
Kuratowski Finite Sets in the UniMath Library

Luuk van de Laar1

Supervisors: Dr. Benedikt Ahrens1, Kobe Wullaert1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Luuk van de Laar
Final project course: CSE3000 Research Project
Thesis committee: Dr. Benedikt Ahrens, Kobe Wullaert, Niel Yorke-Smith

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
This paper focuses on implementing and verifying
the proofs presented in “Finite Sets in Homotopy
Type Theory” within the UniMath library. The Uni-
Math library currently lacks support for higher in-
ductive types, which are crucial for reasoning about
finite sets in Homotopy Type Theory. This paper
addresses that issue and introduces higher induc-
tive types to UniMath. This is used to develop
a computer-checked implementation of the proofs
within “Finite Sets in Homotopy Type Theory.”
This implementation enables future research on fi-
nite sets in HoTT by providing accessible and reli-
able proofs.
This paper defines finite sets as Kuratowski-finite.
This is in contrast with the most common notion of
finiteness, e.g. Bishop-finite and enumerated types.
I argue that Kuratowski-finiteness is the most gen-
eral finite for which the usual operations of finite
types and sub-objects can be operated upon.

1 Introduction
Homotopy type theory (HoTT) provides a unique perspective
on mathematics, offering insights that are not easily attain-
able through set theory 1. One way it achieves this is by em-
ploying the univalence axiom. This states that identity and
equivalence are the same. This allows for reasoning about
the equality of two different types [13].

The univalence axiom also allows to employ higher Induc-
tive Types (HITs) to reason inductively over the types at an
equivalence relation. The groundwork for defining sets in
HoTT has already been laid [17]. However, this is indepen-
dently written and is not integrated into the commonly used
library, UniMath [18]. HITs are important for future research
on HoTT, that is why the UniMath library should support
these HITs. Access to these properties allows us to properly
reason over finite sets. As these HITs allow us to reason about
variables inside the sets. For example, proving how the union
between two sets behaves if both sets are finite is important
for future research in the area about sets and HoTT.

In this paper the background of HoTT will be discussed
within detail, and we will answer the research question. Can
the proofs given in Finite Sets in Homotopy Type Theory be
verified for correctness in the UniMath library [17]? First, a
bit of background on HoTT will be given, it will mostly focus
on the material needed to understand HITs. After this short
introduction to HoTT you can find other related works. These
can be used to further develop an understanding of the topic.
Then a short summary of the setup will be given. After which
sets will be defined as a Kuratowski type [6]. The induction
principle and induction property will be given and these some
basic properties of a set will be proven. After which member-
ship and subset of the Kuratowski finite set will be proven.
The paper will end with discussing the results and conclude

1From now on, I have utilized ChatGPT to verify my grammar
and seek assistance in phrasing my sentences more elegantly [11]

that the proofs discussed in this paper from Finite Sets in Ho-
motopy Type Theory can indeed be implemented within the
UniMath library.

It is important to note that this paper focuses on Kuratowski
finite. And it does not focus on Bishop- or enumerated fi-
nite. The reason this decision has been made is because Ku-
ratowski finite is “weaker” then both Bishop- and enumerated
finite. This is because for Kuratowski finite you have to proof
a surjection from a finite set of natural numbers up to an arbi-
trary n, while for Bishop finite you have to proof a bijection
instead of a surjection. And for enumerated finite you have
to proof that the set can be enumerated. Because Kuratowski
finite is less strict it has been chosen to focus on Kuratowski
finite in this paper.

In this paper the proofs given in Finite Sets in Homotopy
Type Theory [17] will be independently computer checked
and developed as if it is a package in the UniMath library.
As the UniMath library does not include definitions for HITs,
they will be introduced with this paper. Sections not covered
by my implementation can be implemented later using my
paper as its starting point.

All resources of this paper are formalised and can be found
at https://github.com/blibliboe/Kuratowski in UniMath.

