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Abstract
Purpose Tumor-targeted positron emission tomography (PET) and fluorescence-guided surgery (FGS) could address current 
challenges in pre- and intraoperative imaging of gastric cancer. Adequate selection of molecular imaging targets remains 
crucial for successful tumor visualization. This study evaluated the potential of integrin αvβ6, carcinoembryonic antigen-
related cell adhesion molecule 5 (CEACAM5), epidermal growth factor receptor (EGFR), epithelial cell adhesion molecule 
(EpCAM) and human epidermal growth factor receptor-2 (HER2) for molecular imaging of primary gastric cancer, as well 
as lymph node and distant metastases.
Methods Expression of αvβ6, CEACAM5, EGFR, EpCAM and HER2 was determined using immunohistochemistry in 
human tissue specimens of primary gastric adenocarcinoma, healthy surrounding stomach, esophageal and duodenal tissue, 
tumor-positive and tumor-negative lymph nodes, and distant metastases, followed by quantification using the total immu-
nostaining score (TIS).
Results Positive biomarker expression in primary gastric tumors was observed in 86% for αvβ6, 72% for CEACAM5, 77% 
for EGFR, 93% for EpCAM and 71% for HER2. Tumor expression of CEACAM5, EGFR and EpCAM was higher compared 
to healthy stomach tissue expression, while this was not the case for αvβ6 and HER2. Tumor-positive lymph nodes could be 
distinguished from tumor-negative lymph nodes, with accuracy ranging from 82 to 93% between biomarkers. CEACAM5, 
EGFR and EpCAM were abundantly expressed on distant metastases, with expression in 88–95% of tissue specimens.
Conclusion Our findings show that CEACAM5, EGFR and EpCAM are promising targets for molecular imaging of primary 
gastric cancer, as well as visualization of both lymph node and distant metastases. Further clinical evaluation of PET and 
FGS tracers targeting these antigens is warranted.
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Key Points 

 Carcinoembryonic antigen-related cell adhesion mol-
ecule 5 (CEACAM5), epidermal growth factor receptor 
(EGFR) and epithelial cell adhesion molecule (EpCAM) 
are promising targets for molecular imaging of primary 
gastric cancer, as well as lymph node and distant metas-
tases.

This study forms the preclinical groundwork for further 
clinical evaluation of positron emission tomography 
(PET) imaging and fluorescence-guided surgery trac-
ers directed against these targets, which could enhance 
pre- and intraoperative imaging of gastric cancer and, 
ultimately, patient outcomes.
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1 Introduction

Gastric cancer is the fifth most common malignancy, with a 
worldwide incidence of more than 1 million cases per year. 
Despite recent therapeutic advances, prognosis remains 
poor, with a 5-year survival of approximately 40%, result-
ing in more than 700,000 deaths worldwide annually [1, 2]. 
Achieving local control through subtotal or total gastrectomy 
combined with lymphadenectomy remains the cornerstone 
of multidisciplinary gastric cancer treatment [3]. Preopera-
tively, adequate disease staging is pivotal for patient-tailored 
treatment selection and maximizing its efficacy.

Preoperative work-up of gastric cancers is comprised of 
endoscopy, computed tomography (CT) imaging, 18F-fluoro-
deoxyglucose positron emission tomography (18F-FDG PET) 
and/or diagnostic laparoscopy in clinically curable locally 
advanced disease (>cT3 and/or N+, M0) [4, 5]. However, 
each modality has its limitations for accurate tumor detec-
tion, potentially leading to erroneous tumor staging and, 
consequently, unnecessary tumor resections, futile biopsies, 
extra imaging procedures and/or unnecessary administra-
tion of systemic therapy. For example, CT imaging provides 
accurate T-staging (sensitivity 83–100% for tumors with ser-
osal involvement), while sensitivity for N-staging is lower 
at approximately 60% [4, 6, 7]. Importantly, sensitivity for 
small-sized distant metastases and peritoneal metastases is 
limited at 23–76%. Also, a significant proportion of gastric 
cancers have absent 18F-FDG PET avidity (≈ 20%), and non-
specific uptake in the stomach wall can also mask tumor 
presence [5, 8]. The use of 18F-FDG PET for nodal and dis-
tant metastasis staging is also unsatisfactory, with sensitivity 
of 49% and 33–56%, respectively [5, 9].

To improve the accuracy of gastric cancer staging, diag-
nostic laparoscopy with or without peritoneal cytology is 
frequently performed [5, 10–12]. A systematic review high-
lighted that 9–60% of patients who were preoperatively 
staged as M0 had irresectable disease intraoperatively [10]. 
Recently, the PLASTIC trial reported the limited added 
value of 18F-FDG PET and showed the superiority of diag-
nostic laparoscopy in accurate staging of locally advanced 
gastric cancer [5]. Limitations of laparoscopy, however, 
include its invasiveness, inability to accurately identify 
non-superficial liver metastases, lymph node metastases or 
extraperitoneal lesions, and the absence of tactile feedback 
for identifying malignant tissue [13, 14]. Besides tumor stag-
ing, an intraoperative challenge is encountered when radi-
cal resection is considered feasible. Studies showed that the 
presence of microscopically tumor-positive resection mar-
gins (i.e., R1 resection) is still observed in approximately 
7% of gastric cancer patients, which has been associated 
with higher peritoneal recurrence rates and poorer survival 
[15, 16].

