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Abstract. We investigate whether it is possible to evolve cryptograph-
ically strong S-boxes that have additional constraints on their structure.
We investigate two scenarios: where S-boxes additionally have a specific
sum of values in rows, columns, or diagonals and the scenario where we
check that the difference between the Hamming weights of inputs and
outputs is minimal. The first case represents an interesting benchmark
problem, while the second one has practical ramifications as such S-boxes
could offer better resilience against side-channel attacks.
We explore three solution representations by using the permutation, in-
teger, and cellular automata-based encoding. Our results show that it
is possible to find S-boxes with excellent cryptographic properties (even
optimal ones) and reach the required sums when representing S-box as a
square matrix. On the other hand, for the most promising S-box represen-
tation based on trees and cellular automata rules, we did not succeed in
finding S-boxes with small differences in the Hamming weights between
the inputs and outputs, which opens an interesting future research di-
rection. Our results for this scenario and different encodings inspired a
mathematical proof that the values reached by evolutionary algorithms
are the best possible ones.

1 Introduction

S-boxes are functions with an important role in cryptography as they are the only
source of nonlinearity for many cryptographic algorithms. Without S-boxes with
good cryptographic properties, many designs would be easy to break by running
cryptanalyses [1,2]. A common option to obtain cryptographically strong S-boxes
is to use algebraic constructions [3]. Still, there are alternatives to algebraic
constructions. If the construction constraints are not too difficult, the random
search can work well. Besides algebraic constructions and random search, various
heuristic techniques showed their potential [4]. Heuristics play an important role,
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especially in the cases where one requires S-boxes with cryptographic properties
that are not obtainable by the known algebraic constructions (note, that there
are not too many known algebraic constructions [3]). We explore whether we can
design cryptographically strong S-boxes (with good cryptographic properties)
that have additional properties of structure. We consider two settings: obtaining
cryptographic S-boxes that have an arrangement of elements that result in 1)
the same sum for every row, column, or diagonal, or 2) the minimal difference
between the Hamming weights of the inputs and outputs.

Finding additional structure in S-boxes while keeping very good mandatory
cryptographic features is not an easy task. We do not know if there exists such
structure, or even if it does, whether it occurs for various S-box sizes. Next, if
we assume there is additional structure, there is no prior knowledge about how
difficult it is to reach it with heuristics. What is more, we may not be able to
find such solutions depending on the selection of solution encoding or fitness
functions. Finally, it is not known if there are trade-offs between cryptographic
properties and the properties denoting additional structure.

Exploring the S-boxes depicted as square matrices with sums of rows, columns,
or diagonals equal to a specific value does not have practical cryptographic ap-
plications to the best of our knowledge. This is because what we search for
is not affine invariant, contrary to many notions in cryptography [3]. Still, we
consider it an interesting benchmark problem as now, for smaller S-box sizes,
we can easily obtain optimal cryptographic properties with heuristics, while for
larger S-boxes, heuristics cannot give results close to algebraic constructions.
We consider this additional constraint an interesting bridging option to allow
more fine-grained evaluation of heuristics for S-box construction. By imposing
additional constraints, we enable heuristics to reduce the search space size. Note
that this structure constraint requires that an S-box is also a magic square [5].

The second constraint ensuring that the Hamming weights of S-box inputs (x)
and outputs (F (x)) are as close as possible, has more practical ramifications. S-
boxes are common targets for side-channel attacks [6]. In such attacks, one needs
to consider an appropriate leakage model that the cryptographic device follows.
A common model is the Hamming weight model, where the power consumption
is proportional to the Hamming weight of a processed value. Minimizing the dif-
ference in the Hamming weights could potentially make the S-box more resilient
against side-channel attacks, as explained in more detail in Section 2.

