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Metamaterials engineered to host topological states of matter in controllable quantum systems hold promise
for the advancement of quantum simulations and quantum computing technologies. In this context, the Su-
Schrieffer-Heeger (SSH) model has gained prominence due to its simplicity and practical applications. Here
we present the implementation of a gate-tunable, five-unit-cell resonator-based SSH chain on a one-dimensional
lattice of superconducting resonators. We achieve electrostatic control over the inductive intracell coupling using
semiconductor nanowire junctions, which enables the spectroscopic observation of a transition from a trivial to
a topological phase in the engineered metamaterial. In contrast to prior work, our approach offers precise and
independent in situ tuning of the coupling parameters, which is critical to directly approximate ideal tight-
binding Hamiltonians via the control over local variables. Our results supplement efforts towards gate-controlled
superconducting electronics and large controllable resonator-based lattices to enable quantum simulations.

DOI: 10.1103/PhysRevResearch.6.043286

I. INTRODUCTION

Metamaterials are engineered structures of simple con-
stituents, which exhibit functionalities that go beyond those
of the individual building blocks. For quantum systems, this
transferable concept of metameterials can be used to engi-
neer materials that host topological states of matter which
remain robust against imperfections and are therefore suited
for quantum computing and simulation [1,2]. Recently, there
has been great interest in topological metamaterials that re-
sembles the Su-Schrieffer-Heeger (SSH) model [3–7]. The
SSH model predicts a phase transition of a finite, 2N-site chain
with alternating coupling strength between a band insulator
and a topological insulator with localized edge states. The
SSH model finds applications in the entanglement stabiliza-
tion of quantum states [8], the long-range interaction of qubits
[9–12] and the study of non-Hermitian light-matter interaction
[13–15].

Due to the generality of the concept, topological meta-
materials can be realized in various material platforms and
efforts materialized in spin qubits [16], Rydberg atoms [17],
adatoms [18] and integrated photonics [19]. The idea has
also been taken to classical electrical circuits made out of
surface mount components on printed circuit boards [20–22].
However, to fully observe a topological phase transition in a
metamaterial, achieving control over local variables in tight-
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binding models is critical and previous works have so far not
demonstrated such capabilities. To address this challenge, we
will here focus on superconducting quantum circuits, which
has emerged as one of the leading platforms for quantum
simulation and computation [23]. Thanks to the mature fabri-
cation and design techniques of superconducting circuits, the
reliable large-scale implementation of superconducting qubits
and resonators is feasible which led to a number of exper-
iments with engineered photonic baths [24–34], topological
electrical circuits [35,36], and qubit-to-topological waveguide
coupling [7,10,37–39].

While all of the aforementioned efforts resemble static
realizations of metamaterials, the engineering of topologi-
cal metamaterials from superconducting circuits with tunable
spectral bandgap and controllable interaction remains an open
challenge due to the necessary integration of multiple tun-
able elements with low cross-talk. Those efforts would enable
quantum simulation of novel states of matter [40,41] or the
development of new circuit components such as on-chip iso-
lators [42] or long-range couplers. The required tunability
could be provided via flux-controlled SQUID loops [43–45]
or current biased conductors [46–49]. However, both control
methods unavoidably introduce crosstalk between ideally in-
dependent tunable elements due to long-range magnetic field
lines or supercurrents affecting SQUID loops or current biased
conductors. This crosstalk poses a major control issue and
significantly complicates the device tune-up, since achieving
full control requires prior crosstalk calibration and subse-
quent compensation [50–52]. Especially in the context of
tight-binding model simulations, the crosstalk calibration ne-
cessitates the challenging reconstruction of local Hamiltonian
parameters. Although precise topological Hamiltonian recon-
struction is possible [53], the required amount of training
data is typically high. Moreover, the topological nature of the
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model creates a challenge for the Hamiltonian reconstruction
because the measurement results can be less sensitive to pa-
rameter variation compared to trivial phases. To alleviate the
need for advanced control strategies and eliminate crosstalk
between mesoscopic circuit elements, one could instead lever-
age the local control over the microscopic properties of circuit
elements. Such source of tunability became available with
the local electrostatic control of the supercurrents in hybrid
superconducting semiconducting structures [54–58] or other
hybrid structures, which should enable the crosstalk-free inte-
gration of tunability. Based on this concept of gate-tunability,
gate-tunable transmon qubits [54,56], bus resonators [55] and
parametric amplifiers [58,59] have been realized in previous
work.

In this work, we present a topological metamaterial with
gate-tunable coupling within each unit cell. Specifically,
we implement a five-unit-cell resonator-based SSH chain
composed of two resonators per unit cell forming a one-
dimensional lattice of ten superconducting resonators. By
taking the idea of electrostatic control from the single element
level, as in a gatemon device, to scale, we achieve in situ,
electrostatic control over several inductive intracell coupling
elements using semiconductor nanowire junctions, which en-
ables the spectroscopic observation of a trivial-to-topological
phase transition in the engineered topological metamaterial.

II. SSH CHAIN IMPLEMENTATION

We implement the five-unit-cell tight-binding SSH model,
as shown in Fig. 1(a), using a chain of 10 lumped-element,
high-kinetic inductance, superconducting resonators with al-
ternating variable inductive intracell coupling v and static
capacitive intercell coupling w, see Fig. 1(b). One unit cell,
see Fig. 1(c), is composed of two resonators with intracell
coupling v. The capacitive intercell coupling is set by the ge-
ometry of the neighboring resonators between unit cells. The
inductive intracell coupling is realized by five gate-tunable
Josephson junctions formed in five proximitized semiconduct-
ing nanowires, which intraconnect the two resonators of a unit
cell.

