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Executive Summary
It is no secret to hospital and public health managers that resource shortages worsen pandemics. The importance
of preparedness has long been recognized within the European Union. One of the current H2020 innovation
projects in this domain is PANDEM-2, aiming to improve pandemic preparedness from the side of resource
management and sharing by creating cutting-edge digital tools. As part of these tools, a system dynamics (SD)
healthcare resource model is being developed, with the ultimate goal of embedding it in a dashboard accessible
to pandemic managers. This is done in order to support managers in rapidly making evidence-based assessments
and decisions, or as in this thesis shortened, to provide situational awareness1. In short, the specific problem
we were tackling was the exploration of how can pandemic preparedness can be achieved via current healthcare
resource models and how a specific resource model (developed by a previous intern) can be used. First, to
gain a general understanding of the state-of-the-art models, we looked into the scientific literature from two
directions: We looked at how existing resource models work, are validated, and are used via literature review.
For another perspective, we looked at scientific frameworks describing modelling and validation to inform our
methodology. Therefore, this thesis seeks to answer the question: How to support healthcare resource managers
in acquiring situational awareness via an SD model? To gain a better understanding, we did a literature review
first to understand how others approach the topic of healthcare resource modelling.

We first analyzed the existing scientific literature by a preliminary search, which was also used to construct a
more detailed and refined second search. In this second search, we used the PubMed database to search for
articles containing the keywords hospital and healthcare resource, pandemic, model, validation, and synonyms.
Then the returned articles were screened for relevancy, resulting in a total of 25 healthcare resource models
analyzed. Within these analyzed models (and articles), we found that the most common approach is using SD
models, and the second most common approach is using regression models. Roughly two-thirds of the models
fall into these two categories. Furthermore, we found that there is a stronger focus on hospital resources than
public health resources and that no common approach is used for model validation. We also found that the
articles demonstrating that the model is used to support real-life decision-making were usually not about SD
models; therefore, examining how to use SD healthcare resource models for decision support is not mainstream.
We also found that the model used in our research is novel in the sense that it encompasses resources on a more
detailed level than existing published models.

To further our understanding, we decided to answer our research question by holding a workshop, where we
examine how to communicate model outputs. While examining the relevant modelling methodological frame-
works, we defined the tasks that need to be done in this thesis through the lens of the modelling cycle. We need
to perform the tasks of verification, validation, and holding a workshop, which partly encompasses evaluation.
Then examining the literature about verification and validation, we encountered the implication of a well-known
philosophical problem of scientific theories’ for modelling: It cannot be demonstrated whether the model (or the
theory) is a truthful description of the phenomenon. To overcome this problem, in modelling, validation refers
to building confidence that the model is fit for its purpose. In this study, the purpose of the model changed
from describing the different mechanisms found important to generate semi-realistic outputs to be used in the
workshop; therefore, it had to be revalidated. This was addressed by performing a particular set of relevant
validation tests. The model passed verification and then the validation for this purpose, so we continued with
the workshop. We decided that in the workshop, we would use a presentation to communicate intervention
opportunities for the pandemic based on the model outputs. Then after each intervention, the participants
were asked to evaluate the easiness of understanding the output and to talk about what actions the presented
information inspire.

By holding the workshops, we found several relevant facts: First, it was found that the goal participants were
searching for was to get rid of the perceived gap. This also meant they were searching for insights that could be
used for operational planning purposes. Furthermore, the analysis does not need to stop at visualizing outputs.
One of the participants indicated that further analyzing the graphs is not as easy for them as for an analyst
working with the model. We have also seen that participants tend to augment the presented data with their
experiences, which (unless explicitly presented) leads to assumptions about how the model works. Some partic-
ipants also pointed out that the contact tracing part of the model is already outdated (in less than a year). We
have identified some practical ways to avoid ambiguity while communicating about healthcare resource models.
First, we found that despite the insights we gained by analyzing model outputs were not novel, the discovered

1 While WP3 is also named situational awareness, in this thesis, we are not referring to the data aggregation analytics and
visualization of epidemiological descriptors, but to the fact of being aware of how resources are affected by the pandemic
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scenarios were still good discussion starters in the workshop. This is likely the mechanism of the scenarios
acting as a reminder for passive knowledge, which participants subsequently shared. Furthermore, extra care
should be taken to explain the context of how the data got generated, especially concerning the model. As
the presented data left some space for interpretation, participants sometimes had different assumptions than
the ones coded into the model. While these could be resolved in the workshop to some extent, this will not
be the case for the dashboard. Given some familiarity with the audience, it is possible to expect some ques-
tions and misunderstandings, which could be proactively addressed in a description or in a ‘frequently asked
questions’. We also identified two presentation types that were easier to process than presenting key model
outputs: The first option is to analyze key model outputs further than graphing and present the key insights
(such as peak resource demand) in a tabular format. Alternatively, the second option is to build all visualization
on the same template and explain that template on the first occurrence in detail. In subsequent occurrences,
it should be enough to point out only the interesting parts and give participants time to process the information.

From another perspective, participants expressed a need for data that can be used for planning purposes.
However, given the uncertainty about the system, these, as we call consolidative models, cannot be constructed
yet. While exploratory modelling is an alternative SD technique for addressing deep uncertainty, it does not
attempt to produce numerically accurate predictions. However, from a novel perspective, the consolidative and
exploratory approaches can be viewed as two ranges on the spectrum of uncertainty about the modelled system.
Viewed from this perspective, validation means reducing uncertainty about the system. Nevertheless, to achieve
the consolidative models, datasets about resource usage are needed, but as far as we know, no such dataset exists.
As data to create such datasets is probably already being collected for operational purposes, it is likely that the
collection and aggregation of these data are not happening. However, creating such datasets comes with some
challenges. There is a value trade-off between privacy and preparedness through data collection, and the current
data collection techniques are unlikely to be unified. Overcoming these challenges would need quite a significant
upfront investment. To answer our original question of how to support healthcare resource managers in acquiring
situational awareness, this thesis argues that, by far, the biggest utility could be achieved by strengthening data
collection and aggregation, as it enables the possibility to develop surrogate models. However, as this requires a
significant upfront investment, question-driven exploratory models remain an alternative way to address these
uncertainties.
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Chapter 1

Introduction

The COVID-19 pandemic is the latest example that significant healthcare shortages can affect the mortality
rate of a disease (Abdolhamid, Pishvaee, Aalikhani, & Parsanejad, n.d.; Olivieri, Palu, & Sebastiani, 2021).
While the world kept a close eye on hospital and intensive care unit (ICU) occupancy, there have also been
several reports of other resources having insufficient capacity, such as testing capacity or personal protective
equipment (PPE) (Rijksoverheid, 2020; V&VN, 2020).

While a rushed production of these resources is possible in an emergency, it still takes time to re-organize
(Vecchi, Cusumano, & Boyer, 2020). Moreover, while adapting the supply to the demand is relatively fast for
simple resources like face masks, more complex production processes take more time to adapt. The slowest is
the ‘production’ of hospital staffing, as it takes three and five years to train nurses and doctors. Here rushed
production equals makeshift emergency solutions, like asking sufficiently trained people to volunteer, such as
recently retired employees or ones being on unpaid leave (The Local, 2020), or such as asking for the help of
health students (Operatív törzs, 2021). However, it is undisputed that the better solution is to have sufficient
trained medical personnel. Therefore it is important to understand how a pandemic causes a surge in resource
demand. This not only helps decision-makers by making a very-rough estimation of the size of the required
resources, but it also enables them to recognize the early signals of it. The latter is especially important, as
it gives more time to prepare, possibly avoiding the situation of insufficient supplies and the introduction of
highly disruptive non-pharmaceutical interventions, such as lockdowns.

Within the European Union, the importance of improving pandemic preparedness has long been realized
and formalized in the decision 1082/2013/EU (Council of the European Union, 2013). In agreement with this
decision, several innovation projects are funded, one being the PANDEM-2 project. The project is funded
by an H2020 grant and is organized as a consortium consisting of 21 partners (European commission, n.d.).
This project “implements and demonstrates the most important novel concepts and IT systems to improve the
capacity of European pandemic planning and response” (European Research Executive Agency, 2020, Annex
1, p. 3). An important detail is that despite the attention generated by the current COVID-19 pandemic, the
project aims to develop cutting-edge solutions for the management and planning of all types of pandemics (e.g.
influenza, Ebola) in accordance with the aforementioned 1082/2013/EU decision. Furthermore, as part of the
whole EU approach, cross-border communication and resource sharing receive special attention (PANDEM-2,
n.d.-a).

Within the PANDEM-2 consortium, as a specific part of Work Package Four (WP4), the Dutch National
Institute for Public Health and the Environment (RIVM) took on the challenge to “assess the needs, feasibility
and practicality of the software tools for national, regional and local stakeholders” In addition, RIVM will also
aid in the development of a resource modelling system (PANDEM-2, n.d.-b). The consortium partner leading the
development of WP4 and the resource modelling is the National University of Ireland, Galway (NUIG). Together
with RIVM and other consortium partners, they are developing a system dynamics (SD) model to understand
healthcare resource shortages better. The reason behind the SD paradigm was the previous experience gained
from multiple similar projects, such as Stein et al. (2012); Yanez, Duggan, Hayes, Jilani, and Connolly (2017).

As the PANDEM-2 project started before this thesis, a version of the healthcare resource model has already
been developed during a joint RIVM-TU Delft internship, with the goal of describing the health system from
the perspective of COVID-19 treatment (de Schipper, 2022a). This model is referred to as original model in this
thesis. Alongside this thesis, a modelling team from NUIG also utilized the original model, among other things,
to further advance their model (NUIG model) for fulfilling parts of the WP4 deliverables: namely “Predictive
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Pandemic Modelling”1 and “Design and Implement Resource Planning System” (European Research Executive
Agency, 2020, Annex 1, p. 24).

These two goals do not exist in a vacuum, as NUIG’s model will be connected to the “common visual
analytics service”, which “will be instantiated in a suite of interactive data visualization and user interface
components, within the WP3 Dashboard environment, for visual querying and interaction with pandemic data
of high dimension and complexity to support rapid evidence-based assessment and decision making” (European
Research Executive Agency, 2020, Annex 1, p. 24). In this thesis, the term dahsboard refers to the instantiation
of this common visual analytics service. Similarly, this ability for rapid evidence-based assessment and decision
making is shortened situational awareness2. Therefore this thesis was carried out, as part of an internship
within RIVM, under WP4 of the PANDEM-2 project, with the aim of exploring what utility an SD model can
provide.

From a scientific perspective, this is an interesting question because we perceive a lack of general knowledge
about how to approach healthcare resource modelling via SD modelling, especially on the topics of model
validity and evaluation. While there are well-established frameworks, these are generic to SD; therefore, it is
interesting to see how these can be applied more specifically in the uncertain, multi-disciplinary environment
that characterizes healthcare resource modelling during a pandemic. The uncertainty originates from the fact
that validation via controlled experiments is not even worth considering and from the lack of formalized datasets
(for many auxiliary but relevant resources, such as demand for public testing). Multi-disciplinarity originates
from the different practices conducted by people working in public health and a hospital setting: Public health
professionals tend to use more scientific literature in their day-to-day work than those working in a hospital
setting.

There is a third interesting perspective: examining the role of modelling with respect to knowledge man-
agement. A modelling process always condenses the knowledge of the model builder (Bolt, Bayer, Kapsali, &
Brailsford, 2021); therefore, modelling can be viewed as a way to formalize tacit knowledge about a real-world
system. However, as the model will be enacted by people from multiple disciplines (i.e., the public health and
hospital side), it can also be viewed as a means to achieve cross-disciplinary communication. This latter role
classifies the model as a boundary object (Newell, Morton, Marabelli, & Galliers, 2019). In this sense, modelling
can also be viewed as a technology, as it is an application of scientific knowledge for practical purposes. In this
thesis, we investigated the directions a future technology (i.e., healthcare resource modelling with a dashboard)
could take in an attempt to answer which modelling technologies we need and when.

Despite ultimately, the dashboard will utilize the model developed by NUIG, RIVM expressed their interest
in exploring the whether the behaviour of the original model is realistic and how the results of such a model
should be presented on the dashboard. Therefore this thesis addresses the research question:

How to support healthcare resource managers in acquiring situational awareness via an SD model?

The term healthcare resource should be understood as a reference to the two resource sides: hospital resources
and public health resources. An SD model refers to the original model, where the healthcare resources are
represented by two sub-models, plus a compartmental sub-model, to determine the speed of the pathogen
spread in the population. We also defined two sub-research questions to support answering the main research
question:

• How can healthcare resource models be validated? - Addressed by conducting a literature review on model
validation, to explore how other researchers tackle the problem of validation. Given the method, this
sub-research question also has the implicit aim of understanding which resources via what techniques they
model.

• How are, or can healthcare resource models be used? - Addressed by continuous consultation with subject-
matter experts and by conducting workshops to give recommendations on how to communicate the model
outputs to the intended audience of the dashboard.

This thesis is structured in the following way: First, to gain a general understanding of healthcare resource
modelling, we looked into the scientific literature from two directions: In Resource Modelling in Healthcare
Literature (chapter 2), we look at how published resource models work, validated, and used, via two literature

1 In retrospective, predictive pandemic modelling is not the best name, given the division between consolidative and exploratory
modelling.

2 WP3 of the PANDEM-2 project also named situational awareness, however, in this thesis, we deviate from this. We are
not referring to the data aggregation, analytics, and visualization of epidemiological descriptors. Instead, we are referring to the
awareness of a pandemic’s effect on the different resources.
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reviews. Then, for gaining a deeper level of understanding, another perspective is presented in Methods (chap-
ter 3) via the scientific frameworks describing modelling and validation, which in turn informs our methodology
for validating the model. The methodology for the workshop is also presented in this section. In Results of the
Workshop (chapter 4), the findings of the workshop are described. Then, in Discussion and Recommendation
(chapter 5), the implications of the results are described, and the research questions are addressed. Finally, in
Conclusion (chapter 6), the work of this thesis is summarized, and the study is concluded.
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Chapter 2

Resource Modelling in Healthcare
Literature

To address the first sub-research question, namely How can healthcare resource models be validated?, we decided
to conduct a literature review in model validation. First, a Preliminary Literature Review (section 2.1) was
conducted to verify whether our insights about the scientific literature hold true and to gain a general idea of
which dimensions the literature is worth analyzing along. After that, another, more specific literature review was
done, specifically to explore how other healthcare resource models tackle the question of validation (section 2.2).

2.1 Preliminary Literature Review
The preliminary literature review was done in two steps. First, in Search Design, the appropriate keywords
were selected and justified, then in Analysis of Results, the returned articles are analyzed in detail.

2.1.1 Search Design
For this search, the database selected was the Web of Science core collection (Clarivate, n.d.). The keywords
were the following :

• system dynamics - The justification for this keyword is that the model which will be validated is an SD
model.

• pandemic or epidemic or avian influenza - the keyword pandemic was included because this thesis re-
searches resource usage related to pandemics, opposed to non-contagious diseases such as cardiovascular
problems. The epidemic keyword was included, as this term is sometimes used interchangeably with
pandemic. The keyword avian influenza was also included, as it was hypothesized that the related data
quality might be better (B. Beishuizen, personal communication, 15th March, 2022).