To the best of our knowledge, there are no previous works that consider
evolving cryptographically strong S-boxes with additional constraints on the ar-
rangement of elements to result in a specific sum, or to minimize the differences
in the Hamming weights. In the rest of this paper, whenever talking about S-
boxes, we consider those that are cryptographically strong (details are given
in Section 2). While there is not much previous work on exploring additional
structure in S-boxes, there are works that use evolutionary algorithms to evolve
S-boxes. For example, Clark et al. used the principles from the evolutionary de-
sign of Boolean functions to evolve S-boxes for sizes up to 8× 8 [7]. Picek et al.
developed an improved fitness function that enables evolutionary algorithms to
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find higher nonlinearity values for several S-box sizes [8]. Mariot et al. investi-
gated the genetic programming approach to evolve cellular automata rules that
are then used to generate S-boxes [9]. The results obtained with GP used to
evolve CA rules outperform any other metaheuristics for sizes 5× 5 up to 7× 7.
Jakobovic et al. presented a fitness landscape analysis for S-boxes of various
sizes [10]. Finally, Picek et al. used evolutionary algorithms to find S-boxes that
have good cryptographic properties but also good side-channel resilience [11].

In this paper, we explore how evolutionary algorithms can be used to con-
struct S-boxes with additional structure. Toward that goal, we first define sev-
eral S-box sizes we investigate with both single-objective and multi-objective
approaches. Our results indicate that it is possible to construct S-boxes with
sums of rows and columns equal to a specific value. We find a more difficult con-
dition when adding the constraint on the sum of diagonals. We could not find
any such S-box with optimal cryptographic properties but also having the sum
of all rows, columns, and diagonals equal to a specific value (thus, producing
S-box that is also a magic square).

Our experiments show it is possible to obtain an S-box with optimal cryp-
tographic properties and a small difference between the Hamming weights of
inputs and outputs. Then, our experimental results inspire mathematical re-
search proving that the nonlinearity must be equal or smaller than the sum of
differences of the Hamming weights. Finally, our results show that the solution
encoding (tree-based) that works the best for cryptographic properties performs
the worst for these additional, structure-based properties.

2 Background

Let n,m be positive integers. Fn2 is the n-dimensional vector space over F2 and
by F2n the finite field with 2n elements. The set of all n-tuples of elements in the
field F2 is denoted by Fn2 , where F2 is the finite field with two elements. For any
set S, we denote S\{0} by S∗. The addition of elements of the finite field F2n is
represented with “+” while the inner product of a and b equals a1x1+. . .+anxn.

2.1 S-boxes – Representations and Properties

An S-box (Substitution box) is a mapping F from n bits into m bits (thus, S-
box is an (n,m) function). An (n,m)-function F can be defined as a vector F =
(f1, . . . , fm), where the Boolean functions fi : Fn2 → F2 for i ∈ {1, . . . ,m} are
called the coordinate functions of F. The component functions of an (n,m)-func-
tion F are all the linear combinations of the coordinate functions with non all-
zero coefficients. For every n, there exists a field F2n of order 2n, so we can
endow the vector space Fn2 with the structure of that field when convenient. In
Table 1, we give the best known/possible results for two relevant cryptographic
properties and S-box dimensions we consider.

An (n,m)-function F is balanced if it takes every value of Fm2 the same
number 2n−m of times. If a function F is balanced, then it is a permutation (the
function is bijective, i.e., n = m).
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The Walsh-Hadamard transform of an (n,m)-function F is (see, e.g., [3]):

WF (a, v) =
∑
x∈Fm

2

(−1)v·F (x)+a·x, a, v ∈ Fm2 . (1)

The nonlinearity nlF of an (n,m)-function F equals the minimum nonlinear-
ity of all its component functions v · F , where v ∈ Fm∗2 [3, 12]:

nlF = 2n−1 − 1

2
max
a ∈ Fn

2

v ∈ Fm∗
2

|WF (a, v)|. (2)

Let F be a function from Fn2 into Fm2 with a ∈ Fn2 and b ∈ Fm2 . We write:

DF (a, b) = {x ∈ Fn2 : F (x) + F (x+ a) = b} . (3)

The entry at the position (a, b) corresponds to the cardinality of the delta dif-
ference table DF (a, b) and we write it as δF (a, b). The differential uniformity δF
is then defined as [13]:

δF = max
a 6=0,b

δF (a, b). (4)

Table 1: Best known values for bijective S-boxes. For 8 × 8, we give the best
known results while for smaller sizes, we give the optimal values. For bijective
S-boxes (and in F2), both nonlinearity and differential uniformity can be even
values only. The worst possible values are 0 for nonlinearity (i.e., the S-box is
linear), and 2n for differential uniformity.

