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Abstract

The introduction of control systems in the automotive industry has significantly increased
safety. Improved control over the vehicle dynamics has been shown to contribute to substantial
reductions in the number of deaths and serious injuries resulting from road traffic crashes [41].
The introduction of Electronic Stability Control (ESC) yielded impressive improvement in
vehicle stability. A meta-analysis revealed that a 49% reduction of single-vehicle accidents is
realized [13]. Recent research continues the development of a fully autonomously operating
vehicle. The vehicle requires the ability to operate in all situations safely, in order to reach
the highest level of automation. Vehicle performance should be guaranteed within, at and
beyond the limits of friction. Previous research revealed that the unstable drift motion could
enlarge the operating envelope of a vehicle. An extensive amount of research is dedicated
to controlling a drift. The results show that control systems are increasingly capable of
stabilizing a steady-state cornering scenario. The main limitation of these studies is that only
a portion of the vehicle motion that is observed in reality can be considered to be steady-state
motion.
This thesis presents a multi-objective trajectory optimization which extends the steady-state
analysis to a dynamic driving scenario. Based on experimental data obtained with a 1:10
scaled vehicle, accurate vehicle and tire models are derived. It is validated that the models
closely mimic the dynamics of the scaled vehicle. In order to justify the use of drifting, the
differences between stable and unstable driving equilibria are studied. The stability and con-
trollability are assessed through the construction of the phase portraits and the computation
of the Controllability Grammian. The findings, obtained under the assumption of steady-
state conditions, are then validated in the dynamic driving scenario. A two-step optimization
approach is presented. Spline optimization based on a simplified model is used to obtain ini-
tial conditions for a high fidelity model-based optimization. The scope is limited to a single
corner, which is optimized under varying velocities and friction conditions.
Under the assumption of steady-state conditions, it is found that the drift motion imposes
various benefits over normal driving. Higher cornering velocities and therewith yaw rates can
be achieved in a drift. Besides, the principles of tire saturation and force coupling allow for
controlling the lateral and yaw dynamics of the vehicle through the rear longitudinal tire force.
This increases the maneuverability of the vehicle. The results of the dynamic optimization
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extend the findings of the steady-state analysis. In the dynamic maneuvers, drifting is found
to improve vehicle maneuverability at high velocities and in scenarios of low friction. The
approach presented in this work forms a basis for studying the effects that drifting could
have on vehicle motion in reality. The relevant aspects of vehicle motion are translated into
a multi-objective optimization. The methods that are developed in this work release the
simplifying assumption of steady-state driving conditions. As a result, the drift motion can
be studied in a more realistic driving scenario. It is expected that through further improving
the optimization algorithm, the full operation envelope of the vehicle can be explored.
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Chapter 1

Introduction

1-1 Project Context

Over the past decades, driver assistance systems helped to increase vehicle control and there-
with reduce the number of traffic accidents. Technological advances in the automotive in-
dustry have led to an increase in the use of automation in human-controlled vehicles. The
world is gradually preparing for fully autonomous vehicles. Numerous control systems have
been developed and implemented in road cars. Early examples are Anti-Lock Brakes (ABS)
and Electronic Stability Program (ESP). More recently, road cars have been more frequently
equipped with Active Cruise Control (ACC) and lane-keeping systems. In 2014, the Society of
Automotive Engineers (SAE) introduced a method to score vehicles (and the control systems)
based on levels of autonomous driving, on a scale from 0 to 5 [30]. The extent to which an au-
tonomous driving system performs the driving task determines the level of automation. The
highest level describes a situation of full driving automation, in which vehicles will operate
without any interference of a human driver. For now, this view of mobility remains a future
perspective. Most modern production vehicles show the ability to reach SAE automation
level 3 or 4. Although the autonomous driving systems can perform the driving task, the
interference of a human driver is still required in cases of emergency. Besides, in some cases,
the use of these systems is restricted to motorways only.