The resonators are made from a high kinetic inductance
film to reduce their footprints and avoid spurious modes.
Within a unit cell, the resonators are spatially separated to
minimize the residual capacitive intracell coupling and are
arranged in a mirrored configuration to suppress the resid-
ual capacitive second-nearest-neighbor coupling and residual
mutual inductances between neighboring sites. The chain is
terminated to either side by resonator-like coupling sites with
an open inductor to maintain a coupling strength w on both
ends to preserve the chiral symmetry. These coupling sites
themselves connect directly to the input port S and the output
port D, which enable transmission measurements.

The equivalent circuit model of a single unit cell is shown
in Fig. 1(c) displaying the four relevant circuit parameters:
the resonator capacitance C0, the resonator inductance L0, the
capacitive intercell coupling Cw, and the inductive intracell
coupling Lv on the two sublattice sites A and B. The relation
between v and Lv and between w and Cw is discussed in
Appendix A. In this approximation we neglect the residual

FIG. 1. Superconducting resonator-based SSH chain implemen-
tation. (a) Illustration of the SSH tight-binding model with two-site
unit cell A-B, intracell coupling v, and intercell coupling w. The
finite chain is terminated to coupling sites C. The gray box highlights
one unit cell. (b) False-colored microscope image of the five unit cell
SSH chain composed of lumped element resonators with alternating
variable inductive coupling and static capacitive coupling. The chain
is measured from port S to port D in transmission. The inductive
coupling, mediated by proximitized nanowire Josephson junctions,
is controlled via five independence voltage gates. One unit cell is
highlighted within the dashed box as in panel (a). (c) Equivalent
circuit of a single unit cell in (b). The individual circuit elements are
discussed in the main text. (d) False-colored micrograph images of
a single gate controlled proximitized nanowire Josephson junction.
Orange: InAs semiconductor, blue: Al thin film, purple: SiN gate
dielectric on NbTiN gate electrodes, turquoise: Si substrate, gray:
NbTiN contacts.

capacitive intracell Cv and the residual capacitive second-
nearest-neighbor coupling CSNN.

As mentioned, the inductive coupling are realized us-
ing nanowire Josephson junctions as shown in the zoomed
in picture in Fig. 1(d). The gate voltages are applied via
Chebyshev-filtered gate lines [see Fig. 1(b)] and control the
Andreev bound states carrying the super-current between the
superconducting leads of the nanowire junctions separately
by changing the chemical potential which in turn set the
respective Josephson energies EJ . Eventually, the coupling in-
ductance is then given by the Josephson inductance Lv (Vg) =
φ0(2π Ic(Vg))−1 = φ2

0 (EJ (Vg))−1, where Ic is the gate-tunable
critical current, EJ the gate-tunable Josephson energy and
φ0 = h/2e the magnetic flux quantum. The inductance ap-
proaches infinite when the nanowire Josephson junction gated
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FIG. 2. Simulated spectrum versus the coupling inductance Lv

of a resonator-based SSH chain with the circuit parameters used in
the experiment. (a) Energy spectrum of the bulk modes (black) and
the edge modes (red) versus the coupling inductance Lv . The dashed
line indicates the phase transition point between the topological and
the trivial phase where v = w. The gray dotted line indicates the
instantaneous resonator frequency ωr . (b) Coupling coefficients v

(blue) and w (pink) versus coupling inductance Lv . (c) Free spectral
range FSR between the edge states and the bulk (green, arrow in
(a)) and between the two edge modes (orange, arrow in (a)).

below the pinched-off voltage Vg < Vp, and it is finite on the
order of a few nano-Henry otherwise when charge carriers are
accumulated in the junction region. Physically, the junction
is composed of thin aluminum film on two facets of the
InAs nanowire which has been selectively etched to form a
110-nm-long Josephson junction. The junction directly con-
nects to resonators on either side via NbTiN contacts. The
voltage gate is surrounded by two narrow ground lines to
ensure equal ground potentials on the upper and lower half
of the SSH chain.

Our circuit implementations shares the same tight-binding
geometry as the SSH model with identical on-site potentials
and alternating coupling strengths v and w, as highlighted
with a corresponding color code in Figs. 1(a) and 1(b). To
further affirm the correspondence between the SSH model
and our implementation we derive the real-space Hamiltonian
from the circuit Lagrangian (see Appendix A 3). The diago-
nalization of the real-space Hamiltonian for realistic circuit
parameters yields the eigenvalues for uniformly varied cou-
pling strength Lv , see Fig. 2.

As shown numerically in Fig. 2(a) for 10 circuit modes, in
the case of large inductances, Lv > 19 nH corresponding to
v < w, the spectrum exhibits two nearly degenerate midgap
modes (red) centered around the eight bulk modes (black).
Such midgap modes are the characteristic feature of a topo-
logical insulator state. Hence, we find the system to be in
the topological insulator state if the nanowire junctions are

pinched-off. As the coupling inductance decreases, so that
the coupling strength v increases by more than two orders
of magnitude and the coupling ratio crosses over to v > w,
see Fig. 2(b), the midgap modes split and approach the bulk
modes, which eventually leads to a fully gaped spectrum
corresponding to the trivial insulator state. Particular for this
implementation is the frequency shift of the entire spectrum
for smaller coupling inductances as the change in Lv also
renormalizes the on-site potential, here the resonator fre-
quency ωr . Consequently, also w increases slightly following
the increase in ωr as seen in Fig. 2(b). Note that the spec-
trum remains symmetric around the instantaneous resonator
frequency ωr indicated by the gray dotted line in Fig. 2(a).
(see also Appendix A 3 b), which is characteristic for a system
obeying chiral symmetry [5]. To highlight the spectral evolu-
tion further, we present the free spectral range (FSR) between
one midgap mode and the nearest bulk mode as well as the
separation between the two midgap modes in Fig. 2(c), which
quantifies the energy splitting between adjacent modes. The
system undergoes a phase transition between the topological
and the trivial state as the order of the coupling strength v

and w inverts. At the point where v = w, the FSR between
the midgap modes and the nearest bulk modes are equal, see
Fig. 2(c), but remains finite due to the finite system size. We
refer to this intermediate state with approximately equal FSR
as a normal state, which would correspond to the point of the
gap-closing for systems in the thermodynamic limit.