To address these challenges, tumor-targeted positron 
emission tomography (PET) and real-time fluorescence-
guided surgery (FGS) using near-infrared light have emerged 
as valuable tools to enhance tumor imaging, respectively, 
by providing high-contrast visualization of malignant tissue 
[14, 17, 18]. These molecular imaging technologies could 
improve assessment of tumor localization, potentially avoid-
ing resection for irresectable disease, as well as assisting 
surgeons in radical tumor resection. However, the success 
of molecular imaging hinges on the adequate selection of 
tumor-specific targets.

An ideal molecular imaging target is abundantly and 
homogenously expressed on the tumor cell membrane across 
all patients, while expression in healthy surrounding tissue 
is absent [17]. Preferably, the target-of-interest is also pre-
sent on lymph node and distant metastases and its expres-
sion remains present in microscopic residual disease after 
neoadjuvant therapy (NAT). However, governed by tumor 
heterogeneity, among others, a universal molecular imaging 
target for gastric cancer has still not been identified.

Over the last years, several targets were recognized as 
promising for molecular imaging of gastrointestinal cancers, 
including integrin αvβ6, carcinoembryonic antigen-related 
cell adhesion molecule 5 (CEACAM5), epidermal growth 
factor receptor (EGFR), epithelial cell adhesion molecule 
(EpCAM) and human epidermal growth factor receptor-2 
(HER2) [19–24]. Consequently, tracers targeting some of 
these biomarkers were evaluated in clinical trials for vari-
ous gastrointestinal tumor types [25–30]. However, their 
potential for molecular imaging of gastric cancer has been 
underexplored.

This study, therefore, provides the first crucial step 
towards application of these tracers in gastric cancer, by 
evaluating αvβ6, CEACAM5, EGFR, EpCAM and HER2 as 
molecular imaging targets for gastric cancer and its metas-
tases. To accomplish this, biomarker expression was evalu-
ated within the full anatomical context of gastric cancer. 
Biomarker expression was, therefore, determined using 
immunohistochemistry on human tissue specimens of pri-
mary tumors, healthy surrounding stomach tissue, but also 
on esophageal and duodenal tissue, and  LN+ and  LN−, and 
distant metastases.

2  Materials and Methods

2.1  Patient and Tissue Specimen Selection

Pathology reports of patients who underwent resection for 
gastric adenocarcinoma at the Leiden University Medical 
Center (LUMC) from 2013 to 2020 were retrospectively 
reviewed. Representative formalin-fixed paraffin-embedded 
(FFPE) tissue blocks and hematoxylin and eosin (HE) slides 
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of 87 patients, containing primary gastric tumor, healthy 
stomach, esophageal, duodenal and/or (metastatic) lymph 
node tissue, were selected and obtained from the biobank 
at the LUMC. To allow proper subgroup analyses, the 
cohort was constituted to contain approximately a 1:1 ratio 
of patients with diffuse and intestinal type tumors accord-
ing to the Laurén classification. Patients with mixed type 
Laurén classification were excluded. Selection of FFPE tis-
sue blocks was performed by a gastrointestinal pathologist 
(ASLPC) based on the HE slides. Tissue specimens contain-
ing gastric adenocarcinoma metastases biopsy tissue were 
also obtained from 19 patients. Clinicopathological data 
were obtained from patients’ medical records. Pathological 
tumor (pT) and pathological lymph node (pN) stages were 
defined according to the  8th edition of the American Joint 
Committee on Cancer and Union for International Cancer 
Control (AJCC/UICC) TNM staging system for gastric 
cancer. The study protocol was approved by both the Gas-
troenterology Biobank Review Committee (protocol refer-
ence: 2020-16) as well as the local medical ethical review 
committee (protocol reference: B20.052). This study was 
conducted in compliance with the Dutch code of conduct for 
responsible use of human tissue in medical research. Tissue 
specimens and clinicopathological data were handled in an 
anonymized manner and in compliance with the Declaration 
of Helsinki (1964).

