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Abstract
Obtaining accurate experimental data from Lagrangian tracking and tomographic velocimetry requires an accurate camera 
calibration consistent over multiple views. Established calibration procedures are often challenging to implement when the 
length scale of the measurement volume exceeds that of a typical laboratory experiment. Here, we combine tools developed 
in computer vision and non-linear camera mappings used in experimental fluid mechanics, to successfully calibrate a four-
camera setup that is imaging inside a large tank of dimensions ∼ 10 × 25 × 6 m3 . The calibration procedure uses a planar 
checkerboard that is arbitrarily positioned at unknown locations and orientations. The method can be applied to any number 
of cameras. The parameters of the calibration yields direct estimates of the positions and orientations of the four cameras 
as well as the focal lengths of the lenses. These parameters are used to assess the quality of the calibration. The calibration 
allows us to perform accurate and consistent linear ray-tracing, which we use to triangulate and track fish inside the large 
tank. An open-source implementation of the calibration in Matlab is available.

Graphic abstract
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1  Introduction

New studies in biophysics and fluid mechanics require 
the quantitative imaging of large-scale field experiments. 
Such studies include the large-scale Lagrangian tracking 
of bats and bird flocks (Theriault et al. 2014; Attanasi et al. 
2015), super-large-scale particle image velocimetry meas-
urements using natural snowfall (Toloui et al. 2014) and 
recent advancements in tomographic-PIV (Jux et al. 2018).

Obtaining reliable two- and three-dimensional imag-
ing data in these large-field experiments is challenging 
and requires a camera calibration that is accurate down to 
the smallest physical length scale of interest. Non-linear 
polynomial camera mappings (Soloff et al. 1997; Wie-
neke 2005, 2008) are often used in laboratory experiments 
(Kühn et al. 2010), but their application at length scales 
beyond that of the laboratory is, in practice, limited. First, 
the size of the calibration target is limited, such that it 
only covers a small portion of the measurement. Second, 
the absence of conventional laboratory equipment, provid-
ing access to the measurement volume, does not support 
the accurate spatial positioning of the target, required in 
conventional calibration procedures.

In the present work, we combine the pinhole camera 
model (Tsai 1987) with non-linear polynomial camera 
mappings used in experimental fluid mechanics (Soloff 
et al. 1997) to perform a multiple camera calibration over 
a large-scale measurement volume inside the tank of the 
aquarium located in the Rotterdam zoo. Our method inte-
grates the use of the pinhole camera model with a non-
linear camera mapping to correct for optical distortion 
across refractive interfaces (Belden 2013). Our approach 
uses the framework of projective geometry in computer 
vision (Hartley and Zisserman 2004) and apply advanced 
self-calibration techniques (Svoboda et al. 2005; Shen 
et al. 2008).

Here we apply the planar checkerboard calibration tech-
nique by Zhang (2000), see also Zhang (1998, 1999), Sturm 
and Maybank (1999), Menudet et al. (2008) and Bouguet 
(2015). This approach eliminates the need to accurately 
position the calibration target, as required in conventional 
calibration procedures. Instead, the checkerboard calibra-
tion target is moved to arbitrary and unknown positions and 
orientations, here with the help of a team of divers. Second, 
by sequentially acquiring multiple calibration images while 
freely moving the calibration target, we achieve a camera 
calibration that spans over length scales much larger than 
the calibration target itself. This approach yields an accurate 
calibration over the measurement volume with a characteris-
tic length scale on the order of several tens of meters.

We process the camera calibration in steps (Heikkilä 
and Silvén 1997). First, we correct for optical distortions 

(Fryer and Brown 1986) by rectifying the curved lines 
of the checkerboard images (Prescott and McLean 1997; 
Devernay and Faugeras 2001). Second, we perform a cali-
bration based on a single view for each camera following 
(Zhang 2000). Finally, we combine the single views and 
find the positions and orientations of the cameras over 
multiple views (Geiger et al. 2012) and optimize the cali-
bration for spatial accuracy and consistency between the 
different views.

The camera calibration yields accurate results. To assess 
the validity of the camera calibration, we compare the esti-
mated effective focal length obtained from it against the 
true value of the focal length of the lenses. We quantify the 
spatial accuracy of the camera calibration, by computing 
the skewness of optical rays associated with the multiple 
views. Our calibration allows us to use linear ray-tracing 
(Hedrick 2008) to track and triangulate multiple fish swim-
ming over the entire visual depth of the tank. The method is 
versatile and can be implemented in field experiments over 
large length scales and for measurement volumes that are 
challenging to access experimentally.

