Fallure Recovery with

Ontologically .
Generated Behaviour

lrees

MSc. Thesis
Wissam Jaber

Failure Recovery with
Ontologically Generated
Behaviour Trees

MSec. Thesis by

Wissam Jaber

Student Name Student Number

Wissam Jaber 5156432

In order to obtain the degree of Master of Robotics
at the Delft University of Technology,
To be defended publicly on Friday September 22, 2023 at 3:00 PM.

Thesis committee: Dr. ir. C. Herndndez Corbato
Dr. L. Peternel
Dr. C. Pek

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Acknowledgement

I would like to express my gratitude to God for guiding me through this incredible journey and providing
me with the strength and patience to overcome challenges along the way.

To my family and friends, your unwavering support, encouragement, and understanding have been my
pillars of strength. Your belief in me has been a constant source of motivation, and I'm grateful for the
love and laughter you’ve brought into my life.

I extend my heartfelt thanks to my supervisor, Carlos Hernandez Corbato, for his guidance, patience, and
mentorship throughout this year. Your insights and expertise have been invaluable. I also want to
acknowledge the remarkable individuals at AIRLab. Your camaraderie, knowledge-sharing, and
collaborative spirit have enriched my research experience in countless ways. Lastly, I would like to convey
my appreciation to the committee members for dedicating their time to their students even beyond their
job description.

This journey has been challenging yet immensely rewarding, and I'm grateful to each and every one of you
for being a part of it.

Wissam Jaber
Delft, September 2023

Failure Recovery with Ontologically Generated
Behaviour Trees

Wissam Jaber!

Abstract— Behaviour trees (BTs) serve as a
powerful hierarchical structure for task execution,
simplifying complex tasks but posing challenges in
their manual design. The automatic generation
of BTs addresses this concern, yet often lacks
robust failure recovery options. This study presents
Failure Recovery with Ontologically Generated
Behaviour Trees (FROGBT), a novel approach
bridging this gap by integrating ontological
reasoning into the process of automatically
generating BTs. This integration establishes
a profound link between an agent’s knowledge
and its capabilities, offering contextual insights
into the agent’s skills. FROGBT enhances skill
representation for planning and recovery. The
approach’s effectiveness is indicated by its efficiency
compared to the state-of-the-art framework for

skill-based control, SkiROS, in a similar task.

It showcases generality, uniting diverse skills,
developed by wvarious engineers, for recurring
tasks, and introduces innovative failure recovery
strategies. FROGBT highlights ontological
reasoning’s potential to enhance BT generation
with context-awareness and reasoning abilities,
paving the way for future research in failure
recovery concepts in generated BTs.

Keywords: Behaviour Trees, Ontological
Reasoning, Failure Recovery, Fallback Branches,
Behaviour Generation.

1 INTRODUCTION

Modern intelligent robots are facing increasingly
complex tasks, necessitating correspondingly
sophisticated system architectures for programming
and control. Achieving greater autonomy
requires a matching complexity in the underlying
structure. Therefore, there is a growing demand
for modularity, precise control, reactivity, and task
planning mechanisms.

Behaviour trees (BTs) have emerged as
a valuable tool for task execution due to
their hierarchical structure, enabling streamlined
coordination of intricate tasks in a modular fashion.
They excel in breaking down complex sequences
into manageable units, serving as an intuitive
representation for implementing behaviours across

autonomous systems. Widely applicable, BTs
find their utility across different fields, from video
game development [1] to robotics [2]. However,
the manual design of BTs presents formidable
challenges. Constructing effective BTs demands a
deep understanding of task intricacies, behaviour
interactions, and potential outcomes at each step.
This process is time-consuming, prone to errors,
and heavily reliant on human expertise. Scalability
quickly becomes a concern, particularly in dynamic
real-world scenarios.

As a remedy, methods for generating BTs
have been explored by using classical planners
such as Planning Domain Definition Language
(PDDL)[3], Hierarchical Task Network (HTN)[4]
or search algorithms. However, the ability of
generated BTs to cope with failures has often
been found limited. Existing mechanisms either
demand resource-intensive re-planning or rely
on predetermined scripted fallback behaviours,
constraining adaptability and system reliability.
This gap calls for more efficient and dependable
BT generating methods for intricate applications.

To tackle these challenges, we introduce
Failure Recovery with Ontologically Generated
Behaviour Trees (FROGBT) approach. This
method effectively blends ontological reasoning
with BT creation, bridging the divide between
generated BTs and failure recovery generation.
FROGBT offers an inventive solution that infuses
context-awareness into the planning and execution
of intricate tasks. By incorporating fallback
branches and behaviour recovery generation, this
approach enhances recovery strategies and avoids
expensive re-planning.

In the subsequent sections, we delve into the
intricacies of FROGBT and its methodologies.
We illustrate its effectiveness through motivating
scenarios and comprehensive evaluations. Finally,
we share some insightful conclusions and future
directions. We aim to contribute to the
advancement of BT generation and failure recovery
by harnessing the power of ontological reasoning.

2 BACKGROUND

This section will briefly introduce a background of

!Delft University of Technology, Email address: w.jaber@student.tudelft.nl

Node Returns Success Symbol
Sequence When all children succeed —
Selector At least one of the children succeeds ?
Parallel When m number of the children succeed =

Action Leaf Node

When the action is executed successfully

Condition Leaf Node

When the condition is satisfied

Decorator

Depends on the decorator

Table 1: Information about node types of BTs, when the node returns success and symbol

the two core concepts of FROGBT: behaviour trees
and ontological reasoning.

2.1 Behaviour Trees

Behaviour Trees (BTs) are a versatile and widely
used approach for representing and controlling
the behaviour of autonomous systems, including
robots. BTs provide a structured and hierarchical
way of orchestrating complex sequences of actions,
enabling robots to perform tasks in a modular
and organised manner. This hierarchical structure
of BTs consists of various types of nodes that
represent behaviours and govern the order in which
these behaviours should be executed. Table 1
summarises the type of BT nodes.

BTs have become particularly popular in
robotics due to their intuitive representation
of complex tasks and behaviours. Their
hierarchical structure allows engineers to design
behaviours at different levels of granularity,

promoting modularity and ease of maintenance.

BTs are especially effective when dealing with
tasks that require both reactive and deliberative
decision-making, as they allow for the easy
integration of different levels of control.

2.2 Ontological Reasoning

Ontological reasoning is a fundamental concept in
knowledge representation. It involves organising
knowledge in a structured manner using classes
and instances. In this context, a class is a general
category or type of object, and an instance is a
specific individual belonging to that category. In
an ontology, there are:

e C(lasses: They define the characteristics and
properties shared by a group of similar
objects. They represent categories or

concepts. For example, “Skills” is a class that
defines the skills an agent can perform.

e Instances: They are specific objects that
belong to a certain class. Each instance has
properties and attributes associated with it.
For example, “Pick” skill can be an instance
of the “Skills” class.

e Object Properties: They define relationships
between instances of different classes. For
instance, an object property “Precondition”
can relate a “Skills” instance with a “Checks”
instance.

e Data Properties: They link instances with
specific data values, such as strings, numbers,
dates ... etc. For example, a data property
“Tag” links a “Product” instance with its
specific tag for detection purposes.