Another essential aspect to consider in the transition towards full autonomous mobility is the
road infrastructure. The construction of roads in civilized areas expanded rapidly over the
past century. People are used to the reality that for almost any destination, there is a road
that leads there. However, there remain rural areas where almost no infrastructure is present.
In order to reach the level of fully autonomous mobility, the vehicle needs to be capable of
driving on varying road surfaces. Besides high friction surface such as asphalt, also terrains
that offer less friction needs to be considered. Previous studies have explored the effect of
the type of terrain on the vehicle dynamics [34]. The analysis is based on the relative angle
between the heading of the vehicle and the direction of the resultant velocity vector. This
so-called side-slip angle can be computed from the longitudinal (Vx) and lateral velocity (Vy)
of the vehicle (1-1).
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β = tan−1
(
Vy
Vx

)
(1-1)

The side-slip angle indicates to which degree the vehicle is sliding. When driving through
a corner at a high friction surface such as asphalt, positive side-slip angles (Figure 1-1a) or
angles close to zero are observed (Figure 1-1b). When driving on a low-friction surface, the
maneuver is characterized by negative side-slip angles (Figure 1-1a). This type of maneuvering
is called drifting (Figure 1-1c).

(a) β > 0 (b) β = 0 (c) β < 0

Figure 1-1: Comparison of different types of vehicle motion based on the side-slip angle β.

Classical vehicle stability systems such as ESP are based on the concept of controlling the
vehicle through minimizing the side-slip angle [4]. These systems are typically designed
for high-grip surfaces. The application in off-road conditions leads to unsatisfactory results
[22]. The assumption of pure longitudinal motion (without sliding) limits the applicability
of current stability systems on low friction surfaces. In order to achieve maximum vehicle
controllability, future autonomous driving systems need to be developed with the ability to
control the vehicle under non-ideal and varying grip conditions through stabilization of large
side-slip angles [21]. This includes drifting, a topic that has increasingly been studied over
the past decades.

Research into the nature of the drift motion yielded promising advantages on vehicle maneu-
verability. As part of a study revolving around the usability of a drift control as an Advanced
Driver Assitance System (ADAS), Acosta et al. made a comparison between a drift control
ADAS and a low side-slip stability control system [2]. It is concluded that corners can be
negotiated at a higher velocity while drifting. The fact that high cornering velocities are
associated with large side-slip angles was previously observed by Velenis et al. [40]. Besides,
it was found that higher yaw rates can be generated [3]. A study based on the centripetal
acceleration, the acceleration towards the center of the corner, was presented in [38]. Espe-
cially for small cornering radii, centripetal acceleration increases significantly with increasing
side-slip angle. Consequently, large side-slip maneuvering has the potential to negotiate a
corner at smaller radii. It is concluded that drifting allows to operate the vehicle at the limits
of the operating envelope.
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Most of the aforementioned studies rely on the assumption of steady-state conditions. The
longitudinal, the lateral, and the yaw acceleration are considered to be zero, resulting in
steady-state motion. In reality, it is challenging to maintain steady-state motion, as the
forces acting on the vehicle are continuously varying. Less is known about the advantages of
drift maneuvers when the assumption of steady-state conditions is released.

The purpose of this thesis is to study the drift motion in a dynamical cornering situation.
Through trajectory optimization under varying conditions, it is investigated how negative
side-slip motion can be used to improve vehicle maneuverability. The dynamic cornering
scenario is written into a multi-objective trajectory optimization. The cost-function terms
are chosen and weighted such that the dynamic motion resembles the steady-state equilibria
as close as possible. The aim of this approach is to bridge the gap between the available
knowledge (obtained under steady-state conditions) and the real-life driving scenarios. In
doing so, this work attempts to take a step towards the implementation of drift control in
production vehicles and therewith towards fully autonomous vehicles.

1-2 Research Questions

This thesis explores whether the steady-state benefits of drifting becomes apparent in a dy-
namical driving scenario. Based on this goal, three research questions are formulated.

1. What are the modeling requirements to describe the drift maneuver accurately?

2. What are the advantages of drift equilibria compared to normal driving under the
assumption of steady-state conditions?

3. What are the advantages of the drift motion in a dynamic driving scenario, when the
assumption of steady-state cornering conditions is released?

By answering the research questions, it is expected that the author can conclude on the
benefits of drifting and that recommendations for further research can be formulated.

1-3 Project Goals

The research questions are translated into project goals to create a guideline for the activities
to be performed in this thesis work.