Property 3× 3 4× 4 5× 5 6× 6 7× 7 8× 8

nlF 2 4 12 24 56 112
δF 2 4 2 2 2 4

2.2 Side-channel Attacks

Besides various cryptanalysis techniques, another category of attacks on crypto-
graphic targets is side-channel attacks (SCAs). In such attacks, one does not aim
at the weakness of the algorithm, but on the weaknesses of implementation [6].
For instance, one could observe the power consumption of a device while running
the cryptographic algorithm, and compare it with hypotheses for every possi-
ble key (or, more precisely, subkey). When a particular statistic technique (for
instance, Pearson correlation) shows the best absolute value of correlation, we
assume that the key hypothesis is correct, and we use it to break the target.
For this to work, we need to assume the leakage model in which a device leaks,
where one of the standard models is the Hamming weight model. If the input and
output of the S-box have the same Hamming weights, this will result in several
equally likely key hypotheses (they will have the same correlation). As such, the
side-channel attack in this leakage model would become somewhat more difficult
to succeed.
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2.3 Magic Squares

A magic square is a d × d square grid that consists of distinct positive integer
values in the range [1, d2]. The sum of values in every row, column, and diagonal
is equal. That sum value is called the magic constant of the magic square. There
is no strict requirement on the value of the magic constant. Usually, the sum is
determined as the sum of all elements occurring in the magic square and divided
by the number of cells on each side (d), i.e., d(d2 + 1)/2.

3 Experiments

We consider S-boxes of sizes n × n only. As a consequence, our S-boxes can
be bijective, but there is no constraint on this for all encodings. The smallest
S-box size we work with is 3 × 3, while the largest is 8 × 8 (the smallest and
largest practically used S-box sizes). The set of experiments is divided into two
groups. The first group of experiments deals with the evolution of S-boxes with a
constraint that is imposed on the sums of its rows, columns, and diagonals. More
precisely, we can depict an S-box as a square matrix. Then, each row, column,
or diagonal in that matrix must sum up to the same value (i.e., an S-box is
magic square). As an example, let us consider an S-box of size 4 × 4 that has
16 elements. We can depict them in a matrix of size 4 × 4 where we fill it with
S-box values column by column. Finally, we can easily check the sum of each
row, column, or diagonal in such a matrix. To ensure that it is possible to obtain
such S-boxes, we place the following constraints in our experiments:
1. We consider S-boxes of even dimensions only, and more precisely, dimensions

4, 6, and 8. Recall from Section 2 that S-boxes are defined as elements of
finite fields where the underlying field is the finite field with two elements,
i.e., F2. As such, the number of elements in an S-box equals 2n, where n
is the size of an S-box. Simultaneously, the number of elements in a magic
square is equal to d2, where d is the size of the magic square. For every odd
dimension, the number of elements in a magic square with size d is not the
same as the number of elements in a finite field of size 2n, regardless of the
fact if d = n.

2. Commonly, the elements in a magic square are denoted from 1 to d2 while
the elements in an S-box with elements from 0 to 2n − 1. This does not
represent a problem as in the finite field; all elements are calculated modulo
2n, which means that 0 and 2n (d2) represent the same values.
The second group of experiments will focus on evolving S-boxes where the

difference in the Hamming weights for every pair of S-box input and output is
minimal. Unlike the previous scenario, where the experiments were constrained
to only even-sized S-boxes, now, there is no such constraint. Consequently, for
this set of experiments, we test S-boxes from 3× 3 up to 8× 8 size.

3.1 Experimental Setup

The first set of experiments consider the case in which the additional constraints
are placed on the sum of elements in rows, columns, and diagonals. The second
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round of experiments, in addition to cryptographic properties, also places the
constraint on the difference in Hamming weights between the inputs and outputs
of the S-box. The experiments evaluate both the bijective and non-bijective S-
boxes. For that purpose, three solution representations are applied, out of which
the first two are used with a genetic algorithm (GA) and the third with genetic
programming (GP):

