χχ0 exp

(
− ik(1)

x x − ik(1)
y y + ik(1)

z,Sz
)

,

χ(1)
ref = Rχ,χχ0 exp

(
− ik(1)

x x − ik(1)
y y + ik(1)

z,Sz
)

,

(2.20)

where χ0 is the amplitude of the incident shear wave; Rφ,χ, Rψ,χ and Rχ,χ (given in Ap-

pendix A) are amplitude ratios of the reflected waves φ(1)
ref, ψ

(1)
ref and χ(1)

ref, to the incident

shear wave χ(1)
inc, respectively. The wavenumbers in the x and y directions in this case are

the same as that in case 2; see Eq. (2.18).

2.3.2. SCATTERING OF ELASTIC WAVES BY THE TUNNEL

The presence of the infinitely long cylindrical tunnel causes scattering of elastic waves.
These scattered waves are denoted as φ(1)

s,1, ψ(1)
s,1 and χ(1)

s,1. The subscript “s,1" indicates
the ‘directly scattered’ waves propagating away from the tunnel in the half-space. When
these directly scattered waves meet the free surface of the half-space, secondary scat-
tered waves are generated, which are denoted as φ(1)

s,2, ψ(1)
s,2 and χ(1)

s,2. The subscript “s,2"
indicates the ‘secondary scattered’ waves. Based on the spirit of the method of images,
these secondary scattered waves are considered to originate from an image source, but
the intensity is a priori unknown. The image source is located at the centre of the image
of the tunnel, positioned symmetrically with respect to the free surface.

To describe the waves propagating away from the tunnel and its image, we apply the
method of separation of variables to solve the Helmholtz equations shown in Eq. (2.8),
assuming a harmonic variation in the circumferential direction of the form exp(inθ)
[Graff, 1975; Kausel, 2006]. To satisfy the continuity condition at θ = 0 and θ = 2π, n is re-
quired to be an integer. It turns out that, for fixed n, the radial behaviour is described by
a Hankel function. The general solution is then constructed as an infinite series (that is
commonly referred to as a wave-function expansion), which represents the entire scat-
tered wave field. The potentials related to the scattered wave fields in the half-space are
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given as follows:

φ(1)
s,1 =

∞∑
n=−∞

an H (2)
n

(
k(1)

a r1

)
exp

(
inθ1 − ik(1)

x x
)

,

ψ(1)
s,1 =

∞∑
n=−∞

bn H (2)
n

(
k(1)

b r1

)
exp

(
inθ1 − ik(1)

x x
)

,

χ(1)
s,1 =

∞∑
n=−∞

cn H (2)
n

(
k(1)

b r1

)
exp

(
inθ1 − ik(1)

x x
)

,

φ(1)
s,2 =

∞∑
n=−∞

dn H (2)
n

(
k(1)

a r2

)
exp

(
inθ2 − ik(1)

x x
)

,

ψ(1)
s,2 =

∞∑
n=−∞

en H (2)
n

(
k(1)

b r2

)
exp

(
inθ2 − ik(1)

x x
)

,

χ(1)
s,2 =

∞∑
n=−∞

fn H (2)
n

(
k(1)

b r2

)
exp

(
inθ2 − ik(1)

x x
)

,

(2.21)

where an , ..., fn denote the unknown coefficients which will be determined from the
boundary and interface conditions, and H (2)

n (..) denotes the Hankel function of the sec-
ond kind and n-th order, and represents outgoing waves (propagating away from the
tunnel) considering the time dependent factor e+ iωt . k(1)

a and k(1)
b are the cylindrical

wavenumbers of the compressional and shear waves in the soil, respectively:

k(1)
a =

√(
k(1)

P

)2 −
(
k(1)

x

)2
, k(1)

b =
√(

k(1)
S

)2 −
(
k(1)

x

)2
, (2.22)

where Re(k(1)
a ) > 0 and Re(k(1)

b ) > 0 are taken for the propagating cylindrical waves in the

soil (assuming ω > 0), while Im(k(1)
a ) < 0 is taken for the evanescent cylindrical waves.

Note that cylindrical S waves in the soil never become evanescent because k(1)
b is real

valued as k(1)
S is always larger than k(1)

x .
The potentials related to refracted waves in the tunnel are constructed using Bessel

functions, and are given as

φ(2)
r =

∞∑
n=−∞

[
gn Jn

(
k(2)

a r1

)
+hnYn

(
k(2)

a r1

)]
exp

(
inθ1 − ik(2)

x x
)

,

ψ(2)
r =

∞∑
n=−∞

[
in Jn

(
k(2)

b r1

)
+ jnYn

(
k(2)

b r1

)]
exp

(
inθ1 − ik(2)

x x
)

,

χ(2)
r =

∞∑
n=−∞

[
kn Jn

(
k(2)

b r1

)
+ lnYn

(
k(2)

b r1

)]
exp

(
inθ1 − ik(2)

x x
)

,

(2.23)

where gn , ..., ln denote the unknown coefficients; Jn(..) and Yn(..) denote the Bessel func-
tions of the first and second kind, respectively, and n-th order. k(2)

a and k(2)
b are the

wavenumbers of the compressional and shear cylindrical waves in the tunnel, respec-
tively:

k(2)
a =

√(
k(2)

P

)2 −
(
k(2)

x

)2
, k(2)

b =
√(

k(2)
S

)2 −
(
k(2)

x

)2
, (2.24)
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The longitudinal wavenumber k(2)
x of the refracted waves is equal to k(1)

x according to
Snell’s law. Note that here we use Bessel functions to represent the cylindrical waves in
the tunnel. Alternatively, we could use the Hankel functions of the first and second kind
(H (1)

n and H (2)
n ) to represent the cylindrical ingoing and outgoing waves in the tunnel,

like in Liu et al. [2013]. Mathematically, both representations of the waves in the tunnel
are correct. However, it is found that the numerical results obtained by using Bessel
functions are more accurate; see Sections 2.7.2 and 2.8.2.

2.3.3. TOTAL WAVE FIELDS
The incident and reflected plane waves together with the directly and secondary scat-
tered cylindrical waves make up the total wave field in the half-space (φ(1),ψ(1) and χ(1)):

φ(1) =φ(1)
inc +φ(1)

ref +φ(1)
s,1 +φ(1)

s,2,

ψ(1) =ψ(1)
inc +ψ(1)

ref +ψ(1)
s,1 +ψ(1)

s,2,

χ(1) =χ(1)
inc +χ(1)

ref +χ(1)
s,1 +χ(1)

s,2.

(2.25)

The total wave field in the tunnel consists of the refracted waves (φ(2), ψ(2) and χ(2)):

φ(2) =φ(2)
r , ψ(2) =ψ(2)

r , χ(2) =χ(2)
r . (2.26)

2.4. STRESS AND DISPLACEMENT EXPRESSIONS IN TERMS OF

COMPLEX VARIABLES
To employ the complex-variable theory for determining the unknown coefficients in Eqs.
(2.21) and (2.23), we introduce a complex variable κ = y + i z = r eiθ and its conjugate
κ̄ = y − i z = r e− iθ, where y , z and r , θ are the dimensionless Cartesian and cylindri-
cal coordinates in the vertical plane, respectively, as introduced in Section 2.2. In line
with the introduction of the image source, the local coordinate systems (y1, z1, x1) and
(y2, z2, x2) are defined symmetrically with respect to the free surface of the half-space,
with z2 positive downward (see Fig. 2.1). The local coordinates r1 and r2 can be written
in terms of complex variables κ and κ̄ related to the global coordinate system using the
relation between different coordinates:

r1 = |y1 + i z1| = |y + i(z +H)| = |κ+ i H |,
r2 = |y2 + i z2| = |y + i(−z +H)| = |κ̄+ i H |. (2.27)

The exponential terms of the local coordinates θ1 and θ2, showing up in Eqs. (2.21) and
(2.23), can also be written in terms of the complex variables κ and κ̄ as

eiθ1 = y1 + i z1

r1
= κ+ i H

|κ+ i H | , eiθ2 = y2 + i z2

r2
= κ̄+ i H

|κ̄+ i H | . (2.28)

Substituting Eqs. (2.27) and (2.28) into the expressions for the potentials (see Eqs. (2.21)
and (2.23)), we get the potentials in terms of the complex variables κ and κ̄, which are
not shown in this thesis for brevity.

Thereafter, the displacement (see Eq. (2.10)) and stress components in the Cartesian
coordinates (y, z, x) can also be expressed in terms of the complex variables κ and κ̄, and
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they are shown in Eqs. (B.1)-(B.9) in Appendix B. The expressions for the displacements
and stresses in the cylindrical coordinate system (r,θ, x) can be derived in terms of the
complex variables κ and κ̄ as well by employing the transformation relations (see Eqs.
(2.11)-(2.12)), and they are shown in Eqs. (B.10)-(B.16).

2.5. CONFORMAL MAPPING
As shown in Fig. 2.1, there are two different types of boundary surfaces in the model (i.e.,
a flat free surface and cylindrical surfaces of the tunnel). This makes the boundary value
problem difficult to solve. In this chapter, we propose to use conformal mapping func-
tions to circumvent this difficulty by mapping the original domain with boundary sur-
faces of two different types onto an image domain with boundary surfaces of the same
type. The application of conformal mapping functions is demonstrated in this section.

We have introduced the complex variable κ and its conjugate κ̄ in the original phys-
ical domain in Section 2.4. Here, we introduce a complex variable ζ = ξ+ iη = ρeiϑ and
its conjugate ζ̄= ξ− iη= ρe− iϑ, which are defined in the image domain. Two conformal
mapping functions w (1)(ζ) and w (2)(ζ), one for the region of the half-space with a cavity
and one for the tunnel region, defining the relations between the two complex variables
κ and ζ in the original and image domains, are given as follows:

κ(1) = w (1)(ζ) =− iG
1+ζ
1−ζ , (2.29)

κ(2) = w (2)(ζ) =− i H + Ro

βo
ζ, (2.30)

where G = H
(
1−β2

o

)/(
1+β2

o

)
and βo = H/Ro −

√(
H/Ro

)2 −1. Using these two map-

ping functions, the two regionsΩ1 andΩ2 in the physical domain (as shown in Fig. 2.1)
are mapped onto two regions Γ1 and Γ2 in the image domain (as shown in Fig. 2.3), re-
spectively. Accordingly, the free surface of the half-space z = 0, the outer surface r1 = Ro

and inner surface r1 = Ri of the tunnel correspond to surfaces defined by circles |ζ| = 1,
|ζ| = βo and |ζ| = βi = βoRi/Ro. Clearly, the boundary surfaces in the image domain are
of the same type.

The mappings of the regions Ω1 and Ω2 in the physical domain onto regions Γ1 and
Γ2 in the image domain are conformal and reversible. It can be easily proven that the
mapping functions w (1)(ζ) and w (2)(ζ) are analytic (except at one point (ρ = 1,ϑ = 0)
corresponding to points at infinity in the physical domain), and their derivatives with
respect to the complex variable ζ (i.e., w (1)′(ζ) and w (2)′(ζ)) are nonzero.

In general, the mapping functions induce a phase change between the complex vari-
ables in the two domains. For a general conformal mapping function κ= w(ζ), the rela-
tion between the coordinate θ in the physical domain and the coordinate ϑ in the image
domain is defined as [Muskhelishvili, 1966]

exp(iθ) = ζ

ρ

w ′(ζ)

|w ′(ζ)| = exp(iϑ)
w ′(ζ)

|w ′(ζ)| . (2.31)

The first conformal mapping function w (1)(ζ) indeed induces a phase change because
w (1)′(ζ) is a complex number. On the contrary, the second mapping function w (2)(ζ)
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ξ

η
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ζ

ϑ

A−

ϑ+

A+

Γ1 Γ2

Figure 2.3: Image domain.

does not induce a phase change because the w (2)′(ζ) is a constant (i.e., w ′(ζ)
|w ′(ζ)| = 1,exp(iθ) =

exp(iϑ); see Eq. (2.31)). As a consequence, point A at the tunnel-soil interface (see Fig.
2.1) is mapped onto two different points A+ and A− (as shown in Fig. 2.3) using mapping
functions w (1)(ζ) and w (2)(ζ), respectively. When we apply the continuity conditions at
the tunnel-soil interface (see Section 2.6), we need to take this issue into account. Let ϑ+

and ϑ denote the arguments of the vectors
−−−→
O A+ and

−−−→
O A− in the image domain, respec-

tively. The relation between these two angles can be derived using κ(1) = κ(2):

− iG
1+βoeiϑ+

1−βoeiϑ+ =− i H + Ro

βo
βoeiϑ, (2.32)

and is given as

ϑ+(ϑ) = arg

[
iRoeiϑ+H −G

iRoeiϑ+H +G

]
. (2.33)

2.6. SOLVING THE UNKNOWN COEFFICIENTS
As shown in Section 2.4, the potentials, displacements and stresses are written in terms
of complex variables κ and κ̄. The derivatives of potentials related to the plane waves
with respect to κ and κ̄ can be obtained by simply applying the chain rule (i.e., first with
respect to y and z, and then to κ and κ̄), and the derivatives of potentials related to
cylindrical waves with respect to the complex variables can be derived using both the
chain rule and the recurrence relations of Hankel/Bessel functions (see Appendix C).

To solve the problem in the image domain where the boundary surfaces are of the
same type, we need to get the expressions for displacements and stresses in terms of the
complex variables ζ and ζ̄. Applying the derivatives of potentials with respect to κ and κ̄
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and then replacing the complex variables κ and κ̄ by the appropriate mapping function
(see Eqs. (2.29) and (2.30)) and their conjugates, we can get the potentials, displacements
and stresses written in terms of ζ and ζ̄; they are not shown in this chapter for brevity.

Considering the total wave field in the half-space and tunnel (see Eqs. (2.25) and
(2.26)), and using the expressions for displacements and stresses in terms of complex
variables ζ and ζ̄, we obtain a set of algebraic equations based on the boundary and
continuity conditions (see Eq. (2.9)):

12∑
i=1

∞∑
n=−∞

k( j ,i )
n (ϑ)x(i )

n = b( j )(ϑ), (2.34)

where x(1)
n = an , ..., x(12)

n = ln ; i = {1, ...,12} indicates the term related to the correspond-
ing potentials of cylindrical waves; see Eqs. (2.21) and (2.23). j = {1, ...,12} denotes the
specific boundary condition: j = {1,2,3} and j = {4,5,6} refer to the stress-free boundary
conditions at the half-space surface and at the inner surface of the tunnel, respectively;
j = {7, ...,12} refer to the continuity conditions at the tunnel-soil interface; see Eq. (2.9).

Not all the entries of k( j ,i )
n and b( j ) are presented in this thesis, but they are understood

as functions of complex variables ζ and ζ̄. For the aim of demonstration, we present

the entries of k( j ,i )
n and b( j ) related to the tenth continuity condition (i.e., σ(1)

r1θ1
= σ(2)

r1θ1
)

in Appendix D. In addition, for the set of algebraic equations ( j = {7, ...,12}) formulated
based on the continuity conditions, all the displacements and stresses related to the soil
medium, namely, u(1)

r1
, u(1)

θ1
, u(1)

x1
,σ(1)

r1r1
,σ(1)

r1θ1
andσ(1)

r1x1
, are functions of ϑ+(ϑ) while those

related to the tunnel are functions of ϑ (see also Section 2.5).
Multiplying Eq. (2.34) by the complex conjugate of the circumferential basis func-

tions exp(inϑ), which appears in the expression for the potentials of the cylindrical waves,
integrating over the interval [0,2π] and applying the orthogonality relation wherever
possible, we get

12∑
i=1

∞∑
n=−∞

k( j ,i )
n,s x(i )

n = b( j )
s , (2.35)

where s = {0,±1,±2, ...} and

k( j ,i )
n,s = 1

2π

∫ 2π

0
k( j ,i )

n (ϑ)exp(− i sϑ)dϑ, (2.36)

b( j )
s = 1

2π

∫ 2π

0
b( j )(ϑ)exp(− i sϑ)dϑ. (2.37)

For the potentials related to the directly scattered waves in the half-space (φ(1)
s,1,ψ(1)

s,1,χ(1)
s,1

in Eq. (2.21)) and for the potentials related to the refracted waves in the tunnel (Eq.

(2.23)), orthogonality of the exponential functions can be employed (i.e., k( j ,i )
n,s = 0 for

s 6= n, and i = {1,2,3,7, ...,12}). The maximum values of n and s need to be finite in
order to be able to evaluate the unknown coefficients, which means that the sum over
circumferential modes needs to be truncated. The amount of modes for refracted waves
in the tunnel is 2N +1 when we consider n from −N to N . If we use the same amount
of modes 2N + 1 for both the directly scattered waves (φ(1)

s,1, ψ(1)
s,1, χ(1)

s,1) and secondary

scattered waves (φ(1)
s,2, ψ(1)

s,2, χ(1)
s,2), we use the following multiplication function:

exp(− i sϑ), j = {1, ...,12}; s = {0,±1,±2, ...,±N }. (2.38)
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The matrix equation that is formulated based on Eq. (2.35) becomes

[K]12(2N+1)×12(2N+1) [x]12(2N+1)×1 =
[
b
]

12(2N+1)×1 . (2.39)

If we use 2N +1 modes for the directly scattered waves and 2M +1 (M 6= N ) modes for
the secondary scattered waves, in order to still formulate a square matrix, different rows
in Eq. (2.34) are multiplied by different multiplication functions, respectively, as follows:

exp(− i sDϑ), j = {1, ...,3}; sD = {0,±1,±2, ...,±M },

exp(− i sϑ), j = {4, ...,12}; s = {0,±1,±2, ...,±N },
(2.40)

and the matrix equation obtained from Eq. (2.35) reads

[K](9(2N+1)+3(2M+1))×(9(2N+1)+3(2M+1)) [x](9(2N+1)+3(2M+1))×1

= [
b
]
(9(2N+1)+3(2M+1))×1 .

(2.41)

By using different numbers of modes for the directly and secondary scattered waves,
we acknowledge their contributions to the final response in the system. It can be shown
that, for converged results at the tunnel, more circumferential modes of the directly scat-
tered waves are needed than of the secondary scattered waves (i.e., N > M), while for
converged results at the ground surface, more circumferential modes of the secondary
scattered waves are needed. This is because, due to geometrical attenuation, the po-
tentials have larger contributions to the response in the near field than in the far field.
An advantage of using a different number of circumferential modes is that the size and
condition of the matrix K can be smaller, and the computation time can be reduced.

Matlab is used to solve for the unknown coefficients. The calculation is performed on
a laptop with CPU of Intel Core i7 5600U/2.6 GHz. For example, the computation time
varies from 15 seconds to 2 minutes depending on the value of N (and M , if different)
from 3 to 10, respectively, for a tunnel embedded in a half-space (3D case) using the first
set of parameters in Table 2.1. Since the computation is very efficient even when using
large values of N and M , the same number of circumferential modes for both wave fields
will be used in the following analysis (i.e., we use the multiplication function in Eq. (3.36)
instead of the one in Eq. (2.40)).

From the analysis using the proposed method, we find that matrix K may have a rel-
atively high condition number. That happens particularly when Hankel functions have
small arguments (i.e., when one of the cylindrical wavenumbers k(1)

a , k(1)
b , k(2)

a and k(2)
b is

relatively small, see Eqs. (2.21) and (2.23)), see explanation in Section 2.7.2.

2.7. CONVERGENCE TESTS AND VALIDATIONS
This section presents convergence tests and validations of the present method by com-
paring with results obtained by other methods. Three categories of comparisons are dis-
cussed: 2D anti-plane shear (SH waves), 2D plane-strain (P and SV waves) and 3D cases.
Table 2.1 presents the five parameter sets comprising parameters of the soil and tunnel,
the geometries of the system and the frequencies of the incident harmonic waves.

In Table 2.1, Ẽ (1) and Ẽ (2) are the Young’s moduli of the soil and tunnel, respectively,

ν(1,2) are the Poisson’s ratios, and h is the thickness of the tunnel. η = ω̃R̃o
/(
πc̃(1)

S

)
is
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the dimensionless frequency used in the literature [de Barros and Luco, 1994], which is
different from the dimensionless frequency ω introduced in this chapter (see Eq. (2.7)).

Table 2.1: Five sets of parameters of the system

Parameter sets Soil parameters Tunnel parameters Geometries and
frequencies

1 Ẽ (1) = 7.567 GPa Ẽ (2) = 16 GPa H = 5Ri

Liu et al. ν(1) = 0.333 ν(2) = 0.2 h = 0.1Ri

Liu et al. [1991] ρ̃(1) = 2664 kg/m3 ρ̃(2) = 2240 kg/m3 η = 0.105

2 Ẽ (1) = 0.29593 GPa Ẽ (2) = 0.7992 GPa H = 1.5Ro

Lee et al. ν(1) = 0.333 ν(2) = 0.2 h = 0.1Ro

Lee and Trifunac [1979] ρ̃(1) = 1640 kg/m3 ρ̃(2) = 3× ρ̃(1) η = 0.5

3 µ̃(1) = 0.111 GPa µ̃(2) = 8.4 GPa H = 2.5Ro

Balendra et al. c̃(1)
s = 260 m/s ν(2) = 0.2 h = 0.1Ro

Balendra et al. [1984] ρ̃(1) = 1640 kg/m3 ρ̃(2) = 2410 kg/m3 η = 0.245

4 Ẽ (1) = 0.69 Gpa Ẽ (2) = 16 GPa H = 8.33Ri

Datta et al. ν(1) = 0.45 ν(2) = 0.2 h = 0.1Ri

Datta et al. [1984] ρ̃(1) = 2665 kg/m3 ρ̃(2) = 2240 kg/m3 η = 0.132

5 Ẽ (1) = 0.69 GPa Ẽ (2) = 16 GPa H = 2Ri

Wong et al. ν(1) = 0.45 ν(2) = 0.2 h = 0.1Ri

Wong et al. [1986a,b] ρ̃(1) = 2665 kg/m3 ρ̃(2) = 2240 kg/m3 η = 0.132
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Figure 2.4: Convergence tests: (a) longitudinal displacement Ux at the half-space surface z = 0 and (b) hoop
stress Σθ1θ1

at r1 = Ro. The first parameter set in Table 2.1 is used for a 3D problem with an incident P wave,

θv = 30° and θh = 0°.

For results presented in the following, all displacements and stresses are normalised.
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The displacement components are normalised by the amplitude of the incident com-
pressional (P) or shear (S) wave:

U = u/U{P,S}, (2.42)

where u denotes an arbitrary (but corresponding to U ) displacement component, and
UP and US are the amplitudes of the corresponding incident P and S waves, respectively,
which can be derived using Eq. (2.10):

UP = ik(1)
P φ0,

US = ik(1)
b ψ0 or US = k(1)

b χ0.
(2.43)

The normalised stress is given as

Σ=σ/[
ωρ(1)c(1)

S U{P,S}

]
, (2.44)

where σ denotes an arbitrary (but corresponding to Σ) stress component.
For a 3D problem, a convergence test using the first parameter set in Table 2.1 is

shown in Fig. 2.4. The system is subject to an incident P wave (η= 0.105, f̃ = 10.84 Hz).
The vertical and horizontal incident angles are θv = 30° and θh = 0°. It is shown that both
the normalised displacement Ux at the half-space surface z = 0 and the normalised hoop
stress Σθ1θ1 at r1 = Ro converge very quickly. It can be verified that for relatively high
frequencies, N = 5 appears sufficient. All the results in this chapter are obtained using
N = 5 and employing the representations of cylindrical waves in the tunnel in terms
of Bessel functions (see Eq. (2.23)) unless specified otherwise. The remainder of this
section is devoted to validations.

2.7.1. 2D ANTI-PLANE SHEAR CASES
This subsection presents the following three comparisons. We consider a problem of a
tunnel embedded in a half-space subjected to incident SH waves (i.e., χ(1)

inc) using the pa-
rameter sets in Table 2.1. In the following Figs. 2.5-2.11, the black solid line indicates the
present results while the red dashed line indicates the results taken from the literature 1.

The first comparison is made with the results obtained by Lee and Trifunac [1979]
for a vertically incident SH wave (θv = 0° and θh = 90°). The second parameter set in
Table 2.1 is used. The longitudinal displacement Ux at the half-space surface z = 0, the
longitudinal displacement Ux1 and shear stress Σr1x1 at the tunnel-soil interface r1 = Ro,
and the shear stress Σθ1x1 at the inner surface of the tunnel r1 = Ri are shown in Fig. 2.5.
An excellent agreement between the present results and those from Lee and Trifunac
[1979] is observed.

The responses in Fig. 2.5 are symmetric with respect to 90° and 270° as expected
based on the excitation. In Fig. 2.5(a), we observe the screening effect of the tunnel, as
the longitudinal displacement is smaller in the range of y/Ro = [−2,2] above the tunnel.
Comparing Fig. 2.5(c) and (d), we observe that the magnitude of Σθ1x1 is much larger
than that of Σr1x1 .

1Note that all the data used in this thesis in comparison with literature findings were extracted from graphs
using an online tool called PlotDigitizer.
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Figure 2.5: The first comparison example for the 2D SH wave case (χ(1)
inc): (a) Ux at z = 0, (b) Ux1 at r1 = Ro, (c)

Σr1x1 at r1 = Ro and (d) Σθ1x1
at r1 = Ri. The excitation is a vertically incident SH wave (θv = 0° and θh = 90°),

and the second parameter set in Table 2.1 is used. Note that for panel (d) no result from literature is available.

The second comparison is made between the present results and those obtained by
Balendra et al. [1984] for a non-vertically incident SH wave (θv = 30° and θh = 90°). The
same quantities as in the previous example are shown in Fig. 2.6, but the shear stress
is normalized differently for consistency with the literature result as follows: Σθ1x1 =∣∣∣2σθ1x1 /[(1−ν(2))ωρ(1)c(1)

S US]
∣∣∣. A very good agreement is observed. For this obliquely

incident SH wave (θv = 30°), the response loses symmetry (compare Figs. 2.5 and 2.6).
In Fig. 2.6(a), we observe that the response is smaller to the right of the tunnel due to
the screening effect. Fig. 2.6(d) shows that the shear stress Σθ1x1 is amplified much more
than Σr1x1 (this is also the case when the original normalization is used), which is the
same as in the first example.

For the third comparison, we consider the first parameter set in Table 2.1 and vali-
date the current results with the results obtained by Liu et al. [1991], and by de Barros and
Luco [1994]. The system is subjected to a vertically incident wave (θv = 0° and θh = 90°).
We observe an excellent agreement; see Fig. 2.7. The normalisation factor for Σθ1x1 is
taken the same as in the previous example. It is interesting to note that the screening ef-
fect is not observed in the third example, and the maximum displacement occurs above
the tunnel. The reason is that the frequency is lower and the tunnel is embedded deeper
in the third example (η = 0.105, H = 5Ri = 4.545Ro) than in the first example (η = 0.5,
H = 1.5Ro). We can see that the screening effect is also not observed for another exam-
ple, which uses the fourth parameter set (η = 0.132, H = 8.33Ri) in Table 2.1; see Fig.
2.8(c) and (f).

By comparing the first and third examples in this subsection, we see that the distri-
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Figure 2.6: The second comparison example for the 2D SH wave case (χ(1)
inc): (a) Ux at z = 0, (b) Ux1 at r1 = Ro,

(c) Σr1x1 at r1 = Ro and (d) Σθ1x1
at r1 = Ri. The excitation is a non-vertically incident SH wave (θv = 30° and

θh = 90°), and the third parameter set in Table 2.1 is used. Note that for panel (a) no result from literature is
available.
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Figure 2.7: The third comparison example for the 2D SH wave case (χ(1)
inc): (a) Ux at z = 0, (b) Ux1 at r1 = Ro, (c)

Σr1x1 at r1 = Ro and (d) Σθ1x1
at r1 = Ri. The excitation is a vertically incident SH wave (θv = 0° and θh = 90°),

and the first parameter set in Table 2.1 is used. Note that for panel (a) no result from literature is available.
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butions and amplitudes of the responses are quite different in these two examples even
though they are both subject to vertically incident SH waves. That is because the system
parameters (i.e., the dimensionless frequency, the stiffness ratio of the tunnel to soil, and
the embedded depth of the tunnel) are different. We will discuss the effect of these and
other two parameters (the vertical incident angle and the thickness of the tunnel) on the
response of the system in Section 2.8.

2.7.2. 2D PLANE-STRAIN CASES

The comparison studies for the two-dimensional plane-strain cases consider the prob-
lem of a tunnel embedded in an elastic half-space subjected to incident P and SV waves
(i.e., φ(1)

inc and ψ(1)
inc, respectively). We discuss three examples. First, we consider a case

of vertically incident P and SV waves (θv = 0° and θh = 90°) using the fourth parameter
set in Table 2.1 and compare our results with the results obtained by Datta et al. [1984].
Fig. 2.8(a) and (b) show the radial displacement Ur1 at the tunnel-soil interface r1 = Ro

and the hoop stresses Σθ1θ1 at the centre-line of the tunnel r1 = Rc for the incident P
wave, while Fig. 2.8(d) and (e) show these quantities for the incident SV waves. It is clear
that the results obtained by the present method are in good agreement with those in the
literature.

For comparison, in Fig. 2.8(e), we added the results obtained by the present method
using Hankel functions to represent the cylindrical waves in the tunnel (see Section
2.3.2), and small differences are observed compared with the literature results. Further-
more, we can verify that the results obtained using Hankel functions are not completely
smooth; this is because the cylindrical wavenumbers in the tunnel are small (the combi-
nation of frequency and tunnel stiffness leads to k(2)

b (= k(2)
S ) being small), which makes

that the corresponding Hankel functions become large. In this situation, the Hankel
functions render the columns of matrix K (see Eq. (2.39)) linearly dependent given the
limitation of the computer precision, which leads to an ill-conditioned system of equa-
tions and K having a large condition number (the results can be improved to some ex-
tent when quadruple precision is used (not standard in Matlab) in solving the system of
equations). We see a similar non-smooth curve in the second 2D plane-strain example,
Fig. 2.9(d), for which the cylindrical wavenumbers are even smaller. It can be verified
that the non-smooth feature does not disappear even when large amounts of hysteretic
damping are added in the system (results not shown). From Figs. 2.8(e) and 2.9(d), we
observe that when Bessel functions are used instead of Hankel functions to represent
the cylindrical waves in the tunnel, the method gives smooth and accurate results. The
reason is that Bessel functions do not render the columns of matrix K linearly depen-
dent, and therefore the problem of limited precision is less severe with Bessel functions
than with Hankel functions. As a result, the condition number of matrix K is effectively
reduced when Bessel functions are used. We also found that the boundary conditions at
the inner surface of the tunnel and the continuity conditions at the tunnel-soil interface
are then satisfied much better.

In order to demonstrate that the literature result in Fig. 2.8 (as well as the present
result) is correct, we also included the hoop stress (Fig. 2.8(e)) obtained by the indirect
boundary element method (indirect BEM). Clearly, a perfect match with the literature
result is observed. More details regarding our implementation of the indirect BEM can
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be found in Section 2.8.
We also present the displacements at the ground surface for the first example. Fig.

2.8(c) and (f) show that under the vertically incident P wave, the vertical displacement
Uz is approximately equal to 2 (i.e., amplification factor is 2), while the horizontal dis-
placement Uy is approximately equal to 0. On the contrary, for the vertically incident SV
wave, the horizontal displacement Uy ≈ 2 and Uz ≈ 0. Therefore, the vertical and hor-
izontal displacement components are the dominant displacement components for the
incident P (φ(1)

inc) and SV (ψ(1)
inc) waves, respectively. It can be verified that for a 3D prob-

lem the vertical, horizontal and longitudinal displacements (i.e., Uz , Uy and Ux ) are the

dominant displacement components for φ(1)
inc, ψ(1)

inc and χ(1)
inc, respectively. In Section 2.8,

we study the effect of system parameters on the dominant displacement components at
the ground surface for the three different incident wave types.
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Figure 2.8: The first comparison example for the 2D P-SV wave case (φ(1)
inc and ψ(1)

inc): (a), (d): Ur1 at r1 = Ro;
(b), (e): Σθ1θ1

at r1 = Rc; and (c), (f): U{y,z} at z = 0. The excitations are vertically incident P and SV waves

(θv = 0° and θh = 90°), respectively. The fourth parameter set in Table 2.1 is used. Note that for panels (c) and
(f) no result from literature is available.