Ontological reasoning helps in structuring
knowledge, enabling more advanced reasoning
and decision-making by the agent. It allows for
defining relationships, hierarchies, and constraints
that enhance the understanding and manipulation
of information within various domains, including
robotics, where it can assist in tasks like task
planning, knowledge sharing, and context-aware
behaviour generation.

3 RELATED WORKS

The section provides an encompassing review of
related work in the domain of BT generation and
failure recovery strategies in generated BTs.

3.1 BTs Generation

The landscape of BT generation methods in
existing literature can be outlined based on their
adoption of distinct BT design principles, namely
sequence root or back-chaining.

The BTs generated using classical planners
generally choose a sequence root design for their
tree. A plan is composed of a sequence of ordered
actions. These plans are subsequently transformed
into a BT, with the actions forming the children of
a sequence root.

Extended behaviour trees (EBT), as proposed
in [5], employ PDDL to generate a plan, and
an HTN planner plugin, which decomposes big
tasks into smaller sub-tasks. The plan is further
evaluated through a series of mathematical rules.
These rules are designed to identify tasks that
can be executed concurrently and, accordingly,
assemble them under a parallel node. EBT’s
primary emphasis lies in optimising the execution
time of generated BTs. Notably, the incorporation
of fallback nodes is conspicuously absent in the
mathematical model of this approach. Similarly, in
[6], a PDDL planner is used to generate a plan. The
execution graph of the plan is then used to discern
skills that are capable of simultaneous execution
and then grouped under parallel parents. Similar to
EBT, the consideration of fallback nodes is absent
in this approach as well.

However, these methods’ reliance on classical
planners for generating plans imposes a limitation
on the flexibility of BT control nodes, regrettably
excluding one of the most crucial control

elements related to reactivity: the fallback node.

Consequently, BTs generated under this paradigm
are often rigid and better suited for controlled
environments.

In contrast, constructing a BT using the
back-chaining design principle operates through

an iterative operation using search algorithms.

The process commences with the goal condition
This approach extends the
tree by systematically appending atomic behaviour
trees (AtomicBTs), each tailored to satisfy specific
failed conditions. This strategy ensures greater
reactivity during execution by capitalising on BT
priority concept, left-to-right node execution order,
and by prominently employing check leaf nodes
to continuously verify post-conditions as essential
predicates. These principles prompt constant
assessment of actions closer to the goal, facilitating
timely branch activation when needed.

as its foundation.

Automated planning to generate BTs which
was suggested in [7] depends on three lists:
pre-conditions, post-conditions, and actions. Each
post-condition from the list possesses its dedicated
atomicBT. These atomicBTs are crafted as
sub-trees, structured with pre-condition checks

3

sequenced before the action to ensure the correct
state for the action execution in order to satisfy
that post-condition, an example can be seen in
Figure 1. This systematic arrangement ensures
that the execution of each action occurs within the
correct state.

Postcondition ?

- »

— —
L — v — Y —,
Precondition; Precondition, Actiony Precondition; Precondition, Action,

Figure 1: Template for an atomicBT with multiple
actions to satisfy the same post-condition

Similarly, in [8] a BT is constructed iteratively
following the same principle with the addition of
differential logic rules (DL)[9] to ensure each action
on the list satisfies a post-condition and each of its
pre-conditions has an action that would satisfy it
in return. adding a layer of safety of execution to
the BT.

Within approaches following the back-chaining
design, the utilisation of check leaf nodes and
fallback nodes is paramount. This process of
generating a BT introduces an additional layer of
control, achieved through the manipulation of the
tree structure through active planning. Extension
of the plan is done as required to attain the
desired goal condition. This inherent flexibility,
without the necessity for extensive re-planning,
is a key attribute of BTs constructed in this
manner and the reason this design principle was
adopted in the FROGBT approach. This concept
allowed FROGBT to make the most out of BT
advantages and introduce additional functionalities
made achievable by means of continuous tree
execution monitoring and the adaptable nature of
BTs.

3.2 Failure Recovery Mechanisms

Efforts to rectify plans prior to resorting to
re-planning have been the subject of extensive
research for a long time. NASA’s SIPE1 initiative
[10] exemplifies the long-standing interest in this
area. While re-planning-based strategies may, in
certain instances, yield better quality plans, it is
generally acknowledged that recovery approaches
offer better response time, according to [11].
Regarding failure recovery within BTs, there
exists a main concept represented in fallback

branches, where handcrafted BTs commonly
integrate sub-trees tailored for failure recovery
purposes, subsequently appended as fallback
branches to specific actions. which either guide
execution towards a predefined recovery procedure
devised by domain experts [12] or reset parameters
to facilitate the reattempting of actions from a
known state [13].

In the case of generated BTs, methods
using classical planners predominantly depend
on re-planning as the primary means of
addressing Alternatively, some
generated BT approaches leverage fallback

failures.

branches to circumvent re-planning when feasible.

Nevertheless, these approaches necessitate manual
scripting and integration.

For instance, in [14], handcrafted recovery
behaviours tailored to specific actions are inserted
into the sequential root BT constructed from a
PDDL plan, thereby introducing an additional
layer of reactivity.

FROGBT emerges as a structural framework
designed to facilitate diverse failure recovery
options within generated BTs. It not only
enables the utilisation of scripted subtree-based
fallback branches but also offers the capability to
generate recovery behaviours through ontological
reasoning. This augmentation broadens the scope
of applicability for failure recovery techniques
and presents a stimulating avenue for further
exploration. By harnessing the modularity inherent
in BTs, FROGBT streamlines engineers’ efforts
toward skill development, reducing the need for
manual construction of BTs and their fallback
branches.

3.3 Ontology
generation

Integration in BT

The integration of ontological reasoning, utilizing
structured knowledge to improve logical inference
and context comprehension, in BT generation
is relatively unexplored, despite its significant
potential.

In the realm of robotics, ontology usage for task
execution is a young yet promising field of study
[15]. Some established frameworks such as CRAM
(Cognitive Robot Abstract Machine)[16] emphasise
ontological reasoning, albeit without employing
behaviour trees.

In contrast, SkiROS (Skill-based Robot Control
Platform for ROS) [17] represents a framework that
uses the Extended behaviour Tree (EBT) approach

"https://github.com/RVMI/skiros2__examples

for BT generation and task execution. SkiROS
employs an automated process to generate problem
and domain files for a PDDL planner directly from
the ontology. This ontology serves as a hub for
information to store environmental, object, and
agent parameters, sharing this information across
BT nodes. The resulting plan is subsequently
translated into a BT, following the sequence root
design. SkiROS stands out as an actively developed
open-source method, which motivated its selection
as a benchmark for comparison with FROGBT.