1. The integer genotype, consisting of a vector of integer values of size 2n and
values in the range [0, 2n − 1].

2. The permutation genotype of size 2n, where each value in [0, 2n − 1] occurs
only once.

3. The tree genotype, which represents the transition function of cellular au-
tomata (CA).

In our experiments, the integer genotype is used to evolve non-bijective S-
boxes, while the permutation and tree genotype are used to evolve bijective
S-boxes. The integer representation is a super-set of the permutation represen-
tation, and it is possible, although very unlikely, to obtain bijective S-boxes with
integer genotype. The integer genotype mutation selects a random position in
the vector and assigns it a new value in the defined range. The crossover opera-
tors for integer vector include a simple one-point and two-point recombination,
as well as an averaging crossover which defines all the elements of the child vec-
tor as an arithmetic mean of the corresponding values in the parent vectors. For
the permutation genotype, we use three mutation operators and five crossover
operators where we chose among the most common ones in practice. The muta-
tion operators are insert mutation, inversion mutation, and swap mutation [14].
We used partially mapped crossover (PMX), position based crossover (PBX),
order crossover (OX), uniform like crossover (ULX), and cyclic crossover [15].
For each new individual, an operator is selected uniformly at random between
all operators within a class (both mutation and crossover).

Finally, we use the tree representation, where GP is used to evolve a suitable
cellular automata function in the form of a tree. The input bits of the S-box
are used as terminal nodes of the tree, where their number is equal to n. The
function set consists of Boolean primitives with 1) two inputs: NOT, which
inverts its argument, XOR, AND, OR, NAND, and XNOR, and 2) three inputs:
IF (it takes three arguments and returns the second one if the first evaluates to
true, and the third one otherwise). The evolved function is used as a transition
that, based on the input bits of the current state, calculates the output bits
which act as the next state. For details about the cellular automata approach
for S-box evolution, we refer readers to [9]. The recombination operators for this
representation are simple tree crossover, uniform crossover, size fair, one-point,
and context preserving crossover [16] (selected at random) and subtree mutation.

Both GA and GP use a steady-state tournament algorithm with tournament
size k = 3 (select three individuals and remove the worst one, from the remaining
two make an offspring and mutate it), and with individual mutation probability
of 30%. All parameters were selected after a tuning phase, where the selected
combinations showed good performance. The experiments for each considered
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configuration were executed 30 times (independent runs). The algorithms opti-
mize a single-objective function, which is defined as a linear combination of indi-
vidual criteria, as defined in the next section. In addition to the single-objective
case, the multi-objective case using the well known NSGA-II algorithm [17] was
also tested. Since the results achieved in the multi-objective case were equally
good or worse than in the single-objective case, these results are not further
discussed in the paper.

3.2 Fitness Functions

In addition to the cryptographic properties, the fitness function has to include
an additional term to ensure that the algorithm can evolve S-boxes of the desired
structure. When considering structures that have the sums on row, column, and
diagonal elements equal to some predefined value, we use:

msq =

n∑
i

∣∣∣∣∣∣mc−
n∑
j

sq[i][j]

∣∣∣∣∣∣+

n∑
i

∣∣∣∣∣∣mc−
n∑
j

sq[i][j]

∣∣∣∣∣∣+∣∣∣∣∣mc−
n∑
i

sq[i][i]

∣∣∣∣∣+

∣∣∣∣∣mc−
n∑
i

sq[i][n− i]

∣∣∣∣∣ .
(5)

Here, mc represents the magic constant, i.e., the number to which the elements
in rows, columns, and diagonals need to be equal to when summed up, while
sq represents a square consisting of elements of the S-box. The msq property
calculates the distance for all relevant elements (rows, columns, diagonals) from
the predefined constant. The previous equation is the most general version, which
considers the sums on all the relevant elements of the square. Depending on the
experiment, some elements in that expression will not be calculated when not
all relevant elements need to adhere to the specified sum constraint. Although
the constant to which the rows, columns, and diagonals need to be equal to can
be freely specified, we use values to which the elements sum up in magic squares
of the corresponding sizes [18]. For these constants, we know it is possible to
construct a square with the requested structure, whereas choosing a random
value could mean it would not be possible to obtain a square of numbers where
the sum of elements equals the selected number. For the 4×4 S-box, the constant
is 34. For the 6× 6 S-box, it equals 260, and for the 8× 8 S-box, it equals 2 056.