In the second example, the fifth parameter set in Table 2.1 is used. The ratio of
the tunnel depth to its inner radius (H/Ri = 2.0) is smaller than that in the first exam-
ple (H/Ri = 8.33), and we consider a non-vertically incident wave case (θv = 10° and
θh = 90°). Fig. 2.9 shows the response under the incident P and SV waves. We observe
that the agreement with results from Wong et al. [1986b] is very good but Σθ1θ1 is not
smooth when Hankel functions are used to represent the waves in the tunnel, which is
again related to the cylindrical wavenumbers in the tunnel being small. Clearly, the non-
smoothness is more severe for the incident S wave case. Therefore, one may infer that
the present method works better for the incident P wave case than the S wave case; see
also Section 2.8.1. However, that is not necessarily true, as shown in Section 2.8.2, where
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the influence of the stiffness contrast is investigated in more detail. In addition, the non-
smoothness of the response curves is more severe in the shallow tunnel case (see Fig.
2.9(d)) than the deep tunnel case (see Fig. 2.8(e)). This is confirmed by the analysis in
Section 2.8.3.

It is shown in Fig. 2.9 that the distributions of the hoop stress Σθ1θ1 and axial stress
Σx1x1 are very similar, though the amplification of the hoop stress is much higher than
that of the axial stress. Fig. 2.9(c) and (f) show that the extremes of the radial and tan-
gential displacements Ur1 and Uθ1 are both around 2, which is different from what we
observed at the free surface, where there is one dominant displacement component (de-
pendent on incident wave type). However, we do see that the radial displacement Ur1

has maxima where the tangential displacement Uθ1 has minima, and vice versa.
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Figure 2.9: The second comparison example for the 2D P-SV wave case (φ(1)
inc and ψ(1)

inc): (a), (d): Σθ1θ1
at

r1 = Rc; (b), (e): Σx1x1 at r1 = Rc; and (c), (f): U{r1 ,θ1} at r1 = Ro. The excitations are non-vertically incident P

and SV waves (θv = 10° and θh = 90°), respectively. The fifth parameter set in Table 2.1 is used. Note that for
panels (c) and (f) no result from literature is available.

In the third example, we consider a vertically incident wave case (θv = 0° and θh =
90°), and use the first parameter set. The obtained results are shown in Fig. 2.10, where
we observe a perfect match between the present results and those obtained by Liu et al.
[1991]. In this example, the stiffness ratio of the tunnel to soil is small, and the tunnel is
embedded at relatively large depth. Therefore, as opposed to the first two examples con-
sidered in this section, the results obtained when Hankel functions are used also match
perfectly the literature results, but they are not shown in Fig. 2.10 for brevity. Fig. 2.10(c)
and (f) show the normal radial stress Σr1r1 and shear stress Σr1θ1 for the vertically inci-
dent P and SV waves, respectively. We see that the distributions of Σr1r1 and Σθ1θ1 are
the same, and the amplitude of Σr1r1 does not exceed 1. Furthermore, we observe that
the bending in the circumferential direction is more severe for the incident SV wave case
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Figure 2.10: The third comparison example for the 2D P-SV wave case (φ(1)
inc and ψ(1)

inc): (a), (d): Ur1 at r1 = Ro;
(b), (e): Σθ1θ1

at r1 = Rc; and (c), (f): Σ{r1r1 ,r1θ1} at r1 = Ro. The excitations are vertically incident P and SV

waves (θv = 0° and θh = 90°), respectively. The first parameter set in Table 2.1 is used. Note that for panels (c)
and (f) no result from literature is available.

than for the incident P wave case.

2.7.3. 3D CASE

One example of a 3D problem with incident P and S waves (i.e., φ(1)
inc and χ(1)

inc, respec-
tively) is given in this subsection. The first parameter set is used with obliquely incident
P and S waves under incident angles θv = 30° and θh = 0°. The obtained results are shown
in Fig. 2.11, where we observe excellent agreement between the present results and those
obtained by Liu et al. [1991]. Note that the results obtained using the indirect BEM are
also included for this validation case, and good agreement is observed as well.
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Figure 2.11: An example for the 3D case (φ(1)
inc and χ(1)

inc): (a), (d): Ur1 at r1 = Ro; (b), (e): Ux1 at r1 = Ro; and (c),

(f): Σθ1θ1
at r1 = Rc. The excitations are non-vertically incident P and S waves (θv = 30° and θh = 0°),

respectively. The first parameter set in Table 2.1 is used.

2.8. ACCURACY OF THE PRESENT METHOD AND PARAMETRIC

STUDIES
As shown in Section 2.7, the present method works very well when Bessel functions are
used for the wave field in the tunnel. This is not necessarily the case when Hankel func-
tions are used instead (i.e., when there is high stiffness contrast between the tunnel and
soil, or when the tunnel is shallow; see Figs. 2.8 and 2.9). To gain more insight into the
accuracy of the present method, we evaluate in this section the influence of five different
parameters in the system: the dimensionless frequency, the stiffness ratio of the tunnel
to soil, the embedded depth of the tunnel, the vertical incident wave angle and the thick-
ness of the tunnel. Note that for the analysis in Sections 2.8.1, 2.8.3, 2.8.4 and 2.8.5, the
results obtained when Hankel functions are used for the wave field in the tunnel are the
same as the ones obtained using Bessel functions, but the former results are not shown
for brevity.

To evaluate the accuracy of the present method, we also implemented the indirect
BEM. The formulation of the indirect BEM for the current seismic wave problem is sim-
ilar to the formulation for the moving-load problem (Chapter 4), only the external force
is different. The implementation of the indirect BEM for the seismic wave problem has
been validated for each case, but only two cases are shown in this chapter; see Figs. 2.8
and 2.11. To check the convergence of the indirect BEM, we considered different num-
bers of receiver and source points: (Nr, Ns) = (40,20) and (Nr, Ns) = (80,40). Figs. 2.12-
2.16 show that (Nr, Ns) = (40,20) is sufficient for all the calculations in this chapter. Note
that we considered a very small amount of hysteretic material damping (i.e., material
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damping ratio being 0.001) in the implementation of the indirect BEM.

Throughout this section, we display the hoop stress at the centre-line of the tunnel
and displacements at the ground surface. The hoop stress is chosen as it is the most
important response component for the tunnel. For the ground vibrations, we choose
the vertical, horizontal and longitudinal displacements Uz , Uy and Ux for φ(1)

inc, ψ(1)
inc and

χ(1)
inc, respectively, as they are the dominant displacement components; see Section 2.7.2.

The first parameter set in Table 2.1, and θv = 30° and θh = 0° are used as the base case in
the following analysis. We display the maximum of the absolute value of hoop stresses
around the tunnel, and the maximum of the absolute value of ground vibrations in the
range of y/Ro = [−4,4]. Furthermore, the effects of the five different parameters on the
response of the system are briefly discussed as well.

2.8.1. DIMENSIONLESS FREQUENCY

As seismic waves typically have low frequencies, we consider the dimensionless fre-
quency in the range of 0.002− 1.5 ( f̃ = 0.2− 154.8 Hz). Fig. 2.12(a)-(c) show that the
present method works well in terms of the hoop stress. Fig. 2.12(d)-(f) show that the
present method also works well in terms of the ground vibrations for dimensionless fre-
quencies up to 0.7, 0.69 and 0.46 ( f̃ = 72.3,71.2 and 47.5 Hz) under φ(1)

inc and ψ(1)
inc, and

χ(1)
inc, respectively. Clearly, the method performs well for the frequency band of seismic

waves. We included the higher frequencies in view of the applicability of the method for
other, higher-frequency loadings.

For high dimensionless frequencies, the condition number of the formulated matrix
K is very large, and the matrix equation Eq. (2.39) cannot be solved accurately. From the
numerical analysis, we found that the boundary conditions at the inner surface of the
tunnel and continuity conditions at the interface are still satisfied well for high frequen-
cies, but the boundary conditions at the ground surface are not. Results are thus only
accurate at the tunnel surfaces, not at the ground surface. The reason for the inaccuracy
lies in the fact that the secondary scattered waves in the soil are represented by cylindri-
cal waves and not plane waves, while the latter are most likely more suitable to represent
the response at the flat ground surface at high frequencies. Using more circumferential
modes does not help increasing accuracy; on the contrary, we can verify that the condi-
tion number gets larger, so the results obtained using more modes can be even worse. In
fact, it is difficult to get converged results using the present method for high-frequency
cases.

We observe that the present method generally works better for the incident P wave
case (φ(1)

inc) than the incident S wave case (ψ(1)
inc and χ(1)

inc); see also Fig. 2.9. The reason is

that, for the incident S wave case, the longitudinal wavenumber k(1)
x is larger than that for

the case of the incident P wave under the same frequency, as the speed of the S wave is
smaller than that of the P wave. Thus, k(1)

a is smaller, which eventually results in a higher
condition number of matrix K and less accurate responses; see explanation in Section
2.7.2, although the inaccuracy in this case originates from the Hankel functions in the
soil, which cannot be replaced by Bessel functions as there are only outgoing waves.

Fig. 2.12 shows that for different incident wave types, the hoop stress has a dominant
peak value at low frequencies, oscillates as frequency increases, and has a decreasing
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trend. The first two dimensionless resonance frequencies under φ(1)
inc are 0.15 and 0.74,

respectively, under ψ(1)
inc 0.11 and 0.33, and under χ(1)

inc 0.24 and 0.59. We also see that
the curve for the incident S wave case oscillates more. In addition, as opposed to the
decreasing trend for the hoop stress, the curves for ground vibrations exhibit a slightly
increasing trend.

To conclude, the advantage of the proposed semi-analytical method is that it is very
efficient regarding computational time. However, the condition number increases as
frequency increases, which may lead to an increase in computational time (still efficient
compared with indirect BEM) and, at some point, to inaccurate results. Thus, for seismic
wave excitations, the semi-analytical method is beneficial, but its accuracy is lost for
high-frequency loadings.

0 . 0 0 . 5 1 . 0 1 . 50

5

1 0

1 5

0 . 0 0 . 5 1 . 0 1 . 51
2
3
4
5

0 . 0 0 . 5 1 . 0 1 . 50

5

1 0

1 5

0 . 0 0 . 5 1 . 0 1 . 51
2
3
4
5

0 . 0 0 . 5 1 . 0 1 . 50

5

1 0

1 5

0 . 0 0 . 5 1 . 0 1 . 51
2
3
4
5

 ( d )  �  ( 1 )
 i n c 

 P r e s e n t  N  =  5
 I n d i r e c t  B E M  ( 4 0 ,  2 0 )
 I n d i r e c t  B E M  ( 8 0 ,  4 0 )

 

 ( a )  �  ( 1 )
 i n c

 

ma
x(|

U z|
)

�

ma
x(|

Σ �
 1�

 1|)

ma
x(|

Σ �
 1�

 1|)
 

 

 

  ( b )  �  ( 1 )
 i n c

 

 ( e )  �  ( 1 )
 i n c

ma
x(|

U y
|)

�

ma
x(|

Σ �
 1�

 1|)
 

 

 

( c )  �  ( 1 )
 i n c

 

( f )  �  ( 1 )
 i n c

ma
x(|U

x|)

�
Figure 2.12: Evaluation of the present method for the dimensionless frequency η: (a)-(c) hoop stress Σθ1θ1

at
r1 = Rc; (d)-(f) vertical displacement Uz , horizontal displacement Uy and longitudinal displacement Ux at

z = 0 subject to φ(1)
inc, ψ(1)

inc and χ(1)
inc, respectively.

2.8.2. STIFFNESS RATIO OF THE TUNNEL TO SOIL

As mentioned in Section 2.7.2, the large stiffness contrast (E (2)/E (1) = 23) between the
tunnel and soil may induce inaccuracies in the results obtained by the present method
when using Hankel functions to represent the cylindrical waves in the tunnel. Therefore,
we evaluate it for varying stiffness ratio: E (2)/E (1) = [0.5−25]. The corresponding range
for shear wave velocity in the soil is C (1)

S = [2123 m/s−300 m/s] based on the shear veloc-

ity C (2)
S = 1725 m/s. In this section, we show the results obtained by the present method

using both Bessel and Hankel functions in Fig. 2.13. It is shown that the present method
using Bessel functions works well for both the incident P and S waves in the complete
considered range. However, regarding the hoop stress, the present method using Han-
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kel functions does not give accurate results in the stiffness ratio range of 10−15 for the
incident P wave case. This improvement was already touched upon in Section 2.7.2.
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Figure 2.13: Evaluation of the present method for the stiffness ratio of the tunnel to soil E (2)/E (1): (a)-(c) hoop
stress Σθ1θ1

at r1 = Rc; (d)-(f) vertical displacement Uz , horizontal displacement Uy and longitudinal

displacement Ux at z = 0 subject to φ(1)
inc, ψ(1)

inc and χ(1)
inc, respectively.

The large stiffness contrast causes only a small inaccuracy in the results (i.e., the
small difference in trend as the stiffness ratio increases); they are still satisfactory. There-
fore, a large stiffness ratio does not necessarily lead to inaccurate results. It is surprising
to see that the results are actually least accurate for a moderate stiffness contrast (range
10− 15), and for the incident P wave case. This is different from what we observed in
Sections 2.8.1 (and in Sections 2.8.3-2.8.5), where the present method seemed to per-
form better for the incident P than the incident S wave case.

To understand the inaccuracy in the range of 10−15 for the incident P wave case, we
consider the wavenumbers of refracted waves in the tunnel. One can verify that k(2)

b (see

Eq. (2.24)) becomes imaginary when E (2)/E (1) = 12.5, which implies that the refracted
shear wave becomes evanescent; |k(2)

b | is small in the interval of E (2)/E (1) = [10 − 15],

and |k(2)
b | is the smallest when E (2)/E (1) = 12. As explained in Section 2.7.2, the small

argument of a Hankel function results in inaccurate responses (it can be verified that
the inaccuracy does not completely disappear when large amounts of hysteretic damp-
ing are added in the system). That is the reason why the responses are inaccurate for
E (2)/E (1) = [10−15], and why the largest discrepancy occurs when E (2)/E (1) = 12. Simi-
larly, the (small) inaccuracy observed for the incident S wave case (see Fig. 2.13(c) and
(e)) when E (2)/E (1) = 3 is again caused by the refracted S wave becoming evanescent, and
k(2)

b being the smallest for this stiffness contrast. Fortunately, when Bessel functions are
used, the condition number of matrix K is effectively reduced and accurate results can
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be obtained for the small wavenumbers.
Fig. 2.13 shows that the hoop stress increases dramatically as the stiffness ratio in-

creases, which indicates that the hoop stress in the tunnel can be reduced effectively by
replacing the surrounding soft soil by stiff soil (i.e., by means of ground improvement).
The hoop stress under φ(1)

inc is the largest, and the one under χ(1)
inc is the smallest. It is also

shown that the ground vibrations decrease only slightly as the stiffness ratio increases.

2.8.3. EMBEDDED DEPTH OF THE TUNNEL
In this section, we evaluate the present method for the embedded depth of the tunnel,
and the considered range of embedded depth ratio is that H/Ro = [1.5−20]. The results
are shown in Fig. 2.14. We observe that the present method works very well in general for
both the P and S wave cases, despite some small differences between the current results
and those obtained using the indirect BEM. The reason why the present method works
less good for shallow tunnels with H/Ro = [1.5−2] (see Fig. 2.14(e) and (f)) is that the
wavenumbers are small in this range.

Fig. 2.14(d)-(f) show that the ground vibrations at the ground surface have a decreas-
ing trend. The ground vibrations are amplified more for shallow tunnels due to ‘trapped’
waves between the top of the tunnel and the ground surface [Alielahi et al., 2015, 2016].
We observe in Fig. 2.14(a)-(c) that the embedded depth has a large effect on the hoop
stress, for all three incident wave types. Both the distributions and magnitudes of the
hoop stress are different, and the peak values occur at different depth ratios. In addition,
we see that the response (both the hoop stress and ground vibration) for the incident P
wave is not always larger than that for the incident S wave, which is different from what
is claimed in Alielahi et al. [2015] that generally greater amplifications are observed for
P waves than for SV waves. For example, the hoop stress under φ(1)

inc is the largest when

H/Ro = [5−9.25]; the hoop stress underψ(1)
inc is the largest when H/Ro = [2−5,14.5−20];

the hoop stress under χ(1)
inc is the largest when H/Ro = [9.25−14.5]. Therefore, a larger

embedded depth does not necessarily make the tunnel safer. In fact, we can verify that
the hoop stress shows a decreasing trend with increasing embedded depth, but the de-
crease is not monotonic as quasi-periodic patterns appear. The ground displacements
(Fig. 2.14(d)-(f)) show similar patterns, although the oscillation is less strong.

2.8.4. VERTICAL INCIDENT ANGLE
Here, we evaluate the present method for the vertical incident angle θv, while we con-
sider θh = 0°. Note that for the considered soil parameter set with ν(1) = 0.333, θcrit

v =
arcsin

(√(
1−2ν(1)

)
/
(
2−2ν(1)

)) ≈ 30° for the incident S wave case (see Eq. (2.19)). Fig.

2.15 shows that the results obtained by the present method are accurate for both the
incident P and S wave cases. Note that the scattered compressional waves in the soil
become evanescent (i.e., k(1)

a becomes imaginary) when θv ≈ 30° (see Eqs. (2.15), (2.19)
and (2.22); as we consider θh = 0°, k(1)

y = 0 and k(1)
a = k(1)

z,P). As explained in Section 2.8.2,
we expect inaccuracy at the transition to evanescent waves. One can verify that the ob-
tained results are indeed less accurate around θv = 30° especially when using N = 10;
however, the obtained results using N = 5 are satisfactory. Therefore, the inaccuracy
issue regarding the angle (i.e., scattered compressional waves becoming evanescent) is
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Figure 2.14: Evaluation of the present method for the depth ratio H/Ro: (a)-(c) hoop stress Σθ1θ1
at r1 = Rc;

(d)-(f) vertical displacement Uz , horizontal displacement Uy and longitudinal displacement Ux at z = 0

subject to φ(1)
inc, ψ(1)

inc and χ(1)
inc, respectively.

less severe than in the case of unfavorable stiffness ratio (i.e., refracted shear waves be-
coming evanescent). In addition, this suggests that it is not recommendable to use more
than necessary circumferential modes in the computations.

Fig. 2.15(a) and (b) show that the hoop stress decreases significantly as θv increases
for the cases ofφ(1)

inc andψ(1)
inc; however, the hoop stress first increases and then decreases

for the case of χ(1)
inc. We observe two small peaks at θv = 24.5° and θv = θcrit

v ≈ 30°, and a
pronounced peak at θv = 39°. Similar to the trend of the hoop stress, the dominant dis-
placement Uz decreases under φ(1)

inc. However, the influence of θv on the dominant dis-

placement Uy is very small. The dominant longitudinal displacement under χ(1)
inc varies

more as θv increases, and there is a pronounced peak at θv = θcrit
v ≈ 30° and a second

small peak at θv = 64°. We can conclude that θcrit
v has a large effect on the response of the

system, especially under χ(1)
inc.

2.8.5. THICKNESS OF THE TUNNEL

The evaluation of the present method for changing thickness ratio h/Ro is presented in
this section. We consider a range of 0.05−0.5. Fig. 2.16 shows that the present method
works well for both the incident P and S wave cases. The reason why the (small) dif-
ference between the results obtained using the present method and those using the in-
direct BEM increases as the thickness ratio increases, is that the tunnel is modelled by
the Flügge shell theory in the indirect BEM, while the tunnel is modelled as an elastic
continuum in the current method.

Fig. 2.16(a)-(c) show that the hoop stress decreases significantly as the thickness of
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Figure 2.15: Evaluation of the present method for the vertical incident angle θv: (a)-(c) hoop stress Σθ1θ1
at

r1 = Rc; (d)-(f) vertical displacement Uz , horizontal displacement Uy and longitudinal displacement Ux at

z = 0 subject to φ(1)
inc, ψ(1)

inc and χ(1)
inc, respectively.

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 50

5

1 0

1 5

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 51

2

3

4

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 50

5

1 0

1 5

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 51

2

3

4

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 50

5

1 0

1 5

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 51

2

3

4

ma
x(|

Σ �
 1�

 1|)

 P r e s e n t  N  =  5
 I n d i r e c t  B E M  ( 4 0 ,  2 0 )
 I n d i r e c t  B E M  ( 8 0 ,  4 0 )

 

 

 ( a )  �  (1)
 i n c

 h / R o

 

( d )  �  (1)
 i n c

ma
x(|

U z|
)

ma
x(|

Σ �
 1�

 1|)

 

  

  ( b )  �  (1)
 i n c

 h / R o

 

 ( e )  �  (1)
 i n c

ma
x(|

U y
|)

ma
x(|

Σ �
 1�

 1|)
 

 

 

( c )  �  (1)
 i n c

 h / R o

 

( f )  �  (1)
 i n c

ma
x(|

U x
|)

Figure 2.16: Evaluation of the present method for the thickness ratio of the tunnel h/Ro: (a)-(c) hoop stress
Σθ1θ1

at r1 = Rc; (d)-(f) vertical displacement Uz , horizontal displacement Uy and longitudinal displacement

Ux at z = 0 subject to φ(1)
inc, ψ(1)

inc and χ(1)
inc, respectively.

the tunnel increases. This suggest that a thicker tunnel is indeed safer. Furthermore, the
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hoop stress underφ(1)
inc andψ(1)

inc is much larger than that under χ(1)
inc. Fig. 2.16(d)-(f) show

that all the dominant displacement components decrease slightly as the thickness of the
tunnel increases. Different from what we observed for the hoop stress, the dominant
displacement under χ(1)

inc is much larger than that under φ(1)
inc and ψ(1)

inc.

2.9. CONCLUSIONS
A semi-analytical solution for the 3D response of a tunnel embedded in an elastic half-
space subject to seismic waves has been presented in this chapter. An existing method
has been extended successfully from 2D to 3D. Both the tunnel and soil were modelled as
an elastic continuum. The method of conformal mapping (which employs the complex-
variable theory) was used to map the original physical domain with boundary surfaces
of two different types onto an image domain with boundary surfaces of the same type.
The total wave field in the soil consists of incident and reflected plane waves, and di-
rectly and secondary scattered cylindrical waves, while the total wave field in the tunnel
only consists of refracted cylindrical waves. The secondary scattered waves are gener-
ated when the cylindrical waves directly scattered from the tunnel meet the half-space
surface. They were represented by cylindrical waves that originate from a source of a
priori unknown intensity located at the centre of the image of the tunnel, which is posi-
tioned symmetrically with respect to the half-space surface.

The unknown coefficients of the potentials related to the cylindrical waves were de-
termined by the boundary and continuity conditions of the tunnel-soil system. The
boundary value problem was solved in the image domain from a system of algebraic
equations obtained by projecting the boundary and continuity conditions onto the set of
the circumferential basis functions/modes. Convergence tests were conducted regard-
ing the number of circumferential modes (N ), and it was shown that N = 5 appears suf-
ficient for the considered scenarios in this chapter. The results obtained by the present
method were validated for 2D anti-plane, 2D plane-strain and 3D cases by literature re-
sults. Excellent agreement was observed.

The performance of the present solution method has been systematically evaluated
and the effect of five important parameters on the response of the system has been ad-
dressed briefly as well. The main findings are as follows:

• The present method performs well for the frequency band of seismic waves. For
high dimensionless frequencies, the condition number of the formulated matrix
obtained from the boundary and continuity conditions is very high, which causes
inaccurate results. The proposed method generally works better for the incident P
wave case than the incident S wave case. The reason is that the wavenumbers in
the arguments of the Hankel functions (representing the cylindrical waves in the
soil) are small, implying that the Hankel functions render the columns of matrix K
linearly dependent for the S wave case, which eventually results in ill-conditioned
system of equations and less accurate responses.

The hoop stress decreases as frequency increases in a global sense, while the dom-
inant displacement component increases as frequency increases. Furthermore,
the results reveal pronounced resonances which should be avoided in the design
of tunnels.
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• In the considered range of the stiffness ratio of the tunnel to soil, the proposed
method works well in general when Bessel functions are used to represent the
cylindrical waves in the tunnel. In contrast, when Hankel functions are used to
represent waves in the tunnel, the hoop stress becomes inaccurate for a stiffness
ratio in the range of 10− 15. The reason is that the wavenumbers in the Hankel
functions (representing the cylindrical waves in tunnel) are small in this moderate
stiffness contrast range, which is due to refracted shear waves (in the tunnel) be-
coming evanescent (in the 3D case). These inaccuracies can be perfectly overcome
by representing the cylindrical waves in the tunnel by Bessel functions.

The hoop stress increases dramatically as the stiffness ratio of the tunnel to soil
increases, which indicates that the hoop stress in the tunnel can be reduced effec-
tively by replacing the surrounding soft soil by stiff soil, while the ground vibra-
tions decrease slightly as the soil stiffness decreases.

• The present method generally works well in the considered range of the embedded
depth of the tunnel.

It is shown that the hoop stress has a peak value at different embedded depths
for three different incident waves (P wave and two differently polarized S waves),
and the ground vibrations are amplified more for shallow tunnels. A larger em-
bedded depth does not necessarily make the tunnel safer. The hoop stress shows a
decreasing trend with increasing embedded depth, but the decrease is not mono-
tonic as quasi-periodic patterns appear. The ground displacements show similar
patterns, although the oscillation is less strong.

• The present method generally works well in the considered range of the vertical
incident angle.

The vertical incident angle has a large effect on the response of the system. The
hoop stress decreases significantly as the vertical incident angle increases for φ(1)

inc

(P wave) and ψ(1)
inc (S wave), while the hoop stress for χ(1)

inc (different S wave) first
increases and then decreases, with a pronounced peak value where the vertical
incident angle is slightly larger than the critical vertical incident angle. The dom-
inant ground vibration decreases as the vertical incident angle increases for φ(1)

inc;

the dominant ground vibration does not change much for ψ(1)
inc, while there is a

pronounced peak at the critical vertical incident angle for χ(1)
inc.

• The present method generally works well in the considered thickness range of the
tunnel.

The hoop stress decreases significantly as the thickness of the tunnel increases,
while the dominant ground vibrations decrease only slightly. This suggest that a
thicker tunnel is indeed safer, and it is also somewhat beneficial for structures on
the ground surface.

Finally, we can conclude that the proposed method is in general a fast, elegant and ac-
curate method for solving the seismic wave scattering problem, and can be used for pre-
liminary design.
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RESPONSE OF AN ELASTIC

HALF-SPACE WITH AN EMBEDDED

CYLINDRICAL CAVITY SUBJECT TO A

HARMONIC ANTI-PLANE SHEAR

WAVE: A COMPARISON OF METHODS

In this chapter, we investigate the two-dimensional response of a cavity embedded in an
elastic half-space subjected to a harmonic plane SH wave. Main focus is the comparison of
three methods: the method of images, the method of conformal mapping and the indirect
boundary element method (indirect BEM). For the considered model, closed-form solu-
tions can be obtained using the method of images, which serve as benchmark solutions
for the other two methods. Regarding the first two methods, the total wave field in the
half-space comprises harmonic incident and reflected plane waves, as well as directly and
secondary scattered cylindrical waves. The secondary scattered waves arise when the cylin-
drical waves directly scattered from the cavity encounter the free surface of the half-space.
In the method of conformal mapping, the secondary scattered waves are represented by
cylindrical waves originating from a source with an a priori unknown intensity located at
the image of the cavity. Conversely, in the method of images, the intensity is known and is
the same as that of the directly scattered wave. In both methods, orthogonality relations
are applied to the boundary value problem, resulting in a set of algebraic equations. To
obtain numerical results, the sum over the circumferential modes in the potentials related
to the cylindrical waves needs to be truncated. Convergence tests and validation examples
are provided to assess the accuracy and reliability of the methods. The results demonstrate
that both the method of images and the method of conformal mapping converge with a
small number of circumferential modes, while the indirect BEM converges with a small
number of source and receiver points. Moreover, the results obtained using the proposed
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methods align perfectly with those reported in the literature. In comparative studies, we
observe that both the method of conformal mapping and the method of images require a
similar number of circumferential modes to achieve converged results. In terms of compu-
tational efficiency, the method of images outperforms the method of conformal mapping,
whereas the indirect BEM is the least efficient one among the three methods due to its
highest computational cost. Through a systematic evaluation, we confirm that both the
method of conformal mapping and the indirect BEM accurately work within the complete
considered ranges of the dimensionless frequency, the embedded cavity depth and the ver-
tical incident angle. This study therefore verifies the accuracy of the specific application of
the method of conformal mapping (in which the waves scattered from the half-space sur-
face are represented by cylindrical waves that originate from an image source of a priori
unknown intensity) and of the indirect BEM. Thus, all the three methods can be applied
in the preliminary design of an embedded cavity to assess stress distributions at the cavity
and ground vibrations. Furthermore, parametric studies reveal significant effects of the
system parameters on the responses. The system’s response curves display nearly equally
spaced resonances, which is in line with those of the one-dimensional shear layer subject
to bedrock motion, while similar response curves for the three-dimensional case do not
have this feature. In practical engineering, careful consideration should be given to the
choice of the embedded cavity depth and the vertical incident angle to avoid pronounced
resonances in the system response.
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3.1. INTRODUCTION
The dynamic response of a half-space with an underground structure subject to seismic
waves has been an important research topic. This is due to the potential for substantial
amplifications of ground motion and dynamic stress concentrations. However, resolving
the associated difficulty in solving the dynamic problem arising from the distinct types
of boundary surfaces presents a challenge. Specifically, the flat surface of the half-space
and the surface of the underground structure differ in nature. To tackle this problem, re-
searchers have employed conformal mapping functions, which enables the mapping of
surfaces of different types in the physical domain to surfaces of the same type in an im-
age domain. The method of conformal mapping has been widely applied in addressing
two-dimensional (2D) problems of wave scattering by inclusions embedded in an elastic
half-space. Notably, this approach offers computational efficiency and yields accurate
results, making it a promising and viable solution. Building upon these foundations, an
initial endeavor was undertaken to extend the method of conformal mapping to address
the three-dimensional (3D) wave scattering problem, as detailed in Chapter 2.

However, it was observed that inaccurate results may arise, particularly in high fre-
quency scenarios. As pointed out in Chapter 2, the reason for the inaccuracy probably
lies in the fact that the secondary scattered waves in the soil are represented by cylin-
drical waves and not by plane waves, while the latter are most likely more suitable to
represent the responses at the flat ground surface at high frequencies. This observation
motivates the study in this chapter, where we aim to verify the accuracy of the specific
application of the method of conformal mapping (used throughout the thesis) in which
the waves scattered from the half-space surface are represented by cylindrical waves that
originate from an image source of a priori unknown intensity. To this end, a simple 2D
problem of a circular cavity embedded in an elastic half-space subject to a harmonic
anti-plane shear wave is considered. The performance of the indirect BEM is evaluated
too for this model in view of the choice of the appropriate solution method for the sec-
ond type of dynamic problem considered in this thesis (Chapter 4). In this chapter, we
actually conduct a comparative analysis involving three methods: the method of images,
the method of conformal mapping and the indirect BEM. As the considered model is
two dimensional, the geometry is regular, and the excitation is an anti-plane shear wave,
closed-form solutions can be obtained using the method of images. These closed-form
solutions serve as benchmark results for evaluating the outcomes obtained by the other
two methods. Our study aims to validate the accuracy of the specific application of the
method of conformal mapping and of the indirect BEM, not only for specific parameters
but also through a systematic evaluation encompassing a large range of system parame-
ters. Such a comprehensive systematic evaluation of the method of conformal mapping
and the indirect BEM for the 2D anti-plane shear wave case has not been undertaken
previously.