• hospital - The decision to include this keyword separately was an unnecessary precaution in hindsight.
The search algorithm of the Web of Science platform does not treat spaces as literals. If it would, then
searching for hospital resources does not find the expressions like "resources of hospitals". However, this
was only found out after performing the search.

• resources or capacity - Since the search should include healthcare resource models, including hospital
resources was a trivial choice. As a synonym, hopsital capacity was included too.

The search fields were set to Title, Abstract, and Keywords, including non-author generated keywords. The
non-English articles were excluded, and the remaining 88 results were analyzed. After an abstract screening,
the following 23 articles seemed relevant to the research question of this thesis: (Abdolhamid et al., n.d.; Cakan,
2020; Cui, Qiu, Liu, & Hu, 2017; Ejigu et al., 2021; Garcia-Vicuna, Esparza, & Mallor, 2022; Ibarra-Vega, 2020;
Joulaei, Honarvar, Zamiri, Moghadami, & Lankarani, 2010; Keeling et al., 2021; Liu, Cao, Liang, & Chen, 2020;
Liu & Zhang, 2016; Mu, Wei, & Yang, 2019; Mu & Yang, 2018; Mugisha, Ssebuliba, Nakakawa, Kikawa, &
Ssematimba, 2021; Pei, Yuan, Yu, & Li, n.d.; Pierce et al., 2021; Rocha et al., 2021; Tembine, 2020; Verma,
Saini, Gandhi, Dash, & Koya, 2020; Vierlboeck, Nilchiani, & Edwards, 2020; A. Wang, Xiao, & Zhu, 2018;
Weissman et al., 2020; Wood, McWilliams, Thomas, Bourdeaux, & Vasilakis, 2020; Zhao, Li, Wang, & Jiang,
2021).
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2.1.2 Analysis of Results
Within this set of articles, 16 had a healthcare resource model, which included hospital resources. These models
are summarized on Table 2.1. First, the types of modelled hospital resources were identified. Then it was
examined whether the lack of resources is fed back to the model (e.g. by modifying the disease mortality).
Finally, the type of the underlying epidemiologic model was identified. Here, compartmental models are models
where people may progress between compartments, such as susceptible or infected. When these were based on
differential equations, they received special attention due to (generally) being SD models. Lastly, the ‘Disease
type’ column of Table 2.1 indicates which disease was modelled (if left empty, the authors did not specify).

Article
Generic
hospital
resource

Hospital
beds ICUs Venti-

lators
Testing
capacity

Resource
depletion
feedback
(yes/no)

Transmission
model

Disease
type

(Weissman et al., 2020) x x x no SIR1 COVID-19
(Ibarra-Vega, 2020) x yes SIRD COVID-19
(Wood et al., 2020) x yes queue model
(Keeling et al., 2021) x x no SEIR COVID-19
(Verma et al., 2020) x x x x no SEIR COVID-19
(Mu & Yang, 2018) x no SI + SEIR2 H7N9
(Abdolhamid et al., n.d.) x x yes SEIR COVID-19
(Pei et al., n.d.) x x no queue model3 COVID-19
(Liu & Zhang, 2016) x yes SEIR COVID-19
(Cui et al., 2017) x yes SIR
(Mu et al., 2019) x yes SI + SIR H7N9
(Mugisha et al., 2021) x no SEIHR(S) COVID-19
(Garcia-Vicuna et al., 2022) x x no flow process4 COVID-19
(Ejigu et al., 2021) x no SEIHR COVID-19
(Pierce et al., 2021) x no SEIHR(D) COVID-19
(A. Wang et al., 2018) x yes SIS

Table 2.1: Overview of the preliminary literature review.

Generally speaking, there are two types of models: Ones that include a resource feedback loop and those
that do not. The latter type is usually used to research questions like When is resource depletion reached?, or
Under what (policy) parameters are the hospital resources ‘just enough’?. The models which included resource
feedback usually included hospital beds and ICU admissions. Some models use a ‘generic hospital resource’.
This is a mathematical construct which assumes that all hospital resources can be represented with a single
variable, which is indifferently supplied to all hospitalized individuals. While the models without feedback tend
to model more resources, those are also very focused on bed and ICU occupancy.

Most of the models are compartmental models, which are based on differential equations. This is not
surprising, considering that one of the search keywords is system dynamics, which is also based on differential
equations.

It is worth noting that nearly all of these models assume that infected individuals cannot get infected again.
This is visible in the ‘transmission model’ column, as the last compartment (usually R or D) is not followed by an
S compartment again. This is a clever simplification when the modelled time frame is relatively short compared
to the time it takes immunity to be lost. However, in case of a longer time frame (e.g. years), several factors
make the population susceptible again. For example, pathogen mutations occur, immunity naturally decreases
in individuals, or over a decade, a significant percentage of the population consists of newborns. The model
inherited by this thesis work has a SEIRS-like structure: (susceptible - exposed - infected - recovered/dead -
then again: susceptible) (de Schipper, 2022b), clearly distinguishing it from these models.

1 Where a compartmental model was used, the following letter code was used based on the existence of compartments: S -
susceptible, E - exposed, I - infected, H - hospitalized, R - recovered/removed, D - dead.

2 H7N9 is a zoonotic disease (avian influenza), the separate SI compartments model the disease spread in the animal population,
and the SEIR compartments model the disease spread in the human population.

3 The model utilizes the mathematical queueing theory, where patients arrive probabilistically to the hospital, based on a specified
(time-dependent) distribution

4 This model assumes that patients move between different hospital care types under a constant (average) time, and the pathway
selection is defined probabilistically.
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It should not come as a surprise that although the search was not explicitly aimed at COVID-19, most
articles are about it. This is probably the result of the enormous research effort used to tackle the latest
pandemic. However, the underlying transmission models with suitable parameterization could simulate other
infectious diseases too, like influenza.

The validation of the model was tackled differently in each article, but the general approaches were the
following:

• Explicitly writing down assumptions.

• Tackle uncertainty by sampling some parameters from a distribution, then display confidence intervals in
the model predictions.

• Compare model predictions with real-life data, usually in a quantified manner, using mean-squared error.

Many of the articles included scenarios and scenario analysis. Most articles focused on the effect of different
government policies, such as social distancing or the use of face masks. These scenarios modified the parameters
but not the structure of the model. However, the approaches to analyzing these scenarios were not uniform. For
example Ejigu et al. (2021) sampled the dimensions of policy space and conducted a full factorial experiment.
In contrast, Keeling et al. (2021) were probably limited by computational power due to stochastic elements in
their model and only explored a few scenarios.

No cases were found where the scenarios were used to validate the model. This was probably not documented
in the articles if it was done this way. However, the lack of hard data for scenario-based validation suggests
that these models’ validation relied on qualitative approaches.

To conclude the findings of the preliminary research, quite some models utilize a resource feedback loop
to simulate the depletion of resources, but these tend to oversimplify the resources in favour of accuracy.
Furthermore, in past models, the population cannot get susceptible again. Lastly, there is no unified way to
validate healthcare resource models. This last point is the research gap this thesis aims to address. Hopefully, a
direction towards a more comprehensive validation approach can be found as a small step towards a universally
applicable exploratory model validation theory.

2.2 Literature Review on Validation
While the results of the preliminary literature review were promising, we decided to conduct a more detailed
literature review with the scope explicitly set on healthcare resource model validation. The literature review
described in this section builds on the lessons learned from the preliminary literature review. The description
of this literature review also follows the structure of the preliminary literature review: first, the Search Design
is described, followed by the Analysis of Results.

2.2.1 Search Design
This time, PubMed was chosen as the search base. This platform is a bibliographic database of life sciences and
biomedical information (Canese & Weis, 2013). These fields are very relevant for pandemics; therefore, with
healthcare resource modelling, PubMed is a more suitable database to search on.

The first step of a literature review is to identify the keywords to be searched. While a set of relevant
keywords were identified during the Preliminary Literature Review, we decided to improve by incorporating the
newly acquired knowledge about the field in the following way:

• The keyword system dynamics was changed to model. The rationale behind this is that some of the relevant
articles during the preliminary literature search were only found because their abstract incorporated the
terms system and dynamics separately. A more general term: model can also find these articles while
correcting this problem.

• Despite hospital resources, the model consists of healthcare resources too, such as PPE stock, contact
tracing capacity, and vaccine stockpile. The keyword healthcare was added in a way that it creates a
Cartesian product with the keyword resource. This Cartesian product approach was followed to include
a greater set of synonyms (via Automatic Term Mapping).

• From a resource modelling perspective, all highly infectious respiratory diseases are similar enough to
justify the addition of influenza, SARS, and covid beside the existing pandemic and epidemic keywords.

• To perform the actual scope change, the term validation was added.
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For the first try, all terms were searched in the [Title/Abstract] fields. It means that the citation’s title,
abstract, and author-defined keywords were searched (National Library of Medicine, 2022b). Unfortunately, this
search resulted in an unexpectedly high number of articles. Upon investigation, it was found that PubMed’s
Automatic Term Mapping included some very broad categories. In brief, the automatic term mapping is a
core algorithm to the search, which ensures that users do not need to be 100% accurate and inclusive with
their keywords (National Library of Medicine, 2022b). For example, searching for covid automatically includes
coronavirus, sars-cov-2, and many other commonly used terms of the phenomenon. While automatic term
mapping was generally helpful, it was counter-productive in some cases. For example, it included the keyword
Health care resources (as a MeSH word), which in turn includes distributional activities, which is outside the
scope of this study (National Library of Medicine, 2022a). Therefore a very manual approach was chosen, which
enabled the exclusion or replacement of automatic term mapping, thereby granting finer control over the search.
The final search string, including the exclusion and replacement of automatic term mapping, was:

("epidemiological models"[MeSH Terms] OR "model*"[Title/Abstract]) AND "validat*"[Title/Abstract]
AND (pandemic*[tiab] OR epidemic*[tiab] OR covid19[tiab] OR covid-19[tiab] OR influenza OR
SARS) AND ("health-care"[Title/Abstract] OR "health-care"[Title/Abstract] OR "healthcare"[Title/Abstract]
OR "hospital"[tiab] OR "hospitals"[tiab]) AND (resource[tiab] OR capacity)

This resulted in a processable amount of 131 articles at the time of the search. The resulting articles were
screened based on their title and abstract, with the criteria that the article needs to describe a model containing
the expected number of sick people in a pandemic. In the next step, the selected articles were read, and the
decision was made to exclude an additional six articles. An article was identified during project planning which
was not returned by the literature search despite its relevance: (Stein et al., 2012). This article was added
manually. Then, the underlying model(s) were analyzed for each article. Several articles included more than
one model; however, in the case of (Araz, Bentley, & Muelleman, 2014; Smith et al., 2021), it was decided that
these models differ to the extent that these should be analyzed separately. This selection process is described
in detail on Figure 2.1.

Figure 2.1: Overview of the model selection process

2.2.2 Analysis of Results
The 25 models returned by the search were analyzed, and the results can be seen Table 2.3. The analysis roughly
followed three questions: What is the underlying mathematical model? (Model Columns); Which resources were
modelled? (Resources Columns); How the validation process is approached? (Validation Columns). A more
detailed explanation of these will follow:
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Model Columns

As we did not only search for SD models, it is essential to identify the underlying mathematical model. There
is not only a huge difference between a white-box, and black-box modelling approach (explained below), a con-
nection between model type and other variables might uncover interesting relationships. Therefore these model
columns give an overview of the mathematical model used in the articles. The first one is Type, and the second
one is Properties, which consists of 3 sub-columns.

Column Type:
Given that the topic is epidemiology, most models are compartmental models. These were given a code ac-
cording to which compartments are defined, based on the rules described in Table 2.2. As the primary form
of a compartmental model consists of differential equations (Brauer, 2008), and the SD paradigm also utilizes
differential equations heavily, I did not distinguish between the two categories. As most models were in this
category, it is not indicated separately in this column. However, some less widespread approaches use a radically
different model structure. If the model is one of these types, it is indicated in the table based on the following
acronyms:

• ABM - Agent-Based Model

• ARIMA - AutoRegressive Integrated Moving Average

• VECM - Vector Error Correction Model

• m-IDEA - modified Incidence Decay and Exponential Adjustment

• GRM - generalized Richard’s model

• Spatial - By default, the SD models assume the perfect mixing of people. This well-known limitation was
tried to overcome in some cases by introducing some degree of spatial differentiation.

• Multi-model - the article covered multiple models. These were separated in the subsequent rows in the
table.

Assigned letter Compartment it denotes

S Suspectible
E Exposed
I Infected
R Recovered (or Removed)
D Dead (when explicitly mentioned beside recovered)
Q Quarantined
H Hospitalized
V Vaccinated

Table 2.2: Compartment abbreviations of ‘Model type’ column in Table 2.3

Column Properties:
This column is split into three sub-columns, each describing a specific property of the model. The first column
describes explicitly if the model is SD-like (‘sd’) or another type (‘o’). The second column describes explicitly
if the model is a compartmental model (‘c’), an autoregression model (‘r’), or has another structure (‘o’). This
is interesting because there are fundamental differences between white- and black-box models. The difference
between the two is that while the white-box models’ internal structure is understood, the black-box models’
structure is not. In this categorization, SD falls into the white box model category, as the modeller should
understand the equations he put into the SD model. Therefore, the internal variables all should have a concrete
meaning, as opposed to most of the machine learning approaches, such as autoregression models (TU Delft,
2020). Finally, the third column indicates if the model separates its population into age groups (‘a’), if there is
spatial differentiation (‘s’), or if the spatial differentiation is only made for the resources (‘sr’). This column is
left empty if neither applies.
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Resources Columns

One of the aims of the first sub-research question is to understand which resources are modelled. These columns
are aimed at uncovering this, and resources are categorized either as hospital or as public health resources.

Column Hospital :
Similarly to the compartments, a code was constructed for each model. There were some models which used
many resources. These are not indicated separately. The following abbreviations were used to create the code:

• U - ’unified hospital resource’. This is an abstraction of real-world resources. It can be translated to a
real-world resource by finding the resource that prohibits providing more care in the hospital (bottleneck
resource). While this approach makes the model simple, it also causes quite significant limitations.

• H - hospital census. This means how many patients are being treated in the hospital. Ward bed occupancy
is another synonym of this concept.

• Icu - ICU occupancy.

• Ve - Number of ventilators in use.

• Edv - Emergency Department Visits.

Column Public health:
Similarly to the previous column, the following abbreviations were used to create the code:

• T - Testing. This testing could happen either as public testing, in a test on hospital admission, or a
hospital exit situation.

• Va - Vaccinations

• C - Contact tracing

Validation Columns

Similarly to the previous columns, we are interested in how other researchers approach validation. We partially
achieve this by looking at how these models were validated, hence were analyzed along the next columns:
Column Calibration:
This column indicates if the authors calibrated the model parameters or not. It is usually indicated by the
presence of keywords ’fit’ or ’fitting’. Since parameter-fitting is an essential step for the autoregression models,
it is indicated with ‘yes*’.