Despite the presence of on-site and coupling strength
disorder in this simulation, which represents the actual ex-
perimental circuit implementation, the spectrum is nearly
indistinguishable from an ideal SSH chain, which shows
the robustness of this implementation method. The only dif-
ference appears in the symmetry of the bulk modes (see
Appendix A 2).

III. OBSERVATION OF PHASE TRANSITION

We experimentally resolve the energy spectrum of the 10
site SSH chain implementation via a transmission measure-
ment at microwave frequencies through the chain from port
S to port D for different gate voltages applied to nanowire
junctions measured at the base temperature of a dilution
refrigerator. In this measurement, eigenmodes of the SSH
chain manifest as peaks in the transmission spectrum. Their
linewidth is proportional to the respective wave-function
weight on the outer sites of the chain |ψ0,2N |2.

By pinching off the Josephson junctions, the intracell cou-
pling v is minimized and we measure the spectrum with a
gate voltage of Vg = −1 V on all gates. As shown in Fig. 3,
we observe a transmission spectrum with nine peaks corre-
sponding to the eight bulk modes and the two quasidegenerate
edge modes occupying the lower band, the gap, and the upper
band of the spectrum. The red crosses indicates the frequency
points of the individual modes. As discussed, the linewidth of
a mode depends on its coupling strength to the measurement
ports. Hence, modes with more wave-function weight on lat-
tice sites close to the edge of the chain couple more strongly
to the measurement ports and appear as broader modes in
the spectrum. Following this argument, we assign the narrow
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FIG. 3. Parameter estimation of the SSH chain in the topological
phase. [(a)–(c)] Transmission spectrum of the lower band, the gap
and the upper band. The red crosses mark the 10 modes of the five
unit cell SSH chain. (d) Eigenfrequency of the 10 modes in the
topological phase sorted by mode index.

modes in ranges 5.68–5.72 GHz and 6.38–6.42 GHz as bulk
modes. The wider, central peak around 6.04 GHz then cor-
responds to the quasidegenerate midgap modes. The reduced
transmission amplitude of the midgap modes compared to the
maximal transmission results from the localization on either
site of the chain. The asymmetric and distorted lineshapes of
the SSH chain modes originate from Fano resonances of these
relatively narrow modes with a broad spectral feature centered
around 6 GHz formed by the sample mount.

The sorted eigenfrequencies versus mode index in Fig. 3(d)
shows the gaped spectrum with quasidegenerate zero energy
modes, which is characteristic for the topological insulator
state expected for this system. After the mode assignment, we
can estimate the on-site energies and the coupling strength
of each individual site along the SSH chain to obtain an
estimate of the circuit parameters by fitting the full 10-
dimensional Hamiltonian to the extracted eigenfrequencies
(see Appendix B). The average values of the estimated circuit
parameters C0, L0, Cw, and Lv deviate from the design parame-
ters by less than 10%. Moreover, we find a parameter disorder
of less than 1% along the chain. The obtained parameters were
used to generate the simulated data shown in Fig. 2.

Having established the circuit parameters in the topolog-
ical regime, we now leverage the tunability per unit cell to
observe the topological phase transition predicted for the SSH
model. We first characterize the gate dependence of each
individual nanowire junction, which is a critical requirement
in order to unambiguously control local variables in Hamil-
tonian simulations aiming to observe topological features
and localization effects in tight-binding models. Specifically,

we record the spectrum for a wide range of gate voltages
per nanowire junction to identify the pinch-off voltage Vpi

that suppresses the supercurrent across each junction and the
open voltage Voi that maximizes the supercurrent of the junc-
tion, see also Appendix C. The acquired gate dependencies
per nanowire junctions correspond well to their respective
tight-binding simulation, which suggests negligible crosstalk
between nearby voltage gates. Next, we measure the energy
spectrum of the SSH chain along a synchronous evolution
of the coupling inductances Lv as we linear interpolate each
junction between Voi and Vpi . We assume that each nanowire
junction opens at a similar rate between Vo and Vp such that the
joint gate control mimics the synchronous tuning of Lv in all
junctions. The resulting spectrum over 1 GHz with a 70 kHz
resolution in the few photon regime versus a synchronous gate
setting scan is shown in Fig. 4(a) after background correction
(see Appendix G). Three linecuts, colored relative to their
respective gate setting in Fig. 4, exhibit three different regimes
of the SSH chain and demonstrate that we can experimentally
access each regime with in situ tuning.

The spectral fan-out and overall increase of the eigenfre-
quencies of the SSH modes with increasing gate voltages,
hence decreasing coupling inductances, qualitatively follows
the simulation presented in Fig. 2(a). For the initial gate
settings close to Vp shown in Fig. 4(b), we obtain a gaped
spectrum with midgap modes and a free spectral range of
FSR = 350 MHz, which we previously identified as topolog-
ical insulator state. As the gate voltages increase towards Vo,
the initially quasidegenerate midgap modes with relatively
wide linewidth and maximal prominence split and approach
the lower and upper bundle of four modes. Eventually, close
to Vo the lines in the spectrum form two bundles of five
modes each, are narrow in linewidth and of low prominence,
see Fig. 4(d). We identify this single gaped spectrum with
a free spectral range of FSR = 240 MHz as trivial insulator
state. Note that the two highest mode in Fig. 4(d) exceed the
measurement window.