This chapter is organised as follows. Section 3.2 provides a statement of the problem
under consideration. The method of images, the method of conformal mapping, and the
indirect BEM are presented in Sections 3.3, 3.4 and 3.5, respectively. In Section 3.6, we
conduct convergence tests and validations. Section 3.7 presents comprehensive com-
parisons of the three methods, along with parametric studies and an evaluation of their
accuracy. Specifically, we analyse the accuracy with respect to varying dimensionless fre-
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quency, the embedded depth of the cavity and the vertical incident angle. Additionally,
we briefly discuss the effects of these three important factors on the system response.
Finally, Section 3.8 summarises the conclusions of the study in this chapter.

3.2. PROBLEM STATEMENT

3.2.1. MODEL DESCRIPTION

In this chapter, we consider a two-dimensional (2D) problem of a cylindrical cavity em-
bedded in an elastic half-space subject to a harmonic plane SH wave; as illustrated in Fig.
3.1. The half-space is modelled by an elastic continuum, which is assumed to be linear,
elastic, homogeneous and isotropic. The soil domain is denoted as region Ω in Fig. 3.1.
To facilitate the analysis, we employ six coordinate systems: global Cartesian (y, z) and
polar (r,θ) coordinates with the origin at the free surface of the half-space, local Carte-
sian (y1, z1) and polar (r1,θ1) coordinates with the origin at the centre of the cavity, and
local Cartesian (y2, z2) and polar (r2,θ2) coordinates originated at the centre of the image
of the cavity. The image of the cavity is symmetrically positioned with respect to the free
surface. The centre of the cavity, denoted as o1, is located beneath the free surface at a
depth of H , and its radius is represented by R. We define the vertical incident angle, θv,
as the angle between the wave propagation direction and the positive vertical z axis.

x y

z r
θ

o

y1

z1
r1

θ1

H

o1

y2

z2
r2

θ2

H

o2

R

Ω

A

θv

incident SH waves

Figure 3.1: Model of a cylindrical cavity embedded in an elastic half-space subjected to a harmonic anti-plane
shear wave including employed coordinate systems.

3.2.2. GOVERNING EQUATION AND BOUNDARY CONDITIONS

Considering our focus on the steady-state solution to the 2D anti-plane problem, we
assume that both the excitations and responses of the system are harmonic and pro-
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portional to e+ iωt ; i denotes the imaginary unit, t represents time, ω= 2π f is the angu-
lar frequency, and f is the frequency in Hz. For brevity, we omit the factor e+ iωt in all
subsequent expressions. The governing equation of motion of the soil medium in the
frequency domain, in the absence of external forces, reads [Achenbach, 1973; Aki and
Richards, 2002]

µ∇2u =−ω2ρ1u, (3.1)

where the symbols µ and ρ1 signify the shear modulus and density of the soil, respec-
tively; the operator ∇2 denotes the 2D Laplace operator. As an example, in Cartesian
coordinates, the Laplace operator can be expressed as ∇2 = ∂2

y +∂2
z . The variable u de-

notes the anti-plane displacement in the x direction.
The system is excited by seismic wave originating from beneath the cavity. Con-

sequently, stress-free boundary conditions are imposed at both the free surface of the
half-space and the cavity surface. These boundary conditions are written as follows:

σzx = 0, z = 0, (3.2)

σr1x1 = 0, r1 = R. (3.3)

3.3. METHOD OF IMAGES

3.3.1. SOLUTION IN TERMS OF REAL VARIABLES
In the absence of the cavity, the wave field in the homogenous elastic half-space com-
prises incident and reflected plane waves. By considering the governing equation (see
Eq. (3.1)) with the Laplace operator in Cartesian coordinates, we can determine the so-
lution. The expressions for the incident and reflected plane waves are written as

uinc = u0 exp
(
− iky y − ikz z

)
= u0 exp

(
− iky r1 cos

(
θ1

)− ikz (r1 sin
(
θ1

)−H)
)
, (3.4)

uref = u0 exp
(
− iky y + ikz z

)
= u0 exp

(
− iky r1 cos

(
θ1

)+ ikz (r1 sin
(
θ1

)−H)
)
, (3.5)

where subscripts “inc" and “ref" indicate the incident and reflected plane waves; the
wavenumbers in the horizontal and vertical directions are represented as ky = kS sin

(
θv

)
and kz = kS cos

(
θv

)
, respectively; kS = ω/cS denotes the wavenumber of the SH wave,

and cS = √
µ/ρ1 is the velocity of the shear wave; u0 is the amplitude of the incident

SH wave, and the amplitude of the reflected wave is equal to that of the incident wave
(which can be proven easily using the method of images). Note that in Eqs. (3.4) - (3.8)
the expressions given in terms of the global Cartesian coordinates will be used to com-
pute responses at the half-space surface, while the expressions in terms of local polar
coordinates will be used to compute responses at the cavity surface.

The presence of the cavity induces the scattering of elastic waves, resulting in the
generation of scattered cylindrical waves denoted as us,1. The subscript “s,1" signifies
these waves as the ‘directly scattered’ waves propagating away from the cavity in the
half-space. Upon interaction with the free surface of the half-space, these directly scat-
tered waves give rise to secondary scattered waves referred to as us,2. The subscript “s,2"
designates these waves as the ‘secondary scattered’ waves. Employing the method of im-
ages, these secondary scattered waves are considered to originate from an image source,
and its intensity is assumed identical to that of the directly scattered waves. The image
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source is located at the centre of the image of the cavity, positioned symmetrically with
respect to the free surface.

To describe the waves propagating away from the cavity and its image, the method
of separation of variables is employed to solve the wave equation shown in Eq. (3.1). We
assume a harmonic variation in the azimuth, taking the form of exp(inθ) [Graff, 1975;
Kausel, 2006]. In order to satisfy the continuity condition at θ = 0 and θ = 2π, the param-
eter n is required to be an integer. Notably, for a fixed value of n, the radial behaviour
is described by a Hankel function. Consequently, the general solution is constructed
as an infinite series, commonly known as a wave-function expansion, which represents
the entire scattered wave field. The scattered wave fields in the half-space are given as
follows:

us,1 =
∞∑

n=−∞
an H (2)

n

(
kSr1

)
exp

(
inθ1

)
, (3.6)

us,2 =
∞∑

n=−∞
an H (2)

n

(
kSr2

)
exp

(
inθ2

)
, (3.7)

where

r1 =
√

y2 + (
z +H

)2, θ1 = arctan

(
z +H

y

)
,

r2 =
√

y2 + (−z +H
)2 =

√
r 2

1 +4H 2 −4Hr1 sin
(
θ1

)
,

θ2 = arctan

(
−z +H

y

)
= arctan

(
−r1 sin

(
θ1

)+2H

r1 cos
(
θ1

) )
,

(3.8)

and an denotes the unknown coefficients which will be determined from the boundary
conditions; H (2)

n (..) denotes the Hankel function of the second kind and of order n. It
represents for outgoing waves (propagating away from the cavity) accounting for the
time-dependent factor e+ iωt . The coefficients for the secondary scattered cylindrical
waves are identical to those of the directly scattered cylindrical waves, as determined
using the method of images. It can be verified that the stress-free boundary condition
at the ground surface as shown in Eq. (3.2), is satisfied exactly for both the pair of plane
waves (i.e., uinc and uref) and the pair of scattered cylindrical waves (i.e., us,1 and us,2).
This verification confirms the correctness of applying the method of images. The total
wave field is composed of the sum of the incident and reflected plane waves, as well as
the directly and secondary scattered cylindrical waves:

utot = uinc +uref +us,1 +us,2. (3.9)

The expressions for stresses σr1x1 and σθ1x1 (the latter is given in view of the results
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presented in Sections 3.6 and 3.7) are given as follows:

σr1x1 =µ
∂utot

∂r1

=µ
(
− iky cos

(
θ1

)− ikz sin
(
θ1

))
uinc +µ

(
− iky cos

(
θ1

)+ ikz sin
(
θ1

))
uref

+µ
∞∑

n=−∞
an

[
−kSH (2)

n+1

(
kSr1

)+ n

r1
H (2)

n

(
kSr1

)]
exp

(
inθ1

)
+µ

∞∑
n=−∞

an

[
r1 −2H sin

(
θ1

)
r2

[
−kSH (2)

n+1

(
kSr2

)+ n

r2
H (2)

n

(
kSr2

)]]
exp

(
inθ2

)
+µ

∞∑
n=−∞

an

[
2inH cos

(
θ1

)
4Hr1 sin

(
θ1

)−4H 2 − r 2
1

H (2)
n

(
kSr2

)]
exp

(
inθ2

)
,

(3.10)

σθ1x1 =µ
1

r1

∂utot

∂θ1

=µ
(
iky sin

(
θ1

)− ikz cos
(
θ1

))
uinc +µ

(
iky sin

(
θ1

)+ ikz cos
(
θ1

))
uref

+µ
∞∑

n=−∞
an

[
in

r1
H (2)

n

(
kSr1

)]
exp

(
inθ1

)
+µ

∞∑
n=−∞

an

[
−2H cos

(
θ1

)
r2

[
−kSH (2)

n+1

(
kSr2

)+ n

r2
H (2)

n

(
kSr2

)]]
exp

(
inθ2

)

+µ
∞∑

n=−∞
an

 in
(
r1 −2H sin

(
θ1

))
4Hr1 sin

(
θ1

)−4H 2 − r 2
1

H (2)
n

(
kSr2

)exp
(
inθ2

)
,

(3.11)

where uinc and uref are the incident and reflected wave fields as shown in Eqs. (3.4) and
(3.5), respectively.

3.3.2. SOLVING THE UNKNOWN COEFFICIENTS
As explained in Section 3.3.1, the boundary condition at the free surface is already sat-
isfied by virtue of the method of images (and thus choosing the magnitudes of the scat-
tered wave fields equal). Now, the unknown coefficients of the scattered cylindrical
waves, as presented in Eqs. (3.6) and (3.7), are determined by enforcing the stress-free
boundary condition at the cavity surface as given by Eq. (3.3). Based on this boundary
condition, we obtain one algebraic equation with infinitely many unknowns:

∞∑
n=−∞

kn xn = b, (3.12)

where xn = an are the coefficients of the scattered cylindrical waves. Entries of kn and
b are functions of real variable θ1. Their expressions can be easily derived but are not
shown in this chapter for brevity (see Eqs. (3.8) and (3.10)).

By multiplying Eq. (3.12) with the complex conjugate of the circumferential basis
functions exp(inθ1), integrating over the interval [0,2π] and utilizing the orthogonality
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property wherever applicable, a set of algebraic equations is created:

∞∑
n=−∞

kn,s xn = bs , (3.13)

where s = {0,±1,±2, ...} and

kn,s = 1

2π

∫ 2π

0
kn(θ1)exp(− i sθ1)dθ1, (3.14)

bs = 1

2π

∫ 2π

0
b(θ1)exp(− i sθ1)dθ1. (3.15)

For the wave field related to the directly scattered waves in the half-space (i.e., us,1 in
Eq. (3.6)), orthogonality of the exponential functions can be employed (i.e., kn,s = 0 for
s 6= n). It is essential to account for finite maximum values of n and s to enable numeri-
cal evaluation of the unknown coefficients, necessitating the truncation of the sum over
circumferential modes. If we use the same number of modes 2N +1 for both the waves
directly scattered by the cavity (i.e, us,1) and the secondary scattered waves (i.e, us,2), we
use the following multiplication function:

exp(− i sθ1), s = {0,±1,±2, ...,±N }, (3.16)

and the matrix equation that is formulated based on Eq. (3.12) becomes

[K](2N+1)×(2N+1) [x](2N+1)×1 =
[
b
]

(2N+1)×1 . (3.17)

3.4. METHOD OF CONFORMAL MAPPING

3.4.1. SOLUTION IN TERMS OF COMPLEX VARIABLES
The solution (see Eqs. (3.4)-(3.7)) to the governing equation is presented in terms of real
variables in Section 3.3. However, to be able to apply the method of conformal map-
ping, we express the solution in terms of complex variables through the application of
complex-variable theory. In this regard, we introduce a complex variable, denoted as
κ = y + i z = r eiθ, along with its conjugate, κ̄ = y − i z = r e− iθ. By employing these com-
plex variables, the lengths in the local coordinate systems r1 and r2 can be expressed in
terms of κ and κ̄, which are related to the global coordinate system through the following
coordinate transformation:

r1 = |y1 + i z1| = |y + i(z +H)| = |κ+ i H |,
r2 = |y2 + i z2| = |y + i(−z +H)| = |κ̄+ i H |. (3.18)

The arguments θ1 and θ2 of the local coordinates, present in Eqs. (3.6) and (3.7), can
alternatively be written in terms of the complex variables κ and κ̄ as

eiθ1 = y1 + i z1

r1
= κ+ i H

|κ+ i H | , eiθ2 = y2 + i z2

r2
= κ̄+ i H

|κ̄+ i H | . (3.19)

As explained before, the secondary scattered waves, denoted as us,2, arise when the
directly scattered waves encounter the free surface of the half-space. By employing the
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method of conformal mapping and following the principle of the method of images, we
again represent these secondary scattered waves as cylindrical waves originating from a
source located at the image of the cavity. However, the intensity of this source, denoted
as bn , is now assumed unknown and may in essence differ from that of the directly scat-
tered wave (i.e., an). In the traditional application of the method of images (Section 3.3),
bn was set equal to an . It is important to note that while the method of images can be
applied to the 2D anti-plane shear problem under consideration, it is not applicable to
more complex problems such as 2D plane-strain and three-dimensional (3D) cases. In
our previous work, we combined the method of conformal mapping and the spirit of
the method of images to address these more complex problems, and choosing the co-
efficients of the primary and secondary scattered fields differently was a necessity. For
that reason, an and bn are not chosen the same a priori in the current analysis either. It
will enable us to check the accuracy of the conformal mapping method for this simple
problem; for the more complex problem, inaccuracies were observed at high frequency
[Liu et al., 2013; Zhao et al., 2023].

The expressions of the incident and reflected plane waves and scattered cylindrical
waves can be reformulated in terms of complex variables κ and κ̄ as follows:

uinc = u0 exp
(
C11κ+C12κ̄

)
, (3.20)

uref = u0 exp
(
C21κ+C22κ̄

)
, (3.21)

us,1 =
∞∑

n=−∞
an H (2)

n

(
kS

∣∣κ+ i H
∣∣)(

κ+ i H∣∣κ+ i H
∣∣
)n

, (3.22)

us,2 =
∞∑

n=−∞
bn H (2)

n

(
kS

∣∣κ̄+ i H
∣∣)(

κ̄+ i H∣∣κ̄+ i H
∣∣
)n

, (3.23)

where C11 = C22 = −
(
iky +kz

)
/2 and C12 = C21 = −

(
iky −kz

)
/2. To get the expressions

for stresses associated with the plane waves in terms of κ and κ̄, the chain rule is applied
by first taking derivatives of the corresponding displacements with respect to y and z,
and then with respect to κ and κ̄. For stresses associated with the cylindrical waves, the
expressions are derived using both the chain rule and the recurrence relations of Hankel
functions (see Appendix C). The resulting expressions for stresses in terms of complex
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variables are as follows:

σzx =µ∂utot

∂z
= iµ

(
∂utot

∂κ
− ∂utot

∂κ̄

)
= iµ

(
C11 −C12

)
uinc + iµ

(
C21 −C22

)
uref

+ iµ
kS

2

∞∑
n=−∞

an

H (2)
n−1

(
kS

∣∣κ+ i H
∣∣)(

κ+ i H∣∣κ+ i H
∣∣
)n−1


+ iµ

kS

2

∞∑
n=−∞

an

H (2)
n+1

(
kS

∣∣κ+ i H
∣∣)(

κ+ i H∣∣κ+ i H
∣∣
)n+1


+ iµ

kS

2

∞∑
n=−∞

bn

−H (2)
n+1

(
kS

∣∣κ̄+ i H
∣∣)(

κ̄+ i H∣∣κ̄+ i H
∣∣
)n+1


+ iµ

kS

2

∞∑
n=−∞

bn

−H (2)
n−1

(
kS

∣∣κ̄+ i H
∣∣)(

κ̄+ i H∣∣κ̄+ i H
∣∣
)n−1

 ,

(3.24)

σr x =µ∂utot

∂r
=µ

(
eiθ ∂utot

∂κ
+e− iθ ∂utot

∂κ̄

)
=µ

(
eiθC11 +e− iθC12

)
uinc +µ

(
eiθC21 +e− iθC22

)
uref

+µkS

2

∞∑
n=−∞

an

eiθH (2)
n−1

(
kS

∣∣κ+ i H
∣∣)(

κ+ i H∣∣κ+ i H
∣∣
)n−1


+µkS

2

∞∑
n=−∞

an

−e− iθH (2)
n+1

(
kS

∣∣κ+ i H
∣∣)(

κ+ i H∣∣κ+ i H
∣∣
)n+1


+µkS

2

∞∑
n=−∞

bn

−eiθH (2)
n+1

(
kS

∣∣κ̄+ i H
∣∣)(

κ̄+ i H∣∣κ̄+ i H
∣∣
)n+1


+µkS

2

∞∑
n=−∞

bn

e− iθH (2)
n−1

(
kS

∣∣κ̄+ i H
∣∣)(

κ̄+ i H∣∣κ̄+ i H
∣∣
)n−1

 ,

(3.25)
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σθx =µ1

r

∂utot

∂θ
= iµ

(
eiθ ∂utot

∂κ
−e− iθ ∂utot

∂κ̄

)
= iµ

(
eiθC11 −e− iθC12

)
uinc + iµ

(
eiθC21 −e− iθC22

)
uref

+ iµ
kS

2

∞∑
n=−∞

an

eiθH (2)
n−1

(
kS

∣∣κ+ i H
∣∣)(

κ+ i H∣∣κ+ i H
∣∣
)n−1


+ iµ

kS

2

∞∑
n=−∞

an

e− iθH (2)
n+1

(
kS

∣∣κ+ i H
∣∣)(

κ+ i H∣∣κ+ i H
∣∣
)n+1


+ iµ

kS

2

∞∑
n=−∞

bn

−eiθH (2)
n+1

(
kS

∣∣κ̄+ i H
∣∣)(

κ̄+ i H∣∣κ̄+ i H
∣∣
)n+1


+ iµ

kS

2

∞∑
n=−∞

bn

−e− iθH (2)
n−1

(
kS

∣∣κ̄+ i H
∣∣)(

κ̄+ i H∣∣κ̄+ i H
∣∣
)n−1

 .

(3.26)

The stressesσr x andσθx are represented in terms of the global coordinates, as shown
in Eqs. (3.25)-(3.26). To validate the appropriateness of using these expressions for
stresses at the cavity surface, we also provide the expressions of stresses at the cavity sur-
face in the local coordinates (note that the boundary condition in Eq. (3.3) contains the
stress in the local coordinate system). The complex variables κ and κ̄ can be expressed
as functions of the local coordinates, yielding the following formulations:

κ= y + i z = y1 + i(z1 −H) = r1eiθ1 − i H ,

κ̄= y − i z = y1 − i(z1 −H) = r1e− iθ1 + i H .
(3.27)

The expressions of stresses at the cavity surface in terms of the local coordinates are
presented below:

σr1x1 =µ
∂utot

∂r1
=µ

(
eiθ1

∂utot

∂κ
+e− iθ1

∂utot

∂κ̄

)
, (3.28)

σθ1x1 =µ
1

r1

∂utot

∂θ1
= iµ

(
eiθ1

∂utot

∂κ
−e− iθ1

∂utot

∂κ̄

)
. (3.29)

Upon examining Eqs. (3.25), (3.26), (3.28) and (3.29), we observe that the difference be-
tween the stress expressions in the global and local coordinates lies solely in the expo-
nential terms. The former employ eiθ and e− iθ , while the latter employ eiθ1 and e− iθ1 .
The exponential terms eiθ1 and eiθ are given in Eqs. (3.19) and (3.31), respectively. The
exponential terms e− iθ and e− iθ1 are not explicitly provided in this chapter, but they
can be derived straightforwardly. Strictly speaking, the expressions for the stress com-
ponents in the boundary condition at the cavity surface should be formulated in terms
of local coordinates. However, it can be verified that the numerical outcomes obtained
using the expressions in terms of the global coordinates coincide with those acquired
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using expressions in terms of the local coordinates. The explanation is that the stresses
at the cavity surface (a local position) can be correctly calculated by considering ζ=βeiθ

when the expressions in terms of the global coordinates are used. The definition of ζ is
given in Section 3.4.2, and |ζ| = β corresponds to the the cavity surface. Consequently,
we conclude that utilising stress expressions in the global coordinates (for example, σr x

and σθx ) to evaluate the responses in the local coordinate system (for example, σr1x1

and σθ1x1 at the cavity surface) is valid when employing the method of conformal map-
ping, as long as the radius in the image domain is chosen appropriately. Here, |ζ| = 1 and
|ζ| =β refer to the flat surface and cavity surface, respectively; see Section 3.4.2.

3.4.2. CONFORMAL MAPPING

Fig. 3.1 illustrates the presence of two distinct boundary surfaces in the model, namely,
a flat free surface and a circular surface representing the cavity. The existence of these
dissimilar boundary types typically poses a challenge when solving the corresponding
boundary value problem. To overcome this challenge, the method of conformal map-
ping is employed, enabling the mapping of the original domain with its boundary sur-
faces of different types onto an image domain with boundary surfaces of the same type.
The utilisation of conformal mapping function is demonstrated in this section.

In Section 3.4.1, we introduced the complex variable κ and its conjugate κ̄ in the
original physical domain. Now, we introduce a new complex variable ζ = ξ+ iη = ρeiϑ

and its conjugate ζ̄ = ξ− iη = ρe− iϑ, both defined in the image domain. To establish
the relationship between the two complex variables κ and ζ in the original and image
domains, we employ a conformal mapping function denoted as w(ζ), which is expressed
as follows:

κ= w(ζ) =− iG
1+ζ
1−ζ , (3.30)

where G = H
(
1−β2

)/(
1+β2

)
, β = H/R −

√(
H/R

)2 −1. Accordingly, the region Ω (as

depicted in Fig. 3.1) is mapped onto region Γ in the image domain (as shown in Fig.
3.2). The free surface of the half-space z = 0 and the cavity surface r1 = R correspond
to surfaces defined by circles |ζ| = 1 and |ζ| = β, respectively. Notably, the boundary
surfaces in the image domain are of the the same type as they are concentric.

The mapping of the region Ω in the physical domain onto the region Γ in the image
domain is conformal and reversible. It can be easily proven that the mapping function
w(ζ) is analytic (except at a single point (ρ = 1,ϑ = 0) that corresponds to points at in-
finity in the physical domain). Additionally, the derivatives of w(ζ) with respect to the
complex variable ζ, denoted as w ′(ζ), is not zero.

In general, mapping functions introduce a phase shift between the complex variables
in the two domains. For a given conformal mapping function κ= w(ζ), the relationship
between the coordinate θ in the physical domain and the coordinate ϑ in the image do-
main is defined as [Muskhelishvili, 1966]:

eiθ = ζ

ρ

w ′(ζ)

|w ′(ζ)| = eiϑ w ′(ζ)

|w ′(ζ)| . (3.31)
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Figure 3.2: Image domain.

3.4.3. SOLVING THE UNKNOWNS COEFFICIENTS
As shown in Section 3.4.1, the displacement and stresses are formulated in terms of com-
plex variables κ and κ̄. However, to address the problem in the image domain, it is nec-
essary to express the displacement and stresses in terms of the complex variables ζ and
ζ̄. This can be achieved by taking the derivatives of the displacement with respect to κ
and κ̄ (see Eqs. (C.3)-(C.6)), and subsequently replacing the complex variables κ and κ̄

by the mapping function (see Eq. (3.30)) and its conjugate. For the sake of brevity, the ex-
pressions for the displacements and stresses in terms of ζ and ζ̄ are not presented in this
thesis. By utilising the expressions for stressesσzx andσr x in terms of complex variables
ζ and ζ̄, we establish a system of algebraic equations based on the boundary conditions
(Eq. (3.2) and (3.3)):

2∑
i=1

∞∑
n=−∞

k( j ,i )
n (ϑ)x(i )

n = b( j )(ϑ), (3.32)

where x(1)
n = an and x(2)

n = bn ; i = {1,2} indicate the terms related to the corresponding
cylindrical waves; see Eqs. (3.22) and (3.23). Additionally, j = {1,2} denote the stress-free
boundary conditions at the flat surface and at the cavity surface, respectively. Entries of

k( j ,i )
n and b( j ) are functions dependent on complex variables ζ and ζ̄, and their detailed

formulations can be found in Appendix E.
By multiplying Eq. (3.32) with the complex conjugate of the circumferential basis

functions exp(inϑ), which appears in the expression for the potentials of the cylindri-
cal waves, integrating over the interval [0,2π] and applying the orthogonality property
wherever applicable, we obtain

2∑
i=1

∞∑
n=−∞

k( j ,i )
n,s x(i )

n = b( j )
s , (3.33)
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where s = {0,±1,±2, ...} and

k( j ,i )
n,s = 1

2π

∫ 2π

0
k( j ,i )

n (ϑ)exp(− i sϑ)dϑ, (3.34)

b( j )
s = 1

2π

∫ 2π

0
b( j )(ϑ)exp(− i sϑ)dϑ. (3.35)

For the potentials associated with the directly scattered waves in the half-space (Eq.

(3.22)), we can employ the orthogonality of the exponential functions (i.e., k( j i )
n,s = 0 for

s 6= n, and i = {1,2}). To evaluate the unknown coefficients, the maximum values of n
and s need to be finite, requiring the truncation of the sum over circumferential modes.
We utilise the same number of modes 2N + 1 for both the waves directly scattered by
the cavity (us,1) and the secondary scattered waves (us,2). In this regard, we employ the
following multiplication function:

exp(− i sϑ), j = {1,2}; s = {0,±1,±2, ...,±N }. (3.36)

The matrix equation that is formulated based on Eq. (3.33) reads

[K]2(2N+1)×2(2N+1) [x]2(2N+1)×1 =
[
b
]

2(2N+1)×1 . (3.37)

In this analysis, the unknown coefficients are determined using Matlab. Through nu-
merical analysis, it can be verified that bn is nearly exactly the same as an when applying
the method of conformal mapping. This observation serves as evidence for the validity
and accuracy of the method of conformal mapping as well as its implementation, as this
should be the case in order to respect the boundary condition at the half-space surface,
as argued in Section 3.3.1.

3.5. INDIRECT BOUNDARY ELEMENT METHOD
Next, we utilise the indirect BEM to calculate the response of the system. To achieve
this, the Green’s functions of the soil are required; note that the indirect BEM relies on
the Green’s functions of the soil in the absence of a cavity (i.e., half-space configuration).
Section 3.5.1 presents these Green’s functions. The formulation of the indirect BEM is
then outlined in Section 3.5.2.

3.5.1. GREEN’S FUNCTIONS OF THE SOIL
In our work, we use the 2D Green’s functions based on the so-called two-and-a-half di-
mensional Green’s functions of an elastodynamic full-space [Tadeu and Kausel, 2000]
and a half-space [Tadeu et al., 2001]. The 2D case can be recovered by setting kx = 0;
kx is the wavenumber in the longitudinal direction. These Green’s functions are em-
ployed in conjunction with a specific source configuration described in the reference
papers. For the 2D SH case, the source is characterised by a harmonic line load fx (y, z) =
Fxδ(y − ys)δ(z − zs)exp(i(ωt )). Here, fx denotes the load in x direction, Fx represents
source amplitude, the subscript “s" denotes the coordinates of the source point, andω is
the excitation angular frequency. It is noted that the Green’s functions can be obtained
by setting Fx to 1.
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The Green’s function of the half-space is composed of a source term which is iden-
tical to that of the full-space, and a surface term that is required to satisfy the boundary
condition at the stress-free half-space surface [Tadeu et al., 2001]. However, we observed
that the Green’s function presented in Tadeu et al. [2001] fails to satisfy the stress-free
condition, while it is satisfied when the source term is replaced by the one presented in
Tadeu and Kausel [2000]. As a result, the Green’s functions of the half-space employed in
this study consist of the source term from Tadeu and Kausel [2000] and the surface term
from Tadeu et al. [2001].

Because the reference frames in Tadeu et al. [2001] are different from that in the cur-
rent chapter, the displacement and stresses given in Tadeu et al. [2001] are transformed
through the following relations: u = uref, σr1x1 = σr1x1,ref and σθ1x1 = −σθ1x1,ref. The
subscript “ref" denotes the responses defined in the coordinate system of the reference
paper.

3.5.2. FORMULATION OF THE INDIRECT BOUNDARY ELEMENT METHOD
This section presents the formulation of the indirect BEM used in this study. Following
the principles of the indirect BEM, the displacement and stress vectors in the soil are
determined as described by Luco and de Barros [Luco and de Barros, 1994b; Zhao et al.,
2021]

U(xr) =
∫

Ls

Gu
(
xr,xs

)
F

(
xs

)
dl

(
xs

)
, (3.38)

Σ(xr) =
∫

Ls

Gσ(xr,xs)F
(
xs

)
dl

(
xs

)
, (3.39)

where F
(
xs

)
represents the vector of the unknown source amplitudes placed within the

fictitious cavity, which is commonly used in the indirect BEM (see Fig. 3.3). Vectors
xs = [ys, zs] and xr = [yr, zr] denote the coordinates of the source and receiver points, re-
spectively. The surface Ls corresponds to the location of the source points, with its radius
defined as Rs = Ro −3(2πRo/Nr). Here, Nr represents the number of the receiver points,
and it is recommended to have Nr Ê 20 as suggested in Luco and de Barros [1994b]. The
receiver points are situated on the surface Lr at r1 = R, which corresponds to the cavity
surface. Gu and Gσ are matrices containing the Green’s functions for displacement and
stress σr1x1 of the soil without tunnel/cavity (i.e., of the half-space), respectively, and
they are matrices with dimensions of (Nr ×Ns). Ns represents the number of the source
points.

By considering the stress-free boundary condition at the cavity surface (see Eq. (3.3)),
we proceed to derive the boundary integral equation expressed in relation to the vector
of the unknown source amplitudes:∫

Ls

K
(
xr,xs

)
F

(
xs

)
dl

(
xs

)= R
(
xr

)
, (3.40)

where

K
(
xr,xs

)= Gσ(xr,xs),

R
(
xr

)=−µ
(
− iky cos

(
θ1

)− ikz sin
(
θ1

))
uinc −µ

(
− iky cos

(
θ1

)+ ikz sin
(
θ1

))
uref.

(3.41)
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Lr,xr

Ls,xs

Figure 3.3: The elastic half-space with a fictitious cavity. The source (open circles) and receiver (filled circles)
points are located at surfaces Ls (dashed line) and Lr (solid line), respectively.

It should be noted that the matrix associated with K has dimensions of (Nr×Ns). Conse-
quently, this matrix is relatively small, and the inversion process is not time-consuming.
The most computationally intensive aspect (even throughout the entire seismic wave
analysis procedure) is the evaluation of integrals over the horizontal wavenumber ky in
the Green’s function of the half-space, for which we employ the “quadv" routine in Mat-
lab. Note that after solving Eq. (3.40), one can compute the shear stress σθ1x1 at the
cavity surface using Eq. (3.39) provided that the corresponding Green’s function matrix
for stress σθ1x1 of the half-space is used.