Column Validation method :
This column indicates which direction the authors chose to validate the model. An analytical (mathematical)
approach is denoted by ‘m’. This includes both the approaches of computing the model’s various accuracy scores
(e.g. ‘root mean square error’) and visualizing the results plus examining the graphs. If any other direction was
chosen, it is denoted by ‘o’. When there is a lack of discussion of model validation, it is denoted by ‘N/A’.

Column Validation by accuracy :
This column indicates whether the authors suggested/implied that model accuracy justifies the usage of the
model.

Column Used in real life:
The last column indicates whether the article demonstrated evidence of actual decision support for hospitals or
public health agencies. This support includes both pandemic preparedness and response. Since most articles
did not explicitly mention this, it is indicated with an asterisk (‘*’) if the categorization is disputable.

Insights

Now that we have a good overview of all the models, it is time to draw some conclusions from them. First of
all: most models are about COVID-19. This is unsurprising, given the global effort and attention given to the
latest pandemic. However, it is interesting that while we did not filter the results by publication date, almost
all models were published in the years 2020-2022.
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From the Model columns, two groups stand out. Roughly half of the models utilize an SD-like approach
(44%), and a quarter of the models are autoregression models (24%). The rest utilizes other, simpler approaches
except for the ABM models (32%).

From the Resources columns, it is visible that most models consider the number of hospitalized people an
important resource, therefore, included in the model. The second most modelled resource is ICU occupancy,
clearly stating where the priorities lie. The rest of the resources are modelled very sporadically. Furthermore,
there is a stronger focus on hospital resources than healthcare resources. Here we can see that the model we
are using is novel, as it encompasses resources on a much more detailed level, especially by including testing
and contact tracing capacity and the related compartments (e.g., isolated) in the compartmental model.

While it is not inferrable from the Validation columns alone, after reading the articles, it was clear that each
article tackled the validation question very differently. Furthermore, a significant portion of the articles does
not explicitly talk about validation or state that it depends on things not in the control of the authors (e.g. data
quality in subsequent use). The articles which tackle the question of validity mainly employ a mathematical
approach. The outputs are usually graphed and compared against historical data, or an accuracy score is defined
(analytical approach). A minority of article suggests that model accuracy is some form of validation. However,
this ‘validity by accuracy’ is a questionable approach when the model was calibrated. While over-fitting is
primarily a problem of black-box models, calibration blurs the line between white- and black-box approaches;
hence it is possible to over-fit these models too. Contrary to this, none of the included articles addressed whether
the perceived accuracy results from correct generalization or from over-fitting. Interestingly, only a minority of
the models were used to support actual decision-making, and these are usually not SD-like models. Therefore
it is also a somewhat novel direction in this study to examine how SD models can be used for decision support.
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2.3 Summary
For each literature review, the search design was first explained, including the identification of the keywords.
After this, the results are presented, where several key insights have been realized. We have seen that COVID-19
dominates the healthcare resource modelling landscape compared to other respiratory diseases. Furthermore,
roughly half of these models are SD (or similar) models. We have seen that while these model resource usage
during a pandemic outbreak, most only include a few resources, and only a handful consider public healthcare
resources. It is also visible that there is no single approach to the validation of these models, and the validation
processes are barely reported in these articles.
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Chapter 3

Methods

The literature informing our methods consist of several topics. First, a high-level description of the practical
tasks is presented and explained through the lens of the Modeling Cycle (section 3.1). Then, to address the first
research question (How can healthcare resource models be validated?), we explore the topic of Verification and
Validation (section 3.2) and validate the model for the purpose of producing scenarios for the workshop. After
this, we examine the literature related to the Workshop (section 3.3) and define the interventions presented in
the workshop. Given that this methodology was created by merging ideas from many topics, an overview can
be found in section A.1 to aid understanding.

3.1 Modeling Cycle
To understand where this thesis started, first, a modelling cycle will be used as a set of lenses to describe the
prior and planned work in scientific terms.

3.1.1 Description of the Modeling Cycle
Creating simulation models is generally considered to be part of a modelling cycle. As modelling is a powerful
method, and it is widely used across many disciplines (Bankes, 1993), various versions of the modelling cycle
exist, emphasizing different parts of the modelling process. There is no ’cycle to rule them all’; therefore,
this thesis presents a rather generic white-box modelling cycle (van der Wal & Nikolic, 2022) instead of an
SD-specific one (Auping, d’Hont, van Daalen, Pruyt, & Thissen, 2022), as the planned work can be understood
more clearly via this one. This modelling cycle consists of 7 steps:

• Conceptualization - In this step, the modeller(s) identify the research questions or make a problem
formulation, then identify the real-world phenomenon to be modelled and the mechanism associated with
this phenomenon. They also determine the model boundaries (i.e., what to model and what not to
model) and the primary model outcomes (i.e., which outputs of the model to investigate). More detailed
explanations of this step exist, such as the XLRM framework (Lempert, Popper, & Bankes, 2003); however,
these fall outside the focus of this thesis. In SD, this step typically includes the activities up until the
creation of a causal loop diagram.

• Formalization - In this step, the modeller translates the conceptual model into a rule-based form. While
in practice, almost all of the rules take on the form of a Rn → Rm mathematical function augmented
with boolean logic, it is also possible to use other technologies or languages to describe the exact rules.
The importance lies in the fact that the formalized model leaves zero ambiguity about how the model
should work. Describing these rules via mathematics is just a choice of convenience, as it is widely used
yet concise language.

• Implementation - In this step, the modellers implement the formal model in their chosen modelling
program. This step typically ends with a model which is capable of producing outputs. In SD, it is
common practice to put another layer of abstraction over the formal model and to use a stock-flow
diagram instead of writing down the differential equations. It is also worth noting that the boundary
between formalization and implementation is quite fuzzy in SD, to the extent that Auping et al. (2022)
does not consider these separate steps. For example, gathering the exact parameter values of the stock-flow
diagram could be done in either the formalization or the implementation step.
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• Verification - In this step, the modeller checks whether the implementation of the model is in line with
the conceptual and formal description of the model. Usually, due to the sheer size of the SD models,
a few mistakes happen during implementation, which alter model behaviour. Various methods exist to
verify an SD model, ranging from peer-checking to unit testing. However, as this step is concerned with
checking whether any error was made during formalization and implementation, conceptual errors remain
unnoticed here.

• Validation - In this step, the modeller checks whether the implementation of the model is in line with
the modelled real-world phenomenon. This step is aimed explicitly at noticing conceptual errors. While
it is possible, validating an unverified model makes less sense, as the errors discovered during validation
could also be implementation errors. Despite the easiness of describing the output of the validation step,
it is surprisingly hard to perform this step. Therefore, this will be further addressed in section 3.2.

• Simulation - In this step, the modeller runs the model and saves the results. For SD, this is a tiny step,
as performing a single model run is usually under a few seconds.

• Evaluation - In this step, the simulation results are evaluated to answer the research questions. In a
simple case, this means examining the plots of key variables, though in more complex cases, any post-
processing of the results also falls under this step. Nevertheless, the final output of this step should be
interpretable to the problem owners, which usually means translating the mathematics back into English
(or another) language. Also note that under evaluation in this modelling cycle, we mean a very different
thing than what Auping et al. (2022) mean in their (SD specific) modelling cycle: In this cycle, evaluation
means evaluating the results with respect to the research question, while in their cycle it means verification
and validation.

At this point, this is only a sequence and not a cycle. The cycle part comes from the fact that based on the
insights gained during evaluation, a better conceptual model can be built, and a new cycle can be started.
However, it should be noted that this theory should be interpreted loosely, as, in practice, the process of
building a model is not this sequential. For example, formalization errors may be discovered and corrected
during implementation, or partial evaluation could be performed on an unfinished model as part of verification.

3.1.2 Describing Prior and Planned Work with the Modelling Cycle
Prior to the start of this thesis, there were two quasi-separate steps already done: First, somewhere during the
PANDEM-2 project discussions, it was decided that there is a need for an SD model to simulate the resource
usage during an epidemic (M. Stein, personal communication, 1st March, 2022). This essentially corresponds
to problem formulation, therefore, part of the conceptualization step. As the SD paradigm was chosen due to
prior experience with the AsiaFluCap model (Stein et al., 2012), and this is the model that de Schipper (2022b)
used as a starting point of her work, this can be viewed as a start of a new modelling cycle.

Developing the original model corresponds to conceptualization, formulation and implementation steps.
Unfortunately, the documentation of the model does not include a clear distinction between these steps, and
the author did not answer our requests to elaborate on the model. However, in the reflections de Schipper
(2022a) mentions that an extensive discovery of the model behaviour is needed, as extending the model was
prioritized over experimenting with the already complete parts. This need for the discovery of model behaviour
equals the need for validation. Furthermore, after inspecting the original model, we found that it does not follow
the TU Delft modelling conventions. Therefore we decided to check the model for errors, to discover whether
this is a source of errors or just a different convention, which is essentially the verification step.

However, to answer our second sub-research question, it is not enough to validate the model. We used the
model to generate outputs, which were presented in the workshop as examples to generate discussion about how
healthcare resource models can be used. While the modelling cycle cannot be used to describe all tasks related
to holding a workshop, the part of the preparatory work related to post-processing model results falls under the
evaluation step.

3.2 Verification and Validation
The first step to perform is verification. Verification in SD is relatively straightforward compared to validation;
therefore, these will be discussed together. As many validation tests are described by the scientific literature,
Barlas (1996) recommends choosing an appropriate, most crucial set of tests. However, to make this choice in
an informed manner, an understanding of why and how validation works is required, which will be discussed in
this section.
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On a philosophic level, model validation stems from the concern of whether the model is the true description
of the modelled phenomenon, which implies reliability for decision-making. However, the term validation does
not necessarily mean that the model is true, but that the model is legitimate, that it does not contain obvious
errors, or has not proven to be false (Oreskes, Shrader-Frechette, & Belitz, 1994). In line with this, J. D. Sterman
(1984, Table 1) collected a set of tests for “Building Confidence in System Dynamics Models”.

On a more practical level, examining the literature review written by Tsioptsias, Tako, and Robinson (2016)
is helpful. The article analyses validation methods proposed by operational research, computer science, and
modelling & simulation approaches (SD belongs to the last category). The authors define verification as the
process concerned with “building the model right”, or “to ensure the model runs as intended” (Tsioptsias et al.,
2016, p 6:3-4). Furthermore, they also define validation as: “a process and evidence for building the right model”
(Tsioptsias et al., 2016, p. 6:3). This idea is also present in the article of Barlas (1996, p. 188), “adequacy with
respect to a purpose”, or as we refer to it: “fit for purpose” (Auping et al., 2022, p. 60). What these articles
imply is that, while keeping in mind the purpose of the original model in this research, the model has to be
adequate for the purpose of producing example outputs for the workshop.

From another angle, model validation is a broad topic, going beyond SD in many aspects. As there is a big
difference between white-box and black-box models, there is also a big difference between the validation of white-
box and black-box models. A black-box model is very hard to validate; essentially, the only measurable indicator
is the accuracy of the model (Barlas, 1996). While given sufficient free parameters and computational resources,
these models can be extremely good at this. For example, in categorizing images (He, Zhang, Ren, & Sun, 2015).
However, these models often fail to grasp the underlying context, which can result in painfully obvious failures,
given a carefully crafted input, as shown by Szegedy et al. (2013). The problem of not grasping the underlying
context correctly does not affect white-box models, as these contexts are built-in by the modeller. Although,
for SD models, defining indicators for accuracy makes little sense for two reasons: First, the structure of the
model affects the model behaviour more than the exact parameter values (W. Auping, personal communication,
24th May, 2022). Second, Barlas (1989b) demonstrated that behavioural similarity is hard to quantify even in
the case of relatively simple outputs. Furthermore, as already pointed out in subsection 2.2.2, validation by
accuracy is fundamentally flawed when learning or fine-tuning mechanisms are involved for the parameters.

In the article of Tsioptsias et al. (2016), a list of common validation tests are described for modelling and
simulation. Keeping in mind the purpose of the model and that there is no experimental data available, the
relevance of each validation test is indicated in Table 3.1.

Validation tests Relevance of test

Comparison with (existing) data No (data unavailable)
Statistical tests No (data unavailable)
Face validity Yes
Turing test1 No (domain experts are not capable of this2)
Graphics or animation Yes (though time-consuming due to the size of the model)
Qualitative analysis3 Yes (through thesis supervisors and workshop)

Table 3.1: List of common validation tests and their relevance for this thesis.

A systematic validation testing framework is also defined by Barlas (1996). The main idea in this framework
is that different types of validities build on each other. The three stages identified are structural-, structure-
oriented behaviour-, and behaviour validity. Structural validity includes low-level tests aimed at verifying if the
conceptual model was implemented correctly. Structure-oriented behaviour validity aims at a middle level, with
tests to discover errors in the equations between the different model variables. The highest level, behavioural
validity, is aimed at examining model behaviour and comparing that with the expected behaviour of the real-
world system.

3.2.1 Dealing with Uncertainty
There is a term in the modern Bayesian epistemology which is highly relevant for SD models: epistemic uncer-
tainty refers to the lack of knowledge about the underlying system (Shariatmadar, Wang, Hubbard, Hallez, &
Moens, 2022). Using this term, Bankes (1993) addressed the problem of epistemic uncertainty by describing two

1 Do not confuse with the more famous version of the Turing test. In this setting, Turing tests refer to verification by the ability
of knowledgeable people to distinguish between the real system and model outputs (Barlas, 1989a).

2 (M. Stein, personal communication, 17th August, 2022)
3 Qualitative analysis as peer-reviews, subject-matter expert evaluations, face validations, and similar methods (Pace, 2004).
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approaches: consolidative modelling and exploratory modelling (if these terms sound unfamiliar, it is further
elaborated in section A.2). In this categorization, the original model should be approached as an exploratory
model due to its many uncertainties. This is relevant because, on a methodical level, some validation tests
are conducted differently, despite the term ‘validity’ referring to the same concept for both consolidative and
exploratory modelling. Auping (2018) made a fairly extensive comparison of these methodical differences. For
example, structural validation changes because there is no ‘single, best structure’ due to the presence of deep
uncertainty. Therefore in the exploratory approach, it is necessary to assess whether the relevant uncertainties
have been taken into account.

3.2.2 Conceptual Description of the Refactored Model
While verifying the model, it quickly became apparent that the model equations would need to be changed.
To differentiate the two versions of the model, the term refactored model will be used for the changed model
(i.e., the model after the verification and validation), and the term original model will keep refer to the version
finished before the start of this thesis. To better understand the steps done during verification and validation,
it is worth understanding the refactored model on the conceptual level. While this section will present the
conceptual description from the perspective of the refactored model, it is relevant for the original model, as it
consists of the same concepts, albeit implemented differently. This model consists of 3 sub-models, as indicated
on Figure 3.1. First, the ‘Epidemiological compartment model’ models the disease spread within the population.
The possible compartments are presented in Figure 3.2. These compartments are within a vector model (i.e.,
the compartments are subscripted), meaning that each compartment is subdivided into three age groups. In
addition, the ‘Exposed’, ‘Infectious’, and ‘Recovering’ compartments have a second type of division: isolation
status. Therefore these are sub-divided into six groups.