2 � Camera setup and calibration procedure

We image inside the large tank of the aquarium in the 
Rotterdam zoo in a measurement volume of dimensions 
∼ 10 × 25 × 6 m3 (Fig.  1). We use four 5.5 megapixel 
sCMOS cameras with wide-angle lenses of focal length 
flens = 24 mm (Nikkor AF-24 mm ) that cause significant 
variations in magnification over the large depth-of-field of 
DOF ≈ 25 m (Adrian and Westerweel 2011).

The camera setup is positioned behind an acrylic window 
of thickness ∼ 50 cm . Optical distortions in the image plane 
are due to refraction at the water ( nwater = 1.363 ) /acrylic 
( nacryl = 1.51 ) and the acrylic/air ( nair = 1.0003 ) interfaces 
(Sedlazeck and Koch 2012), where n is the refractive index. 
The optical access is limited to the acrylic window, which 
constrains the spacing between the cameras to �H ≈ 1 m in 
height and �W ≈ 6 m in width, and limits the relative angles 
between the cameras from 5◦ to 20◦ (Fig. 1).

To calibrate the camera setup we image a planar checker-
board calibration target of dimensions 1.5 × 1.8 m2 with 5 × 6 
tiles (Geiger et al. 2012) that are of area Atile = 30 × 30 cm2 . 
This calibration target is moved within the aquarium by a 
team of divers that swim with the checkerboard under arbi-
trary and unknown positions and orientations throughout 
the aquarium.

2.1 � Image processing

The different images of the calibration target are processed 
to identify the curves and the nodes corresponding to the 
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gridlines and intersections between the tiles of the check-
erboard (Fig. 2). In our application, using a checkerboard 
calibration target is advantageous over using a pattern of 
dots. This is because the image gradient obtained from 
a checkerboard determines grid points more accurately 
and more robustly over the large depth-of-field of our 
experiment.

The calibration images are converted to the image gradi-
ent using a Savitsky–Golay image differentiation approach 
(Meer and Weiss 1992) to mark locations on the gridlines 
between the tiles. For each image, we then fit a set of 
polynomial curves �i(t) to the I = 9 gridlines between the 
tiles of the checkerboards using the local intensity values 
from the image gradient. These fitting curves are written 
as �i(t) =

∑
k �

k
i
tk−1 , where �k

i
 are two-dimensional vectors. 

Here the parameter t varies within the interval t ∈ [0, 1] over 
the checkerboard image, such that �i(t = 0) and �i(t = 1) cor-
respond to the beginning and end-points of the gridline of 
the checkerboard image, see the lines on Fig. 2. At last, we 
find the J = 20 intersections between all the gridlines as 
a set of nodes �j in the image plane of each camera. Here 
�j = [xj yj]

T with (∙)T the vector transpose, where the num-
bering j = 1⋯ J is consistent between the different camera 
views (Geiger et al. 2012) (Fig. 2).

2.2 � Distortion correction

Following the path of an optical ray for a single camera in 
Fig. 2, the linear path is refracted across the air/water inter-
face (Belden 2013). This causes optical distortions in the 
image plane for each camera and, therefore, we rectify the 
image plane by dewarping the optical distortion. The coor-
dinates � = [x y]T in the image plane are mapped to distor-
tion-corrected image coordinates �̂ = [x̂ ŷ]T by determining 
a distortion mapping �̂ = m(�) . This mapping ensures that 
collinear points in the object domain are projected as col-
linear points in the dewarped image plane and, therefore, 
supports linear ray tracing. For moderate optical distortions, 
a polynomial distortion map (Soloff et al. 1997) is sufficient. 
In this study, we write the distortion map as

The distortion map is determined by rectifying the curved 
gridlines in the N original calibration images. We follow 
Devernay and Faugeras (2001) and minimize the percentage 
of deflection along the gridlines. We consider the nodes �n

j
 

(1)
�̂ = � +

∑
k

�k𝜙
k
(�) = � + �1x

2
+ �2xy + �3y

2

+ �4x
3
+ �4x

2y + �5xy
2
+ �6y

3.

Fig. 1   The four-camera setup at the Rotterdam zoo. a Schematic rep-
resentation of the large measurement volume of ∼ 10 × 25 × 6 m3 
along the DOF ≈ 25 m , including the flat checkerboard of dimen-
sions 1.5 × 1.8 m2 that is positioned by a team of divers. b Optical 

access through the large window spanning 2 × 8 m2 including the 
camera setup at relative spacing of �H ≈ 1 m by �W ≈ 6 m . c An 
example of calibration images acquired while positioning the check-
erboard
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along a particular gridline �n
i
(t) and their images �̂n

j
 and 𝛾̂n

i
(t) 

in the dewarped image plane through the map m(�) . We fit 
a straight line �̂n

i
 through the nodes �̂n

j
 and compute the 

point-line distance d(�̂n
j
, �̂n

i
) . The parameters �k defining the 

distortion map are then determined by solving a minimiza-
tion problem over all gridlines in all calibration images:

This minimization problem can be solved efficiently using 
a steepest descend algorithm and numeric integration tech-
niques described in Boyd and Vandenberghe (2004). This 
approach directly extends to larger optical distortions requir-
ing more elaborate distortion models (see Appendix A for 
the air/water interface and Supplementary-Fig. 8). An exam-
ple of a dewarped image can be found in Fig. 2.