3.6. VALIDATIONS
Before conducting the analysis, it is essential to perform convergence tests for the three
methods: the method of images, the method of conformal mapping and the indirect
BEM. In the subsequent presentation of results, the anti-plane displacement and shear
stress are normalised. Specifically, the displacement is normalised as follows:

U = u/u0, (3.42)

where u denotes the anti-plane displacement, and u0 is the amplitude of the displace-
ment associated with the incident SH wave. The normalised stress is given as

Σθ1x1 =σθ1x1 /
[
ωρ1cSu0

]
. (3.43)

To assess the convergence of the methods, we examine the displacement U at the
surface of the half-space and the shear stress Σθ1x1 at the cavity. The parameters of the
soil medium are as follows: E = 3.26× 107 Pa and ρ1 = 1932 kg/m3. The geometry of
the cavity is as follows: R = 5 m and H/R = 1.5. The system is subjected to a vertically
(θv = 0°) incident SH wave and η = 0.5, where η is the dimensionless frequency and is
defined as η = ωR/

(
πcS

)
. Fig. 3.4 illustrates the results of the convergence tests. For

the method of images and the method of conformal mapping, convergence is observed
at N = 3 and N = 5, respectively. In the case of the indirect BEM, converged results are
obtained with (Ns, Nr) = (20,40). Note that the convergence tests indicate that different
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Figure 3.4: Convergence tests for three methods: (a) (b) (c) anti-plane displacement U at the half-space
surface z = 0 and (d) (e) (f) shear stress Σθ1x1

at r1 = R. The system parameters considered in these tests are

η= 0.5, H/R = 1.5 and θv = 0°.

methods may need a different number of circumferential modes to converge (also see
Section 3.7.1).

To assess the accuracy of the three methods, we present two validation examples. In
the first example, we consider a medium frequency case with η= 0.5 (the corresponding
dimensional frequency is 6.49 Hz) as depicted in Fig. 3.5. The results obtained using the
three methods align well with the results in the literature [Luco and de Barros, 1994b] for
both shallow and deep embedded cavities.

Fig. 3.6 presents the second validation example, which corresponds to a high fre-
quency case with η = 1.0 (the corresponding dimensional frequency is 12.99 Hz). The
results obtained using the three methods exhibit a perfect agreement, thereby affirm-
ing the accuracy of these methods. Furthermore, Figs. 3.5 and 3.6 demonstrate that the
excitation frequency and the embedded depth of the cavity have a significant influence
on the distribution and amplitude of the responses at both the half-space surface and
the cavity surface. In Section 3.7, we will thoroughly investigate the effect of these two
parameters, as well as the vertical incident angle, on the response of the system.
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Figure 3.5: The first validation example with η= 0.5: (a) (d) anti-plane displacement at the ground surface U
at z = 0, (b) (e) shear stress Σθ1x1

at r1 = R, and (c) (f) anti-plane displacement U1 at r1 = R for a shallow

(H/R = 1.5) and deep (H/R = 5) embedded cavity, respectively. θv = 0°.
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Figure 3.6: The second validation example with η= 1.0: (a) (d) anti-plane displacement at the ground surface
U at z = 0, (b) (e) shear stress Σθ1x1

at r1 = R, and (c) (f) anti-plane displacement U1 at r1 = R for a shallow

(H/R = 1.5) and deep (H/R = 5) embedded cavity, respectively. θv = 0°.
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3.7. COMPARISONS AND PARAMETRIC STUDIES

3.7.1. COMPARISONS

In this section, we present a comparative analysis of the three methods. The consid-
ered parameters are H/R = 5.0 and θv = 0°. Table 3.1 provides a summary of the com-
parisons focusing on the number of circumferential modes required for convergence in
the method of images and the method of conformal mapping, and the numbers of the
source and receiver points needed for convergence in the indirect BEM. We observe that
both the method of images and the method of conformal mapping achieve convergence
with a small number of circumferential modes. Furthermore, these two methods require
the same number of circumferential modes to obtain converged results at dimensionless
frequencies of 1.0 and 2.0. However, at a dimensionless frequencies of 0.5 and 3.0, the
method of conformal mapping requires two and one additional circumferential modes
compared to the method of images, respectively. This indicates that the method of im-
ages may converge faster than the method of conformal mapping, see also Fig. 3.4. The
reason is that the accuracy of the method of images is higher. The computed an and bn

turn out to be very close but not exactly the same in the method of conformal mapping,
which is a result of small inaccuracies in the corresponding matrix inversion.

In this analysis, the unknown coefficients were solved using Matlab. The calculations
were performed on a laptop equipped with Intel Core i7-12800H/2.4 GHz CPU. Table 3.2
presents the computational time required for the three methods. The results demon-
strate that the method of images exhibits higher efficiency compared to the method
of conformal mapping. On the other hand, the indirect BEM necessitates significantly
more computational time, making it the least efficient among the three methods.

Table 3.1: The required number of circumferential modes N or the number of source and receiver points
(Ns, Nr) to achieve converged results for different methods and different dimensionless frequencies.

Methods η= 0.5 η= 1.0 η= 2.0 η= 3.0

Method of images N = 3 N = 6 N = 10 N = 12

Method of conformal mapping N = 5 N = 6 N = 10 N = 13

Indirect BEM (Ns, Nr) (Ns, Nr) (Ns, Nr) (Ns, Nr)
= (20,40) = (40,80) = (60,120) = (60,120)

Table 3.2: The computational time required for different methods and different dimensionless frequencies.

Methods η= 0.5 η= 1.0 η= 2.0 η= 3.0

Method of images t = 0.15 (s) t = 0.18 (s) t = 0.46 (s) t = 0.73 (s)

Method of t = 5.06 (s) t = 5.83 (s) t = 16.46 (s) t = 39.38 (s)
conformal mapping

Indirect BEM t = 48.46 (s) t = 99.81 (s) t = 241.53 (s) t = 269.03 (s)
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3.7.2. DIMENSIONLESS FREQUENCY

As discussed in Sections 3.6 and 3.7.1, all three methods demonstrate accurate perfor-
mance for the individual frequencies considered. However, for the 3D wave scattering
problem (Chapter 2), it has been shown that accurate results cannot be obtained at high
frequencies using the method of conformal mapping while the indirect BEM can pro-
vide accurate results. In this section, we further investigate the accuracy of the specific
application of the method of conformal mapping (in which the waves scattered from
the half-space surface are represented by cylindrical waves that originate from an im-
age source of a priori unknown intensity) and the indirect BEM within specified ranges
of the dimensionless frequency, the embedded depth of the cavity and the vertical inci-
dent angle. The solutions obtained by the method of images are taken as the benchmark
solutions. Moreover, we examine the effects of the three system parameters on the sys-
tem response. The parameters of the soil medium are as follows: E = 3.26×107 Pa and
ρ1 = 1932 kg/m3. The geometry of the cavity is that: R = 5 m. The base-case parame-
ters are set as η = 0.5, H/R = 5.0 and θv = 0°. In the following analysis, we present the
maximum absolute value of the displacement U at the ground surface within the range
y/R = [−4,4], as well as the maximum absolute values of the shear stress Σθ1x1 and the
displacement U1 at the cavity surface.

The considered dimensionless frequencies are in the range of η = 0.002−3.0, corre-
sponding to f = 0.16−244.85 Hz. While the low-frequency range is typically of interest
for seismic wave problems, we also investigate high frequencies to evaluate the appli-
cability of the methods for other, high-frequency loadings. Fig. 3.7 illustrates that the
results obtained by the three methods coincide, indicating accurate performance of the
method of conformal mapping and the indirect BEM across the entire range of the di-
mensionless frequency. In contrast to the 3D case (Chapter 2), the method of conformal
mapping demonstrates accurate behavior at high frequencies for the 2D SH problem
under consideration. Notably, the method of conformal mapping exhibits superior per-
formance in the simpler 2D SH case than in the the more complex 3D case. The dis-
crepancy can be attributed to the fact that the secondary scattered waves in the soil are
represented by cylindrical waves originating from the image source, and not by plane
waves, while the latter are most likely more suitable to represent the response (in the
3D case) at the flat ground surface at high frequencies; the relatively poor representation
leads to a larger condition number of the matrix that needs to be inverted, which in turns
leads to inaccurate results. In any case, we can ascertain the accuracy of the method of
conformal mapping and the indirect BEM for the current problem, as the obtained the
results align with the closed-form solutions.

The frequency-response curves are shown in Fig. 3.7. The displacement at the ground
surface shows an increasing trend with increasing dimensionless frequency, while the
displacement and shear stress at the cavity surface exhibit a decreasing trend. The re-
sponse curves display many resonances, some of which are a bit more pronounced than
others. Fig. 3.7 (a) illustrates that the first two peak values (though not the most pro-
nounced ones) occur at η = 0.09 and η = 0.27 for the ground surface displacement U .
Fig. 3.7 (b) demonstrates two prominent peaks at the same frequencies for the shear
stress Σθ1x1 . Fig. 3.7 (c) reveals a trough at η = 0.09, a small peak at η = 0.14, and a pro-
nounced peak at η = 0.28 for the displacement U1 at the cavity surface. Furthermore,
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we observe that the resonances are nearly equally spaced, which is very similar to the
result for the well-known one-dimensional (1D) shear layer subject to bedrock motion
shown in the book by Kramer [1996]. The resonances in the 1D model are predicted by
cos(kSL) = 0, where L is the thickness of the soil layer; this leads to the expression for the
resonance frequencies ωn = (π/2+nπ)cS/L. Note that for the considered scenario, the
thickness of the soil layer above the cavity is L = H −R = 4R. The corresponding dimen-
sionless resonance frequencies can be easily derived, and their spacing turns out to be
0.25 (∆ω= πcS/L, so that ∆η=∆ωR/(πcS) = R/L = 1/4). This is in line with what we ob-
serve in Fig. 7; see for example the distance between the peaks in the range of η= (1−2)
in Fig. 3.7 (b) and (c).
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Figure 3.7: Evaluation of the methods for the dimensionless frequency η: (a) anti-plane displacement at the
ground surface U at z = 0, (b) shear stress Σθ1x1

at r1 = R, and (c) anti-plane displacement U1 at r1 = R. The

parameters considered are H/R = 5 and θv = 0°.

3.7.3. EMBEDDED DEPTH OF THE CAVITY
This section presents an evaluation of the methods for the embedded depth of the cavity.
We consider a range of embedded depth ratios from 1.5 to 20. Fig. 3.8 demonstrates
that the three methods yield consistent results, indicating that the method of conformal
mapping and the indirect BEM work accurately for the considered embedded depths of
the cavity.

Fig. 3.8 demonstrates that both the responses at the ground surface and at the cav-
ity surface oscillate as the embedded depth increases. Furthermore, the amplitude of
the ground vibrations exhibits a decreasing trend. The amplitude of the displacement at
the cavity surface decreases slightly as depth increases. However, the amplitude of the
shear stress at the cavity surface remains relatively constant with increasing embedment
depth. In any case, different nearly equally spaced resonances can be observed, which
is in line with the results in Fig. 3.7. The spacing between resonances is approximately
equal to 2. To investigate the resonances at different frequencies, we examine the re-
sponses of the system at frequencies of 0.25 and 0.5 as well; see Fig. 3.9. The results
highlight the significant influence of frequency on the system response, which is to be
expected (based on the 1D model of the shear layer). For η= 0.25, the resonance spacing
increases to 4, whereas for η = 1.0, the resonance spacing reduces to 1. In general, the
spacing is approximately equal to 1/η. Note that for the 1D model, the expression of the
resonance thickness of the soil layer is the following: Ln = (π/2+nπ)cS/ω. The dimen-
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Figure 3.8: Evaluation of the methods for the depth ratio H/R: (a) anti-plane displacement at the ground
surface U at z = 0, (b) shear stress Σθ1x1

at r1 = R, and (c) anti-plane displacement U1 at r1 = R. The

parameters considered are η= 0.5 and θv = 0°.
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Figure 3.9: Evaluation of the methods for the depth ratio H/R and for different frequencies: (a) anti-plane
displacement at the ground surface U at z = 0, (b) shear stress Σθ1x1

at r1 = R, and (c) anti-plane

displacement U1 at r1 = R. The parameter considered is θv = 0°.

sionless resonance thicknesses of the soil layer can be easily derived, and their spacing
turns out to be exactly 1/η (i.e., ∆L/R =πcS/(ωR) = 1/η).

3.7.4. VERTICAL INCIDENT ANGLE

In this section, we evaluate the methods for the variation of the vertical incident angle
and investigate its effect on the system response. The vertical incident angle considered
in this study ranges from 0° to 90°. The results, depicted in Fig. 3.10, demonstrate a good
agreement of the three methods across the entire range. This agreement validates the
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accuracy and reliability of the method of conformal mapping and of the indirect BEM.
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Figure 3.10: Evaluation of the methods for the vertical incident angle θv: (a) anti-plane displacement at the
ground surface U at z = 0, (b) shear stress Σθ1x1

at r1 = R, and (c) anti-plane displacement U1 at r1 = R. The
parameters considered are η= 0.5 and H/R = 5.0.

Fig. 3.10 illustrates the presence of resonances in both the responses at the ground
surface and at the cavity surface. There are many peaks. Pronounced peaks are observed
at angles of θv = 11°,33°,55° and 77° for the displacements at both surfaces; see Fig. 3.10
(a) and (c). However, these pronounced peaks are not evident in the shear stress at the
cavity surface; see Fig. 3.10 (b). To further investigate this difference, we consider a
lower frequency case of η= 0.25 and a shallower depth case of H/R = 1.5 and specifically
consider the shear stress. Remarkably, pronounced peaks are now observed at the afore-
mentioned angles; see Fig. 3.11. It is worth noting that similar pronounced peaks are
also observed for the displacements at those angles for the lower frequency and smaller
depth cases, but these results are not included in this chapter for brevity. Additionally,
the results indicate that the spacing between the pronounced resonances is θv = 22°, and
the amplitudes of these pronounced resonances exhibit minimal variation.

In contrast to the findings for the 3D case (Chapter 2), the response curves obtained
in the 2D SH case exhibit the distinct characteristic of nearly equally spaced resonances
for varying dimensionless frequency, embedded depth ratio and vertical incident angle.
In addition, the resonances are more closely spaced in the 2D case.
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Figure 3.11: Shear stress Σθ1x1
at r1 = R for the vertical incident angle θv for : (a) different dimensionless

frequencies η= 0.25 and η= 0.50, and (b) different depth ratios H/R = 1.5 and H/R = 5.0.

3.8. CONCLUSIONS
The response of a cavity embedded in an elastic half-space subject to a harmonic plane
SH wave has been examined in this study. We employed three methods: the method
of images, the method of conformal mapping (utilising complex-variable theory) and
the indirect boundary element method (indirect BEM). By conducting comparisons of
the three methods for the considered simple model, we have successfully verified the
accuracy of the specific application of the method of conformal mapping (in which the
waves scattered from the half-space surface are represented by cylindrical waves that
originate from an image source of a priori unknown intensity) and of the indirect BEM.

In the first two methods employed, the total wave field in the half-space comprises
incident and reflected plane waves, as well as directly and secondary scattered cylin-
drical waves. The secondary scattered waves arise when the cylindrical waves directly
scattered from the cavity encounter the free surface of the half-space. In the method of
conformal mapping, these waves were represented by cylindrical waves originating from
an image source with an unknown intensity. Conversely, in the method of images, the
intensity is assumed identical to that of the directly scattered wave. The unknown co-
efficients associated with the potentials of the cylindrical waves were determined from
the boundary conditions. More specifically, to obtain numerical results, the unknown
coefficients were solved from a system of algebraic equations obtained by projecting the
boundary conditions onto the set of circumferential basis functions/modes. The numer-
ical calculations require truncating the sum over circumferential modes.

Convergence tests demonstrated that both the method of images and the method
of conformal mapping converge with a small number of circumferential modes; the in-
direct BEM converges with a small number of source and receiver points. To validate
the three methods, medium and high frequency examples were examined. We observed
perfect agreement between the results obtained by the presented methods and those in
the literature.
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The three methods were compared regarding two aspects: the required number of
circumferential modes for the first two methods (or the number of source and receiver
points for the indirect BEM) to achieve converged results, and the computational time.
The method of images and the method of conformal mapping exhibit similar conver-
gence behavior, requiring almost the same number of circumferential modes. However,
the method of images is proven to be more efficient than the method of conformal map-
ping in terms of computational time. On the other hand, the indirect BEM exhibits sig-
nificantly longer computational time, making it the least efficient method among the
three.

Next, in a parametric study, the results obtained by the method of images were con-
sidered as benchmark solutions against which the outcomes of the other two methods
were evaluated. It was observed that both the method of conformal mapping and the in-
direct BEM perform accurately across the entire ranges of the dimensionless frequency,
the embedded depth of the cavity and the vertical incident angle. This is in contrast to
the three-dimensional case (Chapter 2), where converged results could not be obtained
at high frequencies for the method of conformal mapping. The findings suggest that
representing the waves scattered from the free surface by cylindrical waves (originat-
ing from an image source of a priori unknown intensity) in the method of conformal
mapping (Chapter 2) is indeed the cause of the inaccuracies at high frequency in the 3D
problem. As no inaccuracies are observed for the current 2D anti-plane shear problem,
the inaccuracy for the 3D problem is likely due to the use of cylindrical waves (instead
of plane waves) that are apparently not fully able to capture all wave conversions taking
place at the free surface. Further parametric studies revealed the substantial influence
of the dimensionless frequency, the embedded depth of the cavity and the vertical inci-
dent angle on the responses at both the ground surface and the cavity surface. Several
key findings can be summarized as follows:

• The system’s response curves display nearly equally spaced resonances, which is
in line with the resonances observed for the well-known one-dimensional shear
layer subject to bedrock mention [Kramer, 1996]. The system’s response curves for
the three-dimensional case (Chapter 2) do not display equally spaced resonances.

• Regarding the frequency-response curves, the resonance spacing (in the consid-
ered frequency range) turns out to be the ratio of the cavity radius to the thickness
of the soil layer above the cavity. The displacement at the ground surface demon-
strates a slightly increasing trend as the dimensionless frequency (denoted as η)
increases, whereas the displacement and shear stress at the cavity surface display
a decreasing trend.

• Regarding the response curves for the varying depth ratio, the resonance spacing
is approximately equal to 1/η. As the embedded depth increases, the amplitude of
ground vibrations decreases. The amplitude of the displacement at the cavity sur-
face decreases slightly as depth increases, while the amplitude of the shear stress
remains relatively consistent.

• Regarding the response curves for the varying vertical incident angle, the spacing
between the pronounced resonances is 22°. The amplitude of these pronounced
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resonances does not vary significantly from one to another.

In conclusion, all three methods presented in this study can be effectively utilised in
the preliminary design of a cavity embedded in a half-space to evaluate stress distribu-
tions at the cavity and the level of ground vibrations. From an engineering standpoint,
it is advisable to give careful consideration to the embedded depth and vertical incident
angle (if it can be controlled) to avoid pronounced resonances in the system response.
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INSTABILITY OF VIBRATIONS OF AN

OSCILLATOR MOVING AT HIGH

SPEED THROUGH A TUNNEL

EMBEDDED IN SOFT SOIL

This chapter investigates the stability of vertical vibrations of an object moving uniformly
through a tunnel embedded in soft soil. Using the indirect Boundary Element Method in
the frequency domain, the equivalent dynamic stiffness of the tunnel-soil system at the
point of contact with the moving object, modelled as a mass-spring system or as the lim-
iting case of a single mass, is computed numerically. Using the equivalent stiffness, the
original 2.5D model is reduced to an equivalent discrete model, whose parameters depend
on the vibration frequency and the object’s velocity. The critical velocity beyond which the
instability of the object vibration may occur is found, and it is the same for both the oscil-
lator and the single mass. This critical velocity turns out to be much larger than the op-
erational velocity of high-speed trains and ultra-high-speed transportation vehicles. This
means that the model adopted in this chapter does not predict the vibrations of Maglev
and Hyperloop vehicles to become unstable. Furthermore, the critical velocity for reso-
nance of the system is found to be slightly smaller than the velocity of Rayleigh waves,
which is very similar to that for the model of a half-space with a regular track placed on
top (with damping). However, for that model, the critical velocity for instability is only
slightly larger than the critical velocity for resonance (of the undamped system), while for
the current model the critical velocity for instability is much larger than the critical ve-
locity for resonance due to the large stiffness of the tunnel and the radiation damping of
the waves excited in the tunnel. A parametric study shows that the thickness and material

This chapter has been published as a journal paper in Journal of Sound and Vibration 494, 115776 (2021) [Zhao
et al., 2021]. Minor changes have been made.
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damping ratio of the tunnel, the stiffness of the soil and the burial depth have a stabilis-
ing effect, while the damping of the soil may have a slightly destabilising effect (i.e., lower
critical velocity for instability). In order to investigate the stability of the moving object
for velocities larger than the identified critical velocity for instability, we employ the D-
decomposition method and find instability domains in the space of system parameters.
In addition, the dependency of the critical mass and stiffness on the velocity is found. We
conclude that the higher the velocity, the smaller the mass of the object should be to ensure
stability (single mass case); moreover, the higher the velocity, the larger the stiffness of the
spring should be when a spring is added (oscillator case). Finally, in view of the stabil-
ity assessment of Maglev and Hyperloop vehicles, the approach presented in this chapter
can be applied to more advanced models with more points of contact between the moving
object and the tunnel, which resembles reality even better.
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4.1. INTRODUCTION
This thesis encompasses two distinct types of dynamic problems. The first type focuses
on wave scattering by underground cavity/tunnel, which has been addressed in Chap-
ters 2 and 3 utilising the method of conformal mapping. Through these investigations,
it has been demonstrated that the method offers both accuracy and efficiency within
the frequency range of seismic waves. However, it should be noted that inaccurate re-
sults may arise when dealing with high-frequency loadings in the three-dimensional
(3D) problem. The second type of dynamic problem considered in this thesis entails
a moving-load problem, and it is discussed in this chapter. In this context, the method
of conformal mapping is not the best suited given the said potential inaccuracies. Con-
sequently, an alternative approach is pursued, namely, the indirect Boundary Element
Method (indirect BEM). The objective is to investigate the stability of vibrations of an
oscillator moving at high speed through an underground tunnel.

Many researchers have used a one-dimensional (1D) or two-dimensional model (2D)
of the railway track [Denisov et al., 1985; Bogacz et al., 1986; Metrikine and Dieterman,
1997; Mazilu et al., 2012; Kononov and De Borst, 2002; Zheng et al., 2000; Zheng and
Fan, 2002; Metrikine and Verichev, 2001; Verichev and Metrikine, 2002; Mazilu, 2013;
Stojanović et al., 2017; Dimitrovová, 2019], which may be less accurate than 3D mod-
els [Metrikine and Popp, 1999; Metrikine et al., 2005] to predict the instability of moving
trains. However, they all convey the very important message that, in the presence of
damping, the instability of moving trains may happen at speeds that exceed the critical
velocity for resonance of the undamped system (which is equal to the minimum phase
velocity of waves in the structure); that is, the critical velocity for instability is larger than
the critical velocity for resonance. The few existing works related to stability analysis
employing 3D models of the railway track consider trains moving on a track founded on
the ground surface [Metrikine and Popp, 1999; Metrikine et al., 2005]. It has been shown
that the critical velocity for instability of the moving object is close to the Rayleigh wave
speed in the soil. Stability of trains moving through an underground tunnel has not been
analysed yet. In this chapter, we therefore aim to conduct the stability analyses for an os-
cillator and the limiting case of a single mass moving through a tunnel embedded in soft
soil. We will investigate whether the critical velocity for instability of the moving object
is also close to the Rayleigh wave speed in the soil, for both a shallow and a deep tunnel.
The results are of practical relevance especially for contemporary high-speed railway
tracks as well as upcoming ultra-high-speed transportation systems such as Maglev and
Hyperloop, respectively [Rote and Cai, 2002; Abdelrahman et al., 2017; Janzen, 2017].

The chapter is organised as follows. The model and a framework to conduct the
stability analysis are presented in Section 4.2. Section 4.3 discusses the 2.5D Green’s
functions of a full-space and a half-space [Tadeu and Kausel, 2000; Tadeu et al., 2001],
presents the Green’s functions of the shell that is used to model the tunnel and the for-
mulation indirect BEM. Validations of the proposed indirect BEM are given in Section
4.4. In Section 4.5, the stability analysis of the single mass and the mass-spring oscillator
is conducted. To this end, the equivalent dynamic stiffness is studied to find the critical
mass and stiffness. In Section 4.6, the effect of the tunnel thickness, the material damp-
ing ratios in the tunnel-soil system, the Lamé parameters of the soil and the burial depth
of the tunnel on the critical velocity for instability are analysed. Moreover, the depen-
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dency of the critical mass and stiffness on the velocity is investigated. Conclusions are
given in Section 4.7.

4.2. MODEL AND SOLUTION OF THE PROBLEM

4.2.1. MODEL DESCRIPTION

In this chapter, we study the vibrations of an object moving through a tunnel embed-
ded in soft soil using a so-called 2.5D model. The soil is modelled as an elastic con-
tinuum, whereas the tunnel is modelled by the Flügge shell theory [Leissa, 1973]. Both
the soil and tunnel are assumed to be linear, elastic, homogeneous and isotropic. The
soil is characterised by density ρ1, Poisson’s ratio ν1, and complex Lamé parameters
λ∗

1 = λ1
(
1+2isgn(ω)ξ1

)
and µ∗

1 = µ1
(
1+2isgn(ω)ξ1

)
, where i is the imaginary unit, ω

is the frequency and ξ1 the material damping ratio of the soil related to the adopted hys-
teretic damping model. The parameters of the tunnel are density ρ2, Poisson’s ratio ν2,
and complex Lamé parameters λ∗

2 = λ2
(
1+2isgn(ω)ξ2

)
and µ∗

2 = µ2
(
1+2isgn(ω)ξ2

)
,

with ξ2 being the hysteretic material damping ratio of the tunnel. The burial depth of
the tunnel is H , and its inner and outer radii are Ri and Ro. The object is modelled by
a mass-spring oscillator (see Fig. 4.1), which is characterised by its mass M and spring
stiffness K , and moves through the tunnel with a constant velocity V . Note that there
is no vertical external force acting on the mass because the presence of such a force is
irrelevant for the dynamic-stability analysis.

x y

z

o
soil

(λ1,µ1,ρ1)

tunnel
(λ2,µ2,ρ2)

y1

z1 r1

θ1

H

M
K

V

Figure 4.1: A 2.5D model of an oscillator (i.e., mass-spring system) moving through a tunnel embedded in an
elastic half-space and the associated coordinate systems.

Shallow and deep embedded tunnels are considered in this chapter. For the shallow
tunnel, the soil medium is modelled as a half-space, while for the deep tunnel, the soil is
modelled as a full-space. Fig. 4.1 only shows the configuration of the shallow tunnel. If
H →∞, it essentially becomes a deep tunnel.

The governing equations of the shell are presented later, in Section 4.3. The current
section only presents the framework to conduct stability analysis.
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4.2.2. METHOD OF SOLUTION
To analyse stability of vibrations of the moving object, the concept of the equivalent stiff-
ness (also referred to as dynamic stiffness) is employed [Dieterman and Metrikine, 1996;
Lu et al., 2020]. The procedure is illustrated in Fig. 4.2 and goes as follows. First, we com-
pute the steady-state response of the system shown in Fig. 4.2 (a) which is subject to a
uniformly moving oscillatory point load applied at the tunnel invert (r1 = Ri,θ1 =−π

2 , x =
V t ). The oscillatory load has the form of P (t ) = P0 exp(iΩt ), in which P0 is the ampli-
tude, Ω = 2π f0 is the angular frequency; f0 is the load frequency in Hz. P (t ) essentially
represents a harmonic interaction force between the moving object and the tunnel-soil
system. The steady-state radial displacement at the loading point can be expressed as
Ur1 (r1 = Ri,θ1 = −π

2 , x = V t ) =U0(Ω,V )exp(iΩt ), where U0(Ω,V ) is the complex ampli-
tude of this harmonic vibration. The indirect Boundary Element Method is employed to
compute the response of the system, which is presented in detail in Section 4.3. From the
result, we obtain the equivalent stiffness of the tunnel-soil system at the loading point
using the following relation:

Keq(Ω,V ) = P0

U0(Ω,V )
. (4.1)

(a)

P (t )V

(b)

M

K

Keq
(
Ω,V

)

Figure 4.2: (a) A tunnel embedded in an elastic half-space subject to a uniformly moving oscillatory point load
P (t ) = P0 exp(iΩt ), (b) an equivalent discrete model consisting of a mass-spring oscillator resting on an
equivalent spring Keq(Ω,V );Ω is the angular frequency of vibrations and V the velocity of the oscillator.

By doing so, the original 2.5D model can be reduced to an equivalent discrete model,
shown in Fig. 4.2 (b), consisting of a mass-spring system resting on an equivalent spring
with a complex-valued stiffness Keq(Ω,V ), which depends on the frequency and velocity
of the oscillator.

To study the stability of a moving oscillator, we apply, in accordance with previ-
ous dynamic-stability studies [Metrikine and Dieterman, 1997; Dimitrovová, 2019], the
Laplace integral transform with respect to time t (s denotes the Laplace parameter)

W (s) =
∫ ∞

0
w(t )exp(−st ) dt (4.2)

to the well-known governing equation of the vertical motion of the oscillator. Assum-
ing zero initial conditions (which can be done as they do not influence the stability
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[Metrikine and Dieterman, 1997; Dimitrovová, 2019]), the following characteristic equa-
tion for the free vibration of the oscillator is obtained:

M s2 + K Keq(s,V )

K +Keq(s,V )
= 0. (4.3)

The roots of Eq. (4.3) determine the (complex) eigenfrequencies,Ω=− i s, of the vertical
motion of the oscillator as it interacts with the tunnel-soil system. If one of the roots s of
the characteristic equation has a positive real part, the response will grow exponentially,
which implies that the vertical vibration of the oscillator is unstable [Metrikine and Di-
eterman, 1997; Metrikine and Verichev, 2001; Metrikine and Popp, 1999; Metrikine et al.,
2005; Wolfert et al., 1998]. Obviously, the equivalent stiffness must be single-valued for
allΩ in order for Eq. (4.3) to be meaningful; see also Section 4.2.3.

It has been shown in Metrikine and Dieterman [1997] that the instability of a mov-
ing object may occur if and only if the imaginary part of the equivalent stiffness Keq is
negative in a frequency band. In [Metrikine and Dieterman, 1997], a single moving mass
is considered, the motion of which is even necessarily unstable as soon as Im(Keq) < 0.
The imaginary part of the equivalent stiffness can be considered to be the damping co-
efficient of the dashpot in the equivalent mass-spring system. A negative imaginary part
of the equivalent stiffness indicates a negative damping, which makes the vibration of
the moving mass unstable.

It would be very laborious to determine all the roots of the characteristic equation
and check whether one of these roots has a positive real part. Alternatively, we follow a
convenient method of root analysis, namely the D-decomposition method, to determine
the number of ‘unstable roots’. This method has been used in several papers [Metrikine
and Dieterman, 1997; Metrikine and Verichev, 2001; Metrikine and Popp, 1999; Metrikine
et al., 2005; Wolfert et al., 1998]. The idea of this method is to map the imaginary axis of
the complex s plane (i.e., the border between stability and instability) onto the plane of
a system parameter, M or K , which is allowed to be complex. The mapped line divides
the M or K plane into domains with different numbers of unstable roots. It is noted that
the imaginary part of the complex system parameter has no physical meaning. Only the
positive real part of the system parameter is physical, and the crucial question is whether
one of the so-called instability domains overlay the positive real axis.