The ‘Public health resource model’ is responsible for modelling three things: Testing, Contact tracing, and
vaccination supply and demand. Testing (such as PCR) and contact tracing determine the flow of people
between the ‘Susceptible’ to ‘Quarantined’ and between the isolation status sub-compartments. Vaccination
determines the flow of ‘Susceptible’ to ‘Vaccinated’.

The ‘Hospital resource model’ is responsible for modelling the hospital ward and ICU. For both, the occu-
pancy is modelled (how many ward beds are available, incl ventilators for ICU), Staff availability, PPE, and
medication. One of Lisette’s simplifications was not to model the events beyond hospital resource scarcity.
Therefore, the hospital resource model can only affect the compartmental model through medication availabil-
ity. These medications, such as Remdesivir, speed up the recovery of patients; therefore, they spend less time
in the respective hospital compartment. Furthermore, note the lack of direct interaction between the ‘Public
health resource model’ and the ‘Hospital resource model’.

The ‘Aftercare’ part of the original model consisted of rehabilitation, home care, and long COVID resource
usage. However, these got deleted to limit the scope. The original and the corrected model can be downloaded
from the GitHub repository accompanying this thesis4.

4 https://github.com/vioSpark/PANDEM-2-resource-management-under-different-scenarios
auxiliary published material/NL-Pandem-2_original.mdl for the original model, and
auxiliary published material/NL-Pandem-2_refactored.mdl for the refactored model
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Figure 3.1: Subsystem diagram of the refactored model

Figure 3.2: Visualization of the compartments in the refactored model.

3.2.3 Set of Verification and Validation Tests Used in this Study
As we can see, validation is not a straightforward process. However, we cannot avoid performing it, as validation
is essentially determining whether the model is fit for purpose, and the purpose of the original model changed
in this study: Our purpose with the model was to generate semi-realistic outputs that might appear in the
dashboard, instead of the original purpose of codifying and communicating findings about the resource utilization
during the pandemic. As discussed earlier, model validity can be classified into three types. For each SD model
Barlas (1996) recommends defining a most crucial set of tests. From the many types of validity and validation
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tests, we chose the following set to address the three levels of validation (structural validity, structure-oriented
behaviour validity, and behaviour validity).

Structural Validity

Various direct-structure tests can address structural validity. These tests assess the model’s validity by direct
comparing the model relationships with knowledge about the actual system (Barlas, 1996). In this study, we
have chosen to assess this via face-checking (Tsioptsias et al., 2016) and via dimensional consistency check,
followed by parameter confirmation (Forrester & Senge, 1980).

For face-checking, each model equation was viewed individually and compared with the existing knowledge
about the system. In this process, the meanings of the internal model variables were also examined both from
the mathematical side and from the real-world system meaning side. While in the documentation of the original
model, there are no clearly separated conceptual and formal descriptions, a somewhat clear conceptual image
is embedded in those documents. Therefore, though to a limited extent, this step can also be called verification
of the conceptual model. During this step, several model errors were discovered, which led to the decision to
refactor the model. The refactored model was made sure to be error-free and pass the dimensional consistency
check by using the built-in Vensim unit check (VENTANA systems inc., 2022a).

On a high level, the following changes were made during structural validation: The compartment model got
a complete overhaul. The compartments were connected via flows instead of the auxiliary variable connections.
A new subscript was introduced to account for the isolating people instead of using separate compartments.
Furthermore, many variables were renamed to be more expressive. Finally, some unconventional approaches
were corrected to conform to the principles of the SD paradigm. The stock-flow diagram also received a visual
overhaul. Most notably, the parameters were visually separated from the model variables via text colouring.
The full list of identified errors can be found in section A.3 in the appendix. Unfortunately, not all of these
errors were corrected due to time limits. The most notable error is the incorrect calculation of the disease’s
mortality (further elaborated in the appendix).

After passing these checks, parameter confirmation tests followed. This test is also called parameter verifi-
cation (Barlas, 1996). Auping (2018) presented that this test is not done the same way for consolidative and
exploratory modelling. In consolidative modelling, the parameter confirmation test is concerned with whether
model parameters are conceptually and numerically match compared to the existing knowledge (Senge & For-
rester, 1980). In this case, each parameter is thought to have a best value. In contrast, in exploratory modelling,
the parameters have a bandwidth at best. Therefore, it can be assumed that the parameters’ value can be any-
thing in this range, and it is more beneficial to examine whether this range is correct than to examine the best
value for the parameter (Auping, 2018).

While the parameters were conceptually verified, given the nearly 100 parameters of the model and that
the measurement of many medical definitions differs from country to country, properly identifying the possible
parameter ranges was deemed an effort to be beyond this thesis. Instead, as many parameters in the original
model were left with placeholder values or marked as assumptions or as guesstimates; it was decided to spend
effort on finding a better value for those instead of verifying the parameter’s ranges. Guesstimated (guessed and
estimated) parameters refer to the case when the parameter’s value is calculated from other known or guessed
values, using some, sometimes quite liberal, assumptions.

Despite the effort, not all assumed values could be replaced with higher certainty ones, as the admittedly
superficial search did not find many parameter values. Since the construction of the original model, a very
relevant literature review was completed by Beishuizen and et al. (2022b), aiming to identify the exact values of
how much resources are used per patient during the treatment of COVID-19 and influenza. The findings of this
search were included in the refactored model. The complete list of parameter values of the refactored model,
including the sources of the parameters, can be found in the repository5.

Structure-oriented Behaviour validity

The structure-oriented behaviour tests examine the next level of validity. The chosen approach was unit testing,
which is unconventional, as it is not from the toolbox of SD modelling, but an approach adapted from test-driven
development (confidential presentation, 2018). It was chosen as an alternative to extreme-condition tests. The
difference between the two tests is that while extreme-condition testing is concerned whether a single model
relationship between two variables behaves plausibly under extreme conditions (Forrester & Senge, 1980), unit
testing is concerned with whether selected model variables stay in normal operating ranges.

Due to the extensive effort going into the lower-level structural validation, not many of these unit tests
were performed. These were checking whether the total population (minus the deceased) remain the same in

5 /auxiliary published material/NL-Pandem-2-Cap_new_parameters.xlsx
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the model or that a compartment (in the compartmental sub-model) cannot have less than 0 population at
any given timestep. Although the reality checks feature of Vensim is intended to implement extreme-condition
testing, it was easily adapted to support unit testing (VENTANA systems inc., 2022b). Also, note that unit
testing and unit checking (the dimensional consistency test) are entirely different but incredibly easy to confuse.

Behaviour Validity

While the original idea for this thesis was to follow a more consolidative approach and to validate the model
based on historical data, we found out that the dataset needed for this is non-existent (RIVM internal team
meeting, personal communication, 30th March, 2022). Unfortunately, the literature is not well-established about
how to validate transient model behaviour (such as a one-time resource shortage). Barlas (1996) recommends
the use of visualizations of typical behaviour features, although this is more of a recommendation than an
established framework. To some extent, this is also something we did during the face-checking of the model,
though this was done on an ‘as-needed basis’ rather than systematically. The lack of more extensive behaviour
validity was a consequence of the fact that the previous two levels of validation had already uncovered many
errors.

3.2.4 Conclusion of Validation
As we have seen by performing the validation tests, the refactored model still consists of errors. Worse, as the
behaviour validation was not systematic, there is a reasonable suspicion that further tests would discover more
errors. It is trivial that the refactored model should not be used for predictive purposes, as structural errors
remain, and some parameter values are incredibly uncertain. However, we have to ask the question: Does our
model need to be this accurate to produce outputs for our workshop? For that, the answer is a definite ‘no’:
we can generate hypothetical scenarios, which do not have to be accurate, only realistic. This means that as
long as basic domain-specific intuition works (such as resource shortages causing the disease to get noticeably
worse or the correlation between the number of infected and deceased is positive), we should be able to define
internally consistent scenarios. Internal consistency is a nice feature of using a mathematical model for scenario
generation: examining model outputs and model equations together unambiguously explains what happened in
the model, and relevant facts can be compiled into a scenario. Therefore we can say that the refactored model
is fit for the purpose of scenario generation; therefore, it passed validation.

3.3 Workshop
To address our second research question (How are, or can healthcare resource models be used?), we planned
to consult subject-matter experts and then hold a workshop to reduce individual and disciplinary bias. The
consultations with subject-matter experts happened in weekly meetings (as they were the external advisors
of this thesis), where the concept and the material of the workshop were refined over the approximate period
of 2022 August - mid-October. Nevertheless, part of the scientific literature was consulted on how to hold a
workshop, which will be presented in the following sections.

3.3.1 Workshop as a Research Tool
Workshops, as a research methodology, are not bound to any particular research approach. The word ‘workshop’
has many different meanings depending on the context. As a result, there is no common definition nor a common
purpose for workshops. Regardless, there is a general notion that a workshop is a qualitative data-gathering
process where participants interact with each other. A common theme emerges despite the lack of a common
definition by analyzing the different definitions of workshops (Freytag & Young, 2018; Ørngreen & Levinsen,
2017; Thoring, Mueller, & Badke-Schaub, 2020). A workshop has multiple participants, a specific goal, and a
pre-allocated space and time. The participants usually share domain expertise or an agenda/focus of a specific
problem. The specific goal of the workshop could vary between a wide range of activities: information sharing
and collective learning, problem investigation, problem solving, idea generation, innovation, or artefact evalu-
ation. The pre-allocated space and time are solely required to ensure the interaction between the participants
happens. However, to safeguard against the disruption of operational activities, a time limit is imposed on most
workshops.

There are closely related qualitative approaches to workshops. Two are highlighted in this paragraph to shed
more light on what a workshop in this thesis means. Firstly, a focus group is a technique where the researcher
collects data about a specific topic via group interaction. These interactions between participants are likely
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to bring forward opinions which otherwise would have been missed. However, focus groups are often used as
a complementary research method to individual interviews (Freytag & Young, 2018). Secondly, participatory
design originates from the approach where (industrial) workers are included in the design of the machinery they
will end up using to prevent some problems from arising later. The second approach is also related to action
research, which is an approach where despite the generation of (scientific) knowledge, the researchers also aim
to provide the required insight for participants to change their own situation (Freytag & Young, 2018).

Thoring et al. (2020) identified two goals of workshops: Either creating new output, such as designs, ideas,
or solutions, or evaluating specific aspects of interest, such as testing the usefulness of a process, product, or
tool. Furthermore, evaluation workshops are often part of a broader action research initiative or an action
design research project.

Given the planned dashboard of PANDEM-2 WP4, there is a clear direction to follow based on the litera-
ture mentioned above. We are designing a sort of virtual machinery: the model with the dashboard. While the
intended target audience is very broad, healthcare- and hospital resource managers are among the primary au-
dience. Applying the idea of a participatory design workshop to this situation, we should involve end-users from
the primary target audience to find better communication techniques about the model and recommendations
for the dashboard design.

3.3.2 Workshops in System Dynamics
Holding workshops is a technique also employed by SD. Among others, Rouwette and Vennix (2020) describes
that the Group Model Building (GMB) approach utilizes workshops for knowledge elicitation, mainly in the
conceptualization step of the modelling cycle, as a supporting technique besides interviews. A more elaborate
description of group model building can be read in section A.4.

While some of the GMB workshops reportedly had around 40 participants (Leerapan et al., 2020), the
general group size is 5-10 people (Bolt et al., 2021). The preference for this group size balances two effects.
While including everyone’s opinion suggests using a big group, the more participants attend, the less time they
have to express their opinions in detail. For example, assuming that everyone speaks equally, a group size of 10
people over a 2 hours workshop gives 12 minutes per participant. On the other hand, a group size of 40 people
over the same 2 hours gives every participant 3 minutes, which may be enough to communicate one thought
but not enough to communicate an entire concept.

Another benefit of this small workshop style is that it allows participants to communicate with each other
(Bolt et al., 2021). This is useful for two reasons: Firstly, if the participants have a different mental image of
the real-world system, they can find this out and resolve these disagreements during the workshop. Secondly,
the workshop provides a unique opportunity for participants to share their experiences with each other, which
probably would not have happened otherwise.

In their article Bolt et al. (2021) analyze the modelling artefacts from the knowledge-management perspec-
tive. Based on the analysis of their case studies, they found two types of modelling processes: The first type
aims to create new insights by communicating and sharing ideas among participants. In this case, the model
acts as an epistemic boundary object. The second type aims to codify expert knowledge by creating a realistic
representation of the real-world system. In this case, the model acts as a technical representative object. In the
first case, one of the added values of the GMB approach over other approaches is that participants are taught
the basics of SD modelling, which they can use as a common language (i.e., boundary object) to translate their
knowledge for other participants. While this implies that in the GMB approach, the model development process
is just as important as the resulting model itself, there is a far more relevant implication. In an interdisciplinary
workshop, a boundary object can help to start the discussion.

3.3.3 Considered Guidelines for the Workshop
Despite defining workshops based on the scientific literature was a fairly easy step, no clear methodological
guidelines were found, especially about the perspective of a workshop as a research tool. Freytag and Young
(2018) describe that participatory design workshops use artefacts as boundary objects to help participants
express their opinions. These artefacts enable non-designers to think more creatively and help participants
share their tacit knowledge. However, they found that in the literature on action-oriented research, there are no
specific guidelines about facilitating a workshop or effectively involving boundary objects in the process. They
also propose a workshop framework Freytag and Young (2018, p. 164); however, it is still quite generic and did
not help determine the exact methodological details.

Other scholars also found that the workshop literature is non-informative about methodological consider-
ations. For example, Ørngreen and Levinsen (2017, p. 72) identified two goals of the workshop format as a
research methodology: “to fulfil participants’ expectations to achieve something related to their own interests”
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and to “produce reliable and valid data about the domain in question”. They also found that workshops often
consist of roleplays or scenarios which are realistic and recognizable.

In the literature of group model building, it was also found that a workshop is hardly used on its own. There
are either interviews before (Ibrahim Shire, Jun, & Robinson, 2020; Rouwette & Vennix, 2020) or successive
workshops (Leerapan et al., 2020). There was also a study which used immediate follow-up surveys to evaluate
the effectiveness of the workshop (Ibrahim Shire et al., 2020). After some consideration, we decided to limit
this thesis to the workshops only, to limit the scope to a reasonable extent.

3.3.4 Workshop Description
To address the second sub-research question (How are, or can healthcare resource models be used? ), the workshop
was held along the following directions:

• Examine when the model is useful for the workshop participants.

• Present outputs of the model.

• Examine what outputs are useful for the workshop participants.

As the model consists of both a hospital and a public health resource side, three participants were invited from
a hospital to represent the hospital side and three from RIVM to represent the public healthcare side. The exact
participants got selected by following a snowballing approach. Also, in the absence of clear recommendations
in the literature, a 90 minutes long workshop was planned. Unfortunately, due to limited availability and
last-minute cancellations, we ended up having two separate sessions with two-two participants. Although
methodologically, this resembles to discussion groups more than to workshops, to keep the linguistic consistency
with the rest of this thesis, these will be kept referring to as workshops. In the first workshop, two participants
were present from a hospital (further referred to as P1 and P2), and in the second workshop, two participants
were present from RIVM (P3 and P4). As the reduced participant count made us expect 60-minute-long
discussions, the remaining 30 minutes could be kept as a buffer time and for general discussion.