1. Define a model that accurately can describe the drift motion.

2. Identify and validate the unknown model parameters based on the available experimen-
tal data.

3. Compute the system equilibria and perform an analysis of the stability and controlla-
bility.

4. Design a dynamic driving scenario and translate this into a multi-objective trajectory
optimization.

Master of Science Thesis M.D. Goldschmeding



4 Introduction

5. Execute the trajectory optimization for different cornering velocities and under varying
friction.

1-4 Project Boundaries

In order to correctly interpret the results in this work, it is vital to define the scope of the
project clearly. This section briefly discusses the relevant boundaries that are considered.

Forces acting on the vehicle
In the field of vehicle dynamics, various forces that act on the moving vehicle can be taken
into account. It is essential to define the boundaries clearly. This work focuses on the forces
that are generated at the tires and how these forces influence the dynamics of the vehicle.

Impact on the human driver
One of the first questions that come to mind when thinking about the drift motion is: what
would the impact be on a human driver. For example, would the physical impact on the
human body cause motion sickness? Another critical question is how a human driver can be
informed and prepared for a drift that is about to be initiated by the control system. Both
aspects are relevant when considering the implementation of drift control. At the same time,
it is strongly associated with the currently existing view on vehicle mobility. By the time that
autonomous driving is fully embedded in our daily life, vehicles transporting anything other
than persons might not include a driver at all. The implementation of a drift control system,
however, is out of the scope of this research. The effect that the drift motion could have on
a human body will not be addressed in this work.

Road infrastructure
Drifting on a public road seems unrealistic. The current road infrastructure is characterized
by tight lanes and sometimes two-way roads. However, consider the idea that the road
infrastructure could significantly change, only structuring traffic in the city but allowing a
vehicle to navigate freely in rural areas. Under varying friction coefficients, the vehicle then
needs to plan the trajectory, possibly not limited by road boundaries.

Reduced scale
As will be discussed in the following chapters, the analysis of this work focuses on a small-
scaled vehicle. The direct applications of methods that are derived for scaled vehicles on
full-size vehicles can be subjected to issues due to scaling effects. A study into the scaling
effect is not included and is left for further research.

1-5 Report Structure

The thesis is structured in the following way. Chapter 2 discusses the models that are used
to describe the dynamics of the vehicle and the tires. Preprocessing of the experimental data
is discussed in chapter 3. The process of parameter identification is described in chapter 4.
Chapter 5 contains a steady-state analysis of vehicle motion. It explains system equilibria and
therewith analyzes the unstable nature of the drift motion. Then, the assumption of steady-
state conditions is released. Chapter 6 present a dynamic driving scenario and explains how
it is formulated as an optimization problem. The optimization algorithm is discussed in the
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following two chapters. The method that is used to initialize the search based on spline
optimization is presented in chapter 7. The simulation-based optimization of the driving
scenario is included in chapter 8. The thesis ends with the conclusions in chapter 9 and the
recommendations in chapter 10.

At the end of the thesis, appendices are included that contain material that is not directly
discussed in the thesis, but that provides relevant background or additional insights.

1-6 Politecnico di Milano

This thesis is performed as part of a collaboration between the Delft University of Technol-
ogy and the Politecnico di Milano. As a result of this cooperation, research has been carried
out at the Dipartimento di Elettronica, Informazione e Bioingegneria. This department is
involved in research in various fields related to control system science and engineering, indus-
trial automation, robotics, systems theory, environmental systems, ecology, and operations
research.
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Chapter 2

Modeling

The introduction of this work (Chapter 1) stated the relevance of obtaining a deeper un-
derstanding of the effect that the drift motion has on vehicle maneuverability. A common
approach to study the dynamic behavior of a vehicle is to define a model that describes the
dynamics. The system of interest is written in mathematical form, the model, which can then
be used for computation or simulation. In this way, time and money can be saved since the
experiments are not executed with the real system. In the ideal world, one can construct a
model that describes the vehicle without any simplification. The model, in this case, would
be a perfect mathematical description of the real vehicle. In reality, however, this is not
possible and not needed. Such a model would be too large, using the model for simulations
would require too much computational power. Assumptions are made to build a model that
is detailed enough to describe the dominant dynamics of the vehicle while having a minimal
computational load. This chapter addresses this issue and elaborates on the modeling choices
that have been made.

Before discussing the models that are used in this work, section 2-1 provides an overview of
relevant reference frames. Section 2-2 revolves around tire modelling. Section 2-3 continues
with an explanation of the vehicle model. Finally, conclusions are drawn in section 2-4.