Conversely, FROGBT goes beyond the
conventional use of an ontology as a repository for
environmental data. It not only hosts the agent’s
skills and checks, but also leverages ontological
connections to iteratively construct BTs, adopting
the back-chaining design principle for both the
main task BT and the recovery BT.

This distinctive approach involves continual
monitoring to address uncertainties and real-time
FROGBT’s modular BT
structure empowers engineers to concentrate
on developing individual modular skills rather
than intricate fallback branches or BTs. This
ontology-driven approach highlights FROGBT’s
unique position and sheds light on its potential
to advance the fields of BT generation and failure
recovery.

execution failures.

4 MOTIVATING SCENARIOS

To comprehensively assess FROGBT’s capabilities,
three distinct motivating scenarios have been
designed. These scenarios aim to scrutinise specific
aspects of FROGBT’s performance, offering
valuable insights.

4.1 SkiROS vs FROGBT

This scenario serves as a benchmark comparison
between FROGBT and SkiROS. It revolves
around the efficiency in planning, while also
spotlighting the characteristic design differences in
the generated BTs between the two approaches.
The scenario is represented as a kitting task.
Wherein, an agent is tasked to perform a pick and
place operation on an object. The task is provided
as an example in the SkKiROS GitHub repository!.

To facilitate this comparison, both methods
are subjected to an identical task. The
scenario implements mock skills, each designed
to simulate a one-second delay before setting the

relevant parameters to mimic successful execution.

Furthermore, a set of checks is employed in
FROGBT, while SkiROS employs a different
approach integrating conditions within the skill
unit. Furthermore, an ontology is constructed,

adhering to the structure explained in Section 5.2.

An overview of the skills and checks for both
methods are described in the appendix in Table 1.

The scenario is repeated multiple times
to ascertain an average planning time for
each approach, enabling a comparison of their
performance.

4.2 FROGBT Flexibility

This scenario aims to assess the generality and
modularity within FROGBT’s design. This
scenario presents the task of preparing a list
of products within a simulated supermarket
environment. The process of preparing a product
in this context entails performing a pick-and-place
operation. The chosen environment is simulated,
encompassing a panda arm robot endowed with a
mobile base.

The objective here is twofold: to evaluate the
versatility of FROGBT through the execution of
repetitive tasks involving distinct products, and
to gauge the adaptability of skills implemented by
various engineers, provided kindly by AIRLab!. An
overview of the skills and checks can be found in the
appendix in Table 3. Additionally, an ontology is
constructed for this scenario integrating the skills,
checks and the connection between them as well
as the products and elements of interest in the
environment according to the structure explained
in Section 5.2.

Executed across various products and diverse
circumstances, this scenario not only evaluates
FROGBT’s generality but also sheds light on its
aptitude in employing skills fashioned by different
engineers.

4.3 Failure Recovery

This scenario runs in the same simulated
supermarket environment and features the same
agent. However, a failure is deliberately introduced
during the execution of the deliver skill.

The selection of the deliver skill was deliberate.

This choice was informed by the fundamental
principle of skill modularity emphasized by
FROGBT. Given that the pick-and-place pipeline

'AT for Retail (AIR) Lab Delft: https://icai.ai/airlab-delft/

https://github.com/wisjaber/FROGBT

had been developed by other engineers, the
intention was to avoid any interference with
the pre-existing modular skills and their
implementations.

Consequently, the deliver skill was chosen as the
focal point for testing failure recovery mechanisms,
specifically to assess the functionality of fallback
branches and the application of the ’hold-condition’
concept in the generation of recovery behaviours.

Notably, additional skills and checks became
necessary to facilitate the execution of this scenario,
particularly within the recovery behaviour context.
An overview of these skills and checks is described
in the appendix in Table 4. These supplementary
elements were integrated into the ontology
following the structured approach explained in
Section 5.2.

The goal of this scenario is to highlight, analyse
and evaluate the failure recovery and recovery
behaviour generation mechanism introduced in
FROGBT.

Through these motivating scenarios, a
deeper look at the strengths and contributions
of the proposed method is provided. The
results evaluated from these scenarios lay the
foundation for further exploration and research
regarding ontological reasoning in generating BTs,
establishing FROGBT’s potential for advancing
the field of BT generation in robotics.

5 METHODOLOGY

This section aims to discuss the methodology used
in making FROGBT? starting with the setup,
then the ontology structure, followed by the main
approach, and finally the failure recovery concept.

5.1 Setup and Packages

This subsection outlines the essential components,
software packages, and configurations used in
implementing the proposed approach:

o Robot Operating System (ROS) played
a pivotal role in the development of
FROGBT by serving as the execution
platform and facilitating communication
between FROGBT components. It acted as
a wrapper, enabling the execution of BTs
and their construction within the FROGBT
structure.

« BehaviorTreeCPP! package was opted for
due to its emphasis on the modular nature
of BTs. This choice provided the advantage
of effortless manipulation and editing of the
tree structure.

e GROOT? was used for visualisation.

e Packages like Ixml and owlready2 were used
for constructing and manipulating the BT
structure and facilitating interaction with the
ontology respectively.

e Rviz and Gazebo plugins were employed for
the simulation.

e The supermarket environment and a
substantial portion of the robot skills were
generously provided by AirLab, contributing
to the evaluation process

5.2 Ontology Structure

A well-defined hierarchical structure, within an
ontology, serves as the foundation for representing
the cognitive elements of FROGBT. Graphs
showing the ontology’s detailed connections can be
found in the appendix Figure 6 to 8.

The ontology structure is split into two
main chunks: Execution classes facilitating the
building blocks of the BT, and connection type
classes facilitating the relationships between the
environment, states, and the execution class
instances.

5.2.1 Execution Classes

This type of class consists of three principal
sub-classes: Skills, Checks, and Fallbacks. These
classes form a comprehensive basis to encapsulate
the essential elements of the BT building blocks.

The Skills class forms the cornerstone of agent
proficiency, encapsulating the concept of action
nodes within a BT. Each instance of this class
embodies a discrete skill and is enriched with
essential properties. Notably, instances possess
Precondition, Holdcondition, and Postcondition
ObjectProperties that establish connections with
pertinent checks, ensuring that the requisite
conditions for execution are fulfilled. These
instances also encompass a Subtree DataProperty,
a string encapsulating the XML representation of
the corresponding action leaf within the larger BT
structure.

Complementary to the Skills class, the Checks
class stands as a representation of evaluative

Thttps://github.com/BehaviorTree/BehaviorTree. CPP
https://github.com/BehaviorTree/Groot

conditions within the BT. Mirroring condition
leaf nodes, each Checks instance is linked to
a specific state, facilitating the assessment of
whether the given state has been attained.
This linkage is achieved through the isCheckFor
ObjectProperty. Additionally, each instance
has Subtree DataProperty encapsulating its XML
representation in the BT.