The procedure is as follows. Consider s = iΩ, whereΩ serves as the parameter of the
mapping, is real valued and has the meaning of frequency (same as introduced above),
and has to be varied from minus to plus infinity. We discuss the following two cases in
this chapter. The first one is the limit case of a single mass moving through the tunnel,
thus assuming K →∞. The characteristic equation for a single mass is reduced from Eq.
(4.3) to

M s2 +Keq(s,V ) = 0. (4.4)

Substituting s = iΩ into Eq. (4.4) gives the following rule for the mapping:

M = Keq(Ω,V )

Ω2 . (4.5)

The second case we consider is the more general one of the moving oscillator, taking
into account both the mass and the spring of the oscillator. In this case, the stiffness K
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will be used as the parameter for the D-decomposition assuming M to be constant be-
cause it is of practical relevance. Taking the limit case of the moving mass as the starting
point, it is interesting to know what the added stiffness of the spring should be to ren-
der the oscillator vibration unstable (see also Section 4.5.2). Substituting s = iΩ into Eq.
(4.3), we get the following mapping rule for the complex K plane:

K = MΩ2 Keq(Ω,V )

Keq(Ω,V )−MΩ2 . (4.6)

By replacing s by iΩ in Keq(s,V ), which essentially entails considering the limit case
of s → iΩ, one can use the equivalent stiffness (Eq. (4.1)) which is determined based
on the steady-state response to the harmonic loading. Employing Eq. (4.5) or (4.6) as
the mapping rule, one can plot the D-decomposition curve, for example, Im(M) versus
Re(M) (as shown in Fig. 4.11, for example), whereΩ is the running parameter along this
curve. One side of the D-decomposition curve is shaded, and this side is related to the
right-hand side of the imaginary axis in the s plane. Crossing the curve in the direction
of the shading once indicates that there is an additional unstable root. Thus, one can
find information on the relative number of unstable roots in domains of the complex M
or K planes. The number of unstable roots in all the domains can be determined if the
absolute number of those is known for any arbitrary value of the considered system pa-
rameter. By doing so, the instability domains can be found in the M or K plane, which
generally allows to identify the critical velocity for instability (defined as the velocity at
which an instability domain first overlays the positive real axis when increasing the ve-
locity). The stability analysis is conducted in Section 4.5.

4.2.3. RESPONSE TO A MOVING OSCILLATORY POINT LOAD AND DERIVATION

OF EQUIVALENT STIFFNESS
As shown in Section 4.2.2, it is customary to employ the equivalent stiffness Keq to con-
duct the stability analysis. In the current section, we aim to derive the expression for the
equivalent stiffness. To this end, we first derive the steady-state response to a moving
oscillatory point load at the loading point. Additionally, the response at a fixed observa-
tion point is derived, which is needed for validating the indirect BEM in Section 4.4. All
the responses can be computed using the indirect BEM presented in Section 4.3. Here
we summarise the important steps and outcome in view of the specified aim.

The shear stresses σr1θ1 and σx1θ1 at the inner surface of the tunnel wall induced by
the moving oscillatory point load (see Fig. 4.2 (a)) are zero. The non-zero normal stress
σr1r1 (Ri,θ1, x, t ) can be expressed as

σr1r1

(
Ri,θ1, x, t

)= P0

Ri
δ

(
θ1 + π

2

)
δ

(
x −V t

)
exp

(
iΩt

)
, (4.7)

where δ(.) is the Dirac delta function.
As the considered problem is linear, we apply the Fourier Transform to derive the

response of the system subject to the uniformly moving oscillatory point load in the
wavenumber-frequency (kx , ω) domain. The Fourier Transform applied with respect to
time t and spatial coordinate x is defined in the following form (for an arbitrary function



4

76
4. INSTABILITY OF VIBRATIONS OF AN OSCILLATOR MOVING AT HIGH SPEED THROUGH A

TUNNEL EMBEDDED IN SOFT SOIL

g
(
r1,θ1, x, t

)
):

˜̃g
(
r1,θ1,kx ,ω

)= ∫ ∞

−∞

∫ ∞

−∞
g

(
r1,θ1, x, t

)
exp

(
− i

(
ωt −kx x

))
dxdt (4.8)

with the inverse Fourier Transform given by

g
(
r1,θ1, x, t

)= 1

4π2

∫ ∞

−∞

∫ ∞

−∞
˜̃g
(
r1,θ1,kx ,ω

)
exp

(
+ i

(
ωt −kx x

))
dkx dω. (4.9)

The Fourier series, which is used to derive the response in the (kx , ω) domain, of a gen-
eral response quantity f (θ1) reads

f
(
θ1

)= n=∞∑
n=−∞

fn exp
(
inθ1

)
, fn = 1

2π

∫ 2π

0
f
(
θ1

)
exp

(− inθ1
)

dθ1. (4.10)

Expanding the term δ
(
θ1 +π/2

)
in Eq. (4.7) into a Fourier series, the normal stress

can be rewritten as

σr1r1

(
Ri,θ1, x, t

)= n=∞∑
n=−∞

P0

2πRi
exp

(
in

(
θ1 + π

2

))
δ

(
x −V t

)
exp

(
iΩt

)
. (4.11)

Applying the Fourier Transform defined by Eq. (4.8) to Eq. (4.11), the normal stress in
the wavenumber-frequency domain is obtained as:

˜̃σr1r1

(
Ri,θ1,kx ,ω

)= n=∞∑
n=−∞

P0

2πRi
exp

(
in

(
θ1 + π

2

))
2πδ

(
ω−Ω−kxV

)
= ˜̃σaux

(
Ri,θ1,kx ,ω

)
2πP0δ

(
ω−Ω−kxV

)
.

(4.12)

The response induced by the auxiliary stress ˜̃σaux
(
Ri,θ1,kx ,ω

)
, which relates to a radial

stress in the form of δ
(
θ1 + π

2

)
·δ(x)δ(t ), can be computed using the indirect BEM (Sec-

tion 4.3) and is denoted as ˜̃U1,aux
(
r1,θ1,kx ,ω

)
. Thereafter, we get the expression of the

actual displacement vector excited by the stress ˜̃σr1r1

(
Ri,θ1,kx ,ω

)
shown in Eq. (4.12):

˜̃U1
(
r1,θ1,kx ,ω

)= ˜̃U1,aux
(
r1,θ1,kx ,ω

)
2πP0δ

(
ω−Ω−kxV

)
. (4.13)

We obtain the space-time domain response by applying the inverse Fourier Trans-
form over wavenumber kx and frequency ω to Eq. (4.13):

U1(r1,θ1, x, t ) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
˜̃U1

(
r1,θ1,kx ,ω

)
exp

(
+ i

(
ωt −kx x

))
dkx dω

= P0

2π

∫ ∞

−∞

∫ ∞

−∞
˜̃U1,aux

(
r1,θ1,kx ,ω

)
δ

(
ω−Ω−kxV

)
exp

(
+ i

(
ωt −kx x

))
dkx dω

= P0

2π

∫ ∞

−∞
1

V
˜̃U1,aux

(
r1,θ1,

ω−Ω
V

,ω

)
exp

(
− i

ω−Ω
V

x

)
exp(iωt ) dω.

(4.14)
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In Eq. (4.14), the inverse Fourier Transform over wavenumber kx has been evaluated an-
alytically, whereas the inverse Fourier Transform over frequencyω needs to be evaluated
numerically.

The radial displacement component of the steady-state response at the loading point
can be obtained by substituting x =V t into Eq. (4.14):

Ur1

(
Ri,−π

2
,V t , t

)
= P0 exp

(
iΩt

)
2π

∫ ∞

−∞
1

V
˜̃Ur1,aux

(
Ri,−π

2
,
ω−Ω

V
,ω

)
dω. (4.15)

In accordance with Eq. (4.15), the complex amplitude of this harmonic response, which
is relevant for the computation of the equivalent stiffness, is given as

U0(Ω,V ) = P0

2π

∫ ∞

−∞
1

V
˜̃Ur1,aux

(
Ri,−π

2
,
ω−Ω

V
,ω

)
dω. (4.16)

Using Eq. (4.16), the equivalent stiffness Keq defined in Eq. (4.1) is obtained:

Keq = 1
1

2π

∫ ∞
−∞

1
V

˜̃Ur1,aux

(
Ri,−π

2 , ω−ΩV ,ω
)

dω
. (4.17)

We note that this result is single-valued for allΩ as the Green’s functions (see Section 4.3)
used in the indirect BEM computations are uniquely defined.

We also consider the steady-state response at a fixed observation point x = 0, which
is needed for the validation of the indirect BEM. Substituting x = 0 into Eq. (4.14) gives
the corresponding displacement vector:

U1(r1,θ1,0, t ) = P0

2π

∫ ∞

−∞
1

V
˜̃U1,aux

(
r1,θ1,

ω−Ω
V

,ω

)
exp(iωt ) dω. (4.18)

Eq. (4.18) contains the responses observed at x = 0; for an observation point at the tun-
nel invert, t < 0 indicates that x = 0 > V t , which means that the moving load has not
reached the observation point yet; t = 0 indicates that the moving load is at the observa-
tion point; t > 0 indicates that x = 0 <V t , which means that the moving load has passed
the observation point.

For the case of a stationary (i.e., non-moving) harmonic point load, which is also
used in Section 4.4 for validation, an expression for the induced displacements is given
in Appendix F.

4.3. INDIRECT BOUNDARY ELEMENT METHOD
In this chapter, the indirect BEM is employed to compute the response of the tunnel-
soil system in the wavenumber-frequency (r1,θ1,kx ,ω) domain. To this end, the Green’s
functions of the soil and tunnel are needed; note that the indirect BEM uses the Green’s
functions of the soil without cavity (full-space or half-space). In Sections 4.3.1 and 4.3.2,
the Green’s functions of the soil and tunnel are presented. The indirect BEM is formu-
lated in Section 4.3.3.
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4.3.1. GREEN’S FUNCTIONS OF THE SOIL

The so-called two-and-a-half dimensional Green’s functions of an elastodynamic full-
space [Tadeu and Kausel, 2000] and a half-space [Tadeu et al., 2001] are used in our work.
The source considered in the mentioned papers is a spatially varying line load in the lon-
gitudinal direction, having the form of f j (y, z, x, t ) = F jδ(y−ys)δ(z−zs)exp(i

(
ωt −kx x

)
),

where j = y, z, x indicates the direction of the load, subscript “s" indicates the coordi-
nates of the source point, and F j is the amplitude of the source (Green’s functions can be
obtained by setting F j = 1).

The Green’s functions of the half-space consist of source terms which are the same
as those of the full-space, and of surface terms which are necessary to satisfy the stress-
free boundary conditions at the surface of the half-space [Tadeu et al., 2001]. However,
we found that the stress-free conditions are not satisfied using the Green’s functions pre-
sented in Tadeu et al. [2001], while they are satisfied when the source terms are replaced
by the ones presented in Tadeu and Kausel [2000] that contains the full-space Green’s
functions. Therefore, the Green’s functions of the half-space used in the current chap-
ter consist of the source terms presented in Tadeu and Kausel [2000] and of the surface
terms presented in Tadeu et al. [2001].

Because the reference frames in Tadeu et al. [2001] are different from that in the cur-
rent chapter, we have to transform the Green’s functions for displacements and stresses

given in Tadeu et al. [2001] through the following relations ˜̃Gu,1 = T1
˜̃Gu,refTT

1 and ˜̃Gσ,1 =
[T1] ˜̃Gσ,refTT

1 , where subscripts “1" and “ref" denote the responses defined in the coordi-
nate systems of the current chapter and the reference paper, respectively. The transfor-
mation matrix reads:

T1 =

1 0 0
0 −1 0
0 0 1

 . (4.19)

˜̃Gu,1 and ˜̃Gσ,1 are the Green’s functions for displacements and stresses of the soil without

tunnel/cavity (i.e., of the full-space or half-space), and are 3×3 matrices. In matrix ˜̃Gu,1,
the first, second and third rows represent the displacement components ˜̃ur1 , ˜̃uθ1 and ˜̃ux ,
while the first, second and third columns correspond to the spatially varying unit line

loads acting in y , z and x directions, respectively. In matrix ˜̃Gσ,1, the first, second and
third rows represent the stress components ˜̃σr1r1 , ˜̃σr1θ1 and ˜̃σr1x , while the columns also
correspond to the loads in different directions.

4.3.2. GREEN’S FUNCTIONS AND RESPONSE OF A CYLINDRICAL SHELL

The tunnel is modelled by an infinitely long cylindrical Flügge shell. The associated co-
ordinate system is shown in Fig. 4.3. The equations of motion of the shell read [Leissa,
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1973]:

−ρ2R

(
1−ν2

2

)
E2

∂2ū

∂t 2 −ν2
∂w̄

∂x2
− 1

R

∂v̄

∂θ2
− 1

R
ū − h2

12

[
R
∂4ū

∂x4
2

+ 2

R

∂4ū

∂x2
2∂θ

2
2

+ 1

R3

∂4ū

∂θ4
2

]
+R

(
1−ν2

2

)
E2h

qr2

+ h2

12

[
∂3w̄

∂x3
2

−
(
1−ν2

)
2R2

∂3w̄

∂x2∂θ
2
2

+
(
3−ν2

)
2R

∂3v̄

∂x2
2∂θ2

− 1

R3 ū − 2

R3

∂2ū

∂θ2
2

]
= 0,

(4.20)

−ρ2R

(
1−ν2

2

)
E

∂2v̄

∂t 2 +
(
1+ν2

)
2

∂2w̄

∂x2∂θ2
+R

(
1−ν2

)
2

∂2v̄

∂x2
2

+ 1

R

∂2v̄

∂θ2
2

+ 1

R

∂ū

∂θ2

+R

(
1−ν2

2

)
E2h

qθ2 +
h2

12

[
3
(
1−ν2

)
2R

∂2v̄

∂x2
2

−
(
3−ν2

)
2R

∂3ū

∂x2
2∂θ2

]
= 0,

(4.21)

−ρ2R

(
1−ν2

2

)
E2

∂2w̄

∂t 2 +R
∂2w̄

∂x2
2

+
(
1−ν2

)
2R

∂2w̄

∂θ2
2

+
(
1+ν2

)
2

∂2v̄

∂x2∂θ2
+ν2

∂ū

∂x2

+R

(
1−ν2

2

)
E2h

qx2 +
h2

12

[(
1−ν2

)
2R3

∂2w̄

∂θ2
2

− ∂3ū

∂x3
2

+
(
1−ν2

)
2R2

∂3ū

∂x2∂θ
2
2

]
= 0,

(4.22)

where ū, v̄ and w̄ are the mid-surface displacements in directions r2, θ2 and x2, respec-
tively. E2 is the Young’s modulus of the shell and h its thickness. The radii of the inner
and outer surface of the shell can be expressed as Ri = R− h

2 and Ro = R+ h
2 , respectively.

qr2 , qθ2 and qx2 are the net external stresses acting on the shell, namely the difference
between the stresses acting at the inner and outer surfaces.

r2
θ2

x2

ū

w̄

v̄

h
Ri R

Ro

Figure 4.3: A cylindrical shell, the associated coordinate system and displacement components of the shell.

The governing equations of the shell can be rewritten into matrix form as

Aū2 = q̄2, (4.23)
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where ū2 = (
ū, v̄ , w̄

)
is the displacement vector, q̄2 = (

q̄r2 , q̄θ2 , q̄x2

)
is the net stress vec-

tor corresponding to the mid-surface of the shell, and A is an operator matrix given in
Appendix G.

The stress vector q̄2 is related to the stress vectors qo
2 and qi

2 corresponding to the
outer and inner surfaces of the shell, respectively, through the following relations [Luco
and de Barros, 1994a]:

q̄2 =


1 h

2R
∂
∂θ2

h
2

∂
∂x2

0 1+ h
2R 0

0 0 1

qo
2 = Boqo

2 , q̄2 =


1 −h

2R
∂
∂θ2

−h
2

∂
∂x2

0 1+ −h
2R 0

0 0 1

qi
2 = Biqi

2. (4.24)

According to Love’s simplification in the shell theory [Soedel, 2004], the longitudinal and
tangential displacements vary linearly across the shell’s thickness, whereas the radial dis-
placement is independent of radial coordinate. Therefore, the mid-surface displacement
vector ū2 is related to the displacement vector uo

2 corresponding to the outer surface of
the shell through the following relation

uo
2 =


1 0 0

− h
2R

∂
∂θ2

1+ h
2R 0

−h
2

∂
∂x2

0 1

 ū2 = Dū2. (4.25)

After applying the Fourier Transform over time t and spatial coordinate x2 to Eq.
(4.23), computing the Fourier coefficients of the circumferential harmonics (i.e., the sec-
ond relation in Eq. (4.10)), and considering Eqs. (4.24) and (4.25), the governing equa-
tions of the shell can be written as

˜̃An
˜̃D−1

n
˜̃uo

2,n = ˜̃Bo
n

˜̃qo
2,n + ˜̃Bi

n
˜̃qi

2,n , (4.26)

which is essentially a set of algebraic equations; n denotes the number of the circum-
ferential harmonic, and matrices ˜̃An , ˜̃Bo

n , ˜̃Bi
n and ˜̃Dn are given in Appendix G; ˜̃uo

2,n and
˜̃q{o,i}

2,n contain the Fourier coefficients of ˜̃uo
2 and ˜̃q{o,i}

2 , respectively. If q{o,i}
2 are taken as

q{o,i}
2 = [

δ(θ2),δ(θ2),δ(θ2)
]T
δ(x2)δ(t ), then ˜̃q{o,i}

2,n =
[

1
2π , 1

2π , 1
2π

]T
. The associated Green’s

functions of the shell can be derived by solving Eq. (4.26) for each of the load compo-
nents, and subsequently adding the solutions for all components in the Fourier series
(see Eq. (4.10)):

˜̃go(θ2,kx2,ω) =
n=∞∑

n=−∞
˜̃go

n exp
(
inθ2

)= n=∞∑
n=−∞

1

2π
˜̃Dn

˜̃A−1
n

˜̃Bo
n exp

(
inθ2

)
,

˜̃gi(θ2,kx2,ω) =
n=∞∑

n=−∞
˜̃gi

n exp
(
inθ2

)= n=∞∑
n=−∞

1

2π
˜̃Dn

˜̃A−1
n

˜̃Bi
n exp

(
inθ2

)
,

(4.27)

where ˜̃go
n interrelates ˜̃uo

2,n and ˜̃qo
2,n , ˜̃gi

n interrelates ˜̃uo
2,n and ˜̃qi

2,n , and ˜̃go, ˜̃gi, ˜̃go
n and ˜̃gi

n
are 3× 3 matrices. The positive directions of the longitudinal axes in the global coor-
dinate system (see Fig. 4.1) and the local coordinate system for the shell (see Fig. 4.3)
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are opposite to each other (i.e., x2 =−x). Therefore, the relation between the longitudi-
nal wavenumbers kx2 and kx (which, for the moving oscillatory point load considered in
Section 4.2.3, is defined as ω−Ω

V ) is as follows: kx2 =−kx ; this relation is used below.
Using the convolution rule, the displacement vector of the shell under an arbitrary

load can be obtained as

˜̃uo
2(θ2,kx2,ω) = Ro

∫ 2π

0

n=∞∑
n=−∞

1

2πRo

˜̃Dn
˜̃A−1

n
˜̃Bo

n exp
(
in

(
θ2 −θ′2

))
˜̃qo

2(θ′2,kx2,ω) dθ′2

+Ri

∫ 2π

0

n=∞∑
n=−∞

1

2πRi

˜̃Dn
˜̃A−1

n
˜̃Bi

n exp
(
in

(
θ2 −θ′2

))
˜̃qi

2(θ′2,kx2,ω) dθ′2.

(4.28)

The displacements in Eq. (4.28) are defined in the local coordinate system of the shell
(r2,θ2, x2, see Fig. 4.3). To satisfy the continuity of displacements and stresses at the
shell-soil interface, the displacement and stress vectors ˜̃uo

2 , ˜̃qo
2 and ˜̃qi

2 defined in the local

coordinate system of the shell have to be transformed to ˜̃Uo
2 , ˜̃Qo

2 and ˜̃Qi
2, respectively,

defined in the global cylindrical coordinate system of the soil (r1,θ1, x), which has origin
at the center of the tunnel (see Fig. 4.1), through relations

˜̃Uo
2(θ1,kx ,ω) = T2 ˜̃uo

2(θ2,−kx ,ω),

˜̃qo
2(θ2,−kx ,ω) = TT

2
˜̃Qo

2(θ1,kx ,ω), ˜̃qi
2(θ2,−kx ,ω) = TT

2
˜̃Qi

2(θ1,kx ,ω),
(4.29)

in which θ1 = θ2 and

T2 =

1 0 0
0 1 0
0 0 −1

 . (4.30)

Substituting Eq. (4.29) into Eq. (4.28), we obtain the displacements of the shell in the
global cylindrical coordinate system:

˜̃Uo
2(θ1,kx ,ω) = Ro

∫ 2π

0

n=∞∑
n=−∞

1

2πRo
T2

˜̃Dn
˜̃A−1

n
˜̃Bo

n TT
2 exp

(
in

(
θ1 −θ′2

)) ˜̃Qo
2(θ′2,kx ,ω) dθ′2

+Ri

∫ 2π

0

n=∞∑
n=−∞

1

2πRi
T2

˜̃Dn
˜̃A−1

n
˜̃Bi

n TT
2 exp

(
in

(
θ1 −θ′2

)) ˜̃Qi
2(θ′2,kx ,ω) dθ′2.

(4.31)

4.3.3. FORMULATION OF THE INDIRECT BOUNDARY ELEMENT METHOD
In this section, the formulation of the employed indirect BEM is presented. The excita-
tion stress vectors are [ ˜̃σaux,0,0] and [σ̃aux,0,0] for the moving and stationary point load

cases, respectively, which come into play through ˜̃Qi
2 (as shown below). The expressions

for ˜̃σaux and σ̃aux are given in Eq. (4.12) and Eq. (F.3), respectively. For the considered
problem, we assume perfect bonding between the soil and tunnel, implying continuous
displacements and stresses at the tunnel-soil interface Lr:

˜̃U1(Ro,θ1,kx ,ω) = ˜̃Uo
2(θ1,kx ,ω), (4.32)

˜̃Σ1(Ro,θ1,kx ,ω) = ˜̃Σo
2(θ1,kx ,ω), (4.33)
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where ˜̃U1 and ˜̃U2 are the displacement vectors of the soil and tunnel, respectively, and
˜̃Σ1 and ˜̃Σ2 their stress vectors. The displacement and stress vectors of the soil and shell
at the soil-tunnel interface are expressed as ˜̃U1 = [ ˜̃Ur1 , ˜̃Uθ1 , ˜̃Ux ]T, ˜̃Σ1 = [ ˜̃σr1r1 , ˜̃σr1θ1 , ˜̃σr1x ]T,
˜̃Uo

2 = [ ˜̃U o
r2

, ˜̃U o
θ2

, ˜̃U o
x2

]T and ˜̃Σo
2 = [ ˜̃σo

r2r2
, ˜̃σo

r2θ2
, ˜̃σo

r2x2
]T. Note that all these displacements and

stresses are defined in the global cylindrical coordinate system (r1,θ1, x).
According to the indirect BEM, the displacement and stress vectors in the soil are

given as [Luco and de Barros, 1994a]

˜̃U1(xr,kx ,ω) =
∫

Ls

˜̃Gu,1
(
xr,xs,kx ,ω

)
F

(
xs

)
dl

(
xs

)
, (4.34)

˜̃Σ1(xr,kx ,ω) =
∫

Ls

˜̃Gσ,1(xr,xs,kx ,ω)F
(
xs

)
dl

(
xs

)
, (4.35)

where F
(
xs

)
is the yet unknown vector of the source amplitudes placed inside the fic-

titious cavity which is commonly used for the indirect BEM (see Fig. 4.4). Vectors xr =
[xr, yr, zr] and xs = [xs, ys, zs] are coordinates of the receiver and source points, respec-
tively. Ls is the surface at which the source points are located, and the radius of the
surface Ls is taken as Rs = Ro − 3(2πRo/Nr), where Nr denotes the number of receiver
points, and Nr Ê 20 as suggested in Luco and de Barros [1994a]. The surface Lr at which
the receiver points are located lies at r1 = Ro, which is the outer surface of the actual
tunnel.

Lr,xr

Ls,xs

Figure 4.4: The elastic half-space with the fictitious cavity. Lr (solid line) and Ls (dashed line) are surfaces at
which the receiver (filled circles) and source (open circles) points are located, respectively.

An expression for the displacement vector of the shell has been obtained in Eq. (4.31),
and can be rewritten as

˜̃Uo
2(xr,kx ,ω) =

∫
Lr

˜̃Go
u,2

(
xr,x′r,kx ,ω

) ˜̃Qo
2

(
x′r,kx ,ω

)
dl (x′r)

+
∫

L

˜̃Gi
u,2

(
xr,x′,kx ,ω

) ˜̃Qi
2

(
x′,kx ,ω

)
dl (x′),

(4.36)

where ˜̃G{o,i}
u,2 contain the Green’s functions for the displacements of the shell defined in

the global cylindrical reference frame. The integration surfaces in Eq. (4.36) are Lr and
L (i.e., source points located at r1 = Ro and r1 = Ri, respectively) corresponding to the
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Green’s functions of the shell related to the forces acting at its outer and inner surfaces.
The stress vectors acting at the outer and inner surfaces of the shell, respectively, for the
current problem read, employing Eq. (4.33)

˜̃Qo
2

(
x′r,kx ,ω

)= ˜̃Σ2
(
x′r,kx ,ω

)= ˜̃Σ1
(
x′r,kx ,ω

)
, ˜̃Qi

2

(
x′,kx ,ω

)= ˜̃P
(
x′,kx ,ω

)
, (4.37)

where ˜̃P is the excitation stress vector (i.e., [ ˜̃σaux,0,0]T or [σ̃aux,0,0]T) induced by the
external point load (see Fig. 4.2 (a)).

Substituting Eqs. (4.34) and (4.36) into Eq. (4.32), and considering Eqs. (4.35) and
(4.37), we derive the boundary integral equation in terms of the unknown source ampli-
tude vector: ∫

Ls

˜̃K
(
xr,xs,kx ,ω

)
F

(
xs

)
dl

(
xs

)= ˜̃R
(
xr,kx ,ω

)
, (4.38)

where

˜̃K
(
xr,xs,kx ,ω

)= ˜̃Gu,1
(
xr,xs,kx ,ω

)−∫
Lr

˜̃Go
u,2

(
xr,x′r,kx ,ω

) ˜̃Gσ,1(x′r,xs,kx ,ω) dl (x′r),

˜̃R
(
xr,kx ,ω

)= ∫
L

˜̃Gi
u,2

(
xr,x′,kx ,ω

) ˜̃P
(
x′,kx ,ω

)
dl (x′).

(4.39)

In order to compute the source vector for every kx and ω combination, Eq. (4.38) is dis-
cretised (i.e., surfaces Lr, L and Ls), as indicated above. Note that the size of the matrix
related to ˜̃K is (3Nr ×3Ns), where Ns denotes the number of source points; this implies
that it is a small matrix, and the inversion of the matrix does not take much time. The
most time consuming part (even in the entire procedure of stability analysis) is the eval-
uation of integrals over the horizontal wavenumber ky in the Green’s functions of the
half-space, for which we use the “quadv" routine in Matlab.

4.4. VALIDATIONS
To validate the accuracy of the presented indirect BEM, we compare the results obtained
by the proposed method with those calculated by Yuan et al. [2017]. The first validation
is performed for the case of a tunnel embedded in an elastic full-space subject to a sta-
tionary harmonic point load at the tunnel invert. The excitation for the indirect BEM
computation in this case is σ̃aux (Eq. (F.3)), with P0 = 1 N, and the steady-state response
is given in Eq. (F.5). The elastic full-space is characterised by its longitudinal wave speed
CP,1 = 944 m/s, shear wave speed CS,1 = 309 m/s, density ρ1 = 2000 kg/m3 and material
damping ratio ξ1 = 0.03. The elastic parameters for the tunnel are the Young’s modu-
lus E2 = 50 GPa, Poisson’s ratio ν2 = 0.3, density ρ2 = 2500 kg/m3 and material damping
ratio ξ2 = 0. The inner and outer radii of the tunnel are Ri = 2.75 m and Ro = 3 m.

Before showing the results, we first present a convergence test for the proposed meth-
od for the considered loading case. As shown in Eq. (F.5), the inverse Fourier Transform
over longitudinal wavenumber kx has to be evaluated to get the harmonic response in
the space-time domain. The integral was computed numerically using an inverse fast
Fourier Transform algorithm in Matlab. The convergence was tested regarding the dis-
cretisation of kx (i.e., ∆kx and kmax

x ), the maximum number of circumferential modes
of the shell N max

shell in Eq. (4.31) and the maximum number of Fourier components N max
load
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in Eq. (F.3), and the number of source and receiver points (Ns, Nr). We found that it is
sufficient to use kmax

x = 2π, ∆kx = 2π
1023 , N max

shell = 20 and N max
load = 20. The convergence test

for the number of source and receiver points (Ns, No) at different locations (r1, θ1, x) is
given in Table 4.1. Responses at the tunnel invert, tunnel apex (Ro, π2 , 0), tunnel side (Ro,
π, 0) and at a point far from the load (20 m, π, 20 m) are presented; the load is charac-
terised by P0 = 1 N and f0 = Ω

2π = 10 Hz. It is clear that converged results can indeed be
obtained using (Ns, Nr) = (20, 40).

Fig. 4.5 shows the converged vertical displacements at the tunnel invert, tunnel apex
and tunnel side as a function of frequency for the first validation case. A good agreement
can be observed between the results obtained by different methods, which validates the
proposed method and its implementation.

Table 4.1: Displacement components (20log10|Ui |) at different locations (r1, θ1, x) for a tunnel embedded in
an elastic full-space subjected to a stationary harmonic point load with excitation frequency f0 = 10 Hz

obtained using different numbers of source and receiver points (Ns, Nr). In each row, the displacements are
normalised by the corresponding response obtained using (Ns, Nr) = (20,40).

Displacements (Ns, Nr) (Ns, Nr) (Ns, Nr) (Ns, Nr)
= (20,40) = (30,60) = (40,80) = (60,60)

Ur1

(Ro, −π
2 , 0) 1.0000 1.0002 1.0002 1.0002

Ur1

(Ro, π2 , 0) 1.0000 1.0008 1.0008 1.0008

Ur1

(Ro, π, 0) 1.0000 1.0000 1.0000 1.0000

Uy1

(20 m, π, 20 m) 1.0000 1.0000 1.0000 1.0000

Uz1

(20 m, π, 20 m) 1.0000 1.0000 1.0000 1.0000

Ux

(20 m, π, 20 m) 1.0000 1.0000 1.0000 1.0000
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Figure 4.5: Vertical displacements (20 · log10|Uz1 |) at locations of (a) tunnel invert (r1 = Ro, θ1 =−π
2 , x = 0),

(b) tunnel apex (r1 = Ro, θ1 = π
2 , x = 0) and (c) tunnel side (r1 = Ro, θ1 =π, x = 0) for the case of a tunnel

embedded in an elastic full-space subject to a stationary harmonic point load.
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The second validation case is that of a shallow tunnel embedded in an elastic half-
space subject to a stationary harmonic load. The soil is characterised by its longitudinal
wave speed CP,1 = 400 m/s, shear wave speed CS,1 = 200 m/s, density ρ1 = 1800 kg/m3

and material damping ratio ξ1 = 0.02. The parameters of the tunnel are the same as in
the previous case, except that ξ2 = 0.015, and the burial depth of the tunnel is H = 5 m.
It is noted that in the reference paper yuan2017, the mentioned material damping ratio
should be the loss factor (there is a difference of a factor 2), which is indicated in paper
[Hussein et al., 2014]. This also holds for the next validation case. The displacement
components (again obtained using Eq. (F.5)) at a point on the ground surface (y =−20 m,
z = 0, x = 20 m) are presented in Fig. 4.6, where again a good match between the results
is observed. The minor differences can be attributed to the use of a continuum to model
the tunnel in Yuan et al. [2017], instead of a shell.
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Figure 4.6: Displacement components (20 · log10|Ui |) at a point on the ground surface (y =−20 m, z = 0,
x = 20 m) for the case of a tunnel embedded in an elastic half-space (H = 5 m) subject to a stationary

harmonic point load acting at the tunnel invert: (a) horizontal displacement, (b) vertical displacement and (c)
longitudinal displacement.