2.2  Immunohistochemistry

Tissue sections 4 μm thick and cut from FFPE tissues were 
mounted on glass slides. Sections underwent deparaffiniza-
tion in xylene for 15 min, followed by rehydration through 
sequential ethanol concentrations (100%, 50% and 25%). 
Subsequently, endogenous peroxidase was blocked using a 
0.3% hydrogen peroxide solution. Antigen retrieval was tai-
lored to the primary antibody employed, as outlined in Sup-
plementary Table 1 in the electronic supplementary material 
(ESM). Post-antigen retrieval, slides were thoroughly rinsed 
in phosphate-buffered saline (PBS, pH 7.4). Primary anti-
bodies (see Supplementary Table 1 in the ESM) targeting 
αvβ6, CEACAM5, EGFR, EpCAM or HER2 were applied to 
the tissue sections, which were subsequently left to incubate 
overnight at room temperature in a humid incubator. After 
overnight incubation, slides were rinsed in PBS to remove 
any residual primary antibodies. Anti-mouse horseradish 
peroxidase (HRP) or anti-rabbit HRP secondary antibodies 
(Envision, Dako, Glostrup, Denmark) were subsequently 
applied for 30 min at room temperature in a humid incuba-
tor for 30 min. Secondary antibodies were then removed by 
thorough PBS rinsing. Visualization of antibody binding was 
achieved using a 3,3-diaminobenzidine (DAB) tetrahydro-
chloride solution (K3468, Agilent Technologies, Inc., Santa 
Clara, CA, USA) for 10 min at room temperature. Finally, 

slides were counterstained with Mayer’s hematoxylin (Klin-
ipath B.V., Olen, Belgium), dehydrated in a dry incubator for 
2 h and mounted using Pertex (Leica Microsystems, Wetzlar, 
Germany).

2.3  Evaluation of Immunohistochemical Staining

Whole slide images of the stained tissue slides were cap-
tured using the  PANNORAMIC® 250 Flash III DX scanner 
(3DHISTECH Ltd, Budapest, Hungary). DAB staining was 
quantified using the total immunostaining score (TIS), which 
was computed by multiplying the staining proportion (0 = 
≤ 9%, 1 = 10–25%, 2 = 26–50%, 3 = 51–75%, 4 = ≥ 76%) 
by the staining intensity (0 = none, 1 = weak, 2 = mod-
erate, 3 = strong). Staining based on the TIS was catego-
rized as follows: 0 = negative; 1, 2, 3, 4 = weak expression; 
6, 8 = moderate expression; 9, 12 = strong expression. A 
panel of three independent observers (RDH, MvD, ASLPC) 
conducted the scoring. Instances of disagreement were dis-
cussed in a consensus meeting, during which the final score 
was conclusively determined.

2.4  Statistical Analysis

For categorial data, groups at baseline were compared using 
a Chi-square test. An independent samples t test was used to 
compare continuous variables of patient characteristics. TIS 
values between tumor, healthy surrounding stomach, esoph-
ageal and duodenal tissue were compared using Kruskal-
Wallis test with Dunn’s correction for multiple comparisons. 
Biomarker expression subgroup analyses were performed 
using a Mann-Whitney test. IBM SPSS statistics version 
29 (IBM Corporation, Armonk, NY, USA) was used for all 
statistical analyses of patient characteristics. Graphs and 
statistical analyses for biomarker expression were created 
and performed using GraphPad Prism version 8 (GraphPad 
Software, La Jolla, CA, USA). Differences with a p value < 
0.05 were considered significant.

3  Results

3.1  Patient Characteristics

Eighty-seven patients diagnosed with gastric adenocarci-
noma were included, of which 45 (52%) had diffuse type 
disease and 42 (48%) had intestinal type disease. Clinico-
pathological characteristics are summarized in Table 1. In 
the intestinal type group, 17 patients (40%) had well–mod-
erately differentiated tumors, compared to 0 (0%) in the 
diffuse type group (p < 0.001). NAT consisted of chemo-
therapy, while one patient received chemoradiotherapy. 
Albeit not statistically significant, there was a small 
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difference in the number of patients who received NAT 
in both groups (diffuse type: 32 [71%]; intestinal type: 22 
[52%]; p = 0.097). Other baseline characteristics did not 
differ between both groups.

3.2  Biomarker Expression in Primary Gastric Cancer 
Tissue Specimens

Tissue slides were stained for αvβ6, CEACAM5, EGFR, 
EpCAM and HER2 expression, and expression was quanti-
fied using the TIS. Representative examples of these stain-
ings are shown in Fig. 1. Positive expression (TIS values ≥ 1) 
on primary gastric tumors was found in 86% of the tumors 

for αvβ6, 72% for CEACAM5, 77% for EGFR, 93% for 
EpCAM and 71% for HER2 (Table 2). Categorized staining 
intensities are depicted in Table 3. All biomarkers showed a 
membranous staining pattern, with αvβ6 and EpCAM show-
ing a mostly homogenous staining pattern, while staining 
was slightly more heterogeneous for CEACAM5, EGFR and 
HER2 (Fig. 1). Additionally, biomarker co-expression in pri-
mary gastric tumors was analyzed (Table 4). The highest co-
expressing biomarker combination was αvβ6 and EpCAM, 
which were simultaneously expressed in 84% for primary 
gastric tumors. The remaining biomarker combinations 
were always expressed in more than 55% of cases, indicat-
ing moderate co-expression. Additionally, for all biomarker 

Table 1  Patient characteristics of the total gastric cancer cohort (n = 87) as well as diffuse type (n = 45) and intestinal type (n = 42) subgroups

Characteristic Total (n = 87) Diffuse type (n = 45) Intestinal type (n = 42) P value