The fitness function to be minimized is defined as:

f = msq − α nlF
nlbest

− β (δworst − δF )

δworst
, (6)

where nlbest represents the best-known values for nonlinearity as defined in Ta-
ble 1, δworst is the worst possible value for differential uniformity equal to 2n

with n representing the number of inputs in the S-box, while α and β repre-
sent scaling factors for the cryptographic properties. In the experiments, the
emphasis is put on the sq property in a way that the other two properties are
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normalized and scaled with additional factors. This is because we want to see
whether there are S-boxes that adhere to the additional structures, but still have
good cryptographic properties.

Based on preliminary experiments, the values for both α and β were set to
the value of 0.5, which results in the msq property being treated as a primary
objective, while the cryptographic properties are the secondary. In this way, the
algorithm will always prefer a solution with a better structure, while the other
two properties will then force the algorithm to search for those solutions that
have better cryptographic properties.

The second set of experiments places a constraint on the difference in the
Hamming weights of the inputs and outputs of the S-box. This property is cal-
culated as:

HWD = |wH(x)− wH(F (x))|, (7)

where x represents an input value to the S-box, F (x) is the S-box function that
transforms the input, and wH is the function returning the number of ones in
the argument. HWD is simply defined as the absolute difference between the
Hamming weights of the inputs in the S-box and outputs from the S-box. In this
case, the fitness function which has to be minimized is:

f = HWD − α nlF
nlbest

− β (δbest − δF )

δbest
. (8)

If the HWD property would be optimized primarily by giving a smaller weight
to the cryptographic properties, then the algorithms would always obtain the
optimal solution for this property. This would lead to poor results for cryp-
tographic properties, and as such, the evolved S-box would not have much use.
When focusing on S-boxes that have such a structure, the primary focus is placed
on evolving S-boxes with good cryptographic properties and then adjusting the
solutions to conform to the desired structure. After executing some preliminary
tests with different weight values, the α and β coefficients are set to 10, which
we evaluated to be enough for the algorithm to focus primarily on cryptographic
properties, and only then on the difference of the Hamming weights.

3.3 Results

Table 2 shows the results obtained for the experiments in which additional con-
straints are placed on the sum of elements in rows, columns, and diagonals. For
each configuration, the S-box with the best fitness was selected, and the individ-
ual properties that constitute the fitness function are denoted. The constrained
elements column denotes for which elements of the S-box the sum was calcu-
lated to be of the specified constant. For the size of 4×4, the algorithm obtained
S-boxes that mostly have good cryptographic properties. For S-boxes in which
the sum in rows or columns had to be equal to a certain sum, it was almost
trivial for the algorithm to find the square with the optimal cryptographic prop-
erties. Still, when it is enforced that the sum on more elements (e.g., rows and
columns) has to be equal to the desired constant, we found optimal solutions for
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the permutation encoding only. Interestingly, although the tree representation
obtained S-boxes with optimal cryptographic properties, it was unable to obtain
S-boxes that adhered to any of the additionally placed constraints.

For S-boxes of size 6×6, the algorithm demonstrated an interesting behavior.
When the permutation and integer genotypes were applied, the algorithm had no
problem with optimizing the additional constraints, since it evolved S-boxes that
satisfied these constraints in all cases. On the other hand, in any of the experi-
ments, were we able to obtain an S-box with optimal cryptographic properties.
It is not surprising that the algorithm could not reach optimal cryptographic
properties since this is a difficult task for EA when using this type of encoding.
Additionally, the integer genotype achieved inferior results compared to the per-
mutation genotype. The cellular automata rules evolved by GP demonstrated
the opposite behavior since there, we found S-boxes with optimal cryptographic
properties, but which did not satisfy the additional constraints.

For the 8 × 8 S-boxes, the algorithm exhibited difficulties in obtaining S-
boxes with an additional structure. For the permutation genotype, the algorithm
evolved S-boxes that satisfy only the most simple constraint in which either the
row or column sums are equal to the desired constant. For the integer genotype,
the algorithm had fewer problems and obtained the desired structure for each
constraint, which is expected since, in that case, it is much easier to construct
an S-box with the desired structure. The S-boxes constructed by the permuta-
tion genotype have better cryptographic properties than those constructed by
the integer genotype. The obtained objects have relatively good cryptographic
properties, which are in line with the results for EA and S-boxes of that size [8].
The results obtained by the GP evolved CA are quite poor since this representa-
tion was neither able to evolve S-boxes with good cryptographic properties, nor
which satisfied the constraints that were additionally placed upon the S-boxes
for its structure.