The third validation comprises the case of a tunnel embedded in an elastic half-space
subject to a uniformly moving constant point load. The excitation for the indirect BEM
computation in this case is ˜̃σaux (Eq. (4.12)) and the steady-state response is given in
Eq. (4.14). The parameters for the soil and tunnel are as follows: µ1 = 1.154×107 N/m2,
λ1 = 1.731×107 N/m2, ρ1 = 1900 kg/m3, ξ1 = 0.025, µ2 = 1.042×1010 N/m2, λ2 = 6.944×
109 N/m2, ρ2 = 2400 kg/m3, ξ2 = 0.01, Ri = 2.75 m, Ro = 3 m, H = 15 m. The moving load
is characterised by velocity V = 75 m/s, excitation frequency f0 = 0 and P0 = 1 N. The
inverse Fourier Transform over frequencies needs to be evaluated to get the space-time
domain response (see Eq. (4.14)). The convergence for the moving point load case was
tested regarding the discretisation of ω (i.e., ∆ω and ωmax ), N max

shell in Eq. (4.31) and N max
load

in Eq. (4.12), and the number of source and receiver points (Ns, Nr). Numerical results
related to two points on the ground surface and one at the tunnel invert are presented
in Table 4.2 for the considered case of the moving load using different number of source
and receiver points (Ns, Nr). We found that converged results can be obtained using
f max = ωmax

2π = 15 Hz, ∆ f = ∆ω
2π = 0.05 Hz, N max

shell = 20, N max
load = 20 and (Ns, Nr) = (20, 40).

This is clear from Table 4.2 which presents the responses observed at x = 0 for varying
time moments: t = 0 means that the load is right below the observation point, whereas
t = 1 s indicates that the load has passed that point. Fig. 4.7 presents the comparison
between the results obtained by the proposed method and those shown in the literature.
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The good agreement gives confidence about the accuracy of the proposed method.
The convergence requirements for the computation of the equivalent dynamic stiff-

ness for different velocities are presented in Appendix H.

Table 4.2: Velocities (Vi (y, z, x)) and displacement (Ur1 (r1,θ1, x)) at different locations for a tunnel embedded
in an elastic half-space subject to a uniformly moving point load (V = 75 m/s, f0 = 0) using different numbers

of source and receiver points (Ns, Nr). In each row, the responses are normalised by the corresponding
response obtained using (Ns, Nr) = (20,40).

Responses Time (s) (Ns, Nr) (Ns, Nr) (Ns, Nr) (Ns, Nr)
= (20,40) = (30,60) = (40,80) = (60,60)

Vz t = 0 1.0000 1.0000 1.0000 1.0000
(0, 0, 0) t = 1 1.0000 1.0000 1.0000 1.0000

Vx t = 0 1.0000 1.0000 1.0000 1.0000
(0, 0, 0) t = 1 1.0000 1.0000 1.0000 1.0000

Vz t = 0 1.0000 1.0000 1.0000 1.0000
(−20 m, 0, 0) t = 1 1.0000 1.0000 1.0000 1.0000

Vx t = 0 1.0000 1.0000 1.0000 1.0000
(−20 m, 0, 0) t = 1 1.0000 1.0000 1.0000 1.0000

Ur1 t = 0 1.0000 0.9998 0.9998 0.9998
(Ro, −π

2 , 0) t = 1 1.0000 1.0000 1.0000 1.0000
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Figure 4.7: Velocities (Vi ) at the origin (y = 0, z = 0, x = 0) on the ground surface for the case of a tunnel
embedded in an elastic half-space (H = 15 m) subject to a uniformly moving point load (V = 75 m/s, f0 = 0):

(a) vertical velocity and (b) longitudinal velocity.

4.5. INSTABILITY OF VIBRATIONS
The main framework to conduct stability analysis has been given in Section 4.2.2. In
the current section, we present the results for both the full-space and half-space. The
base-case parameters of the tunnel-soil system are listed in Table 4.3; it is noted that the
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base case assumes that the burial depth H →∞. The parameters presented in Table 4.3
represent a soft soil and a concrete tunnel.

We chose the full-space case as the base case simply because the results for the half-
space are pretty similar, and the computation of the two-and-a-half dimensional Green’s
functions of the full-space [Tadeu and Kausel, 2000] is less expensive than that of the
half-space Green’s functions [Tadeu et al., 2001]. The Green’s functions of the full-space
are available analytically and can be evaluated very fast; however, the surface-terms part
of the Green’s functions of the half-space (see Section 4.3.1) are not available analytically,
and integrals over the horizontal wavenumber ky need to be evaluated numerically.

Table 4.3: Base-case parameters of the tunnel-soil system

Soil Tunnel

µ1 = 1.154×107 N/m2 µ2 = 1.042×1010 N/m2

λ1 = 1.731×107 N/m2 λ2 = 6.944×109 N/m2

ρ1 = 1900 kg/m3 ρ2 = 2400 kg/m3

ξ1 = 0.05 ξ2 = 0.02
CS,1 = 77.94 m/s CS,2 = 2083.7 m/s
CP,1 = 145.80 m/s CP,2 = 3402.5 m/s
CR,1 = 72.29 m/s Ri = 2.75 m,Ro = 3 m,h = 0.25 m, H →∞

4.5.1. CRITICAL VELOCITY FOR INSTABILITY OF THE MOVING OBJECT
As has been discussed in Section 4.2.2, the imaginary part of the equivalent stiffness be-
ing negative indicates that the vibration of the object (i.e., moving mass or oscillator)
can become unstable. Therefore, we first study the equivalent stiffness to find the crit-
ical velocity for instability of the moving object (here defined as the velocity at which
Im(Keq) < 0 first takes places). Note that the critical velocity for instability generally dif-
fers from the classical critical velocity at which the steady-state response induced by a
moving load is extreme (i.e., resonance). In the general case, where the oscillator has
dissipative components, the critical velocity for instability should be identified from the
D-decomposition curve in the complex M or K planes (see Sections 4.2.2 and 4.5.2), not
from the analysis of Im(Keq) alone [Metrikine and Verichev, 2001; Metrikine et al., 2005].
Im(Keq) < 0 is only a necessary condition for instability. As the moving oscillator and
moving mass considered in this chapter do not have intrinsic dissipative components,
their critical velocities for instability are the same.

In previous studies [Metrikine and Dieterman, 1997; Metrikine and Verichev, 2001]
where beam on elastic foundation models (without damping) are considered, it is shown
that the critical velocity for instability V inst

cr of the moving object is equal to the critical
velocity for resonance (of the undamped system), which in turn is equal to the minimum
phase velocity V min

ph of waves in the system. For a half-space model with a regular track

on top [Metrikine and Popp, 1999; Metrikine et al., 2005], the critical velocity for instabil-
ity in the presence of damping is slightly larger than V min

ph . Additionally, V min
ph , which is

close to and smaller than the velocity of Rayleigh waves, is easily found from the disper-
sion relation of the system [Metrikine, 1994; Metrikine and Vrouwenvelder, 2000]. How-
ever, for the tunnel-soil system considered in this chapter, it is very difficult to get the
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Figure 4.8: The real part of the equivalent stiffness for different velocities: (a) V = 0.90V inst
cr , (b) V = 1.00V inst

cr ,
(c) V = 1.01V inst

cr , (d) V = 1.02V inst
cr , (e) V = 1.03V inst

cr , (f ) V = 1.04V inst
cr , (g) V = 1.05V inst

cr , (h) V = 1.06V inst
cr

and (i) V = 1.20V inst
cr . These results are related to the base case presented in Table 4.3, and V inst

cr = 942 m/s.

dispersion curves, as the dispersion characteristics of the system are considerably more
complicated. Therefore, the minimum phase velocity cannot be easily computed. We
can, however, compute the steady-state response of the tunnel-soil system subject to a
uniformly moving non-oscillatory load and check the features of responses for different
velocities to determine the critical velocity for resonance (for the system with damping,
strictly speaking, but the influence of the damping on V res

cr is small). This analysis is
presented in Appendix H, and it shows that V res

cr ≈ 70 m/s for the current tunnel-soil sys-
tem, which is also close to and smaller than the velocity of Rayleigh waves, like for the
above-mentioned half-space model.

For the system with the base-case parameters, we find that the imaginary part of the
equivalent stiffness starts having a negative sign for at least a small frequency range at
a velocity of V inst

cr = 942 m/s. Based on this critical velocity for instability, we study the
behavior of Keq(Ω,V ) for different velocities in the range of (0.9−1.2)V inst

cr . The real and
imaginary parts are shown in Figs. 4.8 and 4.9, respectively. Nine different velocities were
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Figure 4.9: The imaginary part of the equivalent stiffness for different velocities: (a) V = 0.90V inst
cr , (b)

V = 1.00V inst
cr , (c) V = 1.01V inst

cr , (d) V = 1.02V inst
cr , (e) V = 1.03V inst

cr , (f ) V = 1.04V inst
cr , (g) V = 1.05V inst

cr , (h)
V = 1.06V inst

cr and (i) V = 1.20V inst
cr . These results are related to the base case presented in Table 4.3, and

V inst
cr = 942 m/s. The read dots indicate the crossings.

chosen to show the features of Re(Keq) and Im(Keq) as a function of the load frequency
Ω. Note that, if its mass is relatively small, the vibration of the object can still be stable
when it moves faster than V inst

cr , as will be demonstrated in the next section (see also Fig.
4.11).

In Fig. 4.8, we observe that the real part of the equivalent stiffness is positive, and
the decaying trend of Re(Keq) with frequencyΩ is similar for each velocity. The decaying
trend may be related to the effect of inertia. The trough can probably be interpreted as
a quasi-resonance which takes place at low frequencies and is related to the wave reso-
nance which occurs if the velocity of the moving load is the same as the group velocity
of a wave excited by the load [Metrikine and Popp, 1999].

The imaginary part of the equivalent stiffness is shown in Fig. 4.9 for each of the cho-
sen velocities. For the ‘sub-critical’ (V < V inst

cr ) case shown in Fig. 4.9 (a), V = 0.9V inst
cr ,

Im(Keq) is positive for all the frequencies Ω, which indicates that the damping coeffi-
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cient of the equivalent mass-spring system is positive, and thus, the system is always
stable (see Section 4.2.2). The frequency band considered in this study of the dynamic
stiffness is limited to (0−40) Hz, because instability is determined by the behaviour at
low frequencies [Metrikine and Popp, 1999; Metrikine et al., 2005]; see also the explana-
tion given at the end of this section. For the ‘critical’ and ‘super-critical’ (V ≥V inst

cr ) cases,
shown in Figs. 4.9 (b) - (i), the imaginary part of the equivalent stiffness is negative at low
frequencies and becomes positive at higher frequencies. We can verify that the curves of
Im(Keq) in the high-frequency band have the same trend as that in the sub-critical case;
they are not shown here since we focus on features of Im(Keq) in the low-frequency band.
There are peaks and troughs in the curves of Im(Keq), and these are suppressed or en-
larged as the velocity increases. We observe that the Im(Keq) curve crosses the real axis
0, 4, 3, 7, 5, 3, 3, 1 and 1 times for V = (0.9,1.00,1.01,1.02,1.03,1.04,1.05,1.06,1.20)V inst

cr ,
respectively. We can verify that for velocities V = (1.06− 1.20)V inst

cr , similar features of
Im(Keq) are observed (i.e., the Im(Keq) curve crosses the real axis only once), the only
difference is that the crossing occurs at higher frequencyΩ as the velocity increases (see
Figs. 4.9 (h) and (i)). The different features of Im(Keq) observed in the entire considered
velocity range imply that in the complex M or K plane different amounts of separated
domains, each having a specific number of ‘unstable roots/eigenvalues’, are expected for
different velocities (see Section 4.5.2). At this point, it is concluded that the equivalent
dynamic stiffness, especially its imaginary part, strongly depends on V .

In order to trace similarities and differences, let us now compare two different sta-
bility problems: the above mentioned model of an object moving on a track placed on
the ground surface [Metrikine and Popp, 1999; Metrikine et al., 2005], and the current
model of an object moving through a tunnel embedded in a half-space. The critical ve-
locity for instability for the current model with all parameters in accordance with the
base case, except the burial depth H which is taken as 15 m, is found to be 891 m/s (see
also Section 4.6.4). Clearly, V inst

cr is much larger than the critical velocity for resonance
(V res

cr ≈ 70 m/s) in the model with an embedded tunnel, while V inst
cr is just slightly larger

than V res
cr in the model with a track directly placed on the ground [Metrikine and Popp,

1999; Metrikine et al., 2005] (V res
cr is related to the undamped system in these studies, but

the influence of the damping on V res
cr is small). The difference is due to the large stiffness

of the tunnel and the radiation damping/leaky character of the waves excited in the tun-
nel. However, there are similarities regarding ground vibrations in these two models. In
the regime of V < V res

cr (≈ V min
ph ), for both models mostly the medium in the vicinity of

the load is disturbed by the eigenfield excited by the moving non-oscillating object, while
in the regime of V > V res

cr , both the vicinity of the moving source and the field far from
the source are disturbed because waves are generated (see Appendix H). As mentioned
above, the critical velocity for resonance of the current tunnel-soil system is close to and
smaller than the velocity of Rayleigh waves, like that of the other model. Therefore, from
the ambient-vibration point of view, there is a clear similarity between both problems.
However, instability happens only far beyond the critical velocity for resonance for the
model with the tunnel, which is clearly different from the finding for the half-space with
a track placed on top.

As shown in Metrikine [1994], an external source has to supply a vibrating object with
energy in order to maintain its uniform motion. In the case of unstable vibrations, the
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work done by the source is partially transferred to vibration energy of the object by the
so-called anomalous Doppler waves [Ginzburg, 1979], which are waves of negative fre-
quency. Typical dispersion curves of the current tunnel-soil system, which are similar to
the ones of the beam on elastic foundation model [Wolfert et al., 1998], are shown in Fig.
4.10 and can be used to explain why the instability only happens in the low-frequency
band, as stated above. Fig. 4.10 also shows the so-called kinematic invariantω= kxV +Ω,
which is essentially found in the argument of the Dirac function in the response to a
moving oscillatory load (see Eq. (4.14)). The kinematic invariant is a straight line indi-
cating the relation between the load frequencyΩ, and the frequencyω and wavenumber
kx of the waves that are potentially excited by the moving object; different realizations
(i.e., Ω being zero and nonzero, together with two different velocities) are shown in the
Fig. 4.10. Intersections of the kinematic invariant with the dispersion curves represent
the excited waves. We observe that intersections with negative frequencyω (i.e., anoma-
lous Doppler waves) are only possible when the load frequency Ω is relatively small. If
the load frequencyΩ is large, the kinematic invariant will practically never intersect the
dispersion curves at negative frequency, which explains why the vibration of the moving
object is always stable in the high-frequency band (i.e., Im(Keq) > 0, see Fig. 4.9); this
also justifies that we restricted the analysis of Keq to the low-frequency band in Figs. 4.8
and 4.9.

kx

ω

1. ω= kxV1

2. ω= kxV2

3. ω= kxV1 +Ω
4. ω= kxV2 +Ω

Ω

Figure 4.10: Typical dispersion curves of the current system, which are similiar to the ones for an
Euler-Bernoulli beam resting on an elastic foundation. Four different realizations of the kinematic invariant

(i.e.,Ω being zero and nonzero, together with two different velocities V1 and V2) are considered. Ω is the load
frequency, ω and kx are the frequency and wavenumber of the waves excited by the load.

4.5.2. D-DECOMPOSITION: COMPLEX M AND K PLANES
In order to investigate the stability of the object vibrations for velocities larger than the
corresponding critical velocity for instability identified in the previous section, we ap-
ply the D-decomposition method. We first investigate the limit case of the single mass
moving through the tunnel. Considering the base case, the D-decomposition curve can
be plotted in the complex M plane (i.e., Im(M) versus Re(M)) using the mapping rule
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shown in Eq. (4.5) and is presented in Fig. 4.11. For most of the considered velocities,
the D-decomposition curve crosses the positive real axis, that is, one or more crossing
points M∗ are obtained. It can be verified that the frequency at which the curve crosses
the real axis corresponds to the frequency at which the imaginary part of the dynamic
stiffness changes sign (see Fig. 4.9). A crossing point lying on the positive real axis can
be explained by the fact that Re(Keq) is positive when the Im(Keq) changes its sign (see
Fig. 4.8).

As it is clearly shown in Fig. 4.11, the crucial difference between the D-decomposition
curves in the super-critical and sub-critical cases - compare Figs. 4.12 (b) and (a), for ex-
ample - is that there are crossing points M∗

1 , M∗
2 , M∗

3 and M∗
4 on the positive axis of

Re(M) for the super-critical case. The existence of such crossing points means that the
number N of unstable roots (roots with a positive real part) is different in the domains
of M < M∗

1 , M∗
2 < M < M∗

3 and M > M∗
4 from that in domains of M∗

1 < M < M∗
2 and

M∗
3 < M < M∗

4 .

The procedure to determine N is as follows. The relative number of unstable roots
in domains of the complex M plane can be calculated by counting the number of times
that one crosses the D-decomposition curve in the direction of the shading, which has
been explained in Section 4.2.2. To get the absolute number in all domains, the number
of unstable roots for M = 0 has to be determined. M = 0 means that there is essentially
no moving mass, which implies that the vibration of the mass cannot be unstable (i.e.,
the number of unstable roots N = 0). Thereafter, the absolute number of unstable roots
in each domain can be determined and the result is shown in Fig. 4.11. The number
of unstable roots has also been validated using the Argument Principle, but this is not
shown in the chapter.

In Fig. 4.11, we observe that the vibration of the moving mass is stable for all values
of M for V = 0.9V inst

cr ; for V = 1.00V inst
cr , the vibration of the moving mass is unstable

when M∗
1 < M < M∗

2 and M∗
3 < M < M∗

4 (N = 2); for V = 1.01V inst
cr , when M∗

1 < M < M∗
2

and M > M∗
3 , etc. Note that the vibration of a mass which moves faster then the critical

velocity is not necessarily unstable. For relatively small values of the mass, for example,
the vibration is stable even for super-critical velocities (as illustrated in Section 4.6).

The question of practical relevance when studying the stability of the moving mass
is whether adding flexibility (by creating a spring between the mass and the tunnel) may
destabilize the system. For the mass-spring oscillator with the mass being constant, the
D-decomposition curve can be plotted in the complex K plane (i.e., Im(K ) versus Re(K ))
using the mapping rule shown in Eq. (4.6) and is presented in Fig. 4.12. The mass of
the moving oscillator is taken as M = 2 × 104 kg, which is a realistic value for a train
wagon. In order to get the absolute number of unstable roots in the complex K plane
with this mass, we have to connect the stability analysis of the moving oscillator to that
of the single moving mass shown in Fig. 4.11. From that figure, we find that N = 0 for
M = 2×104 kg, which implies that the system is stable for this value of the mass for all
the considered velocity cases. The single mass case corresponds to the oscillator case
with K →∞. Therefore, knowing that the number of unstable roots at K →∞ is zero and
following the direction of the shading, the absolute number of unstable roots in domains
of the complex K plane can be determined.

The following can be observed from the D-decomposition curve in the complex K
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Figure 4.11: Separation of the complex M plane into domains with different number N of unstable roots: (a)
V = 0.90V inst

cr , (b) V = 1.00V inst
cr , (c) V = 1.01V inst

cr , (d) V = 1.02V inst
cr , (e) V = 1.03V inst

cr , (f ) V = 1.04V inst
cr , (g)

V = 1.05V inst
cr , (h) V = 1.06V inst

cr and (i) V = 1.20V inst
cr . These results are related to the base case presented in

Table 4.3, and V inst
cr = 942 m/s. The red dots indicate the crossings (i.e., the critical masses M∗), and N in each

separated domain is shown. PointsΩ→±0 are indicated in (a)-(i), while pointsΩ→±∞ are only indicated in
(a) for visibility reasons.

plane shown in Fig. 4.12. For V = 0.9V inst
cr , the vibration of the moving oscillator is stable

for all values of the stiffness; for V = 1.00V inst
cr , the vibration of the moving oscillator

is destabilized by the added spring when K ∗
1 < K < K ∗

2 and K ∗
3 < K < K ∗

4 (N = 2); for
V = 1.01V inst

cr , that happens when K < K ∗
1 and K ∗

2 < K < K ∗
3 , etc. Using these findings,

it can be readily concluded that for the sub-critical case, the vibration of the oscillator
is stable independently of the oscillator’s stiffness, while for the super-critical cases, the
stability of the oscillator depends on the stiffness of the added spring.
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Figure 4.12: Separation of the complex K plane into domains with different number N of unstable roots: (a)
V = 0.90V inst

cr , (b) V = 1.00V inst
cr , (c) V = 1.01V inst

cr , (d) V = 1.02V inst
cr , (e) V = 1.03V inst

cr , (f ) V = 1.04V inst
cr , (g)

V = 1.05V inst
cr , (h) V = 1.06V inst

cr and (i) V = 1.20V inst
cr . These results are related to the base case presented in

Table 4.3, and V inst
cr = 942 m/s. The red dots indicate the crossings (i.e., the critical masses K∗), and N in each

separated domain is shown. PointsΩ→±∞ are indicated in (a)-(i), while pointsΩ→±0 are only indicated in
(a) for visibility reasons.

4.6. PARAMETRIC STUDY

In Section 4.5.1, we found the critical velocity beyond which instability of the moving
object may occur. As the critical velocity for instability is the most important outcome of
the stability analysis, the effects of the tunnel thickness, the material damping ratios in
the tunnel-soil system, the Lamé parameters of the soil and the burial depth of the tunnel
on the critical velocity are studied here. In addition, the dependency of the critical mass
and stiffness (identified in Section 4.5.2) of the corresponding moving mass and moving
oscillator on velocity is considered; this is only done for full-space cases because of the
computational demand of the calculations for the half-space.
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4.6.1. EFFECT OF THE THICKNESS OF THE TUNNEL
Four different thicknesses of the tunnel are considered, and the corresponding critical
velocities for instability are shown in Table 4.4, where the subscript “B" (also shown in
Tables 4.5–4.8) indicates the parameters of the base case shown in Table 4.3. Table 4.4
shows that the critical velocity for instability decreases as the tunnel thickness decreases.
The reason of this reduction is the reduction of the stiffness of the tunnel. Moreover, we
observe that even for the thinnest tunnel with thickness h = 0.05 m, the critical velocity
for instability is still much higher than the (envisaged) operational velocity of Maglev
trains (V ≈ 125 m/s) and Hyperloop pods (V ≈ 277 m/s).

Table 4.4: Critical velocities for instability for different thicknesses of the tunnel

Thickness of the tunnel (m) h = hB = 0.25 h = 0.20 h = 0.10 h = 0.05

Critical velocity for V inst
cr = 942 V inst

cr = 934 V inst
cr = 887 V inst

cr = 617
instability (m/s)

4.6.2. EFFECT OF THE MATERIAL DAMPING RATIOS IN THE TUNNEL-SOIL

SYSTEM
We consider four different combinations of the material damping ratios of the soil and
tunnel as shown in Table 4.5. It demonstrates that the critical velocity for instability in-
creases as the damping ratio of the tunnel increases and that of soil decreases. Therefore,
we can conclude that the material damping of the tunnel stabilises the vibration of the
moving object, while the material damping ratio of the soil may have a destabilising ef-
fect, which is similar to the finding in Metrikine et al. [2005].

Table 4.5: Critical velocities for instability for different material damping ratios of the soil and tunnel

Damping ratios of ξ1 = ξ1,B = 0.05 ξ1 = ξ1,B ξ1 = ξ1,B ×0.6 ξ1 = ξ1,B ×0.6
the soil and tunnel ξ2 = ξ2,B = 0.02 ξ2 = ξ2,B ×2.0 ξ2 = ξ2,B ξ2 = ξ2,B ×2.0

Critical velocity for V inst
cr = 942 V inst

cr = 967 V inst
cr = 956 V inst

cr = 979
instability (m/s)

4.6.3. EFFECT OF THE LAMÉ PARAMETERS OF THE SOIL
Three sets of the Lamé parameters of the soil are considered, see Table 4.6. It shows that
the critical velocity for instability of the moving object increases as the Lamé parameters
of the soil increase. Thus, the stiffness of the soil has a stabilising effect on the vibration
of the moving object, which is in line with the literature finding [Metrikine et al., 2005].

Table 4.6: Critical velocities for instability for different Lamé parameters of the soil

Lamé parameters of λ1 =λ1,B = 1.731×107 λ1 =λ1,B ×2.0 λ1 =λ1,B ×3.0
the soil (N/m2) µ1 =µ1,B = 1.154×107 µ1 =λ1,B ×2.0 µ1 =λ1,B ×3.0

Critical velocity for V inst
cr = 942 V inst

cr = 1000 V inst
cr = 1027

instability (m/s)
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4.6.4. EFFECT OF THE BURIAL DEPTH OF THE TUNNEL
It is interesting to compare the critical velocity for instability for the full-space and half-
space cases. Table 4.7 shows that Vcr decreases as the depth of embedded tunnel de-
creases. This reduction is probably mostly because the Rayleigh wave, which is slower
than the body waves in the soil, also starts to play a role, although its influence is not
very large.

Table 4.7: Critical velocities for instability for different burial depths of the tunnel

Burial depth of the tunnel H(m) H = HB →∞ H = 15

Critical velocity for instability (m/s) V inst
cr = 942 V inst

cr = 891

4.6.5. DEPENDENCY OF THE CRITICAL MASS AND STIFFNESS ON VELOCITY
In this section, three cases (see Table 4.8) are considered to investigate the dependency
of the critical mass and stiffness of the moving mass and moving oscillator, respectively,
on the velocity in the range of V = (1.00−1.20)V inst

cr . We chose three full-space cases to
investigate the dependency relationship. As observed in Figs. 4.11 and 4.12, there are
many critical masses and stiffnesses for some velocities. For these velocities, we only
consider the smallest critical mass M∗

1 and the largest critical stiffness K ∗
max because we

are interested to find the regions where the vibration of the moving oscillator is stable
(even though V > V inst

cr ). The results are shown in Figs. 4.13 and 4.14. The smallest
critical mass and largest critical stiffness correspond to the zero crossing of Im(Keq) (Fig.
4.9) with largest frequencyΩ.

Table 4.8: Three cases considered in the study of the dependency of the critical mass and stiffness on velocity

Cases Thickness Lamé Damping ratios Burial
of the tunnel parameters of the soil depth of

of the soil and tunnel the tunnel

Case I h = hB λ1 =λ1,B ξ1 = ξ1,B H = HB

(V inst
cr = 942 m/s) µ1 =µ1,B ξ2 = ξ2,B

Case II h = hB λ1 =λ1,B ξ1 = ξ1,B H = HB

(V inst
cr = 967 m/s) µ1 =µ1,B ξ2 = ξ2,B ×2.0

Case III h = hB λ1 =λ1,B ×2.0 ξ1 = ξ1,B H = HB

(V inst
cr = 1000 m/s) µ1 =µ1,B ×2.0 ξ2 = ξ2,B

In Figs. 4.13 and 4.14, the interval of V = (1.00−1.20)V inst
cr is divided into three sub-

intervals: V = (1.00− 1.02)V inst
cr , V = (1.02− 1.04)V inst

cr and V = (1.04− 1.20)V inst
cr . The

reason is that the critical mass and stiffness can decrease and increase dramatically as
the velocity increases, and by distinguishing the three sub-intervals, we clearly show the
trend in each interval. In Fig. 4.13, we observe that the critical mass in all three cases de-
creases as the velocity increases, which is in line with Metrikine and Dieterman [1997].
Fig. 4.13 also shows that the critical mass of the moving object (single-mass case) in case
III is the largest and the one in case I is the smallest when V = V inst

cr , and that the differ-
ence between the three critical masses is very large. However, the critical mass in case III
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becomes the smallest and the one in case I the largest when V = 1.20V inst
cr , and the dif-

ference between the three critical masses becomes much smaller. Fig. 4.14 shows that
the critical stiffness of the oscillator in the three cases increases as the velocity increases,
which is again in line with the literature finding in Metrikine and Popp [1999]. Another
similarity between our result and the literature is that the instability of the moving oscil-
lator occurs when its stiffness is in the order of 106 (kg/s2), which is approximately the
same as the value of the stiffness of springs used for conventional trains. However, the
critical stiffness increases dramatically up to the order of 108 (kg/s2) for our model while
K ∗ stays in the same magnitude as the velocity increases for the model considered in the
literature [Metrikine and Popp, 1999]. Fig. 4.14 also shows that the critical stiffness in
case III is the smallest and the one in case I is the largest when V =V inst

cr , and that the dif-
ference between the three critical stiffnesses is very small. However, when V = 1.20V inst

cr ,
the critical stiffness in case III becomes the largest and the one in case I the smallest, and
the difference between the three critical stiffnesses becomes much larger. Finally, Figs.
4.13 and 4.14 show that the dependency of the critical mass and stiffness on the velocity
is similar in the considered velocity range for the three cases; however, as is clear from
the comparison of cases II and III, the Lamé parameters of the soil have a larger effect on
the curves compared to the damping ratio of the tunnel.
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Figure 4.13: Dependency of the critical mass on velocity: (a) V /V inst
cr = (1.00−1.02), (b) V /V inst

cr = (1.02−1.04)
and (c) V /V inst

cr = (1.04−1.20). The three cases are defined in Table 4.8, and three small intervals are
considered to clearly show the trend in each interval. The region below the line relates to stable vibrations of

the single mass.

In Fig. 4.13 (4.14), the region below (above) the line relates to stable vibrations of the
object. In the region above (below) the line, the object vibration can be either purely un-
stable, or alternately either stable or unstable, which is the case when Im(Keq) has many
zero crossings (see Figs. 4.11 and 4.12). In case I, for velocities V = (1.06−1.20)V inst

cr , the
vibration of the moving mass in the region above the line shown in Fig. 4.13 is always
unstable. It can be verified, however, that for velocities V = (1.00−1.05)V inst

cr , both stable
and unstable sub-regions exist above the lines. For example, for V = V inst

cr , the vibra-
tion of the moving mass is unstable in sub-regions of M∗

1 < M < M∗
2 and M∗

3 < M < M∗
4 ,

but stable in the sub-regions M∗
2 < M < M∗

3 and M > M∗
4 . Related to that, the vibra-

tion of the moving oscillator can be verified to be unstable for V = V inst
cr in the sub-

regions of K ∗
1 < K < K ∗

2 and K ∗
3 < K < K ∗

4 , but stable in the sub-regions K ∗
2 < K < K ∗

3
and K < K ∗

1 . In case II, for velocities V = 1.00V inst
cr and V = 1.02V inst

cr , the number of
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Figure 4.14: Dependency of the critical stiffness on velocity: (a) V /V inst
cr = (1.00−1.02), (b)

V /V inst
cr = (1.02−1.04) and (c) V /V inst

cr = (1.04−1.20). The three cases are defined in Table 4.8, and three small
intervals are considered to clearly show the trend in each interval. The region above the line relates to stable

vibrations of the oscillator.

the critical masses and stiffnesses can be verified to be 2 and 9, respectively; for veloc-
ities V = (1.04− 1.20)V inst

cr , however, the number is 1. In case III, in the velocity range
of V = (1.00−1.08)V inst

cr , the number of the critical masses and stiffnesses varies signif-
icantly and jumps from 1 to 11 and then back to 3; for velocities V = (1.10−1.20)V inst

cr ,
the number is again 1. Clearly, the precise number of sub-regions highly depends on the
stiffness of the soil, and on the damping ratios of soil and shell.