2 Homotopy Type Theory
In this chapter I will be giving a short breakdown of the Ho-
motopy Type Theory used in this research. I will use the stan-
dard convention of notating HoTT [13], so readers familiar
with HoTT can skip this part.

In HoTT there are a few terms that are useful to know when
reading this paper. First of all, if you have a type A, you can
say that a certain variable is of type A by saying, a is a witness
of A. This is notated as follows: a : A. Secondly, you could
have the following type: a = b. Each witness of this type
would be called a path from a to b. Thirdly, you can have
a type that says something for all a : A. This is called a pi
type and is notated as follows: Π(a : A), a = a. This would
create a type that says for each witness of A that witness has a
path to itself. Lastly you also have the sigma type. The sigma
type represents dependent pairs, where the type of the second
component can depend on the value of the first component.
The sigma type is not so relevant for this paper as it is barely
used in finite sets, but it is important to keep in mind as it is
one of the pillars of HoTT, namely the univalence axiom.

One of the most important types in HoTT is the identity
type. This type is the inductive type that references itself, also
known as refl of type: Π(x : A), x = x, with A indicating
the type of x. To actually reason on this equality, any two
elements x of the same propositional equality have to also be
propositionally equal, a J eliminator is introduced. This rule
says that given a type family c : Π(x, y : A), x = y → Type
and a witness r of type Π(x : A), c x x (refl x), we get the J
eliminator.

J(c, r) : Π(x, y : A),Π(p : x = y), c x y p (1)

In essence it comes down to if there exist a witness r (so p :
x = x), then a proof that q : x = y is sufficient to say that
both p and q are in the same type family.

This lets reasoning about symmetry:

symmA : Π(x, y : A), x = y → y = x (2)

and about transitivity :

transA : Π(x, y, z : A), x = y → y = z → x = z (3)

For paths p : a = b and q : b = c we notate it as p−1 :=
symmA a b p and pq̇ := transA a b c p q

It also allows reasoning about substituting paths along type
families. For this a transport function is defined:

transportf : Π(x, y : A), x = y → P x → P y (4)

With the type of P being P : X → Type, a type family over
A. The notation for transport is: p∗ := transportf x y p.

Next to the identity type there also exist an equality called
definitional equality. Definitional equality is a notion of
equality that is established by the definition or construction
of terms. Definitional equality is denoted by ≡. Because
this equality is established by definition it is implied that
two equal types cannot be distinguished. Take for example
n : A and B : Type such that A ≡ B, then n : B. For
the transport function there exist also a definitional equality:
(relf t)∗s ≡ refl s.

Another feature of HoTT is the univalence axiom, which I
briefly touched upon when talking about sigma types and to
employ HITs. Here it will be formulated a bit more precise.
To do that I first need to define equivalence.

isEquiv(f) :=
g:B→A
Σ(f ◦ g = idB)×

h:B→A
Σ(h ◦ f = idA) (5)

If we have an equivalence, A ≃ B :=
f:A→B
ΣisEquiv(f) has

a witness. The axiom then says if there is an equivalence
A ≃ B, then those types are equal and there exist a path
A = B

HoTT also has a definition for a type of which all its
witnesses are equal. This is called a mere proposition.
This is formulated as follows: isaprop(A) := Π(x, y :
A), x = y. It is customary to refer to a mere proposition as
just“proposition”. When referring to something as a propo-
sition I mean that it is actually a mere proposition. If A
would be a proposition you would write it as A : HPROP
with HPROP := Σ(A : Type), isaprop(A). An example of a
proposition is A ≃ B.

Next to propositions HoTT also has a notion of a set.
We say that A : HSET if all paths in type A are all a
proposition. Therefore, it is defined as HSET := Σ(A :
Type), (isaset(A)) and isaset(A) := Π(x, y : A), (Π(p, q :
x = y), p = q).