(2)
min
�k

∑
i,n

∑

nodesj

along𝛾̂i

d(�̂n
j
, �̂n

i
)
2

‖‖‖𝛾̂ni (1) − 𝛾̂n
i
(0)

‖‖‖
2
.

2.3 � Camera calibration and projective geometry

We consider a physical point in the object domain � of 
coordinates � = [X Y Z]T in a world coordinate system and 
its projected image �̂ = [x̂ ŷ]T in the dewarped image plane 
of a single camera. The calibration is defined by the map-
ping function F, such that �̂ = F(�) . Our method uses the 
framework of projective geometry to express the mapping 
function F and implicitly assumes a pinhole camera model. 
In the following, we outline the main notations used in pro-
jective geometry; a more complete introduction can be found 
in Hartley and Zisserman (2004).

We make use of augmented vectors to represent points in 
both the image plane and in the object domain. The coordi-
nates in the dewarped image plane �̂ are augmented to the 
ray-tracing vector �̃ such that �̃ = [kx̂ kŷ k]T , where k is a 
scaling parameter in the direction of the principal optical 
axis. The associated inverse function that projects �̃ back to 
�̂ is defined as the projection p(�̃) = [x̃ ỹ]T∕k = �̂ . Similarly, 
the world coordinates � are augmented to a homogeneous 
vector as �̃ = [X Y Z 1]T (Hartley and Zisserman 2004). 
Using augmented vectors a geometric transformation, con-
sisting of a rotation and a translation, is simply written as 
a matrix multiplication [R �]�̃ , where R is a rotation matrix 
and � is a translation vector.

With these notations, the mapping function can be writ-
ten in the following form that is widely used in projective 
geometry:  (Hartley and Zisserman 2004):

Here K is the 3 × 3 camera calibration matrix and [R �] is a 
3 × 4 matrix, with R the 3 × 3 rotation matrix, and � the 3 × 1 
translation vector. The matrix K in Eq. 3 has the following 
form:

where �x = frx and �y = fry are scale factors, with f the focal 
length of the lens in mm and rx and ry the pixel pitch of the 
sCMOS sensor in (px∕mm) . s is the pixel skew, characteriz-
ing the angle between the x and the y pixel axes, and [px py]T 
are the coordinates of the principal point at the intersec-
tion between the optical axis and the dewarped image plane 
(Hartley and Zisserman 2004). The elements of K are often 
referred to as the intrinsic camera parameters, representing 
the characteristic properties of the camera itself (Hartley and 
Zisserman 2004), while [R �] are referred to as the extrin-
sic parameters representing the position of the camera with 
respect to the world coordinate system (Fig. 2).

Together, K, R, � define the mapping function F of Eq. 3 
and have to be determined for each of the cameras separately. 

(3)�̂ = F(�) = p(K[R �]�̃).

(4)K =

⎡⎢⎢⎣

�x s px
0 �y py
0 0 1

⎤⎥⎥⎦
,

(c)

X

Z

Y

X
Y

(d)

j

i

o

o

x

y
k

~

~
α

γ

β

(b)(a)

x

y

x

ŷ

^

Xc

Fig. 2   Image processing and the geometry of the optical path. a Pro-
cessed calibration image with the identified gridlines fitted as second-
order polynomial curves (green lines) and the nodes at the gridline 
intersections (red squares). The gridlines are numbered from i = 1 to 
9 and the nodes from j = 1 to 20. b The dewarped calibration image 
corresponding to a in which the gridlines are rectified for minor opti-
cal distortion using the mapping of Eq. 1. Supplementary-Fig. 8 pro-
vides an example of dewarping for severe optical distortion. c The 
geometry of the optical path where the optical rays are refracted 
across the air/water interface (neglecting the acrylic window for sim-
plicity) and the positioning of the (virtual-)camera coordinate system 
[x̃ ỹ k]T with the origin at the  camera center �c in world coordinate 
system [X Y Z]T . d The local coordinate system [Xo Yo

]
T attached to 

the plane of the checkerboard. The indexing i corresponds to the grid-
lines and j to the locations of the nodes
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In the following, we use the superscript c = 1⋯ 4 and the 
notations Kc , Rc and �c , when we distinguish explicitly 
between the different cameras. We omit the superscript for 
clarity when no distinction between the cameras is needed; 
the details of the algorithms can be found in Appendices.