Age, mean (SD) 67.2 (12.7) 64.3 (14.1) 70.3 (10.3) 0.073
Gender, n (%) 0.038
 Male 28 (32) 26 (58) 33 (79)
 Female 59 (68) 19 (42) 9 (21)

Surgery type, n (%) 0.407
 Total gastrectomy 35 (40) 20 (44) 15 (36)
 Partial gastrectomy 52 (60) 25 (56) 27 (64)

Tumor localization, n (%)
 Cardia/fundus 15 (17) 6 (13) 9 (21) 0.298
 Corpus 24 (28) 11 (24) 13 (31)
 Antrum 34 (39) 20 (44) 14 (33)
 Pre-pyloric 8 (9) 3 (7) 5 (12)
 Other 6 (7) 5 (11) 1 (2)

Tumor differentiation, n (%)
 Well–moderate 17 (20) 0 (0) 17 (40) < 0.001
 Poor 51 (59) 27 (60) 24 (57)
 Missing 19 (22) 18 (40) 1 (2)

Primary tumor, n (%)
 pT1 15 (17) 5 (11) 10 (24) 0.210
 pT2 9 (10) 7 (16) 2 (5)
 pT3 37 (43) 19 (42) 18 (43)
 pT4 26 (30) 14 (31) 12 (29)

Regional lymph nodes, n (%)
 pN0 27 (31) 15 (33) 12 (29) 0.789
 pN1 21 (24) 12 (27) 9 (21)

pN2 16 (18) 8 (18) 8 (19)
pN3 23 (26) 10 (22) 13 (31)
Neoadjuvant therapy, n (%)
 Yes, chemotherapy 53 (61) 32 (71) 21 (50) 0.097
 Yes, chemoradiotherapy 1 (1) 0 (0) 1 (2)
 No 33 (38) 13 (29) 20 (48)

R-status, n (%)
 R0 76 (87) 38 (84) 38 (90) 0.234
 R1 10 (11) 7 (16) 3 (7)
 Missing 1 (1) 0 (0) 1 (2)
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combinations, 88–98% of primary tumors were positive for 
at least one of the two biomarkers (≥ 1).

3.3  Subgroup Analyses of Biomarker Expression 
in Primary Gastric Cancer Tissue Specimens

Subgroup analyses revealed that median expression between 
diffuse and intestinal type tumors did not differ for all bio-
markers except for HER2, which showed a lower median 
TIS on diffuse type tumors (median TIS 4.0 vs. 2.0, p = 
0.0004; also see Supplementary Table 2 in the ESM). More-
over, subgroup analyses of biomarker expression in primary 
tumor tissues between patients who did not receive NAT 
and those who received NAT revealed that the median TIS 
for CEACAM5 and EGFR was lower on tumor specimens 
derived from patients who received NAT (CEACAM5: 
median TIS 9.0 vs. 3.5, p = 0.0215; EGFR: median TIS 6.0 
vs. 3.0, p = 0.0072; also see Supplementary Table 3 in the 
ESM). For the remaining biomarkers, primary tumor expres-
sion was similar in patients who received NAT and patients 
who did not receive NAT.

3.4  Biomarker Expression in Primary Gastric 
Cancer Versus Healthy Surrounding Stomach, 
Esophageal and Duodenal Tissue Specimens

Images of sequential tumor sections showing biomarker 
expression in primary gastric cancer and healthy surround-
ing stomach, esophageal and duodenal tissue specimens are 
shown in Fig. 1. Quantified TIS values representing expression 
of αvβ6, CEACAM5, EGFR, EpCAM and HER2 as well as 
the statistical comparison of biomarker expression is depicted 
in Fig. 2 and Supplementary Table 4 in the ESM. For αvβ6, 
median expression in primary gastric cancer tissue was lower 
compared to healthy surrounding stomach (median TIS 6.0 vs. 
9.0, p < 0.0001) and duodenal tissue (median TIS 6.0 vs. 9.0, 
p = 0.0427), and similar to expression in esophageal tissue 
(median TIS 6.0 vs. 8.5, p > 0.9999). For CEACAM5, expres-
sion in primary tumor tissue was higher compared to healthy 
surrounding stomach (median TIS 4.0 vs. 0.0, p < 0.0001) 
and duodenal tissue (median TIS 4.0 vs. 0.0, p = 0.0003), but 
comparable to esophageal tissue (median TIS 4.0 vs. 4.0, p > 
0.9999). EGFR expression in primary tumor tissue was higher 
compared to healthy surrounding stomach tissue (median TIS 
4.0 vs. 2.0, p = 0.0023) but similar to esophageal (median 
TIS 4.0 vs. 6.0, p = 0.2235) and duodenal tissue (median TIS 
4.0 vs. 3.0, p > 0.9999). EpCAM expression in tumor tissue 
was higher compared to healthy surround stomach (median 
TIS 9.0 vs. 0.0, p < 0.0001) and esophageal tissue (median 
TIS 9.0 vs. 0.0, p < 0.0001), but comparable to expression in 
duodenal tissue (median TIS 9.0 vs. 6.0, p = 0.7003). Lastly, 
HER2 expression in primary tumor tissue was not different 
from healthy surrounding stomach (median TIS 2.0 vs. 2.5,  

p > 0.9999) and esophageal tissue (median TIS 2.0 vs. 5.0, p 
= 0.1454) and lower than duodenal tissue (median TIS 2.0 vs. 
8.0, p = 0.0152).