In HoTT you also have the concept of HITs, this allows for
defining a type by giving inductive constructors and/or equa-
tions for that type. A useful example of such a type is the
truncation type. Truncation is notated as ||A|| of A. When-
ever you use truncation on a type it creates a proposition. ||A||
has one and only one element when A has at least one ele-
ment. ||A|| has zero elements if A has no elements.

||A|| :=
| tr : A → ||A||
| trc : Π(x, y : ||A||), x = y

This is useful as when I will be discussing finite sets, we are
interested if two elements of the sets have decidable equality.
This means there is a witness of type Π(x, y : A), x = y +
¬(x = y). In practice however it is often enough to see if the
sets have decidable mere equality which is defined as Π(x, y :
A), ||x = y||+ ||¬(x = y)||.

There are also HITs which are not a set, the circle is an
example of one of them.

S1 :=

| base : S1

| loop : base = base

For this HIT it has been shown that it is not a set [8].

3 Related works
Homotopy Type Theory which is the mathematical backbone
of this paper, is explained fully in Homotopy Type Theory
book [15]. This book goes a lot more in depth on every sub-
ject of HoTT which this paper did not touch. It does, however,
not touch the non-trivial Higher Inductive Types or higher di-
mensional type theory.

There are several papers on the semantics of Higher Induc-
tive Types [1, 9]. This can be related to programming lan-
guages formalized using Coq [16]. Here general rules for
recursive and non-recursive HITs have been given.

There are a few examples of HITs applied to problems in
computer science. A way to describe type theory in type the-
ory [2], which is possible as type theory is a mathematical
basis the same as set theory. Or a way to link cubical type
theory to topos theory [12].

In mathematics finite sets have been studied and defined
clearly [4]. In this paper you can find the definitions of finite
sets based on relations towards other finite sets. Different
definitions of finite sets exist, this includes Bishop-finite [10],
Kuratowski finite sets [6] and enumerated sets. Different set
have been formalised as HITs in HoTT [17]. Finite sets have
also been implemented but those implementation did not use
HITs [18].

It has been proven for Kuratowski finiteness that a topos of
this space is a boolean if and only if every object in this set is
decidable [5]. In HoTT it is proven that for Bishop finiteness,
the universe of sets form a topos which is a boolean. [15,
Theorem 10.1.15]. These proofs however did not consider
Kuratowski finiteness.

Lastly there are other interfaces of finite sets that have al-
ready been developed. Most notably and relevant is the one
by Lescuyer [7]. As this interface is also based on Coq. A
note to this interface is that it does not use the HITs that are
being used in this paper.

4 Formalization of proofs in UniMath: Finite
Sets in Homotopy Type Theory

Finite Sets in Homotopy Type Theory [17] is a paper that
defines finite sets using homotopy type theory. To do this
it defines a Kuratowski finite set [6]. This set is defined with
the univalence axiom in mind, using Coq to prove fact that the
defined Kuratowski type is in fact finite and a set. As part of

the Univalent Mathematics group, the goal my paper tries to
achieve is to verify and implement these finite sets and proofs
of finiteness into the UniMath library. As the paper on finite
sets contains proofs and types that are important for a better
understanding of HITs. But these proofs and types have not
yet been implemented within the framework of the UniMath
library. 2

This brings us to the research question, which is: Can the
proofs given in Finite Sets in Homotopy Type Theory be veri-
fied for correctness in the UniMath library [17]?

4.1 Preparatory phase
During the first part of the research project I was still a novice
in my understanding of HoTT. That is why I started with a
preparatory phase to get a better understanding of HoTT. In
this preparatory phase I have done research about the inner
working of HoTT, the proof assistant Coq and the UniMath
library. I have learned HoTT using the following resources:
the HoTT book [15], online resource the HoTTest summer
school [3] and question hours with my responsible professor
and supervisor. I have learned about both the UniMath library
and Coq at the same time, using the UniMath library, as the
library is written in the programming language Coq. This
learning has been done by studying the UniMath schools [14],
which has 7 lectures on how to use UniMath and Coq.