It is not always easy to discern what are strong cryptographic properties as
that depends on the whole cipher and not only the S-box part. For all tested
sizes, it is possible to find S-boxes whose structure adheres to certain constraints.
For the S-box size of 4×4, GA obtained S-boxes both with the desired structure
and optimal cryptographic properties. This was not possible in GP’s case since
it was not possible to find an optimal S-box even for the least restrictive struc-
ture constraint. The cryptographic properties are further away from the optimal
values for larger sizes, but they are still relatively good. For 6 × 6 and 8 × 8
and permutation encoding, cryptographic properties are the same for the most
restrictive structure in which the elements in rows, columns, and diagonals have
to sum up to a certain value, and in the structure where this is not required for
the diagonal elements.

Table 3 presents the results obtained when, in addition to optimizing the
cryptographic properties, the difference in the Hamming weights is used as an
additional constraint. For the S-box size of 3 × 3, the algorithm obtained the
same value for the integer and permutation genotypes. By additionally using ex-
haustive search, it was also proven that this is the optimal solution that can be
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Table 2: Best results obtained with additional constraints imposed on the sums
of rows, columns, and diagonals, single-objective optimization.

S-box size Genotype Constrained elements msq nlF δF

4× 4 Integer Rows 0 4 2
4× 4 Integer Columns 0 4 4
4× 4 Integer Rows and columns 0 3 4
4× 4 Integer Rows, columns, and diagonals 0 2 6
4× 4 Permutation Rows 0 4 4
4× 4 Permutation Columns 0 4 4
4× 4 Permutation Rows and columns 0 4 4
4× 4 Permutation Rows, columns, and diagonals 0 2 8
4× 4 Tree Rows 6 4 4
4× 4 Tree Columns 6 4 4
4× 4 Tree Rows and columns 26 4 4
4× 4 Tree Rows, columns, and diagonals 49 4 4

6× 6 Integer Rows 0 20 8
6× 6 Integer Columns 0 19 8
6× 6 Integer Rows and columns 0 7 8
6× 6 Integer Rows, columns, and diagonals 0 7 10
6× 6 Permutation Rows 0 20 6
6× 6 Permutation Columns 0 20 6
6× 6 Permutation Rows and columns 0 18 8
6× 6 Permutation Rows, columns, and diagonals 0 18 8
6× 6 Tree Rows 88 24 4
6× 6 Tree Columns 88 24 4
6× 6 Tree Rows and columns 220 24 4
6× 6 Tree Rows, columns, and diagonals 422 24 4

8× 8 Integer Rows 0 33 12
8× 8 Integer Columns 0 29 12
8× 8 Integer Rows and columns 0 18 12
8× 8 Integer Rows, columns, and diagonals 0 11 12
8× 8 Permutation Rows 0 100 8
8× 8 Permutation Columns 0 100 10
8× 8 Permutation Rows and columns 2 96 10
8× 8 Permutation Rows, columns, and diagonals 4 96 10
8× 8 Tree Rows 476 86 28
8× 8 Tree Columns 5 760 84 36
8× 8 Tree Rows and columns 8 440 80 32
8× 8 Tree Rows, columns, and diagonals 10 169 82 26

obtained for this size. On the other hand, the algorithm did not obtain the opti-
mal value by using the tree representation. This further shows that the evolved
CA, although very powerful with dealing with only cryptographic properties,
exhibits difficulties when S-boxes of certain structures are being evolved. For
all other S-box sizes, the permutation and integer genotypes achieve a similar
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performance, which seems to demonstrate that both can be used for the consid-
ered problem. The only significant difference happens for 8× 8 S-box, where the
integer genotype obtained a slightly better result for the nonlinearity property,
but it also obtained a much worse value for the difference in Hamming weights.