2.4 � Single‑camera calibration

First, the camera matrix K is determined for each of the four 
separate cameras by calibrating a single camera using the 
method developed by Zhang (2000). We consider a local 
coordinate system �o

= [Xo Yo Zo
]
T attached to the planar 

checkerboard in the object domain, where Zo
= 0 corre-

sponds to the plane of the checkerboard. In this coordinate 
system, the J nodes at the intersections between the gridlines 
have known coordinates �o

j
= [Xo

j
Yo
j
0]T . The nodes �o

j
 are 

mapped to their images �̂n
j
 following the formalism used in 

Eq. 3. This transformation can be written as p(K[Rn �n]�̃)o
j
 , 

where the rotation matrix Rn and translation vector �n char-
acterize the position of the checkerboard in the object 
domain. Geometrically, this corresponds to a rotation and 
translation of the checkerboard plane in the object domain, 
followed by a projection on the image plane. The camera 
calibration matrix K and the positioning of the checkerboard, 
characterized by Rn and �n , are determined following Zhang 
(2000) and are refined by minimizing the following 
functional:

2.5 � Multiple‑camera calibration

To complete the calibration over the multiple cameras, we 
determine the rotation Rc and the translation �c representing 
the position of each of the cameras in the world coordinate 
system. Rc and �c correspond to the extrinsic camera param-
eters described in Sect. 2.3 and a first estimate is deduced 
directly from the calibration of single cameras performed in 
the previous step. Selecting two different calibrated cameras, 
we use the Kabsch algorithm (Kabsch 1976) to estimate the 
relative positions of the two cameras by comparing the posi-
tions of the checkerboards, Rn,c and �n,c , for these two views. 
Considering all camera pairs, we determine the relative posi-
tions between all the views and deduce a first estimate for 
Rc and �c ; see Appendix B for detail. Next, for each of the 
N calibration images, we estimate position Rn and �n of the 
checkerboard in the world coordinate system. We do this by 
averaging the position estimates Rn,c and �n,c obtained from 
the four separate single-camera calibrations.

In the last step, we compute the final values for Kc , Rc and 
�c by minimizing the reprojection errors from all cameras 

(5)min
K,Rn,�n

∑
j,n

‖‖‖�̂
n
j
− p(K[Rn �n]�̃o

j
)
‖‖‖
2

.

and calibration images. For this optimization step, we use as 
initial conditions, the camera matrices Kc obtained from 
Sect. 2.4, the positions Rc and �c obtained from the Kabsch 
algorithm and the estimates of the checkerboard positions 
Rn and �n . We define the reprojection error �n,c

j
 for each of 

the N calibration images and in each camera view as

The reprojection error �n,c
j

 is normalized by Â
n,c

j
 , which 

is the area in pixels of a single tile on the checkerboard pro-
jection in the dewarped image plane (see Appendix C). 
Hence, �n,c

j
 provides a measure of the error relative to the 

size of the checkerboard. This error is relatively independent 
of the location of the calibration target within the large depth 
of field and the positions of the cameras and, therefore, inde-
pendent of the apparent size of the checkerboard in the 
image plane. The final parameters for the calibration func-
tion F for each view are obtained from the minimization of 
the following summation:

The resulting camera calibration is shown in Fig. 3.

3 � Assessment of the calibration method

In the following, we evaluate the performance of the cali-
bration. First, we report the extrinsic and intrinsic camera 
parameters from Table 1 and discuss their physical interpre-
tation. Second, we assess the robustness and convergence of 
the method as a function of the number of calibration images 
used. Third, we study the spatial accuracy of the calibration 
and identify the sources of error.

3.1 � Intrinsic and extrinsic camera parameters

First, we consider the numerical values of the extrinsic camera 
parameters obtained from a calibration, see Table 1. As dis-
cussed in Sect. 2.3, these parameters characterize the spatial 
position and orientation of each camera. The reconstructed 
positions of the cameras are in agreement with the experi-
mental setup, with cameras 4 and 1 positioned above cam-
eras 3 and 2, and cameras 4 and 3 positioned on the left-hand 
side while cameras 1 and 2 are located on the right-hand side 
(as shown in Fig. 1), see Table 1. Furthermore, the relative 
distances between cameras are also in agreement with the 
experimental scene as we find the horizontal distance between 
cameras �W ≈ 5.6 m and a vertical distance between cameras 

(6)𝜀
n,c

j
=

1√
Â

n,c

j

‖‖‖‖‖
�̂
n,c

j
− p

(
Kc

[Rc �c]

[
Rn �n

�T 1

]
�̃o

j

)‖‖‖‖‖
.