4.2 Research phase
During the research phase of the project some of the proofs in
Finite Sets of Homotopy Type Theory were be implemented,
as well as some of the HITs defined in the paper. Due to
time constraints not all proofs and types were formalised. The
goal of the project is to verify the Kuratowski finite set and
verify membership and subsets of the Kuratowski finite set
[17, Section 2].

These proofs and types will then be verified using Coq as a
proof assistant. The proof assistant will only verify a proof is
it can be proven with its internal resources. The reason Coq
is used is because the UniMath library is build with the proof
assistant Coq. Every proof formalised within my paper will
also have a similar proof implemented within the UniMath
library. This will be done step by step, first proving the state-
ment on paper, then proving the statement within UniMath
using Coq.

The proofs and types were written in windows 11, using
visual studio code as the IDE. For visual studio code the ex-
tension, VsCoq, was installed so that I could interface Coq
within visual studio code. A binary file of UniMath was in-
stalled as well. An important note is that the binary file used
is from an older version of the UniMath library. This decision
was made due to the fact that the UniMath library can only be
compiled on Linux, which was not available to me. Conse-
quently, a binary file of the UniMath library code, specifically
UniMath-20220204, was employed for proof development.
As a result, my research is somewhat lagging behind the lat-
est advancements in the library.

2I have summarized and condensed this part of my paper using
ChatGPT

A second disadvantage of the binary file is that I was un-
able to establish my own file structure while working on the
implementation of finite sets. This made it so that the source
code of this paper is all developed in the same file.

5 Defining finite sets
The goal of this paper is to computer type check proofs within
the UniMath library. It is necessary to define finite sets to be
able to do this. In the UniMath framework one can easily
define a data type using inductive types. This however will
create serious hurdles when trying to define a subset of the
type. That is why finite sets will be defined using Higher
Inductive Types.

This is done because HITs allow for both point and path
constructors in the type definition, of which only the first is
allowed by inductive types. In this section the representation
of the Kuratowski type will be given. The types are built step
by step starting with the empty set and a set with only one
element. It will then define a union and define path construc-
tors. These path constructors describe the behaviour of the
Kuratowski type when reasoning over the union.

5.1 Kuratowski finite set
We start by defining the type K(A) as a Kuratowski type, of
which its witnesses are a finite set.

Definition 5.1: Given a type A, we define type K(A) as
follows:
K(A) :=

| ∅ : K(A)

| {·} : A → K(A)

| ∪ : K(A) → K(A) → K(A)

| idem : Π(x : K(A)), {x} ∪ {x} = x

| nl : Π(x : K(A)), ∅ ∪ x = x

| nr : Π(x : K(A)), x ∪ ∅ = x

| assoc : Π(x, y, z : K(A)), x ∪ (y ∪ z) = (x ∪ y) ∪ z)

| comm : Π(x, y : K(A)), x ∪ y = y ∪ x

| trunc : isaset(K(A))

Each of the lines is a different constructor for the finite set.
The first three lines are the point constructors of the HIT. The
empty set is a witness of the Kuratowski type, the function
making a set with a single element is a witness of the Kura-
towski type. Lastly, a function that says that the union of two
Kuratowski types is in itself a Kuratowski type.

The other six contribute to the path constructors. Of these
six, all of them, expect trunc, describe relations of the Ku-
ratowski set towards itself. Specifically that the Kuratowski
type is idempotent, associative and commutative. It also de-
fines two constructor which say that the union between a Ku-
ratowski type and the empty set is the original Kuratowski
type. The last path constructor, trunc, forces the K(A) to be
an HSET. This is the same as in the original paper was de-
scribed [17, Definition 2.1].

Now that the definition of the finite set is given, we are
ready to define the induction principle and induction prop-
erty. This is different from the original paper as they only

define the induction property. You also have the recursion
principle, this will not be discussed within this paper as you
can always derive it from a valid induction principle.