In many cases, the obtained difference in Hamming weights between inputs
and outputs is equal to the obtained nonlinearity value. This inspires us to
ask a question of whether we found a lower bound on the sum of the differ-
ence of the Hamming weights. More precisely, whether for bijective S-boxes,∑
x∈Fn

2
|wH(F (x)) − wH(x)| ≥ minu,v∈Fn

2 ,ε∈F2,v 6=0dH(v · F, u · x + ε)? It turns

out this is true and can be mathematically proven. We have
∑
x∈Fn

2
|wH(F (x))−

wH(x)| ≥ dH(v · F (x), u · x + ε) when u = v equals the all-1 vector and
ε = 0, where dH denotes the Hamming distance. Indeed, for each x such that
v · F (x) 6= u · x, we have wH(F (x)) 6= wH(x). Observe this is true as the non-
linearity of an S-box is the minimal nonlinearity of all its components. Then,∑
x∈Fn

2
|wH(F (x))−wH(x)| is at least the distance between the component func-

tion v ·F (x) and the linear function u ·x. A fortiori it is at least the nonlinearity.
To the best of our knowledge, the characterization between the maximal nonlin-
earity and the differences between the Hamming weights of input/output pairs
is new. As such, we see that EAs not only managed to reach the optimal results
for several S-box sizes, but they also inspired the new characterization of the
differences of the Hamming weights concerning nonlinearity.

The CA evolved by GP once again demonstrates its superiority when consid-
ering only cryptographic properties. Nevertheless, the results obtained for the
difference in Hamming weights are poor compared to the results for the other
two genotypes. Thus, CA again does not seem to be fit to handle the evolution of
S-boxes with additional structure. Although it could be said that this represen-
tation achieves poor results because for the S-boxes with better cryptographic
properties it is not even possible to obtain good values for the difference in Ham-
ming weights, the results obtained for the S-box of size 8×8 disprove this, since,
for that size, GP obtained poor results for both the cryptographic properties and
the difference in Hamming weights. It simply seems that the restricted search
space of CA is quite suitable for evolving S-boxes of good cryptographic prop-
erties (up to the size of 8× 8), but it exhibits problems when the S-boxes have
to include an additional structure in them.

4 Conclusions and Future Work

The results we obtain suggest that the problem of evolving S-boxes with addi-
tional structure can be rather difficult. This should not come as a surprise as
we know that S-boxes’ design is a difficult task for evolutionary algorithms. The
choice of genotype significantly influences the algorithm’s ability to obtain S-
boxes with additional structure. We managed to find cryptographically optimal
S-boxes with sums of rows and columns equal to a specified constant. We also
managed to obtain cryptographically optimal S-boxes with a small difference in
the Hamming weights between inputs and outputs. We mathematically prove
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Table 3: Best results obtained by optimizing the difference in Hamming weights
simultaneously with cryptographic properties.

S-box size Genotype HWD nlF δF

3× 3 Integer 2 2 2
4× 4 Integer 6 4 2
5× 5 Integer 10 10 4
6× 6 Integer 22 22 6
7× 7 Integer 46 46 8
8× 8 Integer 156 102 10

3× 3 Permutation 2 2 2
4× 4 Permutation 4 4 4
5× 5 Permutation 10 10 4
6× 6 Permutation 20 20 6
7× 7 Permutation 46 46 8
8× 8 Permutation 102 100 8

3× 3 Tree 6 2 2
4× 4 Tree 8 4 4
5× 5 Tree 20 12 2
6× 6 Tree 60 24 4
7× 7 Tree 84 48 8
8× 8 Tree 224 84 30

that the smallest sum of differences cannot be smaller than the nonlinearity
value, which is a previously unknown result, inspired by evolutionary algorithms
experiments and observations. In Figure 1, we give examples of two evolved 4×4
S-boxes for scenarios 1 and 2, respectively. In future work, we plan to explore
whether we can obtain magic S-boxes if we consider some other patterns, e.g.,
looking at broken rows/columns/diagonals. Besides the difference in Hamming
weights, we also plan to consider the Hamming distance metric.

7 6 10 11

1 15 2 16

14 8 9 3

12 5 13 4

(a) S-box with optimal cryptographic

properties where the elements in rows

and columns sum up to the value 34.

0 8 2 4

10 6 5 13

1 3 12 9

14 7 11 15

(b) S-box with optimal cryptographic

properties where the difference of Ham-

ming weights equals 4.

Fig. 1: Examples of 4× 4 S-boxes with additional structure.
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