3.5  Expression of Biomarkers in Tumor‑Positive 
and Tumor‑Negative Lymph Node Tissue 
Specimens

Biomarker expression was evaluated on metastatic lymph 
nodes  (LN+) and tumor-negative lymph nodes  (LN−). Rep-
resentative immunohistochemical (IHC) images showing 
expression of αvβ6, CEACAM5, EGFR, EpCAM and HER2 
on  LN+ tissue are shown in Fig. 3. Sensitivity, specificity, 
positive predictive value, negative predictive value and 
area under the curve were calculated based on dichotomous 
(positive/negative) biomarker expression and are depicted in 
Table 5. Although sensitivity for  LN+ versus  LN− differen-
tiation was moderate for HER2 and CEACAM5 (both 56%), 
no false-positive staining was observed. For the remaining 
biomarkers, higher sensitivity (range 72–82%) and 100% 
specificity for differentiation between  LN+ and  LN− were 
observed, indicating their potential to serve as targets for 
imaging of metastatic lymph nodes. Accuracy for identi-
fying  LN+ and  LN− ranged between 82% and 93% for all 
biomarkers.

3.6  Expression of Selected Biomarkers in Metastatic 
Gastric Cancer Tissue Specimens

Based on their tumor-specific expression pattern and 
accurate  LN+ detection potential, CEACAM5, EGFR and 
EpCAM were selected for further analysis of their expres-
sion in metastatic gastric cancer tissue specimens derived 
from 19 patients. Patient characteristics of this cohort are 
described in Supplementary Table 5 in the ESM. Tissue 
specimens were derived from various locations, with the 
most common locations including the abdominal wall (4/19, 
21%), peritoneum (3/19, 16%) and large/small intestine (both 
2/19, 11%). Representative IHC images of HE, CEACAM5, 
EGFR and EpCAM staining are depicted in Fig. 4. Posi-
tive biomarker expression in metastatic gastric cancer tissue 
specimens was observed in 94% for CEACAM5, 88% for 
EGFR and 95% for EpCAM (Table 6). As can be derived 
from Table 7, CEACAM5 and EpCAM staining was pre-
dominantly strong, while EGFR staining was somewhat 
weaker.

4  Discussion

Molecular imaging through tumor-targeted PET and FGS 
can address current limitations in pre- and intraoperative 
staging as well as resection margin assessment of gastric 
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Fig. 1  Representative images of HE and immunohistochemical stain-
ing of αvβ6, CEACAM5, EGFR, EpCAM and HER2 on primary 
gastric cancer, as well as healthy surrounding stomach, esophageal 
and duodenal tissue. Overview images and inserts are taken at 5× 
and 20× magnification, respectively. Scale bars represent 200 µM. 

CEACAM5 carcinoembryonic antigen-related cell adhesion molecule 
5, EGFR epidermal growth factor receptor, EpCAM epithelial cell 
adhesion molecule, HE hematoxylin and eosin, HER2 human epider-
mal growth factor receptor-2
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cancer. Adequate selection and application of molecular 
imaging targets is the main prerequisite for adequate tumor 
visualization using these techniques. The current study 
showed that αvβ6, CEACAM5, EGFR, EpCAM and HER2, 
all promising tumor-specific targets for gastrointestinal 
cancers, were abundantly expressed in primary gastric 
tumor tissue specimens, with positive expression ranging 

from 71% to 93%. Regarding biomarker co-expression, 
88–98% of primary gastric tumors showed positive expres-
sion of at least one of two biomarkers for all possible bio-
marker combinations, indicating the potential added value 
of bispecific tracers to increase the number of patients 
eligible for molecular imaging. Additionally, CEACAM5, 
EGFR and EpCAM showed higher expression in tumor 
tissue compared to healthy surrounding stomach tissue, 
classifying these targets as suitable for primary gastric 
cancer imaging. As αvβ6 and HER2 expression in healthy 
surrounding stomach tissue was higher or did not differ 
from primary tumor expression, respectively, we con-
sider these targets not suitable for molecular imaging of 
primary gastric cancer. Despite moderate sensitivity for 
 LN+ detection observed for CEACAM5 and HER2 (both 
56%), all biomarkers could distinguish  LN+ and  LN− with 
high accuracy, indicating the potential of these targets for 
pre- and intraoperative N-staging. Lastly, EGFR, EpCAM 
and CEACAM5 showed moderate to strong expression in 
virtually all distant (peritoneal) metastases, highlighting 
their potential as targets for M-staging. Our study there-
fore demonstrated the feasibility of EGFR, EpCAM and 

Table 2  Percentages of positive biomarker expression in primary gas-
tric cancer tissue specimens (TIS ≥ 1)

CEACAM5 carcinoembryonic antigen-related cell adhesion molecule 
5, EGFR epidermal growth factor receptor, EpCAM epithelial cell 
adhesion molecule, HER2 human epidermal growth factor receptor-2, 
TIS total immunostaining score