Building on the idea of ‘roleplays’ (Ørngreen & Levinsen, 2017), participants were asked to imagine a
respiratory outbreak where they were in a decision-making position. Then they were told to examine: How to
support you in making your decisions? To guide the conversation, different sets of scenarios were presented in
different styles, and for each, the following practical questions were asked:

• How easy is it to understand this type of output? (1 to 9 Likert scale)

• What does this communicate to you? (discussion)

• What does it prompt you to do? (discussion)

We decided that the presentation of the different model outputs will be done via scenario discovery, where
different scenarios will be created by defining interventions. Here under a scenario, a single model run with a
fixed vector of parameters is meant. An intervention is defined as an opportunity to change the progression of
the pandemic. For creating an intervention, several model runs are created using slightly different parameters.
These differences in the parameters are referred as uncertainties. In an intervention, the differences in the
scenarios are presented along important model variables. These are called Key Performance Indicators (KPIs)
in this thesis. Furthermore, a specific scenario, based on the most probable parameter values, got the nickname
Baseline, which remained the same across all interventions. For communicating the interventions, we decided
to utilize a presentation.

3.3.5 Determining Interventions
Since a singular purpose for the model is not defined, automatic scenario discovery methods cannot be used.
This is further elaborated in section A.5 in the appendix. To tackle this, a traditional scenario discovery was
performed. Two things were needed to create the presentation of the interventions: uncertainties to create
multiple scenarios and KPIs to communicate model outputs.
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Determining Uncertainties

As part of the PANDEM-2 project, Beishuizen and et al. (2022a) examined which resources are important to
include in the modelling and the operational planning of a pandemic via a Delphi study. The former is relevant
because it shows where the attention of public health experts and clinicians lies. Translating his conceptual
findings to potential scenarios happened in the following way: First, each concept was collected into a table
alongside the model variable that models the concept most accurately or marked with ‘N/A’ in case it is not
modelled. Then, for the modelled variables, it was identified which parameter is the best to influence by going
upstream along the causal relations. Then for each parameter, the value in the model is collected. Due to the
lack of better data, it was assumed that the uncertainty is the [0.5 ∗ parameter_value, 2 ∗ parameter_value]
range. The results of this approach can be found in the repository6 accompanying this thesis.

From these uncertainties, using the insight gained into model behaviour during the verification and validation
process, a few values were selected manually, with the goal in mind that the difference between the scenarios
should be relatively easy to understand. The exact final parameters that were used to generate the interventions
can be found in the repository7 accompanying this thesis.

Determining KPIs

Due to the lack of a clear purpose for the model, there was no clear-cut problem definition, which also meant
that defining the KPIs of the model was not straightforward. In exploratory modelling, identifying the model
KPIs should be based on the stakeholder’s values (Steinmann, Auping, & Kwakkel, 2020); however, this can
become a relatively lengthy process. To cut some corners, we took an educated guess in the following way:
First, a shortlist of possible KPIs was created based on the detailed knowledge of the refactored model. This
can be found in the repository8.

From this shortlist, relying on the tacit knowledge of two RIVM researchers, the items visible on Table 3.2
were selected (M. Steinand B. Beishuizen, personal communication, 14th September, 2022). Furthermore, to
limit the expected mental workload on the workshop participants, it was also decided to show only the gap (or
surplus) of the resources and only display a KPI when there is a difference between the scenarios.

Recommendation (conceptual)9 parameter equivalent in model or formula to calculate10

Epidemic progression
Number of infected cases (per day) infection
Number of infected cases that need hospitalization symptomatic hospitalized
Number deceased deceased
Hospital resources
number of ward beds needed / gap ward beds gap = ward - ward capacity supply
number of ICU beds needed / gap ICU beds gap = ICU - ICU capacity supply
number of PPE needed / gap PPE gap = PPE usage - PPE
*total ward beds occupied per day ward
*total ICU beds occupied per day ICU
Public health resources

*Testing capacity per day needed testing gap = combined testing demand -
testing rate by age group

*Contact tracing capacity per day needed contact tracing gap = tested unisolated symptomatics -
capacity for contact tracing per day

Table 3.2: KPIs used to differentiate scenarios.

3.3.6 Description of Interventions
Given the 90 minutes planned workshop time, we decided to experiment using four interventions. Furthermore,
to package the workshop nicely, it was decided that a presentation would be used. This is published in the

6 /auxilary published material/Delphi to model lookup table.xlsx
7 /src/model_setup/constant_scenario_definitions.py
8 /auxilary published material/Possible model KPIs.xlsx
9 KPIs marked with a star (*) got excluded or modified when a later revision of the workshop presentation focused more on the

gaps.
10 As most of these parameters are subscripted; therefore, a summation over the subscripts was performed.
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repository11. The presented interventions in this presentation were the following:

Intervention 1

Intervention 1 is about an increase in PPE acquisition. In the model, this means that more PPE flow into the
PPE stock each day. This intervention was chosen partly due to the high relevance to real life: There was public
concern about the availability (NL Times, 2020), and some issues about the quality of PPE gears (National
Institute for Public Health and the Environment, 2022b). This intervention is also relatively simple, therefore,
partly acts as a warm-up exercise.

The effects of this intervention are visible on Figure 3.3, where a line plot was chosen for this output. The
unplotted KPIs are the same, regardless of the scenario. The direct effect of the intervention happened on the
PPE gap: Increased PPE acquisition meant sufficient PPE along the entire modelled time period (the orange
line goes toward negative infinity). This led to a slightly less severe ward beds gap, as in the baseline scenario
(blue line), the sudden jump around day 160 is caused by the PPE stock emptying out.

Figure 3.3: The presented graphs of intervention 1

Intervention 2

Intervention 2 is about an increase in test acquisition, meaning more tests flow into the tests stockpile daily.
This is highly relevant because it shows an example that a pandemic needs an orchestrated public health and
hospital capacity response.

The effects of this intervention are visible on Figure 3.4. This intervention resulted in more changes: First,
the direct effect of increased test acquisition meant a less severe shortage of tests (not shown directly), which
led to a smaller ‘testing gap’ (i.e., fewer tests were missing per day). This had a twofold effect: Since more of
the people who got the disease got identified, contact tracing had more indices to start with, which led to an
enormous gap compared to the baseline scenario (graph of ‘contact tracing gap’). Also note that while the gap
got bigger in the increased scenario, more people got contact traced in total. The other effect of the increased
testing was that people who received confirmation about being infected with the disease were more likely to
be isolated. This second effect was strengthened by the fact that more contact tracing also meant more people
isolated in the model. More isolated people led to a smaller peak in the epidemic wave (graph of ‘infected
cases’), which directly affected ‘hospitalization’.

Intervention 3

Intervention 3 is named ‘Reduced ward length of stay’, referring to the model parameter ‘ward length of stay’.
This part of the model originated from an idea at RUMC that during the peak of a wave, in an extremely
desperate case, more hospital capacity could be created by releasing suitable patients early with a ration of
oxygen to boost their recovery (Meeting between RIVM, NUIG, and RUMC, personal communication, 25th
May, 2022). While there is an extra layer of uncertainty surrounding the topic, as it never got implemented,
it is possible to explore the effects of this intervention in the model by decreasing the ‘ward length of stay’
parameter.

11 /auxilary published material/workshop presentation.pptx
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Figure 3.4: The presented graphs of intervention 2

While the naming of this parameter is slightly misleading, it is not decreasing the hospitalization time of all
patients for the following reasons: In the model, the output flow from the hospital ward is split into multiple
flows, where each flow is a first-order material delay. The ‘ward length of stay’ parameter is the coefficient for
one of these material delays. This means that the ‘ward length of stay’ is the average time a patient stays in the
ward compartment. Decreasing it means the average time decreases, and not every patient gets released earlier.
While this is quite a coarse simplification of the real world, the theoretical foundations are well-established, for
example, by J. Sterman (2000).

The effects of this intervention are visible on Figure 3.5, on the graphs. Firstly, the change in the ‘Deseaed’
is highly affected by a bug in the model (discussed in section A.3); therefore, it should not be interpreted.
The second effect is the anticipated change in hospital capacity, which led to a smaller ‘ward beds gap’. The
second effect was that hospital staff interacted with patients less and used less PPE due to the early-release
intervention. This slightly reduced usage meant that the PPE stockpile could grow bigger before the depletion
started, resulting in the shortage happening later (in time). The effect is visible to the careful observers on the
‘ward beds gap’ graph: the sudden bump around day 170 happens slightly later in the ‘reduced’ scenario (it is
more visible by zooming in or by using a ruler).

As we were interested in the participants’ opinions about different types of data presentations too, a tabular
representation of the data was created, also visible on Figure 3.5. The table was created by looking at the
interesting part (i.e., the peak) of the graphs. This data representation is one step further processed version of
the model outputs.
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Figure 3.5: The presented table of intervention 3 and the graphs that were used to make the table

Intervention 4

Intervention 4 is related to hospital staffing. In one of the WP4 meetings, it was expressed in detail that the
most pressing capacity limit was staffing, not tangible resources (Meeting between RIVM, NUIG, and RUMC,
personal communication, 25th May, 2022); therefore, a related intervention was created, by modifying the ‘visit
per patient’ model parameter. Reducing this parameter is equivalent to the idea of the staff visiting patients
less frequently. This parameter reduction did not change the ward capacity; it only decreased PPE usage. After
a minimal investigation, it was discovered that the lack of capacity change in the model was caused by the
other limiting factors of delivering healthcare. Out of curiosity, these limits were removed from the ICU bed
capacity (‘bed count’, ‘ventilator count’, and ‘patient-to-staff ratio’, the need for changing the last is related to
another bug, discussed in section A.3). This resulted in three scenarios for this intervention: Baseline, limits
lifted, limits lifted and visits reduced. We also wanted to experiment with bar plots; therefore, this intervention
was presented in the way visible on Figure 3.6.
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Figure 3.6: The presented graphs of intervention 4

3.4 Summary
First, a description was provided of how the practical work consists of verification, validation, and holding a
workshop. After that, verification and validation were explained in detail, including that the model needs to
be fit for the purpose of generating scenarios for the workshop. Next, the model was examined using different
validation tests and was corrected and reparametrized in the process. While the results are still incredibly
inaccurate, for the purpose of scenario generation, the model passes validation. After the validation, the details
of the workshop were explained: Participants were asked to imagine themselves in a decision-making position,
while the difference made by the interventions were presented to them along with KPIs.
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Chapter 4

Results of the Workshop

The workshops were very insightful, as participants raised several critical questions. In addition, the data
visualization greatly helped to foster discussion. The direct observations of the workshop can be classified into
four topics: Participants’ Reaction to the Presentation of the Data (section 4.1), Participants’ Reaction to the
Communicated Information (section 4.2), How Participants would Make Decisions Based on Data (section 4.3),
and Limitations of Current Modelling Approach (section 4.4). Also, at the risk of repeating myself, workshop
participants are denoted in the following way: P1 and P2 are from the hospital-resource side, while P3 and P4
are from the public health resource side.

4.1 Participants’ Reaction to the Presentation of the Data
We have gained some insights regarding the practicalities of data presentation:

Data in Context

During the presentation of data, multiple questions were received about the context of the data, such as ‘What
does the graph mean ... What does it display?’ (P1) or ‘What is the difference between the orange and the blue
line again?’ (P1 referring to Figure 3.3, then P2 a few minutes later). This resulted in approximately half of the
communication being about the data and the other half being about how that data got generated. Also, when
presenting multiple scenarios via multiple line charts on the same canvas, such as in the case of interventions 1
and 2 (Figure 3.3 and Figure 3.4), the legend alone was not enough to communicate the difference between the
different series.

Presentation Medium

Despite the accelerated digital transformation, we cannot assume that everyone will have a large enough screen
to look at the graphs. This is especially the case when people look at data not because that is core to their
work but because it is interesting or falls in the good-to-know category. In this case, they might commute or
be on a lunch break while looking at the data, and more interruptions can happen. As P2 pointed it out: ‘It
is difficult to understand because I was not paying the attention that I intended to’, while was travelling from
one building to another. Furthermore, participants needed not only to understand the data but also needed
subsequent time to understand the implications of the data for their work or agenda. ‘It takes a while for a
good question’, as P2 put it, this time paying full attention to the presented data.

From another perspective, MS Teams was barely sufficient as an ad-hoc tool for holding the workshops.
The digital environment caused some nuisances, such as: ‘I can see it (the poll), there is just a little bit of
switching’ (P1), as on a mobile device, the presentation and the poll were on different views. In another case
(on a computer), the polling system covered part of the presentation.

Discipline-specific Knowledge

Physicians generally seem to deal with fewer graphs than people in public health decision-making positions,
according to (P3). This different level of familiarity means that different levels of explanation are required
for different audiences. A related statement was received from P2 when it was expressed that the average
professional cannot be expected to be able to transform the data from line plot format to table formats, such
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as done at Figure 3.5. However, for operational decision-making, the tabular style of presentation of the data
is needed.

We also perceived a lack of common jargon over the entire field, leading to abbreviations and definitions
being non-trivial. For example, ‘Maybe a stupid question, but what is a PPE?’ (P2), and another participant
misunderstood what reducing patient visits stands for in intervention 4. However, these might be related to the
fact that the participants work in Dutch while the workshop was held in English.

Timing

When asked what the displayed data prompts participants, P4 responded with: ‘It depends also on the timeline,
when I am on day 100 and we get a model like this. And you see that there is a enormous gap in the available
beds, it is alarming. But when you are on the day 175, ...’ While P4 did not finish his sentence, it is clear that
it was a reference to the timing of the model results, which seems to be a factor to count in.

Templatized Visualization

The people who look at the data tend to learn the visualization style quickly. As P3 put it: ‘Since this was
the first picture that was shown it was good to get a little bit of explanation, ... But I can imagine when you
have given the first kind of explanation, like the next pictures will be easier to read’. This ‘kind of explanation’
referred to the templatization of visuals, such as the same graph type, colours, and general layout.

Scoring of Outputs

As part of the workshop, we asked participants to score how easy it is to understand the outputs on a Likert
scale of one to nine. The aggregated results are visible on Table 4.1.

Intervention average score median score

Intervention 1 5 5
Intervention 2 7.5 7.5
Intervention 3 7.75 8
Intervention 4 5.25 5

Table 4.1: Average and median scores received to the question: How easy is it to understand this type of output?

4.2 Participants’ Reaction to the Communicated Information
The following are our findings about the participant’s reactions to the presented data:

Practical Perspective

It was noted that participants had a slightly more heated response about people not getting care in a simulation
model. Participants tended to focus on the practical meaning of the graph more than the analyst, probably due
to this approach being superior in day-to-day work. As part of this practice-oriented perspective, participants
expressed the need to ‘look for other options’ when the presented intervention did not lead to a sizeable reduction:
‘The difference between increased PPE acquisition or just the baseline doesn’t seem that high, ..., but it’s not
that great to me, so, I’d look perhaps to other options’ (P1). However, they also noted that when there is a
gap, ‘every bit counts’. They also expressed a ‘need to react’ (P4).