4.7. CONCLUSIONS
In this chapter, stability of the vibration of an object moving through a tunnel embed-
ded in soft soil has been studied. We employed the concept of the equivalent dynamic
stiffness, which reduces the original 2.5D model to an equivalent discrete model, whose
parameters depend on the vibration frequency and the object’s velocity. The frequency-
domain indirect Boundary Element Method was used to obtain the equivalent stiffness
of the tunnel-soil system at the point of contact with the moving object (i.e., the mass-
spring system and the limit case of a single mass). Prior to that, the indirect BEM was val-
idated for specific problems: the response of the system to a stationary harmonic point
load and to a moving non-oscillatory load acting at the invert of a tunnel. Using the
equivalent stiffness, the critical velocity beyond which the instability of the object may
occur was found (it is the same for both the moving mass and the moving oscillator).
The critical velocity for instability is the most important result of the stability analysis.
We found that the critical velocity for instability turns out to be much larger than the
operational velocity of high-speed trains and ultra-high-speed Hyperloop pods, which
implies that the model adopted in this chapter predicts the vibrations of these objects
moving through a tunnel embedded in soft soil to be stable.

For the model of a track founded on top of the elastic half-space, considered for com-
parison, the critical velocity for instability in the presence of damping is just slightly
larger than the critical velocity for resonance of the undamped system (which is equal
to the minimum phase velocity of the system). However, for the current model, the crit-
ical velocity for instability is much larger than the critical velocity for resonance (of the
damped system, strictly speaking, but the influence of the damping on the resonant ve-
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locity is small). For both models, the critical velocity for resonance is slightly smaller
than the velocity of Rayleigh waves, and the fact that the critical velocity for instability is
so much larger in the model with the embedded tunnel is due to the large stiffness of the
tunnel and the radiation damping of the waves excited in the tunnel. Other parameters
affect the instability as well. A parametric study shows that the thickness of the tunnel,
the material damping ratio of the tunnel, the stiffness of the soil and the burial depth
have a stabilising effect, while the damping of the soil may have a slightly destabilizing
effect.

In order to investigate the stability of the moving object in case the velocity exceeds
the identified critical velocity for instability, we employed the D-decomposition method
and found the instability domains in the space of system parameters. For a deep tunnel,
the dependency of the critical mass and stiffness on the velocity was investigated. We
conclude that the higher the velocity, the smaller the mass of the object (single mass
case) should be to ensure its stability. Furthermore, the higher the velocity, the larger the
stiffness of the spring should be when the spring is added (oscillator case). Our findings
regarding the velocity dependency of the critical mass and stiffness are aligned with the
conclusions obtained by Metrikine et al. [Metrikine and Dieterman, 1997; Metrikine and
Popp, 1999] for other models.

The fact that the critical velocity for instability for the current model is much higher
than the operational velocity of contemporary and future vehicles is promising for the
Maglev and Hyperloop transportation systems. Furthermore, the approach presented
in this chapter can be applied to more advanced models with more points of contact
between the moving object and the tunnel, which would resemble reality even better.
Finally, as the dynamic stiffness is very important for the stability analysis for the tunnel-
soil system, a refined model of the tunnel, which can potentially increase the accuracy
of the response at its interior, can be considered in future work.





5
CONCLUSIONS AND

RECOMMENDATIONS

5.1. CONCLUSIONS
Underground tunnels are important infrastructures due to their diverse applications in
civil engineering. The dynamics of underground tunnels subjected to seismic waves or
the passage of high-speed moving trains have been important research topics in recent
decades. Amplifications of displacements and stress concentrations may take place due
to wave scattering and wave interference occurring between the ground surface and sur-
faces of embedded inclusions. The environmental vibrations induced by moving trains
and the vibration stability of moving trains themselves are the main concerns for en-
gineers to assess vibration hindrance of residents and passengers, and to ensure their
safety.

The dynamic response of an elastic half-space with an embedded tunnel subject to
seismic waves is not a new problem. Numerous researchers have dedicated their work to
providing analytical or numerical solutions for this type of problem. The challenges are
as follows: (1) The half-space domain is infinite, and it is often computationally expen-
sive and challenging to satisfy the radiation condition when applying numerical meth-
ods; (2) The boundary surfaces are of two different types, which is difficult to deal with
especially when applying the analytical methods; (3) It can be very difficult to get accu-
rate results due to ill-conditioned matrices.

Regarding the problem of stability of moving trains, the majority of research stud-
ies have employed one-dimensional (1D) or two-dimensional (2D) models of the rail-
way track. Only a limited number of existing works analysed the stability using three-
dimensional (3D) models of the railway track, but the focus was limited to trains moving
on a track situated on the ground surface [Metrikine and Popp, 1999; Metrikine et al.,
2005]. The stability of trains moving through an underground tunnel using a 3D model
has not been analysed yet.

The method of conformal mapping, which utilises complex-variable theory, seemed
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to be a promising analytical method to be used throughout the thesis due to its computa-
tional efficiency and accuracy [Liu and Wang, 2012; Liu et al., 2013]. As the first objective
of this thesis, the method of conformal mapping has been extended to the 3D case, and a
systematic evaluation of its accuracy has been conducted (Chapter 2). It has been shown
that inaccurate results maybe obtained, particularly at high frequencies. This observa-
tion motivated the second objective of this thesis to verify the accuracy of the specific
application of the method of conformal mapping (used throughout the thesis) in which
the waves scattered from the half-space surface are represented by cylindrical waves that
originate from an image source of a priori unknown intensity (Chapter 3). To this end, a
simpler 2D model was considered, involving a cylindrical cavity embedded in an elastic
half-space subject to a harmonic anti-plane shear wave. The performance of the indi-
rect BEM was evaluated too for this model in view of the choice of the appropriate solu-
tion method for the second type of dynamic problem considered in this thesis. For this
second type of dynamic problem, due to the identified inaccuracies at high frequencies
for the 3D problem, the indirect BEM has been utilised to investigate the stability of vi-
brations of an oscillator moving at high speeds through a tunnel embedded in soft soil,
which is the third objective of this thesis (Chapter 4).

As stated above, in Chapter 2, the semi-analytical solution employing the conformal
mapping method for the 3D response of a tunnel embedded in an elastic half-space sub-
ject to seismic waves has been presented. Both the tunnel and soil were modelled as an
elastic continuum. The original physical domain with boundary surfaces of two differ-
ent types was mapped onto an image domain with boundary surfaces of the same type
employing two conformal mapping functions. The total wave field in the soil consists
of incident and reflected plane waves, and directly and secondary scattered cylindrical
waves, while the total wave field in the tunnel only consists of refracted cylindrical waves.
The unknown coefficients of the potentials related to the cylindrical waves were deter-
mined from a system of algebraic equations obtained by projecting the boundary and
continuity conditions onto the set of the circumferential basis functions/modes. The
main findings of the study in Chapter 2 are as follows:

• Excellent agreement between the results obtained by the proposed method and
existing literature results was observed for the validation examples of 2D anti-
plane, 2D plane-strain and 3D cases.

• The systematic evaluation of the method shows that the present method performs
well for the frequency band of seismic waves, as well as across the complete con-
sidered ranges of the stiffness ratio of the tunnel to soil, the embedded depth of
the tunnel, the vertical incident angle and the thickness of the tunnel.

• For high dimensionless frequencies, the condition number of the formulated coef-
ficient matrix K (related to the mentioned algebraic equations) is very high, lead-
ing to inaccurate results. The reason for the inaccuracy probably lies in the fact
that the secondary scattered waves in the soil are represented by cylindrical waves
and not by plane waves, while the latter are most likely more suitable to repre-
sent the responses at the flat ground surface at high frequencies (see conclusions
related to Chapter 3).
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• The proposed method generally works better for the incident P wave case than the
incident S wave case. The reason is that the wavenumbers in the arguments of the
Hankel functions (representing the cylindrical waves in the soil) are small, imply-
ing that the Hankel functions render the columns of matrix K linearly dependent
for the S wave case, which eventually results in an ill-conditioned system of equa-
tions and less accurate responses.

• When Hankel functions are used to represent the cylindrical waves in the tunnel,
the hoop stress may become inaccurate for a moderate tunnel-soil stiffness con-
trast. The reason is that the wavenumbers in the Hankel functions are small in
these cases, which is due to refracted shear waves in the tunnel becoming evanes-
cent in the 3D scenario. These inaccuracies can be perfectly overcome by repre-
senting the cylindrical waves in the tunnel by Bessel functions.

• When varying the incident-wave frequency, the embedded depth of the tunnel and
the incident angle, the results exhibit notable resonances that should be carefully
considered and avoided during tunnel design.

• In view of engineering practice, the tunnel is safer when the surrounding soil is
stiffer (i.e., a smaller stiffness ratio between tunnel and soil), the tunnel is thicker
and the vertical incident angle is larger.

As stated above, in Chapter 3, the response of an elastic half-space with an embedded
cylindrical cavity subject to a plane harmonic SH wave has been examined. Three meth-
ods have been employed: the method of images, the method of conformal mapping and
the indirect BEM. By conducting a comparisons of the three methods for the considered
simple model, we have successfully verified the accuracy of the specific application of
the method of conformal mapping and of the indirect BEM. In the method of conformal
mapping, the secondary scattered waves were represented by cylindrical waves originat-
ing from an image source with an unknown intensity, like in Chapter 2. Conversely, in
the method of images, the intensity is assumed identical to that of the directly scattered
wave. The unknown coefficients associated with the potentials of the cylindrical waves
were determined from the boundary conditions. In parametric studies, the results ob-
tained by the method of images were considered as benchmark solutions against which
the outcomes of the other two methods were evaluated. The main findings of numerical
studies in this chapter are as follows:

• Convergence tests demonstrate that both the method of images and the method
of conformal mapping converge with a small number of circumferential modes;
the indirect BEM converges with a small number of source and receiver points.

• Perfect agreement between the results obtained by the presented methods and
those in the literature was observed.

• The comparison of the three methods shows that the method of images and the
method of conformal mapping exhibit similar convergence behavior, necessitat-
ing almost the same number of circumferential modes. However, the method of
images is proven to be more efficient than the method of conformal mapping in
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terms of computational time. On the other hand, the indirect BEM needs signifi-
cantly longer computational time, making it the least efficient method among the
three.

• The systematic evaluation of the methods shows that both the method of confor-
mal mapping and the indirect BEM perform accurately across the entire ranges
of the dimensionless frequency, the embedded depth of the cavity and the verti-
cal incident angle. This is in contrast to the 3D case (see Chapter 2), where con-
verged results could not be obtained at high frequencies for the method of confor-
mal mapping. The findings suggest that representing the waves scattered from the
free surface by cylindrical waves (originating from an image source of a priori un-
known intensity) in the method of conformal mapping is indeed the cause of the
inaccuracies at high frequency in the 3D problem (Chapter 2). As no inaccuracies
are observed for the current 2D anti-plane shear problem, the inaccuracy for the
3D problem is likely due to the use of cylindrical waves (instead of plane waves)
that are apparently not fully able to capture all wave conversions taking place at
the free surface.

• Further parametric studies reveal the substantial influence of the dimensionless
frequency, the embedded depth of the cavity and the vertical incident angle on
the responses at both the ground surface and the cavity surface. It has been shown
that the system response curves display nearly equally spaced resonances, which
is in line with the resonances observed for the well-known 1D shear layer subject
to bedrock motion [Kramer, 1996]. The system response curves for the 3D case do
not display equally spaced resonances.

• All three methods presented in this study can be effectively utilised in the prelim-
inary design of a cavity embedded in a half-space to evaluate stress distributions
at the cavity and the level of ground vibrations.

As stated above, in Chapter 4, the stability of vibrations of an object moving through
a tunnel embedded in soft soil has been investigated. The soil was modeled as an elas-
tic continuum, while the tunnel was modelled by the Flügge shell. The moving object
was modeled as the mass-spring system and the limit case of a single mass. The concept
of the equivalent dynamic stiffness was employed to reduce the original 2.5D model to
an equivalent discrete model, whose parameters depend on the vibration frequency and
the velocity of the object. The indirect BEM was validated for two illustrative examples
and was used to obtain the equivalent stiffness of the tunnel-soil system at the point of
contact with the moving object. The critical velocity for instability is the most important
result of the stability analysis. By employing the equivalent stiffness, this critical velocity
beyond which the instability of the object may occur was found. The D-decomposition
method was employed to identify the instability domains in the space of system param-
eters when the velocity of the moving object exceeds the identified critical velocity for
instability. The main findings of numerical studies in this chapter are as follows:

• The critical velocity for instability is the same for both the moving mass and the
moving oscillator, and it turns out to be much larger than the operational velocity
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of high-speed trains and ultra-high-speed Hyperloop pods. This observation im-
plies that the model adopted in this chapter predicts the vibrations experienced by
these objects, while moving through a tunnel embedded in soft soil, to be stable.

• The critical velocity for instability was found to be much larger than the critical
velocity for resonance, contrary to the literature finding for the model of a railway
track founded on top of the elastic half-space. For both models (i.e., tunnel em-
bedded in the half-space, and track on top of the half-space), the critical velocity
for resonance is slightly smaller than the velocity of Rayleigh waves, and the fact
that the critical velocity for instability is so much larger in the current model is due
to the large stiffness of the tunnel and the radiation damping of the waves excited
in the tunnel.

• A parametric study demonstrates that the thickness of the tunnel, the material
damping ratio of the tunnel, the stiffness of the soil and the burial depth have a
stabilising effect, while the damping of the soil may have a slightly destabilizing
effect.

• For a deep tunnel, the results reveal that as the velocity increases, the mass of the
object (single mass case) needs to be smaller to maintain stability. Similarly, the
stiffness of the added spring (oscillator case) should be larger as the velocity in-
creases.

5.2. RECOMMENDATIONS
Regarding the application of the method of conformal mapping to solve the first type of
dynamic problem (i.e., dynamic response of an underground tunnel subject to seismic
waves) considered in this thesis, the following recommendations are given for future
work:

• The method of conformal mapping should also be applied to solve 3D wave scat-
tering problems for inclusions embedded in poroelastic medium, layered soil and
a functionally graded half-space.

• It is also recommended to study inclusions of other shapes (e.g., oval, rectangular
or arbitrary) in these media, as the method of conformal mapping is not limited to
cylindrical inclusions.

• To overcome the accuracy problems that originate from waves in the tunnel tran-
sitioning from propagating to evanescent, shell modelling of the tunnel can be
helpful. As an alternative, the tunnel can still be considered as a continuum when
it is modeled by FEM (Finite Element Modeling). This way, a structure inside the
tunnel can also be easily incorporated.

• A challenge that should be taken by future research is to improve the representa-
tion of the wave field scattered from the free surface in order to obtain accurate
results at high frequencies.
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Regarding the second type of dynamic problem considered in this thesis (i.e., vibra-
tion stability of high-speed trains moving through a tunnel embedded in soft soil), the
following recommendations are given for future work:

• The approach presented in this chapter can be extended to more advanced models
with more points of contact between the moving object and the tunnel (i.e., more
advanced models of the moving trains), which would resemble reality even better.

• Another important aspect is to include a detailed track structure placed between
the moving trains and the tunnel. This track could be modeled using FEM.

• Moreover, as the dynamic stiffness is very important for the stability analysis for
the tunnel-soil system, a refined model of the tunnel, which can potentially in-
crease the accuracy of the response at its interior, should be considered in future
work.

• Finally, it is key to include the effect of electromagnetic suspension/levitation on
the vibration stability, which is very relevant for the overall stability behaviour of
Maglev and Hyperloop vehicles and the associated vibration-control strategies.



A
AMPLITUDE RATIOS OF

POTENTIALS OF REFLECTED TO

INCIDENT PLANE WAVES

Amplitude ratios of potentials of reflected waves to incident plane waves in a homoge-
neous half-space without embedded structures can be determined based on the stress-
free boundary conditions at the half-space surface. The result is presented in this ap-
pendix, which is related to Chapter 2.

Case 1: Incident compressional wave (φ(1)
inc). The amplitude ratios (Rφ,φ, Rψ,φ and

Rχ,φ) of the reflected waves (φ(1)
ref, ψ

(1)
ref and χ(1)

ref) to incident wave (φ(1)
inc) are given as fol-

lows:

Rφ,φ =
4kz,Pkz,Sk2 −
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b
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2k2 −k2
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)2 ,

(A.1)

where the first and second subscripts indicate the potentials of the reflected and incident
waves, respectively. It is understood that all the wavenumbers shown in this section are
associated with the soil medium and should have the superscript “(1)". However, this
superscript is omitted for brevity. For example, k = k(1), as defined in Eq. (2.16).

Note that when the axial wavenumber kx equals to zero, a 2D problem is recovered.
Consequently, we have k = ky , kS = kb, and the amplitude ratios shown in Eq. (A.1) are
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reduced to the following expressions:
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Case 2: Incident shear wave (ψ(1)
inc). The amplitude ratios (Rφ,ψ, Rψ,ψ and Rχ,ψ) of the

reflected waves (φ(1)
ref, ψ

(1)
ref and χ(1)

ref) to incident wave (ψ(1)
inc) are given as follows:
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For kx = 0, we obtain the amplitude ratios for the 2D problem (P-SV or plane-strain prob-
lem):

Rφ,ψ =
−4kz,Sky

(
2k2 −k2

S

)
4kz,Pkz,Sk2 +

(
2k2 −k2

S

)2 , Rψ,ψ =
4kz,Pkz,Sk2 −

(
2k2 −k2

S

)2

4kz,Pkz,Sk2 +
(
2k2 −k2

S

)2 , Rχ,ψ = 0. (A.4)

Case 3: Incident shear wave (χ(1)
inc). The amplitude ratios (Rφ,χ, Rψ,χ and Rχ,χ) of the

reflected waves (φ(1)
ref, ψ

(1)
ref and χ(1)

ref) to incident wave (χ(1)
inc) are given as follows:
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For kx = 0, we obtain the amplitude ratios for the 2D problem (SH or anti-plane shear
problem):

Rφ,χ = 0, Rψ,χ = 0, Rχ,χ = 1. (A.6)
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EXPRESSIONS FOR DISPLACEMENTS

AND STRESSES IN TERMS OF

COMPLEX VARIABLES

The components of the displacements and stresses in Cartesian coordinates (y, z, x) ex-
pressed in terms of the complex variables κ and κ̄, to be used in Chapter 2, are as follows,
where the superscript (i = {1,2}) is omitted for brevity (throughout this appendix):
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Employing the transformation relations shown in Eqs. (2.11) and (2.12), the expres-
sions for displacements and stresses in the cylindrical coordinate system (r,θ, x) are de-
rived in terms of the complex variables κ and κ̄:
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eiθ ∂χ

∂κ
−e− iθ ∂χ

∂κ̄

)
, (B.11)

and

σr r =−λk2
xφ− (

λ+µ)
k2

aφ+2µ

(
e2iθ ∂

2φ

∂κ2 +e−2iθ ∂
2φ

∂κ̄2

)

+2iµ

(
e2iθ ∂

2ψ

∂κ2 −e−2iθ ∂
2ψ

∂κ̄2

)
+ iµkx k2

b

kS
χ− 2iµkx

kS

(
e2iθ ∂

2χ

∂κ2 +e−2iθ ∂
2χ

∂κ̄2

)
,

(B.12)

σθθ =−λk2
xφ− (

λ+µ)
k2

aφ−2µ

(
e2iθ ∂

2φ

∂κ2 +e−2iθ ∂
2φ

∂κ̄2

)

−2iµ

(
e2iθ ∂

2ψ

∂κ2 −e−2iθ ∂
2ψ

∂κ̄2

)
+ iµkx k2

b

kS
χ+ 2iµkx

kS

(
e2iθ ∂

2χ

∂κ2 +e−2iθ ∂
2χ

∂κ̄2

)
,

(B.13)

σrθ =2iµ

(
e2iθ ∂

2φ

∂κ2 −e−2iθ ∂
2φ

∂κ̄2

)
−2µ

(
e2iθ ∂

2ψ

∂κ2 +e−2iθ ∂
2ψ

∂κ̄2

)

+ 2µkx

kS

(
e2iθ ∂

2χ

∂κ2 −e−2iθ ∂
2χ

∂κ̄2

)
,

(B.14)
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σr x =−2iµkx

(
eiθ ∂φ

∂κ
+e− iθ ∂φ

∂κ̄

)
+µkx

(
eiθ ∂ψ

∂κ
−e− iθ ∂ψ

∂κ̄

)

+
µ

(
k2

S −2k2
x

)
kS

(
eiθ ∂χ

∂κ
+e− iθ ∂χ

∂κ̄

)
,

(B.15)

σθx =2µkx

(
eiθ ∂φ

∂κ
−e− iθ ∂φ

∂κ̄

)
+ iµkx

(
eiθ ∂ψ

∂κ
+e− iθ ∂ψ

∂κ̄

)

+
iµ

(
k2

S −2k2
x

)
kS

(
eiθ ∂χ

∂κ
−e− iθ ∂χ

∂κ̄

)
.

(B.16)





C
DERIVATIVES OF POTENTIALS

RELATED TO PLANE AND

CYLINDRICAL WAVES

Based on the definition of the complex variable κ = y + i z and its conjugate κ̄ = y − i z
provided in Chapters 2 and 3, we can calculate the derivative of a function f (which
represents a potential associated with plane waves) with respect to the complex variables
by utilising the chain rule :

∂ f

∂κ
= ∂y

∂κ

∂ f

∂y
+ ∂z

∂κ

∂ f

∂z
,
∂ f

∂κ̄
= ∂y

∂κ̄

∂ f

∂y
+ ∂z

∂κ̄

∂ f

∂z
. (C.1)

The recurrence relation of a Hankel function, such as H (2)
n (x) with the argument x, is

expressed as follows:
2n

x
H (2)

n (x) = H (2)
n−1(x)+H (2)

n+1(x). (C.2)

The calculation of the derivative of Hankel functions, which are present in the potentials
associated with cylindrical waves, with respect to the complex variables (κ and κ̄) can
be obtained through the application of the chain rule (see Eq. (C.1)) and the recurrence
relation of Hankel functions (see Eq. (C.2)):

∂

∂κ̄

H (2)
n

(
kS

∣∣κ+ ih
∣∣)(

κ+ ih∣∣κ+ ih
∣∣
)n


= −kS

2
H (2)

n+1

(
kS

∣∣κ+ ih
∣∣)(

κ+ ih∣∣κ+ ih
∣∣
)n (

κ+ ih
)2∣∣κ+ ih

∣∣(κ+ ih
)

= −kS

2
H (2)

n+1

(
kS

∣∣κ+ ih
∣∣)(

κ+ ih∣∣κ+ ih
∣∣
)n+1

,

(C.3)
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∂

∂κ

H (2)
n

(
kS

∣∣κ+ ih
∣∣)(

κ+ ih∣∣κ+ ih
∣∣
)n


= −1

2

1∣∣κ+ ih
∣∣(κ+ ih

) (
κ+ ih∣∣κ+ ih

∣∣
)n

×[
H (2)

n+1

(
kS

∣∣κ+ ih
∣∣)kS

(
y2 + z2 +h2 +2hz

)
−2H (2)

n

(
kS

∣∣κ+ ih
∣∣)n

∣∣κ+ ih
∣∣]

= −1

2

(
κ+ ih

)n−1∣∣κ+ ih
∣∣n+1

[
H (2)

n+1

(
kS

∣∣κ+ ih
∣∣)kS

∣∣κ+ ih
∣∣2 −2H (2)

n

(
kS

∣∣κ+ ih
∣∣)n

∣∣κ+ ih
∣∣]

= −1

2

(
κ+ ih∣∣κ+ ih

∣∣
)n−1 [

H (2)
n+1

(
kS

∣∣κ+ ih
∣∣)kS − 2n∣∣κ+ ih

∣∣ H (2)
n

(
kS

∣∣κ+ ih
∣∣)]

= −1

2

(
κ+ ih∣∣κ+ ih

∣∣
)n−1

×[
H (2)

n+1

(
kS

∣∣κ+ ih
∣∣)kS −kS

[
H (2)

n−1

(
kS

∣∣κ+ ih
∣∣)+H (2)

n+1

(
kS

∣∣κ+ ih
∣∣)]]

= kS

2
H (2)

n−1

(
kS

∣∣κ+ ih
∣∣)(

κ+ ih∣∣κ+ ih
∣∣
)n−1

,

(C.4)

∂

∂κ̄

H (2)
n

(
kS

∣∣κ̄+ ih
∣∣)(

κ̄+ ih∣∣κ̄+ ih
∣∣
)n


= −1

2

1∣∣κ̄+ ih
∣∣(κ̄+ ih

) (
κ̄+ ih∣∣κ̄+ ih

∣∣
)n

×[
H (2)

n+1

(
kS

∣∣κ̄+ ih
∣∣)kS

(
y2 + z2 +h2 −2hz

)
−2H (2)

n

(
kS

∣∣κ̄+ ih
∣∣)n

∣∣κ̄+ ih
∣∣]

= −1

2

(
κ̄+ ih

)n−1∣∣κ̄+ ih
∣∣n+1

[
H (2)

n+1

(
kS

∣∣κ̄+ ih
∣∣)kS

∣∣κ̄+ ih
∣∣2 −2H (2)

n

(
kS

∣∣κ̄+ ih
∣∣)n

∣∣κ̄+ ih
∣∣]

= −1

2

(
κ̄+ ih∣∣κ̄+ ih

∣∣
)n−1 [

H (2)
n+1

(
kS

∣∣κ̄+ ih
∣∣)kS − 2n∣∣κ̄+ ih

∣∣ H (2)
n

(
kS

∣∣κ̄+ ih
∣∣)]

= −1

2

(
κ̄+ ih∣∣κ̄+ ih

∣∣
)n−1

×[
H (2)

n+1

(
kS

∣∣κ̄+ ih
∣∣)kS −kS

[
H (2)

n−1

(
kS

∣∣κ̄+ ih
∣∣)+H (2)

n+1

(
kS

∣∣κ̄+ ih
∣∣)]]

= kS

2
H (2)

n−1

(
kS

∣∣κ̄+ ih
∣∣)(

κ̄+ ih∣∣κ̄+ ih
∣∣
)n−1

,

(C.5)
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∂

∂κ

H (2)
n

(
kS

∣∣κ̄+ ih
∣∣)(

κ̄+ ih∣∣κ̄+ ih
∣∣
)n


= −kS

2
H (2)

n+1

(
kS

∣∣κ̄+ ih
∣∣)(

κ̄+ ih∣∣κ̄+ ih
∣∣
)n (

κ̄+ ih
)2∣∣κ̄+ ih

∣∣(κ̄+ ih
)

= −kS

2
H (2)

n+1

(
kS

∣∣κ̄+ ih
∣∣)(

κ̄+ ih∣∣κ̄+ ih
∣∣
)n+1

.

(C.6)

Note that the second terms in the expressions provided in Eqs. (C.3)-(C.6) were derived
using Maple. These derivative relationships are also hold for Bessel functions.





D
ENTRIES OF k ( j i )

n AND b( j ) IN EQ.
(2.34)

This appendix is related to Chapter 2. Based on the boundary and continuity conditions
(see Eq. (2.9)), substituting potentials of the total wave fields (see Eqs. (2.25) and (2.26))
into the expressions for displacements and stresses in terms of complex variables κ and
κ̄, evaluating the derivative of potentials using Eqs. (C.1) and (C.3)-(C.6), and then re-
placing the complex variables κ and κ̄ in the physical domain by complex variables ζ
and ζ̄ in the image domain (through appropriate mapping functions, see Eqs. (2.29) and
(2.30), and their conjugates), we finally obtain Eq. (2.34), which is a function of com-
plex variables ζ and ζ̄. For the aim of demonstration, this appendix presents the entries

of k( j ,i )
n and b( j ) related to the tenth continuity condition (i.e., j = 10, which relates to

σ(1)
r1θ1

= σ(2)
r1θ1

). For completeness, we also show two terms related to the seventh conti-
nuity condition.