(7)min
Kc,Rc,�c,Rn,�n

∑
c

∑
j,n

(
�
n,c

j

)2

.
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�H ≈ 1.2 m , as deduced from Table 1. Likewise, the recon-
structed camera orientations are consistent with the cameras 
on the right-hand side oriented with a positive angle � , while 
the cameras on the left-hand side are oriented with a compa-
rable negative angle �.

In addition to reconstructing the position of the camera, 
the calibration procedure reconstructs the intrinsic camera 
properties, which we compare to the specification of the 
instrumentation. The coefficients of the camera calibration 
matrix K of Eq. 4 are provided for each camera in Table 1. 
We focus on the values of the focal length of the lenses and 
deduce an effective focal length feff directly from the coef-
ficients as

where r is the resolution of the camera sensor in px/mm , 
which is known from the camera specifications, J̃ represents 
a correction factor for the image expansion due to optical 

(8)feff =

√
𝛼x𝛼yJ̃ñ

2

r2
,

distortion (see Appendix D) and ñ = nair∕nwater corrects for 
the magnification due to refraction at the air/water interface. 
Our calibration yields values for the effective focal length of 
the four cameras of feff = 23.73 ± 0.82 mm . This reconstruc-
tion of the focal length lies within 1–2 % of the actual focal 
length flens = 24 mm of the lenses that were used. Hence, we 
find that both the extrinsic and intrinsic camera parameters 
deduced from our calibration procedure are in agreement 
with the dimensions and characteristics of our experimental 
setup.

3.2 � Convergence and robustness

The camera calibration is obtained by minimizing the sum 
of the squared reprojection errors �n,c

j
 over all four cameras, 

all N calibration images and all nodes on the checkerboard, 
see Eq. 7. The camera calibration converges to low values 
for �n,c

j
 see Table 1. Here, the average normalized reprojec-

tion error is on the order of �n,c
j

∼ 2% of the size of a check-
erboard tile, which corresponds to an error of less than 1 cm.

The camera calibration requires a minimum of two non-
coplanar checkerboard images (Zhang 2000). Increasing 
the number of calibration images increases the sampling 

Fig. 3   The resulting camera calibration. a The calibrated views that 
include physical scales on a reference plane at k = 1 m in the depth 
of field for each view. b Three-dimensional reconstruction of a ran-
dom selection of checkerboards used for the calibration, in yellow 
the reconstructed (virtual) cameras in front of the acrylic window of 
Fig. 1

Table 1   Numerical values of the calibration parameters

From top to bottom: the expansions factor of the distortion map-
ping J̃ , the intrinsic camera properties from the matrix K, the extrin-
sic camera positions X, Y  and Z and orientations in pitch–yaw–roll 
angles � , � and � (Figs. 1, 2). The effective focal lengths feff deduced 
from K with Eq.  8, the reprojection errors �n,c

j
 in percentage and 

equivalent pixel-dimensions (∙)∗ , and the total number of calibration 
images N used for each camera

Camera 1 2 3 4

J̃ (−) 0.97 0.98 0.93 0.96
�x (px) 5166.3 5245.8 4982.9 5116.0
�y (px) 5056.3 5240.5 4941.3 5050.2
s (px) − 48.5 − 63.5 − 189.4 − 249.5
px (px) 1888.8 1655.0 1419.6 1237.0
py (px) 1488.0 980.0 1530.5 1552.8
Xc

(m) 2.873 2.878 − 2.872 − 2.87848
Yc

(m) 0.617 − 0.616 − 0.658 0.657
Zc

(m) 0.010 − 0.010 0.009 − 0.009
� (

◦
) 9.02 14.00 − 13.04 − 11.51

� (
◦
) − 5.18 − 3.93 2.56 − 5.19

� (
◦
) − 2.45 − 0.81 − 2.29 0.76

feff (mm) 23.91 24.66 22.67 23.68
�
n,c

j
% 1.84 1.85 2.08 1.95

±1.57 ±1.64 ±1.72 ±1.54

(�
n,c

j
)
∗

(px) 1.63 1.72 1.85 1.84
±1.49 ±1.62 ±1.59 ±1.60

N (#) 176 153 197 186
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of the measurement volume and, therefore, improves the 
reliability of the calibration. We further characterize the 
performance of the method as a function of the number of 
calibration images used, by randomly selecting different 
subsets of checkerboard images.