Biomarker Positive tumor 
expression (%)

αvβ6 86
CEACAM5 72
EGFR 77
EpCAM 93
HER2 71

Table 3  Distribution of αvβ6, CEACAM5, EGFR, EpCAM and HER2 expression on primary gastric cancer as quantified by the TIS values cat-
egorized into negative (TIS = 0), weak (TIS = 1, 2, 3, 4) moderate (TIS = 6, 8) or strong expression (TIS = 9, 12)

CEACAM5 carcinoembryonic antigen-related cell adhesion molecule 5, EGFR epidermal growth factor receptor, EpCAM epithelial cell adhesion 
molecule, HER2 human epidermal growth factor receptor-2, TIS total immunostaining score

Biomarker No. of tissue Negative n (%) Weak n (%) Moderate n (%) Strong n (%)

αvβ6 n = 87 12 (14) 27 (31) 24 (28) 24 (28)
CEACAM5 n = 87 24 (28) 20 (23) 14 (16) 29 (33)
EGFR n = 84 19 (23) 26 (31) 26 (31) 13 (15)
EpCAM n = 86 6 (7) 7 (8) 18 (21) 55 (64)
HER2 n = 84 24 (29) 36 (43) 20 (24) 4 (5)

Table 4  Percentage of cases with positive αvβ6, CEACAM5, EGFR, 
EpCAM and HER2 expression for at least one of two biomarker com-
binations (panel: ≥ 1) along with the percentage of cases with posi-

tive expression of both biomarkers (panel: both), as quantified by a 
dichotomized TIS (TIS = 0: negative expression; all other TIS values: 
positive expression)

CEACAM5 carcinoembryonic antigen-related cell adhesion molecule 5, EGFR epidermal growth factor receptor, EpCAM epithelial cell adhesion 
molecule, HER2 human epidermal growth factor receptor-2, TIS total immunostaining score

Biomarker Panel αvβ6 (%) CEACAM5 (%) EGFR (%) EpCAM (%) HER2 (%)

αvβ6 ≥ 1
Both

– 93
66

94
77

95
84

94
71

CEACAM5 ≥ 1
Both

93
66

– 93
56

95
70

90
55

EGFR ≥ 1
Both

94
77

93
56

– 98
74

88
59

EpCAM ≥ 1
Both

95
84

95
70

98
74

– 94
71

HER2 ≥ 1
Both

94
71

90
55

88
59

94
71

–
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CEACAM5 as molecular imaging targets for gastric cancer 
in a clinically relevant context.

The abundant tumor expression of the biomarkers 
reported herein is largely in line with previous studies, 
albeit we reported higher percentages of positive IHC stain-
ing compared to previous research, particularly for αvβ6, 
EGFR and HER2 [31–35]. This could, among others, have 
been caused by the use of different scoring systems, primary 
antibodies or antigen retrieval techniques during IHC stain-
ing, as well as inter- and intratumoral heterogeneity, and the 
relatively small sample sizes of previous IHC studies [36]. 
Confirmation of our results in a different or larger cohort of 

gastric cancer patients could verify validity of the results 
observed herein, as well as elucidate underlying mechanisms 
contributing to these discrepancies.

A strong methodological point of this study is the addi-
tional evaluation of biomarker expression in healthy sur-
rounding esophageal and duodenal tissue specimens. Simi-
lar CEACAM5 and EpCAM expression levels were found 
on healthy esophageal and duodenal tissue compared to 
tumor expression, respectively, while EGFR expression 
in both tissue types did not differ from tumor expression. 
Consistent with our findings, expression of CEACAM5 
and EGFR has been identified in healthy esophageal tissue, 

Fig. 2  Box plots representing TIS values of αvβ6, CEACAM5, EGFR, 
EpCAM and HER2 staining on primary gastric cancer, as well as 
healthy surrounding stomach, esophageal and duodenal tissue. Hori-
zontal lines represents the median TIS values, boxes represent inter-
quartile range and brackets represent total TIS range. CEACAM5 

carcinoembryonic antigen-related cell adhesion molecule 5, EGFR 
epidermal growth factor receptor, EpCAM epithelial cell adhesion 
molecule, HER2 human epidermal growth factor receptor-2, ns not 
significant, TIS total immunostaining score. * p ≤ 0.05, ** p ≤ 0.01, 
*** p ≤ 0.001, **** p ≤ 0.0001
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while EGFR and EpCAM expression in, respectively, duo-
denal mucosa and epithelia of both the small and large 
intestines was also reported [21, 37–40]. Although previ-
ous literature described that EpCAM is overexpressed in 
gastrointestinal tumors compared to healthy surrounding 
tissue, it should be noted that EpCAM’s presence in the 
small and large intestine might impact the detection of per-
itoneal metastases of gastric cancer using EpCAM-targeted 
molecular imaging tracers [21]. Taken further, the absence 
of EpCAM in esophageal tissue makes EpCAM a more 
suitable target for delineation of proximal gastric cancers 

located near the esophageal-gastric junction (EGJ), while 
absence of CEACAM5 on duodenum epithelium makes 
this target appropriate for assessing resection margins of 
distal gastric cancers invading the duodenum. Of note, 
EGJ and duodenal invasion are frequently present in 
(sub)cardia (33–50%) and distal gastric cancer (14–33%), 
respectively [41–43]. Moreover, considering the increased 
R1 resection rate and reduced patient survival in these 
locally advanced cancers, adequate intraoperative tumor 
delineation may be a valuable tool to improve adequate 