Concurrently, the Fallbacks class plays a key
role in the ontology, catering to fallback behaviours.
Instances within this class are categorised as
either representing distinct fallback branches or
shared instances interwoven with the Skills class.
Fallback branch instances are enriched with a
Subtree DataProperty that defines their role
as encapsulated black-box behaviours. These
instances are intertwined with their respective skills
through the hasFallback ObjectProperty. However,
shared instances, seamlessly bridging Skills and
Fallbacks, are dedicated to recovery behaviour
generation and remain unrelated to the primary BT
planning.

5.2.2 Connection Classes

Beyond the three execution-related classes, the
ontology encompasses additional classes that are
instrumental in context representation. These
include environment-type classes, such as the
Location and Product classes, encapsulating parts
of the environment. As well as, affordance-type
classes, such as ProductAffordance class, represent
states that can be reached with a product.

Location instances offer key details about
waypoints, including Position and Orientation
DataProperties that contribute to their spatial
definition. In parallel, instances of the
Product class are connected to tags for product
identification through the tag DataProperty.
Furthermore, the isLocated ObjectProperty bridges
the Product with Location instances, defining
the waypoint in the environment from which the
product can be interacted with.

ProductAffordance class emerges as an
instrumental way in representing the varied states
products can adopt. In this strategic extension,
this class’s instances denote states achievable by
executing specific skills, thereby establishing a
connection with the respective skill through the
EffectOf ObjectProperty.

Notably, each instance within Product Affordance
is also linked to an associated check that

evaluates the state, fostering a comprehensive
assessment mechanism. This bidirectional linkage
is manifested through the ObjectProperties
hasChecks and isCheckFor, effectively outlining
the state-check relationship.

In this structured ontology, the intricate
interplay of classes and properties constructs an
approach that supports the inner workings of
FROGBT, showcasing its formidable tools in
intelligent agent control and failure management.

5.3 FROGBT Architecture

The FROGBT approach is structured around three
key components, each serving a distinct purpose
while collaboratively exchanging information to
ensure seamless execution. A graph showing the
main components and their connection can be seen
in Figure 2 and the pseudo-code of it is shown in
the appendix in algorithm 1.

5.3.1 Goal Parser:

At the core of the FROGBT approach, the Goal
Parser plays a key role in extracting relevant
information and parameters from the ontology,
effectively guiding the generation of the BT. This
component receives user-provided inputs in the
form of four variables: Action, Goal, Goal__details,
and Destination. These variables encapsulate
essential task details:

e Action: Specifies the required action, whether
it’s “move,” “pick,” “deliver,” or others.

e Goal: Identifies the target, which could be a
product or a waypoint.

e Goal details: Provides specific product
identification through tag IDs.

e Destination: Points to the destination, be it
another waypoint or a delivery location.

Using these inputs, the Goal Parser queries the
ontology for details about waypoints, products,
actions, and checks. It then updates the BT’s
goal checks and actions correspondingly, ensuring
tasks are performed on the intended products

or delivered to the designated destinations.

Once identified, the goal condition and relevant
information are dispatched to the BT Manipulator
component.

5.3.2 BT Manipulator:

The BT Manipulator component is responsible
for translating the extracted information into a

7

functional BT structure. It starts by constructing
an XML file with the initial goal check as the BT’s
first iteration. In cases of failure, it interfaces with
the BT Monitoring component to retrieve the failed
check’s name and index. The BT Manipulator
then consults the ontology to identify suitable
actions for resolving the failed check. This process
encompasses generating the atomicBT, updating
the goals in the XML structure with the respective
information of interest, and adding it to the XML
file of the generated BT.

Additionally, when a recovery behaviour
generation is activated, the BT Manipulator is
notified through the BT Monitoring component. It
then extends the checks with associated recovery
skills which are defined in the ontology as shared
instances between Fallbacks and Skills classes. The
pseudo-code of the component can be found in the
appendix in algorithm 2.

5.3.3 BT Monitoring:

The BT Monitoring component assumes the role
of overseeing the BT’s execution. Upon receiving
the XML file from the BT Manipulator, it initiates
execution via a ROS action server. It continuously
monitors the BT’s root execution status. In the
event of a FAILURE signal from the root, BT
Monitoring promptly identify the name and index
of the last failed check. This information is
then relayed back to the BT Manipulator for BT
extension.

Moreover, when a reasoning node triggers the
start of a recovery behaviour generation branch,
BT Monitoring receives a message with failure
information. This information, including the failed
hold-condition and initiation of a recovery branch,
is passed to the BT Manipulator for tree extension
with the appropriate recovery skills. Subsequently,
upon the recovery BT’s root returning SUCCESS,
the main BT’s root is re-ticked, and the execution
continues.

Ultimately, upon successful execution of the
main BT’s root, BT Monitoring signals the
completion of the task. This intricate collaboration
among the components ensures the execution
robustness and recovery agility of the FROGBT
approach. The pseudo-code of the component can
be found in the appendix in algorithm 3.

5.4 Failure Recovery

The concept of failure recovery is the motivation
behind the development of FROGBT. This arises

C Input —% Goal Parser

BT Manipulator

BT Monitoring

Action client
>
ROS topic

Ontology

Reasoning Node

/

Action client

BT Execution Node

Figure 2: The connections between the main components of FROGBT’s architecture

from a recognised gap in existing literature, where
generated BT methods often lack comprehensive
recovery mechanisms. Conventional methods
typically offer re-planning or, at best, hand coded
fallback branches added to the plan as options for
recovery.

5.4.1 Hold-Condition Concept:

In FROGBT, each skill is associated with
an action, accompanied by pre-conditions to
establish the correct execution context, and a
post-condition representing the action’s intended
outcome. Notably, some actions require certain
conditions to persist throughout their execution,
termed Hold-conditions. This concept ensures that
specific conditions remain true while the action is
underway. The distinct separation of checks and
skill units within FROGBT allows for the modular
utilisation of checks. For instance, when delivering
an object, the deliver skill is the same as the drive
skill from an implementation perspective. However,
using the drive skill could be executed after the
pick skill to achieve the same goal. Although
the latter may indicate success after reaching the
destination, the object might have been lost in the
process. Whereas, integrating a Hold-condition
for the deliver skill enforces the verification of
the object being held throughout execution, thus
enhancing its conceptual success.

This Hold-condition doubles as a failure
detection mechanism and serves as a targeted
recovery goal. Through a well-defined ontological
relationship, this concept enables the generation of
specialised recovery behaviours for specific failures
using the skills associated with fallback.

5.4.2 Fallback Branch:

Certain skills might necessitate predefined
sequences of actions to recover from failures.
Fallback branches embody these scripted recovery
behaviours. FROGBT accommodates such needs
through the integration of Fallback branches.
This integration is realised through ontological
connections between skills and fallback instances,
explicitly defining these branches. The specific
origin of the branch is irrelevant, as long as it
conforms to a structured XML BT format.