Data Augmented with Experience

When asked What does it prompts you to do?, P2 responded with the following: ‘When I am looking back at
the situation of the spring of 2020 this slight decrease would not have affect any decision that we have taken,
because the difference was to increase the PPE was so minor to the lack of capacity we had.’ Referring to
mostly the lack of personnel (especially nurses), but in the first wave, also to the lack of equipment. This shows
that participants tended to augment the shown data with their past experience. During the discussion with the
hospital side, this ‘lack of nurses’ came up several times before intervention 4, which is the intervention related
to the lack of personnel. P3 also expressed that from experience, they know that reducing visits per patient
will not work, despite the model outputs suggesting this conclusion.
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Probably this experience augmentation also resulted in the observation that the different disciplines thought
along different types of possible actions: Hospital participants expressed that knowing how many beds are
needed in the baseline and how many beds are needed in case the intervention is chosen would be helpful. This
also implies the need for predictive models. Meanwhile, RIVM participants expressed their desire to share the
knowledge with relevant partners or to ‘notify the minister to get oxygen for the country’ (P4) because that
could help with the current situation, or to ‘speak with somebody or organize something’ (something referring
to a meeting, workshop, or conference here). ‘Especially for the PPE, if they see a gap, they have to act quickly
to decide if we have enough, where do we get some extra from’ (P3). At one point, P3 referred to executing
preparedness plans, which are plans made to enable a fast yet organized response to a crisis situation.

Communication of the Modelling Paradigm

Due to recommendations during peer-checking of the workshop presentation, the explanation of the basics of
the SD paradigm got removed. However, this seems to be a mistake due to the following reason while discussing
intervention 3: Using the jargon of SD modelling: intervention 3 is about changing the parameter of a first-order
material delay between the ward and the compartments after. This means changing the average time a patient
stays in the ward compartment (this was more elaborately explained in Intervention 3). While presenting this
output (without the SD jargon), we got feedback from both hospital participants that it is a case-by-case decision
whether patients can be sent home early. What potentially happened was that due to the lack of communication,
they assumed that every patient gets sent back home earlier and pointed out that this is highly unrealistic.
In retrospect, this minor misunderstanding could have been by rephrasing the intervention to ‘reducing the
length of stay statistically ’, but this whole class of these misunderstandings can be avoided by communicating
the modelling paradigm. Relatedly, P2 posed an interesting question: Do we want to present the model or the
effect of the interventions? P2 said that he perceived differently when the graphs were presented and when
only the table was presented: ‘There are difference between the graphs to show the model, and the table to
understand the decision’.

4.3 How Participants would Make Decisions Based on Data
Participants were searching for actionable insight when they imagined themselves in a decision-making position,
which was not immediately obtainable from the graph type of output. However, it was noted that there is no
single decision-maker.

It was also observed that participants sought for full solutions. In cases where the model outputs suggest
that the intervention only leads to a partial solution (i.e., having a smaller resource gap), P2 expressed that ‘it
is hard to make a good decision about what should be done because either way, the gap is still there’.

While discussing the utility of model-based scenarios, P2 recalled a problem their hospital experienced over
the summer: due to a few days of festivity, many nurses caught COVID-19, resulting in an unexpected level
of nurse absenteeism. Unfortunately, they did not have preparedness plans for this kind of absency. In P2’s
opinion, a model could have been useful to generate a scenario like this and induce discussions about the topic
by showing the effects of staff absency.

4.4 Limitations of Current Modelling Approach
There are quite some previously unknown or neglected limitations with the model, which have been raised
during the discussions in the workshops.

Unknown and Fast Changing Dynamics

When faced with a fundamentally new situation, such as the first COVID-19 wave, the tendency to implement
ad-hoc solutions increases. For example, at the hospital, ‘Many anesthesiologists went to work at the ICU, so,
therefore, we could increase it (the ICU personnel) in a way we could not increase anymore’ (P2, referring to
the fact that anesthesiologists went back to help with surgeries). In the same way, some operation rooms have
also been used as ICUs, but not anymore.

It is interesting that the real-world system can change at a speed comparable to the speed of model building:
P3 expressed that while the model accounts for contact tracing, the current (14th October 2022) approach is
to not contact trace infections. It is unnecessary to contact trace the virus, as people already know what to do
in case of an infection, and there is a fair amount of knowledge about how the strain behaves. Of course, if a
new strain emerges, they would restart contact tracing for that strain.
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Focus on Hospital

RIVM participants pointed out that the current interventions focus on the hospital part. They provided a few
ideas that would be interesting to research more in-depth: selective testing and contact tracing. Selective testing
in case of a more contagious disease than the coronavirus works in the following way: the tested community
needs to be identified, for example, a nursing home, daycare, or school. A few (e.g. three) people need to be
tested, and if all three are positive, it can be assumed that the entire community is infected with the disease
(P4). Selective contact tracing works by only doing contact tracing for specific groups (e.g. for people over 50)
(P3). P3 also suggested looking into modelling the effect of self-testing. It was expressed that predicting the
need for an increased testing capacity is relatively easy, but not for contact tracing. Therefore, a model that
could forecast the need for CT would be interesting.

PR versus Modelling

P3 recalled a case where the action taken was counterintuitive compared to what their (mental) models sug-
gested: Contact tracing a public KPI in the eyes of the government, so for PR-related reasons, they went beyond
the otherwise reasonable limits.

4.5 Summary of the Workshop Results
We gained substantial practical knowledge about how to present data. A key takeaway was that more effort
should have been invested into communicating the surrounding context of the data, especially the model.
Interdisciplinary communication (i.e., communication between the analyst and participants) was non-trivial, as
an under-communicated context led to misunderstandings and confusion.

We have also seen that participants tend to augment their thinking with their recent experiences. In this
workshop’s case, this was the experience accumulated during earlier waves of the COVID-19 pandemic. This
became helpful, as the underlying model also simulated a COVID-like illness. However, this augmentation is a
potential source of difficulty when interpreting the data if the past experience does not match the simulation’s
base assumptions.

The hospital participants indicated that in intervention 3, making the inference from the graphs to the table
cannot be expected from every professional. From an analytical perspective, making this inference is quite a
trivial step. Therefore, to provide valuable insight, the work does not need to stop at visualizing the model
outputs; those could be further analyzed. This leads naturally to the next point: Data-based decision-making.

The end goal of the participants was quite clear: to get rid of the perceived gap. While the presentation
included data that supported their reasoning, they were not searching for the data but for means to eliminate the
resource gap. The ideal insight would be to provide a set of interventions and their expected effects or provide
which interventions are needed to eliminate the resource gap. Furthermore, it was observed that hospital-side
participants thought along ’what options can we take’, while RIVM participants thought along ’whom do we
need to notify’. This likely indicates that different things count as an intervention in different organizations.

Lastly, some limitations of the model were discovered. First, RIVM participants mentioned an example:
When contact tracing became a publicized KPI of the ministry, for PR reasons, it is evident to put more effort
into that activity than the model outputs would suggest. Secondly, they also suggested that contact tracing is
underresearched in the model, as it is possible to do group-specific tracing and testing. It was pointed out, too,
that the model completely ignores the effects of self-testing. Finally, a need for contact tracing demand forecast
was also expressed, as currently, it is a challenge to employ enough people without risking over-employment.
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Chapter 5

Discussion and Recommendation

The discussion of this study is presented along four themes: First, uncertainty and validation are discussed
in Modelling and Epistemic Uncertainty (section 5.1) to answer the first sub-research question. After this
the practicalities of How to Present Model Outputs (section 5.2) are discussed. Thirdly, in Needed Data for
Situational Awareness (section 5.3), it is discussed how can be healthcare resource models used, and sub-research
question two is answered. The last theme is Implications of the Need for Consolidative Models (section 5.4),
where the main research question is answered. After this, the Limitations and Future Research (section 5.5) of
this study are briefly mentioned.

5.1 Modelling and Epistemic Uncertainty
During the workshop, we received the question of whether we want to present the model or present the effect of
the interventions (section 4.2). This question is interesting for the following reason: an argument can be made
that presenting the model is needed to present the effects of the intervention, as the intervention’s outcome is
directly dependent on the model structure and parameter values. The option of only presenting the effects of
the intervention is possible if we assume that the modellers, analysts and audience all share the same knowledge
of the ground truth. However, when the exploratory approach is beneficial, parts of the ground truth are not
shared due to uncertainties (Bankes, 1993); therefore, presenting the model alongside the interventions should
be chosen in our case.

On the other hand, an interesting idea about consolidative models is that shared ground truth has accuracy.
An out-of-domain example is that using the Newtonian model to calculate the gravitational forces, it was possible
to get to the Moon. However, the Newtonian model is incorrect compared to the theory of general relativity. The
reason why the Newtonian model is still can be used because, within the spacecraft’s operational parameters,
the two theories result only in negligible differences. This implies that not all uncertainty is important to
eliminate, even from a consolidative model.

Based on this idea, I propose that the consolidative and exploratory approach should not be viewed as
exclusive techniques, as Bankes (1993) and section A.2 presents. Instead, I propose that these techniques
should be viewed as two ranges on the spectrum of epistemic uncertainty. This idea of a spectrum fits into
the conclusion of a chapter by Edmonds (2017, p. 56), where he discusses the different purposes of modelling:
“There is a natural progression in terms of purpose attempted as understanding develops: from illustration to
description or theoretical exposition, from description to explanations and from explanations to prediction”. The
key part is that as ‘the understanding develops’, epistemic uncertainty naturally decreases, leading to increased
model accuracy (both in terms of representing the system and in the predictive sense).

For a moment, let us return to sub-research question one: How can healthcare resource models be validated?
We actually already answered this question implicitly in the Methods chapter, but let it make explicit: Health-
care resource models should be validated as any other models: by examining whether the model is fit for purpose
(Auping et al., 2022). At the detailedness of the SD models we were working with, due to the uncertainties,
these models should not be validated by accuracy alone. Instead, these models should pass a set of tests on
the three levels of validity (Barlas, 1996). An appropriate set of tests should be defined and executed based on
the available resources, expertise, and software support. Placing the idea of validation into the just proposed
spectrum perspective is also possible. As various validation tests compare the model with the real-world system,
data about the real-world system is produced, which reduces epistemic uncertainty. Therefore in the spectrum
perspective, validation means reducing epistemic uncertainty.
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5.2 How to Present Model Outputs
We had an interesting idea while reading the literature: Consolidative and exploratory modelling (Bankes,
1993) fits together well with the model as an artefact view of Bolt et al. (2021). A consolidative model can
be described as a technical representative object, given that it collects, unifies, and codifies the knowledge of
multiple domain experts. On the other hand, an exploratory model is used to create new insights, classifying
it as an epistemic object. While the differentiation between boundary and representative objects is not that
straightforward, given the tendency of exploratory modelling to include domain experts from different disciplines
to share their ideas about the inner mechanism of the system, an argument can be made that it is a boundary
object. This especially holds if deep uncertainty is present, where it is, by definition, guaranteed that different
ideas about the system mechanisms exist.

From this perspective: an added value of GMB is the process of creating a boundary object (i.e., the model),
which enables cross-disciplinary communication (Bolt et al., 2021; Scott, 2018). Just like a model, the PANDEM-
2 dashboard can also be classified as a boundary object. The users can interact with the dashboard to define
scenarios, which can be shared with professionals from other disciplines. These scenarios maintain enough
integrity because the underlying mathematics is immutable (i.e., the numbers do not change depending on
which discipline looks at the graph). However, how the numerical data is interpreted depends on the discipline;
therefore, in this section, some recommendations are presented for avoiding ambiguity while communicating
healthcare resource models.

Based on Participants’ Reaction to the Presentation of the Data, we think extra care should be taken to
explain the difference between the different scenarios and respective time series, and model parts, as insufficient
or bad communication can result in misunderstanding and wasted effort. People without an extensive data
science background will have questions they lack the hands-on knowledge to answer. The root is not the often
blamed STEM/non-STEM division but the discipline-specific knowledge in generating and analyzing data.
In such situations, it is helpful if these questions can be answered immediately. The analyst who made the
visualization is the best person to have around for this. Wrongly understood concepts can also be caught and
corrected before moving on with the analysis. In an ideal case, the analyst can also ‘on the fly’ fine-tune the
presentation of the data by explaining the required parts more in-depth. Furthermore, given some familiarity
with the audience, it is possible to expect some of these questions. The answer to these questions could be
prepared in advance and put as ‘backup slides’ (when presenting) or as ‘frequently asked questions’ (on the
dashboard). However, it should be noted that documenting the correct part of the analyst’s tacit knowledge is
non-trivial, as it is highly audience-dependent which part of the analyst’s knowledge needs to be documented.
As there are potentially too many questions to answer, without senior-level domain experience, making these
prepared answers should be expected to become an iterative process.

Moreover, we noticed that the findings deemed interesting by the analyst can be trivial for the decision-
makers. For example, this happened in intervention 2 in the workshop (where increased testing causes quite
a big contact tracing demand), but this was also observed at other workshops, where a model’s results were
communicated (W. Auping, personal communication, 18th October, 2022). This can be addressed by asking
subject-matter experts beforehand if the finding is worth presenting. It could be the case that a ‘novel’ finding
is, in fact, trivial to domain experts or exists as passive knowledge (i.e., it can only be recalled when reminded
of it by a related topic). Despite this, even when the novelty of the insights gained from the pandemic model
is negligible (such as in our case), the discovered scenarios were still good discussion starters in the workshop.
This is likely the mechanism of the scenarios acting as a reminder for passive knowledge.

During the workshop, we evaluated the different presentation styles via a Likert scale (Table 4.1). Interest-
ingly, interventions 1 and 4 scored substantially lower than interventions 2 and 3. The low score of intervention
4 is probably related to the misunderstanding about the bar graphs and the presence of 3 scenarios. However,
interventions 1 and 2 are very alike, yet they received different scores. This is probably the result of ensuring
participants understand intervention 1 in detail to be able to answer the following two guiding questions about
it. At intervention 2, they benefitted from the understanding of intervention 1 as it was built on the same
template. Based on these results, two presentation modes are easier to process: The first option is to analyze
the graphs of the KPIs further and present the key insights in a tabular format. Alternatively, the second option
is to build all visualization on the same template and explain that template on the first occurrence in detail.
On the subsequent occurrences point out the interesting points, then give time to participants to process the
information. However, it should be kept in mind that translation from the graphs to the tabular format could
be cumbersome for professionals (section 4.1).
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5.3 Needed Data for Situational Awareness
The end goal of participants during the workshop was pretty clear: completely eliminate the presented resource
gap (section 4.3). They used the presented data to asses what actions they should take (and they concluded
several times that actions not presented in the intervention are needed because the resource gap is not eliminated
by the intervention alone). To achieve this, they expressed the need for data which could be used for operational
planning purposes (section 4.2, and section 4.4). Therefore this thesis argues that this type of data is the
best for participants to achieve situational awareness. However, this also requires an experimentally validated
consolidative model that can be used as a surrogate of the modelled phenomenon.