We first consider the effective focal length feff of Eq. 8 
deduced from the matrix K to characterize the quality of 
the position in space of the checkerboards and the cam-
eras. In Fig. 4, we select different subsets of calibration 
images ranging from N = 2 to N = 50 images and com-
pute feff from the associated calibration. Figure 4a rep-
resents the ratio between feff and flens as a function of N. 
With a low number of N = 2 to 10 calibration images, 
the ratio feff∕flens is far from one and the focal length is 
under- and over-estimated by 50% , indicating an unreli-
able calibration. Increasing the number of calibration 
images to N = 15 shows that the estimated focal length feff 
approaches flens and represents a clear improvement of the 
calibration. Further increasing N beyond N = 15 , the ratio 
feff∕flens does not significantly converge further (Fig. 4a).

Second, we consider the reprojection errors �n,c
j

 in 
Fig.  4b. For a low number of N = 2 to 10 calibration 
images, the average reprojection error is as high as 
�
n,c

j
∼ 50 to 60 % . Increasing the number of calibration 

images from N = 15 to 50 shows an additional decrease of 
the normalized reprojection error from �n,c

j
∼ 5 to 2 % 

(Fig. 4b) and inset. This shows that 15 calibration images 
are sufficient to achieve a valid calibration. Further 

increasing the number of calibration images improves the 
convergence for the camera calibration while the ratio 
feff∕flens remains at a value close to 1.

3.3 � Spatial accuracy of the camera calibration

By inverting the camera matrix K, one can directly associate 
an optical ray in the object domain to a point in the dewarped 
image plane. For an ideal calibration, the four optical rays 
associated with the images of the same point on each of the 
four cameras should intersect at a unique location in the 
object domain. In practice, the four optical rays are skew 
lines and do not intersect at a single point. Here, we char-
acterize the spatial accuracy of our camera calibration by 
estimating the skewness among the four optical rays.

For this, we use the nodes identified at gridline intersec-
tions on the N calibration images. We proceed by evaluating 
the four optical rays associated with each node of each cali-
bration image. We then triangulate the location of each node 
by finding the point �n

j
 in the object domain that minimizes 

the sum of the squared distances from the point to the four 
optical rays. We report for each node the skewness sn

j
 as the 

average distance from the triangulated location �n
j
 to the four 

optical rays (see Appendix E for more detail).
The calibration images were acquired over the entire 

depth of the tank and used to characterize the spatial accu-
racy, by reporting the skewness as a function of the position 
along the Z-axis of the world coordinate system (Fig. 5a). 
We find the skewness to be mostly uniform over the large 
depth of the measurement volume Z = 5 − 25 m . Our cali-
bration yields a high spatial accuracy characterized by an 
average skewness of less than 1 cm . Only a slight increase 
in the skewness can be observed towards the back of the 
aquarium although the average skewness still remains below 
1 cm . This small increase is due to the decrease in spatial 
resolution and the decrease in angles between the optical 
path from the different views.

The variation in skewness over the height and width of 
the tank are represented in Fig. 5b, c. Figure 5b is a map 
of the skewness in a XY-plane at the front of the aquarium, 
while Fig. 5c provides a similar map at the back of the 
aquarium. Both are qualitatively similar and the skewness 
remains small over the depth of the tank. For reference, 
Fig. 5d, e shows the sampling density, which indicates the 
number of checkerboard images that were used at a location 
to compute the calibration. It is noteworthy that the center of 
the tank was better sampled than the sides and the bottom. 
We find that the skewness, and hence the spatial accuracy, 
is relatively constant over a large part of the measurement 
volume, but increases towards the edges of the tank. This is 
likely a result of the lower sampling away from the camera 
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Fig. 4   Quality assessment of the camera calibration procedure for dif-
ferent subsets of randomly selected calibration images. a The ratio 
in estimated focal length and the true focal length of the used lenses 
feff∕flens as function of the number of calibration images N. Different 
symbols and colors indicate different selections of images. b Aver-
aged reprojection errors �n,c

j
 for each camera as a function of N. The 

error bars indicate the standard deviation of the error per camera
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center, as well as unresolved optical distortions at the edges 
of the image plane.

4 � Application to field experiments

We demonstrate the effectiveness of the calibration method 
by performing three-dimensional measurements in the large 
aquarium at the Rotterdam Zoo. We begin by focusing on 
an element which is easily identifiable on each camera view 
and show that we can accurately triangulate the position. We 
end our validation by tracking the three-dimensional posi-
tion of fish of various sizes that are freely swimming over 
the depth of the tank.