Aside from the spectroscopic state identification based on
the distribution of the eigenmodes, the large prominence of
the transmission signal relates to a strong delocalization of
the modes while their narrow linewidth is set by the weak
coupling to the coupling ports, and vice versa Hence, the
phase transition of the SSH chain manifests in this experiment
in the FSR and the linewidth of the modes: (i) Starting from
the topological insulator state, the FSR between the midgap
modes and the nearest bulk modes continuously closes while
FSR between the initial midgap modes widens. Around the
phase transition the system passes through an intermediate,
normal regime corresponding to the trace in Fig. 4(c), where
the FSR between the midgap modes and the FSR to the near-
est bulk modes is approximately equal. This change in FSR
is in qualitative agreement with the simulated trend shown
in Fig. 2(c). (ii) The narrower linewidth together with the
larger transmission amplitude of the initial midgap modes
indicate that these modes transition from a state localized to
the edges of the chain to a delocalized state along the chain
as the nanowire junctions open. Moreover, as it can be seen
from the comparison of Figs. 4(b) and 4(d), the bulk mode
resonances widen from the topological to the trivial state (see
Appendix D).
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FIG. 4. Gate-tunable phase transition. (a) SSH chain spectrum versus individual gate voltage Vgi aggregated in a joint gate setting sweep
(more information in the main text). The shades indicate the normalized S21 transmission through the chain. [(b)–(d)] SSH chain spectrum for
a given gate setting indicated as colored line in (a). The grayed out regions in (b) and (d) highlight the width of the bands. The arrows indicate
the largest free spectral range FSR in these traces.

Beyond these two indicators of the phase transition, we
also numerically calculate a topological invariant for the
system, see Appendix A 3. Specifically, we calculate the real-
space winding number (RSWN) [60–63] and find a nonzero
value in the topological regime (v ≈ 0) while the RSWN
approaches zero for more open junctions (increasing v). The
finite size of the system prohibits a sharp transition between
the two regimes, but the RSWN calculations verify that the
limiting cases of pinched off and fully open represent two
topologically distinct phases.

While the nonlinear frequency shift of the system is not
directly related to the phase transition and kept small by
choosing a low probe power, it serves as additional tool to
verify that the nanowire junctions are open. While the system
in the topological regime remains nearly unchanged versus
changes in the probe power, the system frequencies lower
drastically with power in the trivial regime due to added Kerr
nonlinearity arising from the presence of the open Josephson
junctions (see Appendix E ).

A caveat, however, remains arising from the nature of
nanowire Josephson junctions. As observed in earlier work
on nanowire Josephson junctions [54,64–66], the functional
dependence of the inductance on the individual gate voltage is
highly nonmonotonic and hysteretic over time, which prevents
us from observing a smooth phase transition. The effect of
disorder and disorder-induced phase transitions can further
be studied, following ideas presented in Refs. [60,67,68]. To
further address the model accuracy, we estimate the residual
second-nearest-neighbor (SNN) and v coupling capacitances
to be CSNN = 0.4 fF and Cv = 0.5 fF from finite-element sim-
ulations, which are two to three orders of magnitude smaller
than the coupling capacitance Cw = 32 fF and the resonator
capacitance C0 = 206 fF. The finite and constant coupling

capacitance Cv , which is in parallel with Lv , yields a finite
but negligible offset in the coupling strength v, but does not
change the topology of the system. The small second-nearest
neighbor coupling CSNN, which connects same sublattice sites,
weakly breaks chiral symmetry, as discussed in Ref. [67–69],
but parameters, such as the FSR of the midgap modes and the
localization of the wave functions in the topological regime
remain experimentally indistinguishable from a system with
chiral symmetry.

IV. CONCLUSION

We have realized a macroscopic SSH chain out of a
one-dimensional lattice of superconducting resonators, which
inherits the tunability from the microscopic properties of
nanowire Josephson junctions. We have characterized the sys-
tem in the topological regime and mapped our resonator-based
implementation onto the original spin-less, single-particle
SSH Hamiltonian. Eventually, we leveraged the unit cell
tunability with negligible crosstalk and the engineered robust-
ness against disorder to control the extended states along the
SSH chain, which lead to the observation of the topological
insulator phase transition in the macroscopic, gate-tunable
resonator-based SSH chain from the topological to the trivial
insulator phase.

Our experiment takes the idea of gate-tunable supercon-
ducting circuits [70] from a single gate-tunable element to
scale and demonstrates that the implementation of several
nanowire Josephson junctions in circuit QED experiments
is possible. This result encourages further research on gate-
tunable qubits, such as cos(2φ) gatemon qubits [71], Andreev
spin qubits [66], or Kitaev chain qubits [72,73]. Also the
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composition of two-dimensional lattices [74] of gate-tunable
superconducting resonators seems feasible.

However, our findings suggest that further material devel-
opment of the hybrid superconductor-semiconductor stack is
required to enable a smooth and reproducible gate control
and exploit the full potential of the microscopic properties of
nanowire junctions in superconducting circuits. In particular,
we envision the use of proximitized two-dimensional electron
gas junctions with wide junction areas to prevent the forma-
tion of accidental quantum dots [58,65,75] and to increase
the yield in the fabrication of the junctions. In future real-
ization of this tunable system we intend to probe the on-site
wave function with qubits as local probes via their affected
decoherence and qubit frequency arising from an AC Start
shift [8,10,76]. Going beyond our SSH chain implementa-
tion, one can study the nonlinear coupling [77,78] between
unit cells or focus on the long-range coupling of qubit to a
chain. Further work on tunable lattices with additional on-site
potential tuning could implement more complex systems like
the Rice-Mele model [79], the Aubry-André model [80–82],
or the Kitaev model [83]. The microwave transmission spec-
troscopy used in this work may also find application in the
characterization of topological insulators and other material
systems.