Definition 5.2 Given a type family P : K(A) → Type
the induction principle suggests that an eliminator of type
Π(x : K(A)), P x exists. The different constructors from
the induction principle you can be found below:

ind :=

|A : Type

|P : K(A) → Type

|H : Π(X : K(A)), isaset(PX)

|eP : P ∅
|lP : Π(a : A), P {a}
|uP : Π(x, y : K(A)), P x → P y → P (x ∪ y)

|assocP : Π(x, y, z : K(A)) (px : P x) (py : P y) (pz : P z),

transportf P (assoc x y z)(uP x (y ∪ z)px(uP y x py pz)

= (uP (x ∪ y) z (uP x y px py) pz)

|commP : Π(x, y : K(A)) (px : P x) (py : P y),

transportf P (comm x y)(uP x y px py) = (uP y x py px)

|nlP : Π(x : K(A)) (px : P x),

transportf P (nl x) (uP ∅ x eP px) = px

|nrP : Π(x : K(A)) (px : P x),

transportf P (nr x) (uP x ∅ eP px) = px

|idemP : Π(a : A),

transportf P (idem a) (uP {a}{a} (lP x)(lP x)) = lP x

there exists ind : Π(x : K(A)), P x

such that ind ∅ = eP

ind {a} = lP

ind (x ∪ y) = uP (ind x) (ind y)

The first three constructors define what we described
above. The next three constructors eP, lP and uP describe
how the function P interacts with the point constructors of
K(A). The last five constructors describe the way the func-
tion P interacts with all the constructors of K(A) that are de-
fined in HITs.

It is important to note that the transportf function has to
be used to define this induction principle, otherwise the func-
tion P will not be lifted into the respective higher function
constructors.

To verify the induction principle we can show how the
eliminator acts on each of the constructors. We will only need
the computation rules for the points, that is why the compu-
tation rules for the paths are not given.

Now that we know how induction is defined, it is also use-
ful to know the rules of the type when P x is a HPROP instead
of a HSET. For this I have defined the induction property.

Definition 5.3 The induction property.

ind prop :=

|A prop : Type

|P prop : K(A) → Type

|H prop : Π(X : K(A)), isaprop(PX)

|eP prop : P ∅
|lP prop : Π(a : A), P {a}
|uP prop : Π(x, y : K(A)), P x → P y → P (x ∪ y)

Lemma 5.4 Given x : K(A) and the induction property
we can show the induction principle.

Proof. First, we need to prove H with H prop. P x is
a HPROP given by H prop, it is also a HSET [15, Lemma
3.3.4]. This proves H . Next, using the fact that H prop is
a HPROP, it follows that assocP, commP, nlP, nrP, and
idemP are also correct. Lastly, we need to prove eP, lP
and uP , they simply follow from eP prop, lP prop and
uP prop.
QED.

The reason to prove that we can get the induction principle
from the induction property is very useful when trying to
proof an attribute of Kuratowski type which is a HPROP.

Lemma 5.5 For any x : K(A), x ∪ x = x.

Proof. By induction property, first I need to prove that
x ∪ x = x is a HPROP. As both x ∪ x and x are a witness of
K(A), this holds by the definition of trunc. Next, we need to
prove it for x = ∅. This can be done by either nl or nr. Next,
a proof for x = {a} is needed. This also follows directly
from idem. Lastly, given x = x ∪ x and y = y ∪ y, we need
to prove that (x ∪ y) ∪ (x ∪ y) = x ∪ y. With the assoc and
comm rule we can rewrite it to: (x ∪ x) ∪ (y ∪ y) = x ∪ y.
And with the given hypotheses we can show x ∪ y = x ∪ y.
QED.

The way that it is proven in my paper is different than in
the proof given in Finite Sets in Homotopy Type Theory [17,
Lemma 2.3]. As I have defined the induction property, and
proved lemma 5.5 with the induction property. While the
original paper proved it with the induction principle.