Fig. 3  Representative images of HE and immunohistochemical stain-
ing of αvβ6, CEACAM5, EGFR, EpCAM and HER2 on lymph node 
metastases of gastric cancer. Overview images and inserts are taken 
at 5× and 20× magnification, respectively. Scale bars represent 200 

µM. CEACAM5 carcinoembryonic antigen-related cell adhesion mol-
ecule 5, EGFR epidermal growth factor receptor, EpCAM epithelial 
cell adhesion molecule, HE hematoxylin and eosin, HER2 human epi-
dermal growth factor receptor-2

Table 5  Sensitivity, specificity, PPV, NPV and accuracy along with the AUC and p value for identification of  LN+ tissue specimens based on 
αvβ6, CEACAM5, EGFR, EpCAM and HER2 expression

A dichotomized (positive/negative) TIS was used (TIS = 0: negative; all other TIS values: positive expression)
AUC  area under the curve, CEACAM5 carcinoembryonic antigen-related cell adhesion molecule 5, CI confidence interval, EGFR epidermal 
growth factor receptor, EpCAM epithelial cell adhesion molecule, HER2 human epidermal growth factor receptor-2, LN+ tumor-positive lymph 
node, NPV negative predictive value, PPV positive predictive value, Sens. sensitivity, Spec. specificity, TIS total immunostaining score

Biomarker Sens. (%) Spec. (%) PPV (%) NPV (%) Accuracy (%) AUC (95% CI) P value

αvβ6 72 100 100 85 89 0.860 (0.782–0.938) < 0.0001
CEACAM5 56 100 100 78 83 0.780 (0.689–0.872) < 0.0001
EGFR 74 100 100 86 90 0.872 (0.795–0.949) < 0.0001
EpCAM 82 100 100 89 93 0.908 (0.843–0.974) < 0.0001
HER2 56 100 100 77 82 0.780 (0.688–0.872) < 0.0001
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resection margin assessment and, potentially, patient out-
comes [44, 45].

In addition, the inclusion of patients with diffuse and 
intestinal type adenocarcinomas, as well as patients who 
received NAT, allowed subgroup analyses to study potential 
effect of these clinicopathological factors on the biomarkers’ 
expression level. Interestingly, we found similar biomarker 
expression in diffuse and intestinal type adenocarcinomas for 
all biomarkers, except for HER2, which showed lower TIS 
values on intestinal type tumor tissue specimens. This makes 
the remaining biomarkers broadly applicable as molecular 
imaging markers in gastric cancer patients. Moreover, this 
finding is particularly promising for molecular imaging of 
diffuse type gastric cancers, given the lower 18F-FDG PET 
avidity, more frequent underestimation of the proximal 

margin length and increased irradical resection rate in this 
histological subtype [44, 46–49]. Additionally, subgroup 
analyses revealed that CEACAM5 and EGFR expression 
was lower in patients who received NAT. Consequently, 
care should be taken when targeting CEACAM5 and EGFR 
for molecular imaging of primary gastric tumors after NAT.

Preoperatively, several targeted PET tracers have aimed 
to address current limitations in staging of gastric cancer in 
both the preclinical and clinical setting, with a strong focus 
on fibroblast activation protein (FAP)-targeted agents [18]. 
FAP is expressed in 55–75% of gastric carcinomas and is 
associated with increased migration, invasion and reduced 
survival, while expression in healthy surrounding tissues is 
virtually absent [50–52]. A recent meta-analysis showed that 
FAPI PET outperformed conventional 18F-FDG PET sensi-
tivity for primary tumor, lymph node metastasis and perito-
neal dissemination of gastric cancer, thereby indicating the 
potential of both FAPI PET and targeted PET in general [53, 
54]. However, the overexpression of FAP in tissue during 
instances of tissue remodeling, such as wound healing or 
chronic inflammation, could pose a threat for its potential to 
delineate benign from malignant tissue [55]. Nevertheless, 
although our study intended to focus on tumor cell-specific 
molecular imaging targets, additional evaluation and com-
parison of FAP expression in our cohort would be an inter-
esting continuation of this study.