5.4.3 Reasoning Node:

In the FROGBT Manipulator component during
the creation of a skill’s atomicBT, the presence of
a hold-condition or a defined fallback branch within
the ontology triggers the inclusion of a “Reasoning
node” alongside the hold-condition check. The
template of the atomicBT with reasoning node can
be seen in Figure 3.

v

Y

Postcondition -
Precondition; Precondition, ?
e ~ .
5 Reasoning
: Node
—
7 .
~
r 'Y
Holdcondition Action

Figure 3: Template for atomicBT of skill with a fallback
branch or hold-condition

The Reasoning node operates as a ROS action
client that communicates the failed action’s name
to a corresponding ROS action server. The server
interacts with the ontology to identify a defined
fallback branch for the failed skill. If such a branch
is found, the recovery branch is formulated using
the specified Subtree structure and initiated as a
separate XML file as a recovery BT.

Conversely, if a fallback branch is absent, the
failed hold-condition is communicated to the BT
Monitoring component, marking the start of a
recovery behaviour generation branch. This branch
takes the failed condition as its goal. The FROGBT
monitoring component is alerted, prompting the
expansion of the recovery BT with the relevant
skills, thus constructing the recovery behaviour
iteratively and organically following the same rules
for the main BT generation.

6 EVALUATION

In this section, we will evaluate the result of
running the motivating scenarios, highlighting the
key features of FROGBT in each of these scenarios.

6.1 SKIROS VS FROGBT

This evaluation aims to establish a benchmark
comparison between the FROGBT and SkiROS
methods. This comparison centers around the
difference in design aspects of the BTs generated
by both approaches, as well as the time required to
formulate a plan. The selected scenario is a basic
kitting task.

SkiROS generates a sequential BT based on
the plan derived through the PDDL planner, as
depicted in Figure 4.

Root

— X hY —~—,

Drive_fake Pick_fake Drive_fake Place_fake

Figure 4: BT generated for the execution of the plan with
SkiROS, SkiROS GUI is shown in the appendix in Figure 1.

Conversely, FROGBT adopts a deliberative
back-chaining design principle, iteratively
constructing the BT, as illustrated in Figure 5.

Root

PlaceCheck

2 Place

A = LocationCheck Drive
PickCheck —

Pick
a]
DetectCheck

Detect

LocationCheck Drive

Figure 5: BT generated using FROGBT, the BT from
this scenario is shown in the appendix in Figure 2.

Method Avg. planning time

SkiROS 0.351 seconds
FROGBT 0.0936 seconds

Table 2: comparison in planning time between SkiROS
and FROGBT methods

The evaluation involved conducting the
scenario ten times on the same hardware setup.
The average time for both methods was measured
and recorded as outlined in Table 2. SkiROS
exhibited average times of 0.28 and 0.042
seconds for generating problem and domain files,
respectively, leaving 0.029 seconds for actual
plan derivation, it generates those files for the
PDDL planner each time a plan is sought. In
contrast, FROGBT required 0.09 seconds to query
the ontology and construct the BT, benefiting
from the omission of domain and problem file
generation overhead. This efficiency contributes
to FROGBT’s streamlined approach in generating
plans.

6.2 FROGBT Flexibility

This evaluation examines the generality and
reusability of the proposed approach within a
simulated supermarket environment. The objective
is to demonstrate the adaptability of the FROGBT
method when employing skills crafted by various
engineers. The scenario involved the task of
preparing a list of three distinct products. Two

PlaceCheck
Product;

?

—
PickCheck
Product;

DetectCheck

i

Find
Product,

A
—_
?

?
— LocationCheck
Product; Product,

—
A —
PlaceCheck PlaceCheck
Producty Producty
=
—
Place
Product;
—
Pick
Product,
—
—

v

Movebase

Figure 6: Example of BT generated to prepare a list of products, focusing on one product BT expansion, full BT generated
and executed can be seen in the Appendix in Figure 3

distinctive methodologies were employed to address
this scenario: using a sequence of goal conditions,
and the reuse of a previously generated BT.

6.2.1 Goals Conditions Sequence

The list of products is given to the goal parser,
which queries the relevant parameters for each item
from the ontology. Subsequently, a sequence of
goal conditions for each product is generated!. The
BT structure is then expanded to accommodate
these goal conditions iteratively, generating a BT
to execute the task at hand Figure 6.

6.2.2 BT Reuse

Alternatively, FROGBT leveraged a previously
generated BT for one product, capitalising on the
structure saved in an XML file and the modularity
of BTs. This method proved particularly
advantageous when dealing with repetitive tasks
in the same environment. The previously
generated XML was dynamically updated by
identifying the parameters specific to the new
product, subsequently executing the adapted BT?.
Notably, the approach actively monitored the BT’s
execution, dynamically extending it to address any
unforeseen situations or uncertainties that may
have arisen since the BT’s original generation.
Both BTs and the changes to adapt can be seen

in the appendix Figure 4.

The results of this evaluation showcased
the inherent generality and flexibility of the
approach by successfully employing skills crafted by
ATRLab engineers within a simulated environment.
Moreover, the practice of reusing previously
generated BTs highlights the modularity of
BTs. Furthermore, FROGBT’s active planning
component notably demonstrated its capacity to
adapt and expand the BT as required. This
adaptability further heightened the reusability and
overall effectiveness of FROGBT.

6.3 Failure Recovery

This evaluation examines the failure recovery
mechanisms within the FROGBT approach. The
scenario involves inducing a failure during the
execution of the deliver skill thereby invalidating
the skill’s associated hold-condition. FROGBT
offers two failure recovery strategies: using fallback
branches, and recovery behaviour generation.

6.3.1 Fallback Branch

One of the ways to recover from failure
within FROGBT is achieved through behavioural
retrieval®. In this strategy, a predefined fallback
branch, as shown in Figure 7, is found by the
“reasoning node” and then invoked as a recovery

'Video demonstration for list of products: https://youtu.be/J6N2Luowpic
%Video demonstration of BT reuse: https://youtu.be/0bR_RgNxoTk
%Video demonstration of fallback branch recovery: https://youtu.be/jNI79VK3nFo

10

https://youtu.be/J6N2Luowpic
https://youtu.be/0bR_RgNxoTk
https://youtu.be/jNJ79VK3nFo

branch. After the successful completion of this
branch, the root node of the main BT is ticked
again, allowing the plan to continue unhindered.

Root
v

—

Scan_floor Approach_object Pick_from_floor

Figure 7: Fallback branch to recover from dropping the
product, the branch used can be seen in appendix Figure
Ha.