Large predatory fish in the aquarium, such as sharks, 
swim through the entire aquarium. They provide a good 

target to evaluate the robustness of the camera calibration 
as their sharply tipped fins provide easily recognizable and 
well-defined features. Figure 6 shows how accurately such 
features can be triangulated with our calibration method. 
We first identify the vertex of the right-hand side pectoral 
fin of a shark on each camera view. Similar to Sect. 3.3, 
we directly associate the vertices, identified on each of the 
four images, with four optical rays in the object domain. We 
triangulate the position of the vertex and find a skewness 
of only 0.35 cm , which demonstrates the accuracy of the 
method. This small skewness is illustrated in Fig. 6, where, 
for each camera view, the optical rays associated with the 
other camera views are projected on the image plane onto 
the epipolar lines (Hartley and Zisserman 2004). The epipo-
lar lines intersect nearly perfectly at the identified vertex of 
the shark fin. The inset in Fig. 6 presents a closeup view 
from which one can infer the reprojection error from the 
slight skew between the optical rays. This associated repro-
jection error is of only 1.11 px.

Further, we demonstrate that our calibration supports the 
tracking of several fish simultaneously over large distances 
by tracking a small group of six tuna fish (Fig. 7). By trian-
gulation, we reconstruct the three-dimensional time-resolved 
position of the group (Fig. 7b). Using an in-house automated 
tracking code, we track the group of six individual fish (tuna) 
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Fig. 5   Spatial accuracy of the camera calibration. a The aver-
age back-projection error in cm over the depth of the tank Z. b The 
back-projection error over the width and height of the measurement 
volume at the front of the tank from Z = 4 to Z = 17 m . c The back-
projection error at the back of the tank from Z = 17 to Z = 24 m . d, e 
The sampling density of checkerboards associated with (b, c), respec-
tively

Fig. 6   Triangulation of the vertex of a shark fin. For each camera 
view: the point corresponding to the vertex of the shark fin is identi-
fied with a marker, while the three lines correspond to the epipolar 
lines associated with the three markers of the remaining three camera 
views. The color coding is consistent across the multiple views, for 
example, the vertex on camera 1 is identified with a red marker and 
the epipolar lines associated with this point in cameras 2, 3, 4 are red. 
Likewise the vertex in cameras 2, 3, 4 and the corresponding epipo-
lar lines are respectively represented in green, blue and magenta. The 
inset on camera 2 zooms on the vertex of the fin and shows that the 
epipolar lines intersect at pixel accuracy
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swimming away from the cameras over a large distance of 
7 m . Together with the triangulated shark fin, this experi-
ment demonstrates the robustness and accuracy of the cali-
bration and its potential use in large-scale field experiments. 
The calibration supports accurate triangulation over a large 
distance along the depth of field. This makes it of interest to 
further application for the tracking of particles (Schanz et al. 
2015), birds (Attanasi et al. 2015), insects (van der Vaart 
et al. 2019), fish and other animals, and the study of fluid 
motion using tomographic methods (Elsinga et al. 2006) for 
large-scale field experiments.

5 � Conclusion

Here, we have described and characterized a versatile, 
accurate and robust calibration method, which sup-
ports the three-dimensional tracking and triangulation 
of multiple fish. Our method is of particular interest to 
large-scale fields experiments, when spatial access to the 

measurement volume is limited and laboratory equipment 
to precisely position the target cannot be installed. The 
method does not require a large calibration target to be 
moved with known displacements. Rather, we use a freely 
moving checkerboard calibration target, which is much 
smaller than the measurement volume itself. The calibra-
tion mapping uses the framework of projective geometry, 
which assumes linear ray tracing. It combines a pinhole 
camera model for the linear ray tracing, with a non-linear 
camera mappings commonly used in experimental fluid 
mechanics to correct for optical distortion. All the algo-
rithms necessary for the implementation of the calibra-
tion method are described here with details provided in 
Appendices.

The calibration method has been implemented to obtain 
an accurate and consistent multiple-view camera calibra-
tion in the large-scale aquarium of the Rotterdam Zoo. 
Here, the calibration target was positioned arbitrarily by a 
team of divers. We have characterized the spatial accuracy 
of the calibration to be less than 2% of the size of a check-
erboard tile, corresponding to 1 cm over the entire meas-
urement volume that spans several tens of meters. When 
correcting for the difference in refractive index of air and 
seawater, we find that our method reconstructs both the 
camera position and the intrinsic properties of the camera 
such as the focal length of the lenses. Selecting different 
subsets of calibration images in a quality assessment, we 
show that in our case 15 calibration images are sufficient 
to achieve a valid calibration. Increasing the number of 
checkerboard images and better sampling the measurement 
volume further improves the spatial accuracy. The result-
ing camera calibration allows accurate imaging and three-
dimensional tracking over a large measurement volume, 
here with application to biological fluid mechanics and 
the tracking of fish.
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within the depth of the tank. c The three-dimensional reconstruction 
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Fig. 3. In all visualizations, the color code of the tracks corresponds 
to the linear velocity in object space
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Appendix