Given this, sub-research question two can be answered as well: How are, or can healthcare resource models be
used? Based on the workshop findings, when in possession of a healthcare resource model of sufficient predictive
power, it gives the most utility, as participants actively look for data that they can use for operational planning
purposes. This could be why in the second literature review, we have seen that a quarter of the models are
autoregression models. In essence, an autoregressive model is a typical black-box model, preferring accuracy
over explainability. However, this is not the only way to utilize healthcare resource models. Exploratory models
can be created to help to address specific questions or problems, and subsequent analysis of these models
could provide insight on how to develop risk-averse strategies or discover plausible worst cases (Bankes, 1993).
Furthermore, a third way of utilizing models has been identified: to use them as a means of communication, either
to codify knowledge or to be used as boundary objects. However, under uncertainty, the model building should
happen with a specific problem or purpose in mind, as having multipurpose models, essentially encompassing
the entire system, does not provide much utility (Bankes, 1993; J. Sterman, 2000).

5.4 Implications of the Need for Consolidative Models
We have seen that consolidative models would add quite a value. However, to achieve such models, datasets
of high reliability are needed to validate the predictive power of the model, and as far as we know, no such
datasets exist (M. Stein, personal communication, 16th October, 2022); therefore, these should be created. This
idea is not far from the PANDEM-2 project, as WP2 was partially aimed to “aggregate surveillance data from
multiple sources to provide useful surveillance indicators” to be presented on the dashboard (European Research
Executive Agency, 2020, Annex 1 - p.14). However, these plans are aimed at data related to disease spread and
not at healthcare resources. There is a possibility that data related to resources are already being collected for
operational purposes; however, the collection and aggregation of this data is not happening, despite, in theory,
hospitals’ enterprise resource management systems could be queried relatively automatically.

Our best idea why this does not happen is that widespread data aggregation would need quite a significant
upfront investment (S. Hinrichs-Krapels, personal communication, 29th November, 2022). Furthermore, collect-
ing these data has far-reaching security and privacy implications, which need to be addressed. Fundamentally,
there is a value traded-off between preparedness via data collection and privacy, indicating that it is not only
an engineering problem. Another possible problem with data aggregation is that different organizations are
likely using different methods to measure the same resources. A simple example would be that one hospital
measures PPE in kits while the other measures it in gloves, masks, and so forth. Nevertheless, better situational
awareness would address some limitations of both the refactored and the NUIG model, as it would significantly
reduce the uncertainty related to healthcare resource management.

Now that both sub-research questions are answered, we can revisit the main research question of this study:
How to support healthcare resource managers in acquiring situational awareness via an SD model?. This thesis
argues that, by far, the biggest utility could be achieved by strengthening data collection and aggregation, as it
enables the possibility to develop surrogate models. However, as this requires a significant upfront investment,
question-driven exploratory models are an alternative way to address uncertainties.

5.5 Limitations and Future Research
We have encountered various setbacks in this study, and not all of these could be solved elegantly. Most of
these impose some limitations on this study, which are collected in this section. Also, some ideas that are worth
future examination are presented.

5.5.1 Limitations of the Literature Reviews
The literature review was not fully comprehensive, as is often the case on the timescale of a thesis. Multiple
models in the grey literature are known to be relevant but were not returned by the search process and therefore

37

https://www.researchgate.net/profile/Mart-Stein
https://www.tudelft.nl/staff/s.hinrichs/


got, excluded. Also, the review was conducted without including relevant scientific frameworks (such as Barlas
(1996)), which led to the interaction between these frameworks and the literature remaining unexplored.

Furthermore, the literature search might have a hidden bias towards hospital resources, as in the search
terms we defined healthcare resources instead of public health resources, which seem to have a slightly different
meaning. This difference might be connected to the fact that only 20% of the returned articles passed the
abstract screening. However, this difference in the meaning was discovered months after performing the review;
therefore, its effect remains an open question.

5.5.2 Limitations of the Refactored Model
We could not correct all of the original model’s errors in the refactored model. This happened because we
discovered far more errors in the original model than we initially expected. This also meant that the structure-
oriented behaviour validity was not done thoroughly; the set of tests performed was not extensive by any
measure. Furthermore, no well-established methodology was found regarding how to evaluate the validity of
transient model behaviour, such as one-time resource depletion. Therefore the refactored model could still
contain many undiscovered errors, which means that the model’s utility is minimal. For example, it should not
be viewed as an approximation or a description of the real-world system.

It was also discovered during the workshops that the model completely ignores the effect of self-testing,
which is considered to be an important factor. In light of this finding, the chosen set of validation tests is
questionable. An alternative approach would have been using boundary-adequacy tests to examine whether the
important phenomenons have been all modelled (Auping, 2018) and to examine what could have been done to
simplify the model.

There are also some practical limitations: Due to limited knowledge about the model, we decided to start
with face-checking to understand it better. However, the lack of detailed knowledge about the real-world system
transformed this into less of a test and more into learning based on the model. While the conceptual level of both
the original and the refactored models are thought to represent reality, there are some structural errors resulting
from either formalization errors or uncertainty. Furthermore, using unit testing instead of extreme-condition
testing was made to speed up the validation process at the cost of having less thorough testing. Lastly, not all
of the discovered errors and shortcomings were fixed.

What raises further questions is that Pace (2004) found that qualitative validation and verification assess-
ments are not thought to be credible and repeatable but also noted that there is a lack of any large study
backing up this notion. It was also noted that there is always an impression of room for improvement, but this
improvement did not seem to happen over time. Though this article was published 18 years ago, it might not
be longer relevant.

There is also the problem that many interesting ideas and scenarios would need extensive structural modi-
fication of the model to explore. For example, implementing selective testing and contact tracing would mean
that the entire testing and contact tracing parts would need to be changed. Another example is that the effects
of hospital capacity overflow are not modelled. Also, the disclaimer applies that comes with every exploratory
model: the model should not be used for numerical predictive purposes.

In conclusion, due to these errors, neither the original nor the refactored model should be used anymore.
Since the start of this thesis, a refined model was developed by NUIG, and the RIVM team working within the
PANDEM-2 project does not have the capacity to maintain the model used in this thesis.

5.5.3 Repurposed Workshop
At the beginning of this study, we expected that another study would be conducted about how to present the
data to end-users. Therefore, our first ideas about the workshop were very different, as the other study would
have covered exploring the topic of data presentation. However, we decided to repurpose the workshop when
we realized this would not happen. There were two problems with this approach. First, given the relatively late
redesign, the literature about workshops could not be looked into in detail. Secondly, we could not organize the
workshop in a way that both resource sides are represented, resulting in the fact that interaction between the
participants from different backgrounds could not be observed. In retrospect, if we knew at the beginning of
this study that the workshop would be about presenting model data, much of the effort used for understanding
exploratory modelling in detail could have been directed to understanding participatory design techniques
instead.
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5.5.4 Faster Change than Model Development Speed
An interesting finding of the workshop is that the contact-tracing policy of the dutch healthcare system changed
on the conceptual level since the development of the original model (section 4.4). This indicates that a model with
the current detailedness could soon become outdated. However, there are no plans for continuous development
to address these structural changes. Interestingly, this is also a limitation of the advocated data collection
approach: nothing guarantees that information currently relevant for COVID will remain relevant for another
strain or another disease. Also, at the resolution of these models, every disease has a specific structure (including
patient pathway, spread mechanism, resources, and possible interventions). Therefore, the refactored model is
only applicable for COVID-like illnesses, which effectively limits it to the different COVID strains.

There is one last limitation: In the SD paradigm, the dynamic of the system has to be explicitly modelled
(for example, in agent-based modelling, the system behaviour is the result of the interaction between the agents,
which is not explicitly coded into the model). However, in the workshop, it was indicated that the discovery
of unknow-unknowns would be beneficial. These mechanics are easy to miss and would rarely be uncovered by
validation since these unknown unknowns cannot be explicitly checked for. An example of this happened with
the refactored model, as the lack of relationship between the number of infectious people and staff absenteeism
went unnoticed for most of the validation process, while in reality, these are very related.

5.5.5 Future Research
Some ideas are presented in this thesis, which could be used as starting points for further research. Firstly, it
should be explored whether the spectrum idea is worth further discussion by examining how other (non-SD)
paradigms deal with uncertainty. Furthermore, the idea of the spectrum could be refined by looking at the
model boundary in detail, for example, through a bull’s-eye diagram.

Secondly, as situational awareness is a central part of the planned dashboard, it might be worth examining
when healthcare resource managers perceive a resource gap or when it becomes significant. For example, a
single missing mask is unlikely to cause a pandemic wave, but can 1000 missing masks do?

From another angle, during the workshop, RIVM participants expressed that they would organize ‘something’
to communicate with relevant stakeholders. It could be interesting to see how these communication channels
will be affected by the opening of the new National Functionality for Infectious Disease Control (LFI) division
of RIVM, which will also be tasked with future large-scale crisis response (National Institute for Public Health
and the Environment, 2022a).

5.6 Chapter Summary
By discussing how to address uncertainty, we have concluded that SD models should not be validated by accuracy
alone, but other levels of validity should be considered too. It was also discussed how to present the outputs
of such models and that cross-disciplinary communication is one of the utilities provided by the dashboard.
By examining the workshop results, we also conclude that model outputs are more easily understood when
visualizations are based on the same template or when outputs are further processed and presented in a tabular
format. When examining how can be healthcare resource models used, we saw that workshop participants would
appreciate models that can be used for operational planning; therefore, the biggest utility could be provided by
consolidative models. This comes with the implication that better data collection systems should be developed;
however, as this requires quite an investment, exploratory models could be used as an alternative way to address
uncertainties. Lastly, the limitations and ideas for future research are collected.
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Chapter 6

Conclusion

Through this thesis, we have discovered many aspects of pandemic resource modelling. We started by un-
derstanding the problem that significant healthcare resource shortages make pandemics worse and that the
importance of preparedness has long been recognized within the European Union. One of the several innovation
projects in this domain is PANDEM-2, aiming to improve pandemic preparedness by creating cutting-edge
digital tools for cross-border resource management and sharing. Therefore, we have explored how to support
healthcare resource managers in acquiring situational awareness via an SD model.

To answer this question, two literature searches were conducted to examine the existing health resource
models and how these are validated. It was found that the models found in the scientific literature are usually
less detailed than the model examined in this thesis and that no common approach is followed for the valida-
tion process. After this, a snapshot of the literature about model building and validation was examined and
subsequently used to inform the methodology. Following a framework proposed by the validation literature, it
was decided to examine the model via multiple validation tests, and the model was validated for the purpose
of producing outputs for the workshop. Using the model, multiple interventions were created, which were pre-
sented in different styles. In the workshop, participants evaluated how much the presented interventions were
understandable and how these could support them in a decision-making position.

During the workshop, we discovered that the interventions should be communicated with more context: fur-
thermore, presenting the model can be used for communicating assumptions. We have also seen that participants
tend to augment the data with their past experiences. Furthermore, it was also discovered that participants are
not satisfied with partial solutions (i.e., a smaller resource gap). Instead, they expressed interest in seeking out
a solution where the resource gap is completely eliminated.

We have discussed that the type of situational awareness that would benefit workshop participants the most
needs a consolidative model and that developing such models need better datasets. However, that requires a
significant upfront investment and needs to be continuously maintained to address the changes of the real-world
system. While healthcare resource modelling needs more data to be improved substantially, in the meantime,
exploratory modelling can help by offering a way to address uncertainties.
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Appendix A

Additional methodology

A.1 Overview of the Scientific Theories Presented in this Thesis
Given that many ideas from many topics of the scientific literature was merged together in this thesis, it could
be helpful to have a visualization to organize these. This visualization is given in Figure A.1. The map is
created by exmaining the relationship between the practical perspective of the tasks of this thesis, the steps of
the modelling cycle, and where the relevant theories fit into this.

The colour coding differentiates this thesis’s planned tasks from the steps already done. The prussian blue

coloured bocks are the tasks already done, while the red ryb blocks are the tasks planned accomplished during
this thesis. The continuous arrows represent the next step in the processes, while the dashed arrows represent
an association between the diferent topics, though some of these associations are presented only in the discusion
chapter.
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Figure A.1: Visulization of the workflow this thesis is part of.

One thing that is not evident, is the ‘x’ between the GMB approach, and the creation of the simulation
model: While there are some recommendations in literature to use GMB to inform concleptualization and
formalization, it remains slightly detached, as the approach taken by de Schipper (2022a) is more of a ’freestyle’
approach. As she developed the original model, she showed parts of it in the periodical internal WP meetings.
In these meetings, she asked for the opinion of the present domain experts and stakeholders of the project. She
also consulted the scientific literature to get inspiration for further directions regarding model development (M.
Stein, personal communication, 30th June, 2022). While this approach consists of similar elements, it differs
from the GMB approach. Furthermore, Rouwette and Vennix (2020) specifically warns against having the dual
role of the facilitator and the expert, which in my opinion, is a somewhat similar situation to the one that
happened in the original model’s freestyle approach.
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A.2 Difference Between Consolidative and Exploratory Modelling
Uncertainty is a fundamental problem in modelling, and there are two well-established approaches, depending on
the level of epistemic uncertainty. This two different approaches are: exploratory-, and consolidative modelling.
To start, exploratory modelling is described as:

When insufficient knowledge or unresolvable uncertainties preclude building a surrogate for the target
system, modellers must make guesses at details and mechanisms. While the resulting model cannot
be taken as a reliable image of the target system, it does provide a computational experiment that
reveals how the world would behave if the various guesses were correct. (Bankes, 1993, p. 435)

On the other hand, under consolidative modelling, Bankes (1993) referred to models that can predict behaviour
reliably enough to be used as a surrogate for the modelled system itself. These models are possible to build
when enough knowledge about system characteristics is accumulated. This implies that there are no conflicts
between the different theories about the system, and these can be combined into a single internally consistent
theory. These models consolidate a large amount of knowledge and information into a single formal model,
which can be implemented as a computer program. After validation, the program can be dispensed, including
the information used in its construction.

The key concept to differentiate the two approaches is the presence of unresolvable uncertainties within the
model boundaries. These uncertainties could refer to the fact that the modellers did not have the resources to
resolve some of the key uncertainties. However, in more challenging cases, this could also mean the presence of
deep uncertainty. This latter case refers to the situation where the stakeholders within the modelled system do
not know or do not agree on how the system works (Lempert et al., 2003).

The consolidative approach encompasses simple models, like Newton’s laws of motion, or complex models,
like a finite element method, in engineering. What is common in these consolidative models is that both
were constructed by combining a vast amount of past research with the latest ‘computational’ capabilities.
In particular, Newton was a pioneer in calculus, and the engineers behind a finite element method pioneered
harnessing the computer’s power to solve mechanical calculations. However, all consolidative models require
extensive experimental validation after their construction, which is not always possible due to ethical, legal, or
financial considerations.

There are possible trade-offs. For example, uncertainties can be battled by spending extreme amounts of
money. A case like this is the Standard Model (in particle physics) and the CERN facility, where the underlying
uncertainties emerge from the theory using probability functions to describe the real-world phenomenon, and
CERN battles that by running a vast amount of experiments required to determine p values over 99.99%.
Another example is found in gravitational waves and the LIGO facility. In this case, the measurement instrument
(interferometer) is so sensitive that it picks up minimal vibrations, such as ones caused by a truck breaking
nearby the facility. This means that from a single measurement alone, it is impossible to determine whether it
was a gravitational wave or the truck nearby; therefore, an active vibration-dampening system was built along
the kilometres of the vacuum system. However, in both cases, the detector’s reliability was improved, not the
complexity of the tested model, which is the difference between these examples and Bankes’s “ultimate combat
simulator”. Also, the important idea behind all models is to augment human knowledge and never is to replace
it.