The entries of k(i , j )
n related to the tenth continuity condition are written as follows:

k(10,1)
n =+λ(1)

(
k(1)

x

)2 +
(
λ(1) +µ(1)

)(
k(1)

a

)2
H (2)

n

(
k(1)

a

∣∣X1
∣∣)(

X1∣∣X1
∣∣
)n

−
µ(1)

(
k(1)

a

)2

2
×e2iθH (2)

n−2

(
k(1)

a

∣∣X1
∣∣)(

X1∣∣X1
∣∣
)n−2

+e−2iθH (2)
n+2

(
k(1)

a

∣∣X1
∣∣)(

X1∣∣X1
∣∣
)n+2

 ,

(D.1)
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k(10,2)
n =−

iµ(1)
(
k(1)

b

)2

2
×e2iθH (2)

n−2

(
k(1)

b

∣∣X1
∣∣)(

X1∣∣X1
∣∣
)n−2

−e−2iθH (2)
n+2

(
k(1)

b

∣∣X1
∣∣)(

X1∣∣X1
∣∣
)n+2

 ,

(D.2)

k(10,3)
n =−

iµ(1)k(1)
x

(
k(1)

b

)2

k(1)
S

H (2)
n

(
k(1)

b

∣∣X1
∣∣)(

X1∣∣X1
∣∣
)n

+
iµ(1)k(1)

x

(
k(1)

b

)2

2k(1)
S

×e2iθH (2)
n−2

(
k(1)

b

∣∣X1
∣∣)(

X1∣∣X1
∣∣
)n−2

+e−2iθH (2)
n+2

(
k(1)

b

∣∣X1
∣∣)(

X1∣∣X1
∣∣
)n+2

 ,

(D.3)

k(10,4)
n =+λ(1)

(
k(1)

x

)2 +
(
λ(1) +µ(1)

)(
k(1)

a

)2
H (2)

n

(
k(1)

a

∣∣X2
∣∣)(

X2∣∣X2
∣∣
)n

−
µ(1)

(
k(1)

a

)2

2
×e2iθH (2)

n+2

(
k(1)

a

∣∣X2
∣∣)(

X2∣∣X2
∣∣
)n+2

+e−2iθH (2)
n−2

(
k(1)

a

∣∣X2
∣∣)(

X2∣∣X2
∣∣
)n−2

 ,

(D.4)

k(10,5)
n =−

iµ(1)
(
k(1)

b

)2

2
×e2iθH (2)

n+2

(
k(1)

b

∣∣X2
∣∣)(

X2∣∣X2
∣∣
)n+2

−e−2iθH (2)
n−2

(
k(1)

b

∣∣X2
∣∣)(

X2∣∣X2
∣∣
)n−2

 ,

(D.5)

k(10,6)
n =−

iµ(1)k(1)
x

(
k(1)

b

)2

k(1)
S

H (2)
n

(
k(1)

b

∣∣X2
∣∣)(

X2∣∣X2
∣∣
)n

+
iµ(1)k(1)

x

(
k(1)

b

)2

2k(1)
S

×e2iθH (2)
n+2

(
k(1)

b

∣∣X2
∣∣)(

X2∣∣X2
∣∣
)n+2

+e−2iθH (2)
n−2

(
k(1)

b

∣∣X2
∣∣)(

X2∣∣X2
∣∣
)n−2

 ,

(D.6)

k(10,7)
n =−λ(2)

(
k(2)

x

)2 −
(
λ(2) +µ(2)

)(
k(2)

a

)2
H (2)

n

(
k(2)

a

∣∣X3
∣∣)(

X3∣∣X3
∣∣
)n

+
µ(2)

(
k(2)

a

)2

2
×e2iθH (2)

n−2

(
k(2)

a

∣∣X3
∣∣)(

X3∣∣X3
∣∣
)n−2

+e−2iθH (2)
n+2

(
k(2)

a

∣∣X3
∣∣)(

X3∣∣X3
∣∣
)n+2

 ,

(D.7)
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k(10,8)
n =+

iµ(2)
(
k(2)

b

)2

2
×e2iθH (2)

n−2

(
k(2)

b

∣∣X3
∣∣)(

X3∣∣X3
∣∣
)n−2

−e−2iθH (2)
n+2

(
k(2)

b

∣∣X3
∣∣)(

X3∣∣X3
∣∣
)n+2

 ,

(D.8)

k(10,9)
n =+

iµ(2)k(2)
x

(
k(2)

b

)2

k(2)
S

H (2)
n

(
k(2)

b

∣∣X3
∣∣)(

X3∣∣X3
∣∣
)n

−
iµ(2)k(2)

x

(
k(2)

b

)2

2k(2)
S

×e2iθH (2)
n−2

(
k(2)

b

∣∣X3
∣∣)(

X3∣∣X3
∣∣
)n−2

+e−2iθH (2)
n+2

(
k(2)

b

∣∣X3
∣∣)(

X3∣∣X3
∣∣
)n+2

 ,

(D.9)

k(10,10)
n =−λ(2)

(
k(2)

x

)2 −
(
λ(2) +µ(2)

)(
k(2)

a

)2
H (1)

n

(
k(2)

a

∣∣X3
∣∣)(

X3∣∣X3
∣∣
)n

+
µ(2)

(
k(2)

a

)2

2
×e2iθH (1)

n−2

(
k(2)

a

∣∣X3
∣∣)(

X3∣∣X3
∣∣
)n−2

+e−2iθH (1)
n+2

(
k(2)

a

∣∣X3
∣∣)(

X3∣∣X3
∣∣
)n+2

 ,

(D.10)

k(10,11)
n =+

iµ(2)
(
k(2)

b

)2

2
×e2iθH (1)

n−2

(
k(2)

b

∣∣X3
∣∣)(

X3∣∣X3
∣∣
)n−2

−e−2iθH (1)
n+2

(
k(2)

b

∣∣X3
∣∣)(

X3∣∣X3
∣∣
)n+2

 ,

(D.11)

k(10,12)
n =+

iµ(2)k(2)
x

(
k(2)

b

)2

k(2)
S

H (1)
n

(
k(2)

b

∣∣X3
∣∣)(

X3∣∣X3
∣∣
)n

−
iµ(2)k(2)

x

(
k(2)

b

)2

2k(2)
S

×e2iθH (1)
n−2

(
k(2)

b

∣∣X3
∣∣)(

X3∣∣X3
∣∣
)n−2

+e−2iθH (1)
n+2

(
k(2)

b

∣∣X3
∣∣)(

X3∣∣X3
∣∣
)n+2

 ,

(D.12)

where X1 = w (1)
(
ζ(βo,ϑ+)

)+ i H , X2 = w (1)
(
ζ(βo,ϑ+)

)+ i H and X3 = w (2)
(
ζ(βo,ϑ)

)+
i H = Ro (considering Eq. (2.30)). ϑ+ is a function of ϑ; see Eq. (2.33). The terms of
e+2iθ and e−2iθ in the first six entries (i.e., k(10,1)

n −k(10,6)
n ) and in the last six entries (i.e.,

k(10,7)
n −k(10,12)

n ), respectively are written as functions of variable ϑ in the image domain
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as follows:

e2iθ = e2iϑ+
[

w (1)′(ζ)

|w (1)′(ζ)|

]2

=−
(

eiϑ+ −βo

1−βoeiϑ+

)2

, e−2iθ =−
(

1−βoeiϑ+

eiϑ+ −βo

)2

, (D.13)

e2iθ = e2iϑ, e−2iθ = e−2iϑ. (D.14)

Similarly, the terms of eiθ and e− iθ in the first six entries, for example, in the seventh
continuity condition, (i.e., k(7,1)

n − k(7,6)
n ) and in the last six entries (i.e., k(7,7)

n − k(7,12)
n ),

respectively are written as functions of variable ϑ in the image domain as follows:

eiθ = eiϑ+ w (1)′(ζ)

|w (1)′(ζ)| =

∣∣∣∣∣∣∣∣
(
1−βoeiϑ+

)2

2iG

∣∣∣∣∣∣∣∣
−2iGeiϑ+(

1−βoeiϑ+
)2 ,

e− iθ =

∣∣∣∣∣∣∣∣
(
1−βoeiϑ+

)2

2iG

∣∣∣∣∣∣∣∣
2iGeiϑ+(

eiϑ+ −βo

)2 ,

(D.15)

eiθ = eiϑ, e− iθ = e− iϑ. (D.16)

The entry of b( j ) related to the tenth continuity condition, with the incident P wave
(φ(1)

inc) taken as an example, reads as follows:

b(10) =−λ(1)
(
k(1)

x

)2 −
(
λ(1) +µ(1)

)(
φ(1)

inc +φ(1)
ref

)
+2iµ(1)

e2iθ

− ik(1)
y −k(1)

z,S

2

2

−e−2iθ

− ik(1)
y +k(1)

z,S

2

2
ψ(1)

ref

+2µ(1)

e2iθ

− ik(1)
y +k(1)

z,P

2

2

+e−2iθ

− ik(1)
y −k(1)

z,P

2

2
φ(1)

inc

+2µ(1)

e2iθ

− ik(1)
y −k(1)

z,P

2

2

+e−2iθ

− ik(1)
y +k(1)

z,P

2

2
φ(1)

ref

+
iµ(1)k(1)

x

(
k(1)

b

)2

k(1)
S

χ(1)
ref

−
2iµ(1)k(1)

x

(
k(1)

b

)2

k(1)
S

e2iθ

− ik(1)
y −k(1)

z,S

2

2

+e−2iθ

− ik(1)
y +k(1)

z,S

2

2
χ(1)

ref,

(D.17)
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where the terms of e+2iθ and e−2iθ have the expressions as shown in Eq. (D.13), and

φ(1)
inc =φ0 exp

(
− ik(1)

x x
)
×

exp


− ik(1)

y +k(1)
z,P

2

w (1) (ζ(βo,ϑ+)
)+

− ik(1)
y −k(1)

z,P

2

w (1)
(
ζ(βo,ϑ+)

) ,
(D.18)

φ(1)
ref =Rφ,φφ0 exp

(
− ik(1)

x x
)
×

exp


− ik(1)

y −k(1)
z,P

2

w (1) (ζ(βo,ϑ+)
)+

− ik(1)
y +k(1)

z,P

2

w (1)
(
ζ(βo,ϑ+)

) ,
(D.19)

ψ(1)
ref =Rψ,φφ0 exp

(
− ik(1)

x x
)
×

exp


− ik(1)

y −k(1)
z,S

2

w (1) (ζ(βo,ϑ+)
)+

− ik(1)
y +k(1)

z,S

2

w (1)
(
ζ(βo,ϑ+)

) ,
(D.20)

χ(1)
ref =Rχ,φφ0 exp

(
− ik(1)

x x
)
×

exp


− ik(1)

y −k(1)
z,S

2

w (1) (ζ(βo,ϑ+)
)+

− ik(1)
y +k(1)

z,S

2

w (1)
(
ζ(βo,ϑ+)

) .
(D.21)





E
ENTRIES OF k ( j ,i )

n AND b( j ) IN EQ.
(3.32)

This appendix is related to Chapter 3. By incorporating the boundary conditions (see
Eqs. (3.2) and (3.3)), substituting the total wave field potentials (see Eqs. (3.20)-(3.23))
into the expressions for stresses in terms of complex variables κ and κ̄, evaluating the
derivatives of the potentials using Eqs. (C.1) and (C.3)-(C.6), and subsequently substi-
tuting the complex variables κ and κ̄ in the physical domain with complex variables ζ
and ζ̄ in the image domain (through the utilisation of the conformal mapping function,
see Eq. (3.30), and its conjugate), Eq. (3.32) is ultimately derived as a function of complex
variables ζ and ζ̄.

The entries of k(i , j )
n associated with the stress-free boundary conditions at the free

surface of the half-space and at the cavity surface are expressed as follows:

k(1,1)
n = iµ

kS

2

H (2)
n−1

(
kS

∣∣X1
∣∣)(

X1∣∣X1
∣∣
)n−1

+H (2)
n+1

(
kS

∣∣X1
∣∣)(

X1∣∣X1
∣∣
)n+1

 , (E.1)

k(1,2)
n = iµ

kS

2

−H (2)
n+1

(
kS

∣∣X2
∣∣)(

X2∣∣X2
∣∣
)n+1

−H (2)
n−1

(
kS

∣∣X2
∣∣)(

X2∣∣X2
∣∣
)n−1

 , (E.2)

k(2,1)
n =µkS

2

eiθH (2)
n−1

(
kS

∣∣X1
∣∣)(

X1∣∣X1
∣∣
)n−1

−e− iθH (2)
n+1

(
kS

∣∣X1
∣∣)(

X1∣∣X1
∣∣
)n+1

 , (E.3)

k(2,2)
n =µkS

2

−eiθH (2)
n+1

(
kS

∣∣X2
∣∣)(

X2∣∣X2
∣∣
)n+1

+e− iθH (2)
n−1

(
kS

∣∣X2
∣∣)(

X2∣∣X2
∣∣
)n−1

 , (E.4)

where X1 = w
(
ζ(β,ϑ)

)+ i H and X2 = w
(
ζ(β,ϑ)

)+ i H .
The entries of b(1) and b(2) are related to the stress-free boundary conditions at the

free surface of the half-space and at the cavity surface, respectively. They are given as
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follows:

b(1) =− iµ
(
C11 −C12

)
uinc − iµ

(
C21 −C22

)
uref, (E.5)

b(2) =−µ
(
eiθC11 +e− iθC12

)
uinc −µ

(
eiθC21 +e− iθC22

)
uref, (E.6)

where uinc and uref represent the displacements associated with the incident and re-
flected SH waves, respectively; see Eqs. (3.20) and (3.21). The parameters C11, C12, C21

and C22 are defined below Eq. (3.23).



F
STEADY-STATE RESPONSE OF THE

TUNNEL-SOIL SYSTEM SUBJECT TO

A STATIONARY HARMONIC POINT

LOAD

This appendix is related to Chapter 4. We consider the tunnel-soil system subject to a
stationary harmonic point load for the purpose of validation (Section 4.4). The shear
stresses σr1θ1 and σr1x1 at the inner surface of the tunnel induced by the stationary har-
monic point load are zero. The non-zero normal stressσr1r1 (Ri,θ1, x, t ) can be expressed
in a complex form as

σr1r1

(
Ri,θ1, x, t

)= P0

Ri
δ

(
θ1 +π/2

)
δ (x)exp

(
iΩt

)
, (F.1)

where P0 is the amplitude of the harmonic load, Ω = 2π f0 is the angular frequency, f0

the excitation frequency, and R the radius of the centerline of the tunnel. Expanding the
term δ

(
θ1 +π/2

)
in Eq. (F.1) into a Fourier series (see Eq. (4.10)), the normal stress can

be rewritten as

σr1r1

(
Ri,θ1, x, t

)= n=∞∑
n=−∞

P0

2πRi
exp

(
in

(
θ1 +π/2

))
δ (x)exp

(
iΩt

)
. (F.2)

Applying the Fourier Transform over spatial coordinate x (see Eq. (4.8)) to Eq. (F.2), the
normal stress in the wavenumber domain is obtained:

σ̃r1r1

(
Ri,θ1,kx , t

)= n=∞∑
n=−∞

P0

2πRi
exp

(
in

(
θ1 +π/2

))
exp

(
iΩt

)
= σ̃aux

(
Ri,θ1,kx

)
exp

(
iΩt

)
.

(F.3)
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The response induced by the auxiliary stress σ̃aux
(
Ri,θ1,kx

)
can be computed using the

indirect BEM (Section 4.3) and is denoted as Ũ1,aux
(
r1,θ1,kx

)
. Thereafter, we get the ex-

pression for the actual displacement vector excited by the actual stress σ̃r1r1

(
Ri,θ1,kx , t

)
shown in Eq. (F.3):

Ũ1
(
r1,θ1,kx , t

)= Ũ1,aux
(
r1,θ1,kx

)
exp

(
iΩt

)
. (F.4)

We get the space-time domain response by applying the inverse Fourier Transform
over wavenumber kx (Eq. (4.9)):

U1(r1,θ1, x, t ) = 1

2π

∫ ∞

−∞
Ũ1

(
r1,θ1,kx , t

)
exp

(− ikx x
)

dkx

= 1

2π

∫ ∞

−∞
Ũ1,aux

(
r1,θ1,kx

)
exp

(− ikx x
)

dkx exp
(
iΩt

)
,

(F.5)

where the integral needs to be evaluated numerically. Note that if we take the real part
of the complex-valued excitation in Eq. (F.1), then the corresponding displacement will
be the real part of the complex-valued displacement shown in Eq. (F.5).



G
MATRICES USED FOR THE GREEN’S

FUNCTIONS OF THE FLÜGGE SHELL

This appendix is related to Chapter 4. The components of matrix A in Eq. (4.23) are
written as follows:

A11 = ρh
∂2ū

∂t 2 −K0

−h2

12

(
∂4

∂x4
2

+ 2

R2

∂4

∂x2
2∂θ

2
2

+ 1

R4

∂4

∂θ4
2

)
− 1

R2 − h2

12

(
1

R4 + 2

R4

∂2

∂θ2
2

) ,

A22 = ρh
∂2v̄

∂t 2 −K0

[
1−ν2

2

∂2

∂x2
2

+ 1

R2

∂2

∂θ2
2

+ h2

12

3
(
1−ν2

)
2R2

∂2

∂x2
2

]
,

A33 = ρh
∂2w̄

∂t 2 −K0

[
∂2

∂x2
2

+ 1−ν2

2R2

∂

∂θ2
2

+ h2

12

1−ν2

2R4

∂2

∂θ2
2

]
,

A12 =−A21 =−K0

−1

R2

∂

∂θ2
+ h2

12

(
3−ν2

2R2

∂3

∂x2
2∂θ2

) ,

A13 =−A31 =−K0

−ν2

R

∂

∂x2
+ h2

12

(
1

R

∂3

∂x3
2

− 1−ν2

2R3

∂3

∂x2∂θ
2
2

) ,

A23 = A32 =−K0

[
1+ν2

2R

∂2

∂x2∂θ2

]
,

(G.1)
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where K0 = E2h/(1−ν2
2). The components of the matrix ˜̃An read:

˜̃A11n =−ω2ρh +K0

h2

12

(
k4

x +
2

R2 k2
x n2 + n4

R4

)
+ 1

R2 + h2

12

(
1

R4 − 2n2

R4

) ,

˜̃A22n =−ω2ρh +K0

[
1−ν2

2
k2

x +
n2

R2 + h2

12

3
(
1−ν2

)
2R2 k2

x

]
,

˜̃A33n =−ω2ρh +K0

[
k2

x +
1−ν2

2R2 n2 + h2

12

1−ν2

2R4 n2

]
,

˜̃A12n =− ˜̃A21n = K0

[
1

R2 in + h2

12

3−ν2

2R2

(
ik2

x n
)]

,

˜̃A13n =− ˜̃A31n =−K0

[
ν2

R

(
ikx

)+ h2

12

(
1

R
ik3

x −
1−ν2

2R3 kx n2
)]

,

˜̃A23n = ˜̃A32n =−K0

[
1+ν2

2R
kx n

]
.

(G.2)

Matrices ˜̃Bo
n , ˜̃Bi

n and ˜̃Dn in Eq. (4.26) are given as follows

˜̃Bo
n =


1 h

2R in −h
2 ikx

0 1+ h
2R 0

0 0 1

 , ˜̃Bi
n =


1 −h

2R in h
2 ikx

0 1+ −h
2R 0

0 0 1

 , (G.3)

˜̃Dn =


1 0 0

− h
2R in 1+ h

2R 0

h
2 ikx 0 1

 . (G.4)



H
THE CRITICAL VELOCITY FOR

RESONANCE OF THE TUNNEL-SOIL

SYSTEM AND CONVERGENCE

REQUIREMENTS FOR THE

COMPUTATION OF THE EQUIVALENT

DYNAMIC STIFFNESS

In this appendix which is related to Chapter 4, our first aim is to find the critical velocity
for resonance V res

cr of the current tunnel-soil system. To this end, we analyse the response
of the tunnel-soil system induced by a uniformly moving non-oscillatory ( f0 = Ω

2π = 0)
point load observed at the tunnel invert at x = 0 as derived in Section 4.2.3 (see Eq.
(4.18)). We consider three cases of V = 30 m/s, V = 69 m/s and V = 70 m/s in the
sub-Rayleigh regime (V < CR,1 = 72.29 m/s), one case of V = 75 m/s (CR,1 < V < CS,1 =
77.94 m/s) in the super-Rayleigh regime, and one case of V = 150 m/s in the supersonic
regime (V >CP,1 = 145.8 m/s). A half-space model is considered and the burial depth of
the tunnel is H = 15 m. All other parameter values are taken in accordance with the base
case defined in Table 4.3.

Fig. H.1 (a) shows the amplitude spectra of the radial displacements observed at the
tunnel invert, at the observation point x = 0, for one sub-Rayleigh, one super-Rayleigh
and one supersonic case (the others look similarly). The Fourier transformed displace-
ment, Ũr1 (r1,θ1, x,ω), is defined as the integrand of Eq. (4.18) except for the term exp(iωt ).
It is shown that the spectra are spread around f = 0. The time-domain responses are
shown in Fig. H.1 (b). Clearly, for V = 30 m/s and V = 69 m/s, the disturbance is local-
ized around the moving load, and there is no significant wave radiation in these cases.
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Figure H.1: The radial displacement at the tunnel invert and at the observation point x = 0 when the
tunnel-soil system is subject to a uniformly moving non-oscillatory ( f0 = 0) point load for different velocities

[m/s]: (a) amplitude spectra and (b) time-domain responses.

For V = 70 m/s, a wave pattern emerges, which comes with significant asymmetry of the
profile. For V = 75 m/s and V = 150 m/s, a more clear wave pattern can be observed;
in these two cases, Rayleigh waves, and Rayleigh, shear and compressional waves are
generated, respectively. Furthermore, the response is extreme for V = 70 m/s, which
indicates resonance. Therefore, we conclude that for the current tunnel-soil system,
V res

cr ≈ 70 m/s. Clearly, a constant load moving faster than this critical speed will radi-
ate waves.

As explained in Subsection 4.2.2, the radial displacement at the loading point, excited
by a uniformly moving oscillatory load (i.e., f0 6= 0), is a key element for the stability anal-
ysis (see Eqs. (4.16) and (4.17)). The second aim of this appendix is therefore to find the
requirements that need to be met to get converged steady-state responses. Essentially,
these requirements need to be defined based on U0(Ω,V ) in Eq. (4.16), as that quantity
is used to obtain the equivalent stiffness (Eq. (4.17)). However, the radial displacement
presented in Eq. (4.18), when evaluated at t = 0 (i.e., Ur1 (R,−π

2 ,0,0)), is exactly equal to
U0(Ω,V ). Therefore, the convergence requirements can be found based on the spectra
and time-domain responses computed using Eq. (4.18).

For illustration purposes, we consider the three cases of V = 30 m/s, V = 75 m/s and
V = 150 m/s with a load frequency f0 = 5 Hz shown in Fig. H.2. In this figure, small
frequency and time windows are shown in order to present clear features of the spectra
and time-domain responses. One observes that the amplitude spectra of displacements
become wider compared with the case of f0 = 0 (compare Figs. H.1 (a) and H.2 (a)) and
are spread around f = f0. In the time-domain responses, oscillatory patterns are ob-
served even for the sub-critical case due to the oscillation of the load. In addition, the
Doppler effect is observed in Fig. H.2 (b) [Denisov et al., 1985; Metrikine and Vrouwen-
velder, 2000], which implies that waves are generated at frequencies different from that
of the load; these frequencies are usually found from the intersections of the kinematic
invariant (e.g., line 3 or 4 in Fig. 4.10) and the dispersion curves.
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Figure H.2: The radial displacement at the tunnel invert and at the observation point x = 0 when the
tunnel-soil system is subject to uniformly moving oscillatory ( f0 = 5 Hz) point load for different velocities

[m/s]: (a) amplitude spectra and (b) real part of the time-domain responses.

Based on the amplitude spectra and time-domain responses for different velocities
and loading frequencies, we found the requirements (in terms of ∆ f , f max and (Ns, Nr))
to obtain converged results, and they are shown in Table H.1. Note that N shell = 20 and
N load = 20 were sufficient for all the computed cases.

Table H.1: Requirements for ∆ f , f max and (Ns, Nr) to obtain the converged results for different velocities and
loading frequencies.

Velocity (m/s) Frequency f0 (Hz) ∆ f (Hz) f max (Hz) (Ns, Nr)

V = 30 f0 = (0−40) ∆ f = 0.05 f max = 100 (Ns, Nr) = (20,40)

V = 75 f0 = (0−40) ∆ f = 0.05 f max = 200 (Ns, Nr) = (20,40)

V = 150 f0 = (0−40) ∆ f = 0.05 f max = 300 (Ns, Nr) = (20,40)

V = 1000 f0 = (0−40) ∆ f = 0.02 f max = 2000 (Ns, Nr) = (160,160)

V = 1200 f0 = (0−40) ∆ f = 0.02 f max = 2000 (Ns, Nr) = (160,160)





REFERENCES

A. G. Muntendam-Bos, G. Hoedeman, K. Polychronopoulou, D. Draganov, C. Weemstra,
W. van der Zee, R. R. Bakker, and H. Roest, An overview of induced seismicity in the
netherlands, Netherlands Journal of Geosciences 101, e1 (2022).

C. C. Mow and Y. H. Pao, The diffraction of elastic waves and dynamic stress concentra-
tions (Crane-Russak, New York, 1971).

J. D. Achenbach, Wave propagation in elastic solids (Nord Holland Elsevier, 1973).

K. F. Graff, Wave motion in elastic solids (Ohio State University Press, 1975).

K. Aki and P. G. Richards, Quantitative seismology (University Science Books, 2002).

T. Ariman and G. E. Muleski, A review of the response of buried pipelines under seismic
excitations, Earthquake Engineering & Structural Dynamics 9, 133 (1981).

Y. M. Hashash, J. J. Hook, B. Schmidt, I. John, and C. Yao, Seismic design and analy-
sis of underground structures, Tunnelling and Underground Space Technology 16, 247
(2001).

I. D. Moore and F. Guan, Three-dimensional dynamic response of lined tunnels due to in-
cident seismic waves, Earthquake Engineering and Structural Dynamics 25, 357 (1996).

A. M. Kaynia, C. Madshus, and P. Zackrisson, Ground vibration from high-speed trains:
Prediction and countermeasure, Journal of Geotechnical and Geoenvironmental Engi-
neering 126, 531 (2000).

H. Di, S. Zhou, C. He, X. Zhang, and Z. Luo, Three-dimensional multilayer cylindrical
tunnel model for calculating train-induced dynamic stress in saturated soils, Comput-
ers and Geotechnics 80, 333 (2016).

G. Degrande, D. Clouteau, R. Othman, M. Arnst, H. Chebli, R. Klein, P. Chatterjee, and
B. Janssens, A numerical model for ground-borne vibrations from underground railway
traffic based on a periodic finite element–boundary element formulation, Journal of
Sound and Vibration 293, 645 (2006).

G. G. Denisov, E. K. Kugusheva, and V. V. Novikov, On the problem of the stability of one-
dimensional unbounded elastic systems, Journal of Applied Mathematics and Mechan-
ics 49, 533 (1985).

R. Bogacz, S. Nowakowski, and K. Popp, On the stability of a Timoshenko beam on an
elastic foundation under a moving spring-mass system, Acta Mechanica 61, 117 (1986).

133



H

134 REFERENCES

A. V. Metrikine, Unstable lateral oscillations of an object moving uniformly along an elas-
tic guide as a result of an anomalous Doppler effect, Acoustical Physics 40, 85 (1994).

A. V. Metrikine and H. A. Dieterman, Instability of vibrations of a mass moving uniformly
along an axially compressed beam on a viscoelastic foundation, Journal of Sound and
Vibration 201, 567 (1997).

T. Mazilu, M. Dumitriu, and C. Tudorache, Instability of an oscillator moving along a
Timoshenko beam on viscoelastic foundation, Nonlinear Dynamics 67, 1273 (2012).

V. W. Lee and M. D. Trifunac, Response of tunnels to incident SH-waves, Journal of the
Engineering Mechanics Division 105, 643 (1979).

A. A. Stamos and D. E. Beskos, Dynamic analysis of large 3-D underground structures by
the BEM, Earthquake Engineering and Structural Dynamics 24, 917 (1995).

J. E. Luco and F. C. P. de Barros, Seismic response of a cylindrical shell embedded in a
layered viscoelastic half-space. I: Formulation, Earthquake Engineering and Structural
Dynamics 23, 553 (1994a).

G. D. Manolis and D. E. Beskos, Dynamic response of lined tunnels by an isoparametric
boundary element method, Computer Methods in Applied Mechanics and Engineering
36, 291 (1983).

J. E. Luco and F. C. P. de Barros, Dynamic displacements and stresses in the vicinity of a
cylindrical cavity embedded in a half-space, Earthquake Engineering and Structural
Dynamics 23, 321 (1994b).

F. C. P. de Barros and J. E. Luco, Diffraction of obliquely incident waves by a cylindrical
cavity embedded in a layered viscoelastic half-space, Soil Dynamics and Earthquake
Engineering 12, 159 (1993).

J. E. Luco and F. C. P. de Barros, On the three-dimensional seismic response of a class of
cylindrical inclusions embedded in layered media, in International conference on Soil
Dynamics and Earthquake Engineering (1993) pp. 565–580.

F. C. P. de Barros and J. E. Luco, Seismic response of a cylindrical shell embedded in a
layered viscoelastic half-space. II: Validation and numerical results, Earthquake Engi-
neering and Structural Dynamics 23, 569 (1994).

M. Dravinski and T. K. Mossessian, Scattering of plane harmonic P, SV, and Rayleigh
waves by dipping layers of arbitrary shape, Bulletin of the Seismological Society of
America 77, 212 (1987).

A. A. Stamos and D. E. Beskos, 3-D seismic response analysis of long lined tunnels in half-
space, Soil Dynamics and Earthquake Engineering 15, 111 (1996).

S. W. Liu, S. K. Datta, K. R. Khair, and A. H. Shah, Three dimensional dynamics of pipelines
buried in backfilled trenches due to oblique incidence of body waves, Soil Dynamics and
Earthquake Engineering 10, 182 (1991).



REFERENCES

H

135

A. S. M. Israil and P. K. Banerjee, Two-dimensional transient wave-propagation problems
by time-domain BEM, International Journal of Solids and Structures 26, 851 (1990).

G. D. Hatzigeorgiou and D. E. Beskos, Soil–structure interaction effects on seismic inelastic
analysis of 3-D tunnels, Soil Dynamics and Earthquake Engineering 30, 851 (2010).

H. Alielahi, M. Kamalian, and M. Adampira, Seismic ground amplification by unlined
tunnels subjected to vertically propagating SV and P waves using BEM, Soil Dynamics
and Earthquake Engineering 71, 63 (2015).

H. Alielahi, M. Kamalian, and M. Adampira, A BEM investigation on the influence of un-
derground cavities on the seismic response of canyons, Acta Geotechnica 11, 391 (2016).

M. Panji and B. Ansari, Transient SH-wave scattering by the lined tunnels embedded in an
elastic half-plane, Engineering Analysis with Boundary Elements 84, 220 (2017).

C. Zimmerman and M. Stern, Boundary element solution of 3-D wave scatter problems in
a poroelastic medium, Engineering Analysis with Boundary Elements 12, 223 (1993).

Z. Liu, X. Ju, C. Wu, and J. Liang, Scattering of plane P1 waves and dynamic stress con-
centration by a lined tunnel in a fluid-saturated poroelastic half-space, Tunnelling and
Underground Space Technology 67, 71 (2017).

T. Balendra, D. P. Thambiratnam, C. G. Koh, and S.-L. Lee, Dynamic response of twin
circular tunnels due to incident SH-waves, Earthquake Engineering and Structural Dy-
namics 12, 181 (1984).

S. K. Datta and N. El-Akily, Diffraction of elastic waves by cylindrical cavity in a half-space,
The Journal of the Acoustical Society of America 64, 1692 (1978).

N. El-Akily and S. K. Datta, Response of a circular cylindrical shell to disturbances in a
half-space, Earthquake Engineering and Structural Dynamics 8, 469 (1980).

N. El-Akily and S. K. Datta, Response of a circular cylindrical shell to disturbances in a
half-space - numerical results, Earthquake Engineering and Structural Dynamics 9,
477 (1981).

S. K. Datta and A. H. Shah, Scattering of SH waves by embedded cavities, Wave Motion 4,
265 (1982).

V. W. Lee and G. Zhu, A note on three-dimensional scattering and diffraction by a hemi-
spherical canyon–I: Vertically incident plane P-wave, Soil Dynamics and Earthquake
Engineering 61-62, 197 (2014).

K. C. Wong, S. K. Datta, and A. H. Shah, Three-dimensional motion of buried pipeline. I:
Analysis, Journal of Engineering Mechanics 112, 1319 (1986a).

K. C. Wong, A. H. Shah, and S. K. Datta, Three-dimensional motion of buried pipeline. II:
Numerical results, Journal of Engineering Mechanics 112, 1338 (1986b).



H

136 REFERENCES

H. Cao and V. W. Lee, Scattering and diffraction of plane P waves by circular cylindrical
canyons with variable depth-to-width ratio, Soil Dynamics and Earthquake Engineer-
ing 9, 141 (1990).

V. W. Lee and J. Karl, Diffraction of SV waves by underground, circular, cylindrical cavities,
Soil Dynamics and Earthquake Engineering 11, 445 (1992).

N. Muskhelishvili, Some basic problems of the mathematical theory of elasticity (Nauka,
Moscow, 1966).

D. Liu, B. Gai, and G. Tao, Applications of the method of complex functions to dynamic
stress concentrations, Wave motion 4, 293 (1982).

A. Verruijt, Deformations of an elastic half plane with a circular cavity, International Jour-
nal of Solids and Structures 35, 2795 (1998).

Q. Liu and R. Wang, Dynamic response of twin closely-spaced circular tunnels to harmonic
plane waves in a full space, Tunnelling and Underground Space Technology 32, 212
(2012).

Q. Liu, M. Zhao, and L. Wang, Scattering of plane P, SV or Rayleigh waves by a shallow
lined tunnel in an elastic half space, Soil Dynamics and Earthquake Engineering 49,
52 (2013).

A. R. Kargar, R. Rahmannejad, and M. A. Hajabasi, A semi-analytical elastic solution for
stress field of lined non-circular tunnels at great depth using complex variable method,
International Journal of Solids and structures 51, 1475 (2014).

X. Zhang, Y. Jiang, and S. Sugimoto, Anti-plane dynamic response of a non-circular tunnel
with imperfect interface in anisotropic rock mass, Tunnelling and Underground Space
Technology 87, 134 (2019).

J.-H. Wang, J.-F. Lu, and X.-L. Zhou, Complex variable function method for the scattering
of plane waves by an arbitrary hole in a porous medium, European Journal of Mechan-
ics - A/Solids 28, 582 (2009).

X.-Q. Fang and H.-X. Jin, Dynamic response of a non-circular lined tunnel with visco-
elastic imperfect interface in the saturated poroelastic medium, Computers and
Geotechnics 83, 98 (2017).

Q. Liu, C. Yue, and M. Zhao, Scattering of harmonic P1 and SV waves by a shallow lined
circular tunnel in a poroelastic half-plane, Soil Dynamics and Earthquake Engineering
158, 107306 (2022).

C. Yue and Q. Liu, Complex function method for the scattering of harmonic plane waves by
an arbitrary-shaped cavity in an unsaturated medium, Soil Dynamics and Earthquake
Engineering 173, 108139 (2023a).

C. Yue and Q. Liu, Dynamic response of a shallow lined circular tunnel by incident P1 and
SV waves in an unsaturated half-plane, Tunnelling and Underground Space Technol-
ogy 141, 105364 (2023b).



REFERENCES

H

137

K. Popp, H. Kruse, and I. Kaiser, Vehicle-track dynamics in the mid-frequency range, Ve-
hicle System Dynamics 31, 423 (1999).

J. Varandas, A. Paixão, and E. Fortunato, A study on the dynamic train-track interaction
over cut-fill transitions on buried culverts, Computers & Structures 189, 49 (2017).
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