A: Optical distortion across an interface

Refraction across an interface between two media of differ-
ent refractive index is governed by Snell’s law:

where ñ = n1∕n2 with n the refractive index, �1 is the inci-
dent angle and �2 is the exit angle to the normal vector on the 
interface. For a flat interface, the image plane of a camera 
can be warped parallel to the interface by the linear image 
mapping H:

where A is a 2 × 2 matrix that describes an affine image 
transformation that changes the aspect ratio and skew of 
the image, � centers the image at the principle ray, and �T 
describes a perspective change (Hartley and Zisserman 
2004). With these notations, the distortion mapping can be 
written as

where 𝜆 = (1 − ñ2)∕f  with f the focal length in pixels 
dimensions.

sin(𝜃2)

sin(𝜃1)
= ñ,

H =

[
A �

�T 1

]
,

�̂ =
A� + ��

𝜆‖A� + �‖2
2
+ (�T� + 1)2

,

B: Relative camera positioning 
from calibrated views

We determine the rigid body motion from a view c to 
another view c′ , by first finding the best rotation, using the 
Kabsch algorithm (Kabsch 1976). We first compute the 
cross-covariance matrix A =

∑
n,j �

n,c�

j
(�

n,c

j
)
T  using the 

paired object coordinates �n,c

j
 and �n,c′

j
 from multiple check-

erboards. We then compute the singular value decomposition 
of the cross-covariance matrix A = USVT and extract the 
best rotation matrix Rc,c′ as

Knowing Rc,c′ ,  we use the r igid body motion 
�

n,c�

j
= Rc,c��

n,c

j
+ �c,c

� to compute the translation vector �c,c′ 
between the views.

From the relative position between the views we find a 
unique extrinsic camera positioning Rc , �c by taking the first 
view at reference and solving the minimization problem for 
the translation �c,

and the rotation Rc,

where F is the Frobenius norm that sums over all matrix 
components squared and I is the identity matrix. These linear 
least squares problems have a direct solution using methods 
described in Boyd and Vandenberghe (2004) and generalize 
to any number of views (Fig. 8).

Rc,c�
= U

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 det (UVT
)

⎤
⎥⎥⎦
VT .

min
�c

∑
c≠c�,c�

‖‖‖R
c,c� �c

�

− �c,c
�

− �c
‖‖‖
2

subject to �1 = �

min
Rc,c�

∑
c≠c�,c�

‖‖‖R
c,c�Rc�

− Rc‖‖‖
2

F

subject to R1
= I,

Fig. 8   Supplementary optical 
distortions for an ultrawide-
angle lens [Venus Optics 
LAOWA 7.5 mm MFT]. a Pro-
cessed calibration image with 
set of curved gridlines (second-
order polynomial curves) and 
intersections. b Calibrated cali-
bration image using the window 
model of Appendix A
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C: Projected area of a planar object

A planar object with area Aplane and local plane coordinates 
� = [X Y 0]T is mapped to the dewarped image plane by 
�̃ = p(K[R �]�̃) . The projected area in the dewarped image 
plane Adewarped can be computed by integrating the determi-
nant of the Jacobian of the projection map:

This integral can be evaluated using standard numeric inte-
gration techniques.

D: Magnification of the distortion map

An image is dewarped according to the distortion map 
�̂ = m(�) . Similar to Appendix C, the area deformation of 
the distortion map can be computed by integrating the deter-
minant of the Jacobian:

This integral can be used to correct the light intensity per 
pixel area for the varying magnification of the distortion 
map. The average area expansion of the map is found by 
integration over the complete image:

E: Point triangulation and skewness

A point � in the object domain is triangulated by minimiz-
ing the point-line distance to the optical rays from the dif-
ferent cameras. The optical rays associated with each view 
are computed by inverting the camera calibration matrix 
Kc ⧵ �̃ckc , where kc scales the depth of field and �̃ = [x̂ ŷ 1]T . 
The object location is then triangulated by the linear least 
squares problem:

We then compute the skewness s as the average point–line 
distance between the optical rays and the object location by

Adewarped = ∫
Aplane

|∇p(X, Y)| dX dY.

Adewarped = ∫
Aimage

|∇�(�)|dxdy.

J̃ =
1

Aimage
∫
Aimage

|∇�(�)|dxdy.

min
�,kc

∑
c

‖‖Kc ⧵ �̃ckc − [Rc �c]�̃‖‖2.

s =
1

C

C∑
c

‖‖Kc ⧵ �̃ckc − [Rc �c]�̃‖‖2.
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