6.3.2 Behaviour Recovery Generation

An alternative strategy to deal with failure in a
creative way within FROGBT is generating the
recovery behaviour itself!. Upon triggering the
failure, the recovery node is ticked, initiating the
process of generating a recovery behaviour. The
underlying cause of the failure, the hold-condition,
is designated as the goal condition for the recovery
sub-tree generation process. Subsequently, a
recovery behaviour is generated to resolve the
failure, as shown in Figure 8.

Upon the successful execution of the recovery
behaviour, the root node of the original BT is
ticked, enabling the seamless resumption of the
plan from the point of interruption, thanks to
FROGBT’s back-chaining BT design.

Root
'
?
‘7___,__.7-- T Y
Picked check —
? Pick_from_floor
close_to_object .
? Approach_object
DetectCheck

Scan_floor

Figure 8: Final iteration for the generated recovery
behaviour for the goal condition Picked_ check, the
generated BT for the recovery behaviour can be seen in the
appendix Figure 5b.

These observations show the robustness of
FROGBT and its ability to generate recovery

behaviours without necessitating computationally
intensive re-planning efforts. The chosen BT design
architecture ensures that the plan can proceed
seamlessly following recovery from a failure event.
The recovery behaviour’s generation based on the
failed hold-condition enhances the adaptability of
the method, enabling recovery from various failures
that might be associated with the same skill.

Moreover, the incorporation of scripted
recovery behaviours through the fallback branch
introduces an adaptive facet to FROGBT.
The concept of recovery behavioural retrieval
further expands the approach’s utility, permitting
the integration of diverse blackbox behaviours,
regardless of their origin or construction method.
These include techniques like learning from
demonstration [18], evolutionary algorithms [19],
or human-engineered designs.

Nonetheless, it’s worth noting that the size of
the ontology can exert a noticeable influence on
the efficiency of the plan generation process. In a
comparative analysis, the initial scenario involved a
relatively compact ontology designed to align with
an example provided by SkiROS developers. In
this scenario, the average planning time converged
to approximately 0.09 seconds. However, as
more extensive product sets were incorporated into
the ontology in subsequent scenarios, the average
planning time increased to approximately 0.23
seconds where a significant portion of this planning
time, averaging 86.95%, was devoted to the goal
parser’s initial phase, highlighting the need for a
more optimised algorithm for initial parameters
retrieval from the ontology.

7 CONCLUSION

FROGBT represents a bridge for a literature gap
in the field of generating BTs by incorporating
ontological reasoning as a foundational structure.
This novel integration of ontological reasoning
mechanisms facilitates a profound connection
between an agent’s represented knowledge,
encompassing its skills and capabilities. Moreover,
it empowers the agent with contextual insights
into the specific portions of the environment
where it operates. This contextual knowledge is
firmly grounded using ROS services, which ensure
accurate accounting of observable environmental
factors. This higher-level linkage provides
FROGBT with the capacity to enrich the agent’s

Video demonstration of recovery generation: https://youtu.be/wVvYLAHj1dc

11

https://youtu.be/wVvYLAHj1dc

skills with context, whether for planning or failure
recovery scenarios.

The approach has demonstrated its efficacy
through comparisons with state-of-the-art
framework SkiROS. It has showcased its generality
and modularity by unifying skills developed
by various individuals to accomplish recurring
tasks. Furthermore, FROGBT introduces
innovative failure recovery techniques, including
the incorporation of fallback branches and the
dynamic generation of recovery behaviours.

In conclusion, the approach casts a spotlight on
the potential of ontological reasoning to augment
BT generation with contextual understanding and
reasoning capabilities. This work lays a foundation
for future research endeavors, specifically in the
domain of Failure Recovery with Ontologically
Generated behaviour Trees.

8 FUTUREWORK

While FROGBT offers a promising avenue for
generating BTs to execute tasks, it is not immune
to certain challenges. It is noteworthy that the
bottleneck was identified at the initial phase in the
goal parser. This phase involves the identification

12

of key parameters associated with a given product
or a list of products.

As part of future work, it becomes imperative
to explore avenues to enhance the efficiency of this
parameter identification process. Some interesting
solutions could be:

e Creating a cache of frequently queried
parameters and their associated ontology
elements. This can significantly reduce query
times for commonly accessed information.

e Optimising ontology query construction and
execution. By minimising unnecessary joins
or complex operations, and utilising query
optimisation techniques.

e Pruning unnecessary data from the ontology
before querying. This can involve identifying
irrelevant branches of the ontology tree or
excluding data that is not needed for the
specific query.

By addressing the intricacies of parameter
identification, FROGBT can potentially overcome
the performance bottleneck observed in the goal
parser phase. This would pave the way for even
more efficient task execution and bolster the overall
efficacy of the FROGBT approach.

Appendix

Skill ‘ Parameters Pre-conditions hold-conditions Post-conditions

Locate | ContainerLocation Robot at container Object found in container

Drive StartLocation Robot at StartLoaction Robot at TargetLoaction
TargetLocation

Pick ContainerLocation Gripper empty Robot at ContainerLocation Gripper is full
Object Location Object found in container Object in gripper

Gripper state
Place PlacingLocation Gripper holding object Robot at Placinglocation Gripper is empty

Object Location
Gripper state

Object in PlacingLocation

Table 1: Skills of SkiROS example and their parameters, pre-conditions, hold-conditions and post-conditions.

Skill Pre-conditions

hold-conditions Post-conditions

Detect Location check

Object state is detected

Drive

Robot is at Location

Pick Location check

Detect check

Object state is picked

Place Picked check

Location check

Object is placed
Object in PlacingLocation

(a) Skills of FROGBT method and their pre-conditions, hold-conditions and post-conditions.

Check

Goal

Returns SUCCESS

Location check

Waypoint

When Robot located property is Waypoint

Detect check

Object state

When Object state is detected

Picked check

Object state

When Object state is picked

Placed check

Object state

When Object state is placed

(b) Conditions of FROGBT method and their evaluation return.

Table 2: Skills and Checks for the benchmark scenario using FROGBT.

13

Skill Pre-conditions hold-conditions Post-conditions

MoveBase Location check
Find Location check Detection check
ArmPose check
Pick - Vacuum check Picked check

Detection check
Location check

Deliver Picked check Picked check Location check
Place Picked check = Vacuum check
Location check Placed check

(a) Skills of FROGBT method and their pre-conditions, hold-conditions and post-conditions.

Check ‘ Goal Returns SUCCESS
Location check Waypoint When Robot is at Waypoint
Detection check | Product’s Tag When Tag is detected
Vacuum check When vacuum is activated (Gripper is full)
ArmPose check Pose When Arm is in the goal pose
Picked check Product’s Tag When Vacuum check
and product state is picked
Placed check Product’s Tag When — Vacuum check
and product state is placed
Close check Product’s Tag when Approach_object skill is completed successfully

(b) Conditions of FROGBT method and their evaluation return.

Table 3: Skills and Checks for the preparing of products scenario using FROGBT approach.