In Bankes’s view, when extensive experimental validation of the model is not possible, an exploratory
approach should be taken. This approach provides value by improving the modelled system’s insight, guiding
future analysis plus data collection and generating hypotheses to test. Further uses were identified by (Rouwette
& Vennix, 2020): An exploratory model can be used to help decide in situations when the human mind is simply
incapable of processing the vast amount of information about the system. In this case, while the model is unlikely
to be true in every detail, the output could still be used to provide better decisions than guessing alone, or the
output could aid risk aversion by pointing out the worst possible scenarios. The model could also be used to
search for strategies where a little investment could lead to large returns.

One common pattern along all these exploratory uses is that the model is never used to generate explicit
answers or predictions of the real-world system, but it is used to uncover new pieces of information, which help
to make an informed decision. In other words, these models can be used to discover implications of what is
known or to examine hypothetical (‘what if’) scenarios to improve our insight into the problem or decision.
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A.3 Errors in the original model
The following errors were identified during verification:

• de Schipper (2022b) conducted a sensitivity analysis of the original model along a few variables. While
not mentioned explicitly in her report, there are two parameters which exhibit a strange behaviour: both
‘willingness to quarantine’ and ‘vaccination per staff per day’, albeit negligibly but positively correlated
with the variables used to describe the seriousness of the disease (‘deceased’, ‘total infections’, ‘admissions
to ICU’). This is counter-intuitive; therefore, further investigation should be conducted. Unfortunately,
there was no time to re-do the sensitivity analysis on the refactored model.

• Parts of the model were still under construction, and it was not indicated by anything. For example, the
resource usage of long-covid was not modelled at all. Furthermore, there were several parts of the model
where key parameters were set to placeholder values. This was the case for all of the home care and
rehabilitation resources. These ‘aftercare resources’ were deleted from the model. Placeholder values also
caused a vaccination capacity of 100 people/day, which is unrealistic in light of the modelled population
size of more than 10 million people. In some cases, the placeholder value was zero, effectively turning off
that part of the model. This was the case in modules related to quarantining, early release, rehab, PPE
acquisition, medication, and noise testing demand. Besides the medication module, these modules got
turned on by searching for a suitable parameter value.

• After turning the aforementioned modules on, people started to disappear over time in the model. After
a thorough investigation, an error was found in the implementation of the rehabilitation stock, which was
corrected.

• On the conceptual level, the case-fatality ratio determines the percentage of people surviving the disease
despite hospitalization. This part got formalized using two first-order material delay out-flows from the
ICU stock, with different delay times (surviving and deceased). When the coefficient for the material
delay is different, the case-fatality ratio needs to be modified on the formalization level to account for
these different delay times. However, this was not noticed in the original model, which resulted in the
mortality ratio during simulation not being equal to the case-fatality ratio. An effort was made to correct
this, but it was not completed due to the lack of time.

• For the epi-compartments, the original model utilized a very unorthodox method. Instead of a direct
compartment-to-compartment flow, the model passes the value of the flow through an auxiliary variable,
and the flow itself goes outside of the modelling boundary into the cloud symbol in Vensim. This is
demonstrated on Figure A.2, where it is highlighted in red for better visibility. This unorthodox method
was one of the main arguments for refactoring the model.

• The original model has a specific, directional hospital structure, but an alternative structure was identified
during the NUIG modelling efforts. The alternative structure models a bi-directional flow between the
ward and ICU, which was deemed to be more realistic than the structure in the original model (Caroline
Green, personal communication, 15th June, 2022). This is one manifestation of the deep uncertainty
which surrounds the model. While this specific structural uncertainty can be simplified into parameter
uncertainty, it well demonstrates the level of uncertainty regarding the model.

• Throughout the NUIG modelling efforts, it was found that the whole hospital system behaves like a CAS.
Multiple layers of fall-back strategies can be activated in case of a severe resource shortage. In essence,
the hospital can decrease the quality of care in exchange for increased capacity. (Caroline Green, personal
communication, 15th June, 2022). This indicated that many assumptions of the original model were not
documented, if they were known at all. While the NUIG model made quite some progress towards this
direction, the lack of assumptions was not addressed in the refactored model.

• The calculation of the R number seems to be wrong. There might be a mathematical equivalency over-
looked, but this was not investigated thorougly during this thesis.

• The ‘"patient-to-bed ratio"’ parameter should be only used to model the situation when only a percentage
of the hospital is dedicated to covid care. This was a minor incorrectly documented part in the original
model’s report.

There were some concerns identified related to deviating from the SD modelling paradigm. These are the
following:
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• Auxilary variables were directly affecting a stock. An example of this is visible on Figure A.2a, where the
arrows from the auxiliary variables point directly to a stock instead of pointing to a flow.

• Two variables were incompatible with the SD paradigm: the ‘stock to flow converter’ and the ‘per day’.
The former was used to ensure that more resources cannot be used in a single timestep than the entire
stock. However, this was implemented erroneously (Andrade Ortiz, Jair Albert, personal communication,
23rd March, 2022). In the refactored model, there is an alternative approach: There are material delays
with very small coefficients (i.e. a few hours), limiting the out-flow from these stocks. These coefficients
follow the naming template: ‘[resource_name] emergency emptying time’. The ‘per day’ variable was
deleted because it was not affecting the results numerically and was only used to ensure the unit check
tests were passed. The refactored model passes the unit check without this shenanigan.

• Given that the original model was reported to have compatibility with python, the following should also
be classified as an error: There were parameters that in Vensim acted like variables because there was a
constant equation to calculate their value instead of a single numerical value. This caused some unhandled
exceptions while importing the model through the EMA Workbench and had to be corrected.

• There was another implementation error where the ICU capacity depended on the ICU demand. This
error was not causing numerical differences but decreased model understandability, which was especially
painful considering the low quality of the documentation.

• There is a shenanigan introduced by the refactoring process: There was a falsely indicated circular equation
resulting from Vensim’s numerical approach to subscripts. As there is no circular equation in the symbolic
equations, this got a quick fix via the ‘symptomatic nonhospitalized manual sum shadow’ variable. This
could be resolved more elegantly, but that would take quite some time.

(a) Recovered compartment in the original model

(b) Susceptible compartment in the original model

Figure A.2: Demonstration of the unconventional pass-on auxiliary variable method.

During the face-checking, many implicit assumptions were discovered. Despite the assumptions already
documented in the original report, the following assumptions were discovered. However, as none of the V&V
steps was directly aimed at discovering hidden assumptions, this list is certainly incomplete.

• When administering multiple jabs of vaccination, the time delay between the jabs is not modelled. This
simplifies the modelling of the initial two covid jabs but falls short in modelling the subsequent booster
shots.

• A 100% test specificity and a 100% test sensitivity are assumed.

• The ‘time onset of symptoms’ cannot be smaller than the ‘look-back period of ct’. If that happens, the
contact tracing will find people who are already infectious, which is not accounted for in the model. It is
assumed that every contact found is either in the susceptible or the exposed compartment.

• The model was built with the January 2022 Dutch policies in mind. Furthermore, no other hospital was
consulted during the development process despite RUMC.

• One staff visit of a patient in the ward or the ICU uses up one kit of PPE equipment.
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• Staff absenteeism is not affected by the number of infected people.

• Two parameters: ‘staff visits per patient per day’ and ‘ICU patient-to-staff ratio’ are not independent.
This dependence is not accounted for in the model.

• There was an effort to account for different ‘staff-to-patient ratio’ for each shift. This was disadvantageous
for the model clarity, as demonstrated by Figure A.3. The correct approach would have been to subscript
the entire hospital resource model with the type of shift. As this was deleted, the refactored model assumes
that every shift is the same.

• There is no clear documentation of who and when needs to be tested in the model. An attempt was made
to reverse-engineer the logic based on the model equations. However, this was not completed due to the
time limit constraints of this thesis work.

• It was documented in the original model “It is assumed susceptibles do not meet multiple infectious people
per day” de Schipper (2022b). However, it should be added that when this assumption does not hold (e.g.
during a peak), the contact tracing module produces an invalid output, leading to over-isolating people.
There is no quick fix or indicator when this problem happens; that part should be corrected.

Figure A.3: Equation behind the ‘"ward max patient-to-staff ratio"’ variable.

There were several concerns that could be best described as technical debt or bad codebase health. The
size of this technical debt was so large that if we had been fully aware of it during the initial thesis planning,
we would undoubtedly have reconsidered the plan’s feasibility. This technical debt was manifesting itself in the
following forms:

• The stock-flow diagrams were unorganized to the extent that it was time-consuming to find variables.

• While the meaning of the parameters is documented, this is not the case for the variables. This resulted in
the need to reverse-engineer many parts, to understand the ideas behind the relationships of the variables.
Furthermore, the naming style of variables is inconsistent within the model itself. This issue, paired with
the lack of proper documentation, made working with the model extremely difficult. As a result, quite
some effort went into understanding and renaming the variables, but this process is far from complete. A
full documentation would be needed, but that is not realistic to include in this thesis.

• There were variables in the model which were not used to calculate the output and were not documented
anywhere. These variables are deleted in the refactored model.

• Sometimes, basic built-in Vensim functions were implemented manually (e.g. XIDZ, ZIDZ), obscuring the
model relationships.

• Assumptions were only documented in the original model’s report. Equipped with some retrospective
enlightenment, indicating these assumptions in the stock-flow diagrams would have accelerated refactoring.

• Some variables are not calculated on the same stock-flow diagram (view in Vensim) as similar variables.
These were mostly cleared up; however, calculating the vaccination resources still happens in the com-
partment sub-model.

• As already mentioned above, there was no notice of which parameters had a placeholder value.

• Access was not obtained automatically for all of the project files related to the work of the original model.
When access was finally obtained, it was found that the original model also used an excel file to store the
parameter list. Unsurprisingly, this list was slightly different from the parameter values found within the
model and the parameter values found in the technical documentation.
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In brief, the documentation of the whole project was abysmal. Both the conceptual and formal levels of
the documentation left a lot to be desired, which resembles the hypothetical situation described as the ultimate
combat model by Bankes (1993). This lack of reporting made building on the original research outputs incredibly
difficult.

With the same scrutiny as above, there are two notable moments where the refactoring process fell short.

• The code used to attach the model to the Vensim DLL is full of technical debt. There were no attempts
to clear this, as the direction of automated scenario discovery was abandoned.

• The folder structure of the project has some unintuitive decisions. Furthermore, the files were stored in a
way which carries the risk of not granting automatic access to all project files.
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A.4 Description of Group Model Building
A fundamental problem needs to be addressed in any modelling task: How to measure and quantify the real-
world phenomenon the model is about? The solution to this question is highly discipline-specific. This section
will present the approach that seems to work best for recent SD modelling tasks.

In SD modelling, the ‘measurements’ of the real-world system happen in the conceptualization and formaliza-
tion steps. It is also important to recognize that SD usually deals with problems in Large Scale Socio-Technical
Systems. These systems have many properties, and corresponding descriptions (Nikolic, 2021). However, there
are two problems in particular to overcome: There is no central control, as the individual agents’ decisions
collectively determine system behaviour in a non-trivial manner. The other problem is that every agent only
knows part of the system in detail (i.e., the part they are actively engaged with) and, with less precision, some
neighbouring parts.

While collecting data artefacts produced by agents might be possible in some settings (e.g. the logs of an
enterprise resource planning system), these are usually confidential and partial. Therefore using a purely data-
oriented approach is not plausible to overcome these problems. In this case, the best instrument to measure
the real-world system is a qualitative approach: asking agents to share their tacit knowledge while examining
the accessible artefacts of the system. Furthermore, SD is rarely used only for the sake of building a model; it
is usually used as a method to solve a problem, usually at the request of the agents within the system.

Analyzing the gap between the expectations and results of models applied for aiding the policy-making
process, Walker (1982) found that modellers learned more about the system during modelling than the policy-
makers, who were supposed to learn about the system. Furthermore, the confidence of decision-makers in the
models’ results was relatively low, as the policymakers were excluded from most parts of the modelling process.

Rouwette and Vennix (2020) described that the SD modeller community reacted to these problems by exper-
imenting with involving clients beyond the problem definition. Many of these efforts resulted in the approach
called Group Model Building (GMB), which emphasizes client involvement more than earlier approaches: GMB
utilizes client involvement in the entire conceptualization step and in parts of the formalization step too. When
done right, the participants included in these steps should feel ownership over the developed model, leading
to higher confidence in model outputs, as well as a better understanding of the model limitations, leading to
fewer unused or misused models. In practice, this client involvement is usually achieved through interviews
and workshops. While some workshops reportedly had around 40 participants (Leerapan et al., 2020), GMB
generally utilizes a group size of 5-10 people (Bolt et al., 2021).
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A.5 Scenario discovery
There was a research direction we made substantial progress towards but did not contribute towards the final
output: Behaviour-Based Scenario Discovery (BBSD). It is a relatively novel way within the topic of scenario
discovery (Steinmann et al., 2020). To understand the novelty of BBSD, we must first understand conventional
scenario discovery, which is a method aiming to derive decision-relevant future scenarios from exploratory model
behaviours. Conventional scenario discovery consists of 3 sequential steps. First, conducting experiments over
the uncertainty space, then reducing each model output to a single value, and finally finding the regions in the
uncertainty space where the model output is within an ‘interesting region’. While outside the jargon of the
SD modelling, in operational management, the process of reducing complex system behaviour into quantifiable
indicators, as an analytical basis for decision-making is called defining Key Performance Indicators (KPIs)
(KPI.ORG, 2022). Therefore the reduced model outputs will be referred to as KPIs in this thesis. BBSD
introduces a variation into the second step of conventional scenario discovery. Instead of classifying model
outputs into two classes (i.e. interesting and not interesting), it classifies those into n classes, using a user-
defined KPI and time-series clustering.

As a KPI is a quantified property, combining multiple KPIs into a single KPI is also possible by defining a
(mathematical) metric. In practice, this means defining how much an increase in one KPI can offset the decrease
in another. For example, in the case of an epi-model, deciding how much an increase in ward-bed capacity
cancels the effect of a decrease in a single testing capacity is an act of defining a metric. As demonstrated by
this example, defining such a metric is a non-trivial process. While defining KPIs is possible for the model
(as elaborated in section 7), defining the metric would have taken extra time due to the surrounding deep
uncertainty and likely ethical value clashes.

It is now evident that in scenario discovery, reducing the model output into a single KPI is essential for
the automated comparison of runs. However, this would have taken extraordinary effort; therefore, the BBSD
approach was abandoned alongside every automated scenario discovery approach. As our initial plan was to
perform BBSD on the model, a code was written to connect the model with the EMA Workbench python
library. This resulted in a minor contribution towards the library, by finding the line that caused a runtime
error: https://github.com/quaquel/EMAworkbench/issues/155. Furthermore a plan was created to perform
BBSD. This can be seen in Figure A.4
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Figure A.4: Abandoned BBSD planning
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