2-1 Reference Systems

In this work, two different reference frames will be used; both are displayed in Figure 2-1. The
inertial reference frame defines the motion of the vehicle in terms of the fixed coordinate frame
(xinertial, yinertial). The velocities in each direction are denoted by Vx,inertial and Vy,inertial,
respectively. The body orientated frame considers the center of the vehicle as the origin,
with the x-axis belonging the longitudinal direction and the y-axis to the lateral direction
of the vehicle. The velocities are defined as u and v. The angle between the inertial and
body orientated reference frame is denoted by ψ. For a heading angle ψ equal to zero, the
longitudinal axis x is parallel to the inertial axis xinertial.
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Figure 2-1: Schematic representation of the inertial and the body-orientated reference frame.

The dynamics of the vehicle expressed in the body orientated coordinate frame can be written
into the inertial reference frame using the equations below.

Vinertial,x = u cos (ψ)− v sin (ψ) (2-1)
Vinertial,y = u sin (ψ) + v cos (ψ) (2-2)

The resultant velocity of the vehicle V will be equal for both reference frames.

V =
√
V 2
x + V 2

y =
√
u2 + v2 (2-3)

In the remainder of the thesis, the notation xinertial and yinertial is used to indicate the position
of the vehicle in the inertial frame. Without any further specification, the symbols x and y
are used to indicate the longitudinal and lateral direction of the vehicle or the tire.

2-2 Tire Modeling

Vehicles can follow a trajectory due to the forces generated between the tires and the road
surface. In the absence of tire forces, one is not able to change the motion of any vehicle.
Similar conclusions can be derived from Newton’s second law of motion. The forces acting
on a body, divided by the mass, equal the acceleration exerted on the body. Studying the
generation of tire forces thus is the starting point for modeling the dynamics of the vehicle.

In the literature, wheel moments are often neglected, and the dynamics of the tire are de-
scribed only by the forces acting on the wheel. Nguyen et al. [26] provided a mathematical
representation (2-4). The total tire force Fwheel, is considered to be a function of four vari-
ables: the tire-road friction coefficient µ, the slip angle α, the longitudinal slip ratio λ and
the normal load on the tire Fz.

Fwheel = f
(
µ, α, λ, Fz

)
(2-4)
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The longitudinal slip ratio (or slip ratio) represents the relative motion of the tire and the
ground (2-5). Longitudinal slip is generated when the translational and radial velocities are
unequal. The lateral slip angle (or slip angle) is defined as the tangent of the ratio between
the lateral and longitudinal tire velocity (2-6). To clarify the concepts of tire slip, a schematic
representation of longitudinal and lateral slip is displayed in Figure 2-2a and Figure 2-2b.
Here, rwheel represents the wheel radius, ωwheel is the angular wheel velocity, Vx,wheel is the
longitudinal velocity of the wheel and Vy,wheel is the velocity in the lateral direction.

λ = |rwheel·ωwheel−Vx,wheel|max(rwheel·ω,Vx,wheel) (2-5)

α = tan−1
(
Vy,wheel
Vx,wheel

)
(2-6)

(a) Side view (b) Top view

Figure 2-2: Schematic representation of a single tire to clarify the principles of longitudinal slip
ratio λ and lateral slip angle α.

Equation 2-4 provides an expression for the resultant tire forces. It is often more convenient
to split the resultant force and consider the acting forces along the longitudinal and lateral
direction. Consider the left graph of Figure 2-3, which envisages the lateral tire dynamics.
The lateral force Fy is plotted against the slip angle α. The first observation from the curve is
that lateral forces are only generated for non-zero slip angles. A linear region can be identified,
up to approximately 8◦, in which an increase in slip angle results in a proportional increase
in lateral tire force. This relationship no longer holds for high slip values; in this region,
the tire is considered to be saturated. The different lines correspond to a different value of
the longitudinal slip ratio, in the graph denoted as brake slip κ instead of the conventional
notation λ. It is observed that increased slip ratio’s yield lower side forces, over the complete
range of lateral slip angles. This effect is known as force coupling. It is caused by the fact
that the friction available from the road surface is limited. There is a maximum amount of
tire force that can be generated. Longitudinal slip results in longitudinal tire force, therewith
decreasing the maximum attainable side force of the tire.