Skill ‘ Pre-conditions hold-conditions Post-conditions

Scan_floor Detection check

Approach_object | Detection check Product is close
Pick From_ Floor Close check Picked check

Table 4: Additional skills in the fallback branch for Deliver skill.

Algorithm 1 FROGBT Approach

1: Input: action, goal, goal_ details, destination

2: goal__condition, parameters_of interest < goal parser(action, goal, goal details, destination)
3: BT _iteration <— BT__manipulator(goal_condition, parameters_of interest)

4: BT monitor(BT_iteration)

14

Algorithm 2 BT _manipulator Function

1: function BT__MANIPULATOR(check name, parameters_of interest, recovery)

2 actions,preconditions «— query_ ontology(check name)

3 atomicBTs « []

4 if len(actions) > 1 then

5: for action in actions do

6 if action.HoldCondition or action.hasFallback then

7 atomicBT <« build_atomicBT_ with_ reasoning(action,preconditions,action.HoldCondition)
8

9

else
. atomicBT < build_atomicBT (action,preconditions)
10: end if
11: atomicBTs.append(atomicBT)
12: end for
13: else
14: atomicBTs < build__atomicBT (actions,preconditions)
15: end if
16: insert_under__fallback(atomicBTs, check_name)
17: update_ parameters(BT_iteration, parameters_of _interest)
18: Return BT iteration

19: end function

Algorithm 3 BT _monitor Function

1: function BT__MONITOR(BT__iteration)

2 execute(BT_iteration)

3 while BT Root() returns Failure do

4 failed_ check < get_ failed_ check()

5: failure_ recovery < check_failure_recovery()

6 if failure_recovery then

7 recovery_ BT « BT__manipulator(failed_ check, parameters_of _interest, recovery=true)
8 execute(recovery_ BT)

9: while recovery_root() returns Failure do

10: failed__check <« get_ failed_ check()

11: recovery BT <« BT _manipulator(failed_ check, parameters_of interest, recovery=true)
12: execute(recovery_ BT)

13: end while

14: execute(BT__iteration)

15: else

16: BT _iteration <— BT__manipulator(failed_ check, parameters_of _interest)

17: execute(BT_iteration)

18: end if

19: end while

20: end function

15

skiros2_gui_ Skiros - rqt >

:iiSkiROS

Task | world Model | Logs

CRONOXO),

drive_fake
pick_fake
lace Fake

P
~ Frequently used
task_plan

v task‘_4
¥ — task_plan
~ & drive_fake
Q wait
& wm_set_relation
© wm_set_relation
~ & pick_fake
wait
& wm_move_object
~ & drive_fake
wait
© wm_set_relation
wm_set_relation
~ & place_fake
© wait
& wm_move_object

skill info window

D@ -0

test_robot: 0.0hz

- | task_plan
Advanced options
Goal (skiros:contain skiros:LargeBox-80 skiros:Starter-145)

End

End

End

Done

Unset cora:Robot-81-skiros:at-skiros:Location-85

Set cora:Robot-81-skiros:at-skiros:LargeBox-51

End

Done

skiros:Starter-145 moved From skiros:LargeBox-51 to rparts:GripperEffector-84.
End

Done

Unset cora:Robot-81-skiros:at-skiros:LargeBox-51

Set cora:Robot-81-skiros:at-skiros:LargeBox-80

End

Done

skiros:Starter-145 moved from rparts:GripperEffector-84 to skiros:LargeBox-80.

v| show running parameters

SkiROS GUI executing the plan for the kitting task

Figure 2: FROGBT’s generation and execution the plan for the kitting task

17

? 2
check_Falback slaced_ check Folback placed_check_Fallback
. . .

‘A:placed. check ‘Aplaced.check

placed check place_sequence placed check

(N)index B (W]index 2

(N service_name ETEICTTIETEY IN]srvice_name FFEITETEY

- P

picked check Falbock Retoytn piked check Fllback e e siched check Fallack
. 3 i

. . - . . .
Acpicked_check . A:picked_check >se Apicked_check > . A:PlaceAction
plc picked check Placesctior piked check pick sequence

I o Nlinde —— 4] server name JESISPSPRRYSIINY | |] inex .

™) tag TR | | () service e N tag TR | ram

e itag (Ntmeowt TR | | (Nt

1 timeout] tmeout

. .
Aclocation_check | 2 location_ 2 Adlocation check
e check check s tag_detection location_check R " ocation check
(W) index | | (Moo T 0931 —_—] num_att) gost
(M) service name [TEHESEINCRTIORY | | (] index T — Y o = | 1 [———
(w)tag EEEETEE. | | (N X R LocitionChack Service |
—TE—

e] service
(Mmoot ST | | (Moreos IS] timeout

A: Pikaction
Pickac

Njtag)

N timeout ¢ (N umeow: TN

find Sequence

itback
ccssstul

) o, tzempts IERN

Azarm_home._check A:MoveAmAction A:MoveBaseAction
M) sevice_name EXFETETIRY | | (Moo MENSNTTNENN | | (Moo 23,0506000009900)
[IN] time TR | | (N)server_name [TEENCINERRNY | (IN] server_name INTTONCTNN

(W] timeor) imeait

Figure 3: One of the full BTs generated using FROGBT for the scenario of preparing a list of products

18

placed_check Fallback

A:placed_checl
placed_check
[IN] index 1

tetrylint

[iH) goal [2.3,0,5,0.0,0.0,000.9%,00 1] ram_attem,
.+ T

kaq_tetaction_check Fallback
.

[IN] service_name [ETREEt e ey
[IN] tag
) service_name [EETEE NI
T

[IN] timeout
. [in] timeaut

RetryUnt ° A ek - 5e e
Coior e tag_detection find_sequence
01 et IR T . (1] serer e [P
M] name IN] tag T
[T N timecwt T
) tmecut
.
A ed_chec A:PlaceAction
ed_ched 3 PlaceAction
[IN] index |z | LB /piscestate server |
[IN] service_name PSRRI Y [N] tag]
[IN] tag [] [T so0 |
N imeout [ETTCN

»
RetryuntilSuceessful
e RetryUntilSuccessful
T 23050 [IN] num_steempts
LR filter_apriltag detection |ITDIEEEY I S Y
. [IR Cocationched Service | e 5
[Njtmeot EETTON | | (N) cmeout anm e faltback
- — . i
.