The raw data and the analysis script underlying all fig-
ures in this paper are available online [84].
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APPENDIX A: SSH CHAIN MODEL

Our implementation has been derived from the SSH model
presented in Sec. A 1. We compare the model with the ideal
implementation in Sec. A 2 and discuss its symmetries and
the localization of the wave functions in Sec. A 3 b and
Sec. A 3 c.

1. SSH Hamiltonian

The condensed-matter system inspired tight-binding
Hamiltonian of the SSH chain with on-site potential ε, intra-
cell hopping v and intercell hopping w yields a tridiagonal
real-space Hamiltonian of dimension 2N , where N is the
number of unit cells in the system. The basis of this real-
space Hamiltonian is formed by the sites along the chain. The
Hamiltonian reads

HCM =
2N∑

n=1

ε |n〉 〈n|

+
N∑
n

[v |2n − 1〉 〈2n| + w |2n〉 〈2n + 1| + H.c.]

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε v

v ε w

w ε
. . .

ε w

w ε v

v ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A1)

The spectral properties of this system and its eigenstates are
displayed in Fig. 5. The key feature is the symmetrically gaped
spectrum spanned by the bulk modes (black) with midgap
modes in the topological insulator phase for v < w. The ap-
pearance of the symmetric spectrum is linked to the chiral or
sublattice symmetry of the system, which can be tested by
computing the anticommutator

{�, H} = �H + H� = 0 (A2)

with

� = I5 ⊗ σz, (A3)

where the chiral symmetry operator � is given by the outer
product of N dimensional identity matrix I5 and the Pauli-z
matrix σz. For this tridiagonal real-space Hamiltonian de-
scribed above the anticommutator is indeed zero. The spectral
gap never closes due to the finite size of the system, in contrast
to the infinite limit in which the spectral gap is given by
|v − w|. Instead, the transition point at v = w is signaled by
the equal free spectral range between the midgap modes and
one of the midgap modes and the first bulk mode. Beyond
the transition, the system enters a trivial phase where v > w

eventually leading to a full dimerization. The corresponding
eigenstates of the midgap modes are localized around the
edges of the chain, as exemplified for a specific configuration
in Fig. 5(d), hence the name edge mode. An exponential
fit to the wave function supported on either sublattice A or
B yields the localization length ξ in Fig. 5(c). As long as
the edge modes are quasidegenerate, the localization length
extracted from the fit follows the theoretical limit log(w/v)−1

for infinitely long chains N → ∞. However, the exponential
fit does not capture the evolution of the wave function close to
the transition point due to the finite-size effect and the always
finite energy splitting between the bulk modes. For a finite
system length, the inverse participation ratio appears to be a
better measure for the localization of the wave function.
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FIG. 5. Simulated spectrum and states of a tight-binding SSH model with on-site potential ε = 6.5 GHz and hopping coefficient w =
0.5 GHz (a) Energy spectrum of the bulk modes (black) and the edge modes (red) versus the coupling strength v. (b) Free spectral range 


between the edge states and the bulk [blue, arrow in (a)] and between the two edge modes [orange, arrow in (a)] versus hopping strength v.
The dashed line indicates the phase transition point between the topological and the trivial phase where v = w. The spectral gap |v − w| (gray)
only closes in the infinite length system (c) Localization length ξ extracted as exponential decay fit to the wave functions of the edge modes.
The gray line shows the theoretical limit log(w/v)−1. (c) Energy spectrum of the bulk modes (black) and the edge modes (red) versus the
coupling strength v. [(d)–(g)] Real-space wave function |ψ |2 on the resonator lattice for the topological and the trivial phase of the bulk and
the edge states. The colors correspond to the markers in (a).

2. Lumped element, superconducting circuit Hamiltonian

The design of the lumped element, superconducting circuit
implementation of the SSH chain follows a simple guiding
principle. We realize every site as lumped element resonator
with frequency ω and the coupling terms as capacitors Cw or
inductors Lv . We then derive the circuit Hamiltonian from a
classical circuit Lagrangian formalism as part of a standard
circuit quantization [85]. The resulting Hamiltonian HLC in-
deed takes the form of the tight-binding Hamiltonian

HLC =
2N∑

n=1

h̄ω |n〉 〈n| + h̄ω

N∑
n

[
LT

2Lv

|2n − 1〉 〈2n|

+ Cw

2CT
|2n〉 〈2n + 1| + H.c.

]

= h̄ω

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 LT
2Lv

LT
2Lv

1 Cw

2CT
Cw

2CT
1

. . .

1 Cw

2CT
Cw

2CT
1 LT

2Lv

LT
2Lv

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A4)

Based on the correspondence between the two systems, we
can compare the coefficients in the Hamiltonian and formalize

the mapping between the on-site energy ε and the resonator
frequency ω, between the coupling strength v and the Joseph-
son inductance Lv , and between the the coupling strength w

and the capacitive coupling Cw,

ε = h̄ω

v = h̄ω

2

LT

Lv

w = h̄ω

2

Cw

CT
, (A5)

with the sum of capacitances CT = C0 + Cw and the sum of
inverse inductances connected to a given node in the circuit
L−1

T = L−1
0 + L−1

v . It should be noted that ω = (CT LT )−
1
2 =

ω(Lv ) which leads to a small increase in w, but a significant
shift in the on-site potential ε causing the upwards shift of
the spectrum as Lv decreases. For further visual comparison
we also show the spectral properties and the eigenstates of the
ideal SSH chain implementation in Fig. 5.