The observations of the lateral tire dynamics also apply to the behavior in the longitudinal
direction, displayed in the middle graph of Figure 2-3. The longitudinal force depends mainly
on the slip ratio κ and through force coupling also on the slip angle α. The right graph shows
a quarter of the so-called friction ellipse. This is a graphical representation of the maximum
longitudinal and lateral tire forces that can be obtained under a particular operating condition.
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The conditions are expressed in terms of the directional slip values, the pair (κ, α). In the
graph, only the effect of the latter is displayed. In the remainder of this work, the longitudinal
slip is denoted by λ.

Figure 2-3: Tire characteristics under combined slip conditions. Left graph: lateral tire dynamics,
Fy against α. Middle graph: longitudinal tire dynamics, Fx against λ. Right graph: portion of
the friction ellipse, Fy versus Fx for different slip angles [27].

It is essential to know the forces that act on a tire in order to control the dynamics of
a vehicle [1]. Forces and moments from the road act on each tire and strongly influence
the dynamics of the vehicle [29]. A typical tire is not a rigid structure. It deforms during
operation, and because of that, the contact patch with the road changes [33]. Within the limits
of handling, the longitudinal and lateral tire forces have been proved to be proportional to
respectively the slip ratio and the slip angle. However, at and beyond the limits of handling
this relationship becomes nonlinear. This makes it challenging to model tire-road interaction.
The methods proposed in the literature can be divided into two groups: analytic and empirical
models.
Analytic tire modeling aims to understand and describe the physical mechanism that is gen-
erating the tire forces. The force generation remains a challenging subject. Different concepts
describe this phenomenon, for which each analytic tire model comes with different expres-
sions. Examples of analytic tire models that are applied in recent studies are the Fiala Tire
Model [20], the Dugoff Tire Model [10, 11], or the LuGre Tire Model [39, 42]. Empiric tire
models differ from the analytic approaches as these models do not try to include or describe
the physical phenomena behind tire dynamics. Empiric expressions for tire forces often re-
sult from attempts of curve fitting or regression. The most common empiric tire model is
the Magic Formula which describes tire behavior by fitting a polynomial to experimental
data [27].
It is evident that tire models are a necessity for studying vehicle dynamics. The main issue
is which one to choose. For studying cases of pure longitudinal and lateral force generation,
the analytic models are intuitive and appear to be quite realistic [29]. The Dugoff Model
and the Magic Formula are among the most commonly used models in the literature. Both
models have been compared [7, 8], and the force estimations are found to be quick and close
to experimental data. Simulations are performed under longitudinal, lateral, and combined
slip conditions. The Magic Formula yielded slightly more accurate results, at the cost of an
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increased computational load. Both models are found to be valid for vehicle dynamics analysis
and simulation. The Dugoff Model is selected in this work since it has fewer parameters to
estimate. Besides, the fact that the model is derived from the physics behind the tire-road
interaction is expected to make it more intuitive to adjust the model to get a closer match
with the validation data.

The Dugoff model provides for the calculation of forces under combined lateral and lon-
gitudinal tire force generation. It assumes a uniform vertical pressure distribution on the
tire’s contact patch [29]. The longitudinal and lateral tire forces are, according to the first
publication [10], described as:

Fx = Cλ
λ

1+λf(ζ), (2-7)

Fy = Cα
tan(α)
1+λ f(ζ), (2-8)

f(ζ) =

(2− ζ)ζ , if ζ < 1
1 , if ζ ≤ 1

, (2-9)

ζ = µmaxFz(1+λ)
2
√

(Cλλ)2+(Cα tanα)2 . (2-10)

Where Cλ and Cα are the longitudinal and lateral cornering stiffness, respectively. The slip
ratio is denoted as λ, α is the slip angle, µ the friction coefficient, and Fz represents the
normal load on the tire. The function f(ζ) accounts for the effect of force coupling, based on
the normal load on the tire and the slip conditions.

2-3 Vehicle Modeling

Vehicle models are used to describe the motion that results from system inputs. The physical
meaning of these inputs may differ. In general, the inputs affect the heading and the velocity
of the vehicle. The available vehicle models can be categorized into two groups, kinematic
and dynamic models. Both approaches are discussed in this section.