. .
A:tag_detection_check A:location_check
ck

.
A: Pickaction
PickAction
JELTEILH jpickstate_server |

[INJtag
T | | (] timeout

[NJtmeoue I

(a) BT generated for picking one product (b) BT updated after reuse for picking the second product

Figure 4: BT reuse, in fig 4a the BT was generated for one product and reused for the second product, however, more
actions were needed and FROGBT updated the BT accordingly for the second product fig 4b

19

tialization
.

ng_tree | >
initialising_tree | recovery_sequence

. . .
RetryUntilSuccessful A:ApproachAction A: PickFromFloorAction
RetryuntilSuccessful Approachction PickFromFloorAction

[1N] num_attempts [| | (] offset EEEEERE | | (N] server_name

¢ [IN] server_name [IN] tag | 1]
[IN] tag I | | (N tmeout [IENETIN
[N] timeout ST

.
A: ScanFloor
ScanFloor

[WIESTEERT] /scan_floor_server

[IN] tag

500]

(a) BT for fallback branch recovery (b) BT for the generated recovery behaviour

Figure 5: Two ways of failure recovery using FROGBT, using a hand crafted sub-tree as a fallback branch, and generating
the recovery behaviour from the failed hold-condition

20

"’. LocationAffordance

T

""x____--\-\-\

| m--ﬁ__:_\%‘ - =777 & approach_produc 4| ® Fallbacks
— - t =
— - -

| — e _— e \
x_rl . P —

- t " o
| ~ Sy P e \
I s \

) — — \

Lal
'r.

4 isAtlocation
= _— o # deliver fallbac
- — . k
- A -,
: — ' \
T — -~ B Y //
/

[
[
v oA - _=Z A
—— -
| !) / | /
S /
~— Ly
y oy |
// I & deliver |

;{ o | # picked_check I
A
I|
\ ,"I
\
o Effector

= has individual

~
——

=== hasFallback
Holdcondition
=== Postcondition

=== Precondition

Figure 6: The skills individuals and their connections, as well as the shared instances between skills and fallbacks class

21

tagDectectionCh
eck

& # close_to_produc ‘ |
t

Yo - Vo4

-
I

[# closeCheck] B —

[l:t Y isAt:_o-.:fation] / | \

T ———

locationCheck I [# placed_check] [& picked_check]

= has individual

- = has subclass

= hasChecks

Holdcondition

= isCheckFor

Figure 7: The checks individuals and the relationship between them and the states in Affordance type classes

*' & locationCheck

s
5 ! Py
J y -
o s
i e
// e

"1\\ _'"-@ a
-m||k3
.

Pl

P

= has individual -
= has subclass

y . ;/ .
s S
S * '\kf fl
= haschecks Ry
N S— t
=,

hasFallback %

& # closeCheck

—_———

-
e
/
@ LocationAfforda e
nce — _
“] # close_to_produc
t
- / ~. —
4 / e

7 / =,

== Holdcondition

== isCheckFor
located

== Postcondition

== Precondition

Figure 8: The connections for products with the Affordance type classes

22

References

1. D. Isla. Handling complexity in the halo 2 AI https://www.gamedeveloper.com/programming/gdc-
2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai.

2. Colledanchise, M. & Ogren, P. Behavior trees in robotics and AI: An introduction (CRC Press, 2018).

3. Younes, H. L. & Littman, M. L. PPDDLI1. 0: An extension to PDDL for expressing planning domains
with probabilistic effects. Techn. Rep. CMU-CS-04-162 2, 99 (2004).

4. Ghallab, M., Nau, D. & Traverso, P. Automated Planning: theory and practice (Elsevier, 2004).

Rovida, F., Grossmann, B. & Kriiger, V. Eztended behavior trees for quick definition of flexible robotic
tasks in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2017),
6793-6800.

6. Martin, F., Morelli, M., Espinoza, H., Lera, F. J. R. & Matellan, V. Optimized Execution of PDDL
Plans using Behavior Trees 2021. https://arxiv.org/abs/2101.01964.

7. Colledanchise, M., Almeida, D. & Ogren, P. Towards blended reactive planning and acting using behavior
trees in 2019 International Conference on Robotics and Automation (ICRA) (2019), 8839-8845.

8. Tadewos, T. G., Shamgah, L. & Karimoddini, A. Automatic Safe Behaviour Tree Synthesis for Autonomous
Agents in 2019 IEEE 58th Conference on Decision and Control (CDC) (2019), 2776-2781.

9. Platzer, A. Logical analysis of hybrid systems: proving theorems for complex dynamics (Springer Science
& Business Media, 2010).

10. Wilkins, D. E. Recovering from execution errors in SIPE. Computational Intelligence 1, 33-45 (1985).

11. Chang, K.-H., Han, H. & Day, W. B. A comparison of failure-handling approaches for planning
systems—replanning vs. recovery. Applied Intelligence 3, 275-300 (1993).

12. Macenski, S., Martin, F., White, R. & Clavero, J. G. The Marathon 2: A Navigation System in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2020), 2718-2725.

13. Hu, D., Gong, Y., Hannaford, B. & Seibel, E. J. Semi-autonomous simulated brain tumor ablation
with ravenii surgical robot using behavior tree in 2015 IEEFE International Conference on Robotics and
Automation (ICRA) (2015), 3868-3875.

14. Segura-Muros, J. A. & Fernandez-Olivares, J. Integration of an automated hierarchical task planner
in ros using behaviour trees in 2017 6th International Conference on Space Mission Challenges for
Information Technology (SMC-IT) (2017), 20-25.

15. Manzoor, S. et al. Ontology-Based Knowledge Representation in Robotic Systems: A Survey Oriented
toward Applications. Applied Sciences 11. 1SSN: 2076-3417. https://www.mdpi.com/2076-3417/11/
10/4324 (2021).

16. Beetz, M., Mosenlechner, L. & Tenorth, M. CRAM—A Cognitive Robot Abstract Machine for everyday
manipulation in human environmentsin 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems (2010), 1012-1017.

17. Mayr, M., Rovida, F. & Krueger, V. SkiROS2: A skill-based Robot Control Platform for ROS 2023.
arXiv: 2306.17030 [cs.RO].

18. French, K., Wu, S., Pan, T., Zhou, Z. & Jenkins, O. C. Learning behavior trees from demonstration in
2019 International Conference on Robotics and Automation (ICRA) (2019), 7791-7797.

https://www.gamedeveloper.com/programming/gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai
https://www.gamedeveloper.com/programming/gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai
https://arxiv.org/abs/2101.01964
https://www.mdpi.com/2076-3417/11/10/4324
https://www.mdpi.com/2076-3417/11/10/4324
https://arxiv.org/abs/2306.17030

19. Colledanchise, M., Parasuraman, R. & Ogren, P. Learning of behavior trees for autonomous agents.
IEEE Transactions on Games 11, 183189 (2018).

23

	INTRODUCTION
	BACKGROUND
	Behaviour Trees
	Ontological Reasoning

	RELATED WORKS
	BTs Generation
	Failure Recovery Mechanisms
	Ontology Integration in BT generation

	MOTIVATING SCENARIOS
	SkiROS vs FROGBT
	FROGBT Flexibility
	Failure Recovery

	METHODOLOGY
	Setup and Packages
	Ontology Structure
	FROGBT Architecture
	Failure Recovery

	EVALUATION
	SKIROS VS FROGBT
	FROGBT Flexibility
	Failure Recovery

	CONCLUSION
	FUTUREWORK
	Appendix
	References