3. Topological properties of SSH implementation

a. Real-space winding number

Topological invariants characterize the global properties of
topological insulators. In case of the SSH model, the winding
number is used as the topological invariant, which takes a
phase-dependent binary value: zero in the trivial insulator
phase and 1 in the topological insulator phase [86,87]. In the
finite-size SSH chain, the periodicity is absent, thus making
momentum not a good quantum number and the winding
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number becomes an ill-defined invariant. Alternatively, the
covariant real-space winding number (RSWN) serves as a
good approximation for the momentum-space winding num-
ber given the large enough system size, and the RSWN
remains quantized in the presence of disorder [60–63]. In the
following, we review the calculation of real-space winding
number.

For a one-dimensional chiral symmetric system, recall the
anticommutation relation between the Hamiltonian H and the
chiral operator � in Eq. (A2). This relation results in the
fact that the Bloch Hamiltonian H (k) takes the off diagonal
form [88]

H (k) =
(

0 h(k)

h(k)† 0

)
. (A6)

The winding number is given by [88]

ν = 1

2π i

∫
BZ

Tr{[h(k)−1∂kh(k)]} ∈ Z. (A7)

Equation (A7) has a direct covariant form in the real space
[60]. Starting from the real-space SSH Hamiltonian H , the
homotopically equivalent flatband version of H is given by

Q = H

|H | =
(

0 Q0

Q†
0 0

)
, (A8)

where the off-diagonal part Q0 enters the calculation of
real-space winding number. The covariant real-space form
of the winding number can be obtained by applying the
Bloch-Floquet transformation of Eq. (A7) written in terms of
flatband Hamiltonian [60]

ν = −Trvolume
{
Q−1

0 [X, Q0]
}
, (A9)

where X is the position operator and Trvolume denotes the trace
per volume. In the case of SSH model, the off-diagonal term
Q0 can be obtained as the following. The position eigenstates
are |x, c〉, where x = 1, . . . , L denote the unit cells and c =
A, B are the sublattice degree of freedom. The position oper-
ator therefore takes the form X = ∑

x∈Z
∑

c=A,B x|x, c〉〈x, c|.
In order to obtain Q0, we define spectral projectors as

PA =
∑
x∈Z

∑
c=A

|x, c〉〈x, c|,

PB =
∑
x∈Z

∑
c=B

|x, c〉〈x, c| = Î − PA. (A10)

The chiral operator � is given by � = PA − PB. In parallel,
we define the projectors onto the upper and lower half of the
energy spectrum

P− =
∑
En�0

|n〉〈n|,

P+ =
∑
En�0

|n〉〈n| = �P−�. (A11)

Then the flatband Hamiltonian in Eq. (A8) can be obtained
by Q = P+ − P−. As a chiral-symmetric operator, Q satisfies
the condition Q = PAQPB + PBQPA. The off-diagonal terms
in Eq. (A8) can be written in terms of the above defined

FIG. 6. Real-space winding number. (a) RSWN versus coupling
strength ratio. The dashed vertical lines correspond to the v/w ratio
used in the disorder simulations shown in (b)–(d). [(b)–(d)] RSWN
versus disorder strength for three different coupling strength.

operators as

Q0 = PAQPB, (Q0)−1 = PBQPA. (A12)

Finally, one can express real-space winding number
Eq. (A9) as

ν = − 1

L
Tr{PBQPA[X, PAQPB]}. (A13)

In our study, we compute the RSWN versus the coupling
strength v/w for various chain lengths N and for w = 0.5, see
Fig. 6(a). On either end of the coupling strength range (v ∈
(0, 1)), the system approaches the the topological and trivial
state with RSWN=1 and RSWN=0, respectively, regardless
of the chain length. In-between v ∈ (0, 1), the RSWN indi-
cates a crossover between the two different insulator states,
but only in the thermodynamic limit N → ∞ the RSWN
correctly predicts the phase transition point as it approximates
the k-space winding number. For small N , the RSWN does
not capture the phase transition, which is spectroscopically
still defined, due to finite-size effects. Additionally, we in-
vestigate the robustness of the topological state by examining
the RSWN under varying levels of disorder in the coupling
parameter v and w for three different intracell couplings v =
{0.0, 0.2, 1}, see Figs. 6(b)–6(d). While the RSWN does not
aim at benchmarking the phase transition for our finite-size
system, we see that in the limiting cases we have distinct
topological phases which providing valuable insights into the
topological phase transition that we observe experimentally.

b. Symmetries

To further strengthen the claim that the chiral symmetry
persists in the ideal SSH chain implementation, we present
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FIG. 7. (a) Normalized simulated spectrum of the resonator-
based SSH chain with ideal the on-site and coupling energies as in
Fig. 5. [(b) and (c)] Inverse participation ratio for different states for
the tight-binding model (b) and the ideal SSH chain implementation
(c) versus the coupling strength v. The dashed line indicates the
1/2N limit. The colors correspond to the respective wave functions
in Fig. 5.

the spectrum of Fig. 5(c) normalized by the instantaneous
resonator frequency ω(Lv ) in Fig. 7(a). This normalized spec-
trum is symmetric around the on-site energy. Moreover, we
can compute the anticommutator and find that it vanishes
{�, HLC} = 0.

c. Localization

The localization of the wave functions of the edge states
is a characteristic of the SSH chain. For finite chain lengths,
however, the localization length defined as exponential decay
exp(−x/ξ ) does not capture the delocalization of the edge
modes as the system undergoes the phase transition, as seen
in Fig. 5(b). Instead, for finite chain length we can define
an inverse participation ratio (IPR) [69], which measures the
support of a wave function on a specific site and is defined as

IPR =
∑

x |ψ (x)|4( ∑
x |ψ (x)|2)2 . (A14)

We observe that the IPR of the edge modes is finite and
larger than for the bulk modes in the topological phase. As
the system undergoes the phase transition, the IPR decreases
and approaches the delocalization limit 1/2N = 1/10 of the
bulk modes at v = w, see Figs. 7(b) and 7(c). The IPR of the
localized modes is of value one only in the fully dimerized
case v/w = 0, hence we observe a kink in the IPR in Fig. 7(b)
close to v = 0.