Fig. 4  Representative images of HE and immunohistochemical stain-
ing of CEACAM5, EGFR and EpCAM on distant metastases of gas-
tric cancer. Overview images and inserts are taken at 5× and 20× 
magnification, respectively. Scale bars represent 200 µM. CEACAM5 

carcinoembryonic antigen-related cell adhesion molecule 5, EGFR 
epidermal growth factor receptor, EpCAM epithelial cell adhesion 
molecule, HE hematoxylin and eosin

Table 6  Percentages of positive biomarker expression in metastatic 
gastric cancer tissue specimens (TIS ≥1)

CEACAM5 carcinoembryonic antigen-related cell adhesion molecule 
5, EGFR epidermal growth factor receptor, EpCAM epithelial cell 
adhesion molecule, TIS total immunostaining score

Biomarker Positive tumor 
expression (%)

CEACAM5 94
EGFR 88
EpCAM 95

Table 7  Distribution of CEACAM5, EGFR and EpCAM expression in metastatic gastric cancer tissue specimens as quantified by the TIS values 
categorized into negative (TIS = 0), weak (TIS = 1, 2, 3, 4) moderate (TIS = 6, 8) or strong expression (TIS = 9, 12)

CEACAM5 carcinoembryonic antigen-related cell adhesion molecule 5, EGFR epidermal growth factor receptor, EpCAM epithelial cell adhesion 
molecule, TIS total immunostaining score

Biomarker No. of tissue Negative n (%) Weak n (%) Moderate n (%) Strong n (%)

CEACAM5 n = 18 1 (6) 6 (33) 4 (22) 7 (39)
EGFR n = 16 2 (13) 10 (63) 2 (13) 2 (13)
EpCAM n = 19 1 (5) 3 (16) 2 (11) 13 (68)
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Of the targets evaluated herein, only HER2 has been clini-
cally targeted for PET imaging in gastric cancer. Using 89Zr-
trastuzumab, O'Donoghue et al. observed tumor accumula-
tion in 80% of patients with positive HER2 status; however, 
not all known lesions could be visualized in these patients 
[56]. Interestingly, the authors did not observe significant 
stomach uptake as one would expect based on our obser-
vation of similar HER2 expression in primary tumors and 
healthy surrounding stomach tissue. It should be noted that, 
although positive biomarker expression remains a funda-
mental criterion for successful molecular imaging, it does 
not invariably correlate with positive tumor uptake in the 
clinical setting, underscoring the importance of both tumor 
heterogeneity and extensive clinical validation of molecular 
imaging tracers. Noteworthy, significant stomach wall and 
intestine uptake is commonly reported for αvβ6-targeting 
PET tracers, thus reflecting our findings of high αvβ6 expres-
sion in these tissue types [57].

FGS-related research in gastric cancer has particularly 
focused on fluorescence-guided lymphadenectomy, as 
opposed to primary tumor imaging or intraoperative tumor 
staging. For instance, Chen et al. randomized gastric can-
cer patients between indocyanine green tracer-guided (ICG) 
lymphadenectomy using submucosal injection 1 day preop-
eratively and conventional laparoscopic gastrectomy [58]. 
The authors showed that ICG lymphadenectomy yielded 
more lymph nodes compared to the non-ICG group, leading 
to less unremoved lymph node stations, while complication 
rates between both groups were similar. However, sensitiv-
ity for metastatic lymph node detection was moderate at 
56%. Considering these and previously outlined constraints 
in accurate intraoperative staging of gastric cancer staging, 
redirecting focus in FGS-related research towards tumor-
targeted imaging could pave the way for novel tracers that 
address these limitations.

This study has some limitations. For instance, the rela-
tively small sample size may have reduced the robustness 
of our subgroup analyses. Therefore, the findings of the 
subgroup analyses reported herein, although relevant for 
the assessment of a molecular imaging target’s suitability, 
should be interpreted with caution. Secondly, due to the 
presence of staining artefacts, some slides were not suitable 
for scoring. Nevertheless, as the amount of excluded tis-
sue slides per marker was limited (maximum 3/87 primary 
tumor specimens), we do not anticipate this influenced the 
findings of our study and the reproducibility thereof.

Future research into molecular imaging targets for gas-
tric cancer could focus on their expression in premalig-
nant tissue, such as chronic gastritis, intestinal metaplasia 
or dysplasia, thereby establishing the targets’ potential for 
differentiation between malignant and benign tissue [59]. 
Also, as molecular targets are not expressed in all patients, 
preoperative screening for positive biomarker expression 

could be performed, followed by application of the most 
suitable molecular imaging tracer. When feasible, such a 
strategy would form a robust and efficient way of patient-
tailored employment of molecular imaging tracers in gastric 
cancer, maximizing its potential to improve pre- and intra-
operative staging as well as resection margin assessment. 
This may be performed using biopsy material of primary 
gastric tumors or metastases, which is routinely obtained 
for histological diagnosis. Moreover, the predictive value of 
biomarker expression in tumor biopsies for primary gastric 
tumor expression remains to be elucidated.

5  Conclusion

Our findings show that CEACAM5, EGFR and EpCAM are 
promising targets for molecular imaging of gastric cancer, 
as well as lymph node and distant metastases. By improv-
ing pre- and intraoperative identification of tumor tissue, 
targeted PET and FGS could enhance gastric cancer staging 
and resection, ultimately leading to improved patient out-
comes. Further clinical evaluation of PET and FGS tracers 
targeting these antigens is warranted.
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