5.2 Extensionality
In set theory one of the most important axioms is extension-
ality. This axioms state that two sets are the same if and only
if they have the same elements. Because the witnesses of the
Kuratowski type represent a finite set, a start has been made
to proof this for the Kuratowski type. This shows that I can
define members of the Kuratowski set as well as subsets of
the Kuratowski set.

Definition 5.6 Assuming univalence, given a type A, a
membership function ∈ has been defined. ∈: A → K(A) →
HPROP. For a : A we define the membership for the point

constructors as follows:

a ∈ ∅ ≡ hfalse

a ∈ {b} ≡ ||a = b||
a ∈ (x ∪ y) ≡ a ∈ x ∨ a ∈ y

Where hfalse means there is no HPROP that exist that
satisfies the condition. After having defined this for the point
constructors it has to be proven for the path constructors.

Lemma 5.7 Given a membership function ∈: A →
K(A) → HPROP, membership of a Kuratowski finite set can
be determined.

Proof. The point constructors follow from definition 5.6.
Trunc follows from the fact that isaset is a HPROP [18].
The other path constructors follow from the fact that ∨ is
idempotent, associative, commutative and x ∨ false = x.
QED.

Definition 5.8 Assuming univalence, given a type A, a
subset function ⊆ has been defined ⊆: K(A) → K(A) →
HPROP. For a : K(A) we define a subset function as follows:

∅ ⊆ a ≡ htrue

{b} ⊆ a ≡ b ∈ a

{x, y} ⊆ (a ∪ a) ≡ x ⊆ a ∧ y ⊂ a

Where htrue means that every HPROP that exist satisfies
the condition. The same way as for membership after
defining the point constructors it has to be proven for the
path constructors.

Lemma 5.9 Given a subset function ⊆: K(A) → K(A) →
HPROP, subset of a Kuratowski finite set can be determined.

Proof. The point constructors follow from definition 5.8.
Trunc follows from the fact that isaset is a HPROP [18].
The other path constructors follow from the fact that ∧ is
idempotent, associative, commutative and x ∧ true = x.
QED.

6 Results
With the given proofs, it results that implementing the proofs
within Finite Sets in Homotopy Type Theory, is possible
within the UniMath library. I have implemented the proofs,
lemmas and definitions, as described in this paper, within the
UniMath library. From the research that I have done it can be
concluded that the proofs, lemmas and definitions up to mem-
bership of Finite Sets in Homotopy Type Theory are valid and
can be implemented within the UniMath library.

7 Responsible Research
My research barely touched on ethical questions. The re-
search is highly theoretical and uses a new way of mathemat-
ics which has not yet seen the light of day outside of research.
This means that reasoning about the ethical implications of
my research is nigh impossible.

Next my research is also highly reproducible. I have
written everything I did in the research paper, including the
sources I used to learn about UniMath, Coq and HoTT. Im-
plementing the proofs in HoTT should be reproducible as this
is highly mathematical and the proofs do not change when
using the same library. I also made my code publicly avail-
able at https://github.com/blibliboe/Kuratowski in UniMath
so you can check the proofs for yourself.

8 Challenges
While doing my research there were some challenges that had
to be overcome in order to formalize the results. In this chap-
ter the challenges that I had while working on the problem
will be discussed as well as the impact it has on the final re-
sults.

The main challenge I faced when formalizing the results
was applying the right lemmas. These lemmas already ex-
isted within the UniMath library, but finding them was a real
challenge. This could lead to the proofs that have been imple-
mented not being sufficient for all contexts they could be used
in. However, with the proofs within Finite Sets in Homotopy
Type Theory in mind, this is rather unlikely.

Another challenge I faced were the nuances of certain
proofs. These nuances changed between my paper and Finite
Sets in Homotopy Type Theory [17]. This should not lead to
any discrepancies between the two papers as the conclusions
of both papers stayed the same for each individual proof.