FIG. 8. Extracted circuit parameters in the topological phase.
[(a) and (b)] Resonator capacitance C0 and inductance L0 per site.
[(c) and (d)] Coupling capacitance Cw and coupling inductance Lv

per coupling site.

APPENDIX B: CIRCUIT PARAMETER ESTIMATION

From the presence of the bulk and gap modes in the spec-
trum for a given Lv configuration, we can extract the circuit
parameters C0, L0, Cw, and Lv . First, we identify and list the
eigenmodes of the system. Then, we fit the 10-dimensional
Hamiltonian HLC to the list of eigenmodes while allowing
for free variation of all circuit parameters along the chain.
For completeness, we also take the two Cw couplings to the
coupling sites C into account, which expands the Cw list
from four to six elements. Since the eigenfrequencies of the
coupling sites are far detuned from the SSH spectrum, we
do not consider them in the system Hamiltonian. The circuit
parameters obtained from this optimization routine in the
topological phase are shown in Fig. 8. We assume the design
parameters as start parameters for the Nelder-Mead optimiza-
tion. The variation of the obtained parameters is smaller than
1%. Finally, we input the obtained circuit parameters into the
full Hamiltonian to compute the spectrum and the eigenstates
to simulate the data in Figs. 2 and 3(d). The agreement of this
optimization with the measurement results is on the order of a
few kHz, which is also the spectral resolution of the measure-
ment. This parameter estimation yields the static parameters
C0, L0, and Cw. The optimization routine can then in princi-
ple be repeated for different Lv configurations to the trivial
phase.

From finite-element simulations in COMSOL we esti-
mate the residual capacitances to be CSNN = 0.4 fF and Cv =
0.5 fF, which are two to three orders of magnitude smaller
than the coupling capacitance Cw = 32 fF and the resonator
capacitance C0 = 206 fF. Hence, we neglect the contribu-
tion of the residual capacitances in the parameter extraction.
Moreover, including the residual capacitances yields more un-
certainty in the circuit model reconstruction given the limited
sensitivity to small Cv and CSNN as well as the limited number
of 10 eigenmodes we can fit the model to.

While any on-site disorder and second-nearest-neighbor in-
teraction due to residual capacitive coupling breaks the chiral
symmetry, strictly speaking, the midgap modes remain local-
ized and can therefore be understood as chiral for practical
purposes [69].
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FIG. 9. Single gate dependence. [(a)–(e)] Measured spectrum per gate while the other gates are set to Vp. Zoom-in on low band for
bulk gates and zoom-in on gap for edge gates. The data is normalized on the background to enhance the visibility of the change. [(f)–(j)]
Corresponding simulated spectrum.

APPENDIX C: SINGLE GATE DEPENDENCE

A transmission measurement through the five unit cell
SSH chain allows for a site specific tune-up of every tunable
coupling element. We run single gate scans for every nanowire
Josephson junction over a wide gate voltage range, while
we keep all other gates at the pinch-off voltage Vp, see
Figs. 9(a)–9(e). Hence, all scans begin deep in the topological
regime. For the bulk gates NWi with i ∈ [2, 3, 4] we zoom on
the low band in the topological state, while we focus on the
gap for the edge gates NWi with i ∈ [1, 5], as we expect the
biggest change in frequency in those spectral ranges.

We notice the nonmonotonic single gate dependence of
the modes in the respective test spectrum due to microscopic
properties, most likely spurious quantum dots in the 100-nm-
long junction. In fact, we observe discontinuities due to jumps
in the microscopic properties of the junctions. Repetitions of
these scans reveal that the slopes change over time. Hence,

even these single gate dependencies cannot be used to cali-
brate for a joint gate scan across the phase transition point
with identical nanowire inductances along the SSH chain.

The measured single gate dependencies are in qualitative
agreement with the simulated spectra on the right of Fig. 9.
From the single gate dependencies we can extract the voltage
Vo, which corresponds to the maximal supercurrent, hence
minimal LJ or, expressed in Josephson energy, maximal EJ .
This voltage point seem robust enough and constant over time
and over several gate scans.

APPENDIX D: ADDITIONAL JOINT GATE DEPENDENCE

In Fig. 10, we repeat the measurement shown in Fig. 4
over the gate settings Vp and Vo defined as minimal and
maximal value of the single gate dependencies shown in
Fig. 9 at −30 dBm signal power. The splitting of the modes
with increasing gate voltage, thus higher gate setting index,
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FIG. 10. Additional joint gate dependence with Vp and Vo taken
as minimal and maximal value of the single gate dependencies shown
in Fig. 9. The dashed lines indicate the gate settings used for the
power dependence shown in Fig. 11.

is in qualitative agreement with the equivalent scan from
an earlier cooldown presented in Fig. 4, which uses similar
gate settings Vp = [400, 150, 430, 400, 1900] mV and Vo =
[1800, 1800, 1800, 1800, 4000] mV for the nanowire gates
1 to 5.

APPENDIX E: POWER-INDUCED PHASE TRANSITION

Figure 11 shows the midgap spectrum versus signal power
at the signal generator output for three gate voltage settings
corresponding to the three gate settings [50, 100, 150] in
Fig. 10, (a) close to the topological regime, (b) close to the
normal regime, and (c) deep in the trivial regime. The dark
lines on the light background indicate the midgap modes. We
observe that the two modes are quasidegenerate at high signal
powers and the spectrum is nearly indistinguishable from the
topological regime regardless of the exact gate setting. As we
reduce the signal power, the two modes split and approach
the low power spectrum shown in Fig. 10. In the low power
regime, the spectral evolution exhibits a gate dependence. For
a gate set-point deep in the topological regime, the modes
do not disperse with signal power (not shown here). We un-
derstand this power-induced phase transition as a result of
the power-dependent change in the kinetic inductance of the
proximitized nanowires. The inductance in these nanowires
follows the equation

LNW = L0(Vg)

[
1 +

(
Is

I∗(Vg)

)2]
, (E1)

where L0(Vg) is the gate-dependent low-power inductance,
Is is the signal current through the chain, and I∗(Vg) is the
gate-dependent critical current. The signal power enters the
equation via the signal current to which it is proportional Ps I2

s .
Hence, an increasing signal power increases the inductance,
which in turn transitions the SSH chain into the topological
regime. The nonmonotonic power dependence as well as the

FIG. 11. Power-induced phase transition. [(a)–(c)] Mid-gap
spectrum versus signal power at the signal generator output for the
three gate voltage settings [50, 100, 150] in Fig. 4.

different transition points most likely arise from the different
critical currents I∗(Vg) per nanowire. Consequently, in order to
recover the SSH spectrum versus gate voltage, the measure-
ments must be acquired with a signal power below −30 dBm.

APPENDIX F: FABRICATION

We fabricate the SSH chain circuit and the gate lines
from a 40-nm-thick sputtered NbTiN film (kinetic induc-
tance 4 pH �−1) on high resistivity n-doped Si. We pattern
the NbTiN film using e-beam lithography and SF6/O2-based
reactive ion etching. 30 nm-thick plasma enhanced chemical
vapor deposition SiN defined by a buffered oxide etch serves
as bottom gate dielectric. We transfer the two-facet InAs/Al
nanowire on top of the SiN bottom gate using a nanomanip-
ulator. The InAs nanowires were grown by vapor-liquid-solid
growth with a diameter of 110(5) nm, and nominal thickness
of the Al of 6 nm [89]. We selectively etch the 110-nm-long
Josephson junctions into Al film. Then, we electrically contact
the nanowires to the circuit via lift-off defined 150-nm-thick
sputtered NbTiN leads after prior Ar milling to minimize the
contact resistance.

APPENDIX G: SSH CHAIN ENVIRONMENT

We measure the transmission spectrum of the SSH chain
in the topological state over the accessible frequency range
(4–8 GHz), see Fig. 12. We observe a peaked background
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FIG. 12. Box mode. S21 transmission spectrum over the accessi-
ble frequency range 4–8 GHz with SSH spectrum removed (blue). A
Lorentzian fit highlights the presence of a box mode (orange). The
dashed gray line indicates the expected transmission given the input
attenuation and output amplification.

transmission with a finer modulation and with a maximal
transmission around 6 GHz. We attribute the resonance-like
peak at around 6 GHz to a spurious feature hosted by the PCB
enclosure spanning between the two test ports S and D, which
acts as a band pass filter in parallel to the SSH chain, which in
turn affects the overall transmission. We also observe that the
transmission spectrum recorded in several experimental runs
and on different samples, but within the same enclosure differs
from the expected transmission spectrum. We highlight the
resemblance of the transmission spectrum with a broad band
resonator with a fit to a Lorentzian (orange). The finer mod-
ulation of the transmission probably arises from impedance
mismatches along the lines connecting to the measurement
electronics. To simplify the data analysis in the presence of
the broad spectral feature, we obtain a linearly interpolated
background transmission spectrum to which we normalize the
measurement data to better identify the transmission peaks
and dips of the SSH chain spectrum.

While we cannot extract the exact effective inductance and
capacitance leading to the spurious feature formed by the
enclosure, we can approximate its effect in a lumped element
simulation in which we assume a resonator in parallel to the

FIG. 13. Lumped element simulation of the three regimes topo-
logical, normal, trivial for different tuning scenarios. (a) Expected,
ideal SSH chain spectrum for a joint synchronous sweep of Lv .
(b) Same device tuning as in (a), but accounting for the presence of a
box mode modelled as transmission resonator in parallel to the SSH
chain. Note that all spectra per panel are offset for better visibility.

SSH chain. The results of these lumped element simulations
are presented in Fig. 13(a) for the ideal case and in Fig. 13(b)
for the case in presence of a spurious resonance. In the ideal
case, we expect two, or three well defined bands with in total
10 modes and otherwise suppressed background transmission.
However, a spurious mode yields a higher overall transmis-
sion due its band pass feature and distorts the measured line
shape of the modes due to is capacitive contribution on the
rising edge and its inductive contribution on the falling edge.
Consequently, the bulk modes appear as dips and peaks and
the mid gap modes in the topological state appear as deep
dip with a shallow peak in the center. The feature, which
we modelled for simplicity as a single mode, does not affect
the SSH chain, but it does complicate the interpretation of
the overall transmission spectrum. To overcome the effect, a
new sample enclose should be carefully designed [90]. Going
beyond the current experiment, one could also intentionally
coupled a SSH chain to a resonator as described in Ref. [33].
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