There is also a discrepancy between the discussed proofs
in this paper and the proofs in my code. Some of the proofs
in my code are admitted which means that these proofs are
not yet finalized, and therefor left out of the paper. These
proofs are probably able to be proven, or in some cases can
be proven if I would now the right tactic. Further research
needs to be done to formalize those proofs.

Lastly, a more personal challenge I faced was the difficulty
of actually proving the statements. This was always more
difficult than originally anticipated. It mostly came down to
my inexperience using UniMath and Coq. Making a lot of
relatively “easy” proofs, such as the recursion principle, a
principle you can always deduce from the induction princi-
ple, a rather daunting task that took me way longer than I had
hoped. Mostly through my inexperience with specifically the
transportf function.

Another reason most proofs took longer than anticipated,
was due to the fact that proving something for finite sets
would mean you have to proof nine different sub-proofs for a
single proof, four in the case I could use the induction prop-
erty. As every proof would hinge on each constructor of the
Kuratowski type. This made proving lemmas a lot more dif-
ficult as making a wrong assumption in one of the point con-
structors could lead to me being unable to proof certain path
constructors.

9 Conclusions and Future Work
In this paper I have shown that certain proofs and types of
Finite Sets in Homotopy Type Theory can be implemented
in the UniMath library. Most important of these proofs and

types is the Kuratowski type. The Kuratowski type can easily
be implemented as a Higher Inductive Type K(A) for which
reasoning about its properties is sufficient in UniMath. In ad-
dition to the Kuratowski type, membership and subset have of
the Kuratowski type have been defined. Allowing reasoning
on witnesses of the Kuratowski type.

There is still a lot of work that could be done working on
finite sets. It might be useful to finish the proofs on exten-
sionality based on membership and subset of the Kuratowski
type. It might also be useful to create a listed set of which
the size is known and proof an equality between the listed set
and the Kuratowski type. This is useful as you get a way to
reason about the exact size of the Kuratowski finite set. In a
similar fashion one could proof extensionality with booleans
instead of using HPROP, allowing for a different reasoning of
the Kuratowski finite set.

In mathematics there are multiple ways to describe the
finiteness of an object. These different ways, Kuratowski-,
Bishop- and enumerated finite could all be a reasonable ap-
proach when implementing finite sets in UniMath. In future
research one could define finite sets in UniMath using either
Bishop or enumerated finiteness.

Lastly, the work that I have delivered should be kept up to
date with the UniMath library. This should be done so that
the Kuratowski type which I have defined in my paper can
still be used within the UniMath framework. To continuing
developing the research, UniMath should look at a way to
start supporting Higher Inductive Types as they are the pillar
of the Kuratowski type.

A Use of AI in this paper
Usage of AI was allowed by writing this paper as long as it
was clear to the reader what kind of AI was used. In this
chapter I will write down a small report of things that I have
used AI for while working on the research project.

First of all the AI was used to improve my writing skills.
This was done by asking ChatGPT [11] a very simple prompt.
Can you spot grammatical or spelling mistakes inside the fol-
lowing piece of text? Can you also list them by cross refer-
encing the original text? Followed by the text that I wanted
to get checked. ChatGPT then gave a list of what it thought
would be improvements to the readability of the paper. To
incorporate these suggestions, I manually reviewed each one
and made changes to my paper accordingly, either by adopt-
ing the full suggestion or by incorporating a modified ver-
sion. In essence I used ChatGPT as a proofreader of my pa-
per pointing out mistakes and sections which could use a bit
of an improvement.

Another place I have used AI is while trying to summarize
some parts of the paper, I have used this only once. This
worked almost the same as asking for suggestions. I asked
ChatGPT the following: Can you summarize the following
text in X words or less? Followed by the text. I then used this
summary as a basis to write my own paper in a more concise
matter.

I also used ChatGPT to seek assistance when encountering
challenges while working on a code segment. I would pro-
vide ChatGPT with the code in question and request help on
achieving the desired outcome. However, this approach did
not yield significant results, as ChatGPT is not well-versed in
the UniMath library. Nevertheless, this experience prompted
me to explore tactics employed in Coq, which proved to be
helpful in my search for solutions.

References
[1] Kaposi A.& Kovács A. A Syntax for Higher Inductive-

Inductive Types. In Hélène Kirchner, editor, 3rd Inter-
national Conference on Formal Structures for Computa-
tion and Deduction (FSCD 2018), volume 108 of Leib-
niz International Proceedings in Informatics (LIPIcs),
pages 20:1–20:18, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[2] Thorsten Altenkirch and Ambrus Kaposi. Type theory
in type theory using quotient inductive types. ACM SIG-
PLAN Notices, 51(1):18–29, 2016.

[3] Western Univeristy Canada. Hottest summer school, 07
2022.

[4] Agata Darmochwał. Finite sets. Formalized Mathemat-
ics, 1(1):165–167, 1990.

[5] PT Johnstone and FEJ Linton. Finiteness and decid-
ability: Ii. In Mathematical Proceedings of the Cam-
bridge Philosophical Society, volume 84, pages 207–
218. Cambridge University Press, 1978.

[6] Casimir Kuratowski. Sur l’opération a de l’analysis si-
tus. Fundamenta Mathematicae, 3(1):182–199, 1922.

[7] Stephane Lescuyer. Formalizing and implementing a
reflexive tactic for automated deduction in Coq. PhD
thesis, Paris 11, 2011.

[8] Daniel R Licata and Michael Shulman. Calculating the
fundamental group of the circle in homotopy type the-
ory. In 2013 28th annual acm/ieee symposium on logic
in computer science, pages 223–232. IEEE, 2013.

[9] Lumsdaine P. F. & Shulman M. Semantics of higher
inductive types. Mathematical Proceedings of the Cam-
bridge Philosophical Society, 169(1):159 – 208, 7 2020.

[10] Ray Mines. Constructive analysis. by errett bishop and
douglas bridges. The American Mathematical Monthly,
95(2):159–163, 1988.

[11] OpenAI. Chatgpt (may 24 version). https://openai.com/
chat, 2023.

[12] Ian Orton and Andrew M Pitts. Axioms for modelling
cubical type theory in a topos. Logical Methods in Com-
puter Science, 14, 2018.

[13] The Univalent Foundations Program. Homotopy type
theory: Univalent foundations of mathematics. arXiv
preprint arXiv:1308.0729, 2013.

[14] Paige Randall North, Benedikt Ahrens, Niels van der
Weide, et al. Unimath school — lectures about a
computer-checked library of univalent mathematics.
available at http://unimath.org.

[15] The Univalent Foundations Program. Homotopy Type
Theory: Univalent Foundations of Mathematics. https:
//homotopytypetheory.org/book, Institute for Advanced
Study, 2013.

[16] Basold H. Geuvers H. & Weide N.M. van der. Higher
inductive types in programming. Journal of Universal
Computer Science, 23:63–88, 7 2017.

[17] Frumin Geuvers Gondelman van der Weide. Finite sets
in homotopy type theory. CPP 2018: Proceedings of the
7th ACM SIGPLAN International Conference on Certi-
fied Programs and Proofs, pages 201–214, 1 2018.

[18] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson,
et al. Unimath — a computer-checked library of univa-
lent mathematics. available at http://unimath.org.

https://openai.com/chat
https://openai.com/chat
http://unimath.org
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
http://unimath.org

	Introduction
	Homotopy Type Theory
	Related works
	Formalization of proofs in UniMath: Finite Sets in Homotopy Type Theory
	Preparatory phase
	Research phase

	Defining finite sets
	Kuratowski finite set
	Extensionality

	Results
	Responsible Research
	Challenges
	Conclusions and Future Work
	Use of AI in this paper