2-3-1 Kinematic Approach

Kinematic vehicle models are purely based on the position and velocity of the systems without
considering the forces and moments that cause them [29]. Under the assumption of planar
motion, the motion of a vehicle can be described by the position in two directions together
with the heading. Figure 2-4 shows a schematic representation. In this specific figure, the
inertial coordinate frame is denoted by (X,Y ). Although both wheels are steered in this
example, this report limits the analysis to front-wheel steering only. A crucial assumption of
the kinematic model is the absence of wheel slip. This allows for deriving the equations of
motions from geometrical relationships. A reference point on the vehicle needs to be selected,
for example, the center of the front or rear axle. Based on this reference point, the kinematics
are described. In this case, the Center of Gravity (COG) is selected. The position and heading
of this point with respect to a fixed coordinate frame now describe the motion (2-11).

Master of Science Thesis M.D. Goldschmeding



12 Modeling

Figure 2-4: Schematic representation of the kinematic vehicle model, expressed in the inertial
reference frame [29].

ẋ = V cos(ψ + β) (2-11)
ẏ = V sin(ψ + β) (2-12)
ψ̇ = V cos(β)

lF+lR tan
(
δf
)

(2-13)

β = tan−1
(
lR tan δf
lF+lR

)
(2-14)

Here, V is the velocity in the reference points, β is the side-slip angle, ψ is the angle between
the heading of the vehicle and the fixed reference frame, δf is the steering angle and finally
lF and lR represent the distances between COG and the corresponding axles.

2-3-2 Dynamic Approach

Although the kinematic model successfully describes vehicle motion, it is limited by the
assumption that the wheel slip is zero. At high velocity this no longer holds, and the predicted
motion becomes an inaccurate description of reality. Dynamic modeling accounts for slip
conditions since it considers the forces and moments that cause the motion. Using Newton’s
second law of motion, accelerations in each direction of the coordinate system are calculated.
Different physical models are available in the literature. Selecting an appropriate vehicle
model is a trade-off between ease of computation and model fidelity. High complexity vehicle
models might have the ability to describe vehicle motion more accurately. On the other hand,
the time it takes to solve them increases with the complexity. This section describes two of
the most common physical models: the single-track (Figure 2-5a) and double-track model
(Figure 2-5b). The first is a simplification of the latter; for each axis, the wheels are lumped
together.

The equations of motion belonging to the dynamic model are displayed in (2-15), (2-16) and
(2-17). The dynamics are expressed in terms of the longitudinal velocity u, the lateral velocity
v and the yaw rate r. The latter is the time derivative of the heading angle ψ. The directional
accelerations are a function of the acting tire forces and the steering angle δ. Furthermore, m
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Figure 2-5: Overview of the most common physical vehicle representations in the body orientated
frame.

is the mass of the vehicle, Iz is the yaw inertia. In the expression of the yaw dynamics (2-17),∑
Mz represents the sum of the moments acting on the COG. Since the single-track model

effectively has a track width equal to zero, the sum of the moment only depend on the front
(Fy,F ) and rear (Fy,R) lateral forces and the distance from center of gravity to the front (lF )
and rear axle (lR). The double-track model has track-width w. Therefore the longitudinal
force of the front (Fx,F ) and rear (Fx,R) tires will also appear in the expression.

max = m (u̇− vr) =
∑
Fx,F cos δ −

∑
Fy,F sin δ +

∑
Fx,R (2-15)

may = m (v̇ + ur) =
∑
Fx,F sin δ +

∑
Fy,F cos δ +

∑
Fy,R (2-16)

Izṙ =
∑
Mz (2-17)

Although the double-track model provides a more accurate description of the vehicle dynam-
ics, the increased complexity makes it less suitable for optimization purposes. Therefore, most
studies rely on the single-track model for control design.
When considering a suitable vehicle model to study autonomous drifting, it is essential that
the model can account for wheel slip. This makes the kinematic model less favorable, shifting
the preference towards a physical model. The primary consideration in choosing between
either the single-track model or the double-track model is the computational load. The goal
of this thesis is to study the behavior of a vehicle along a curved trajectory. Simulations
will be executed to optimize the path of the vehicle. In an attempt to reduce the required
solving time, the single-track model will be selected. The single-track model is described by
the states: the longitudinal velocity u, the lateral velocity v and the yaw rate r. The state
derivatives are described as:
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u̇ = 1
m

(
−2Fy,F sin δ + 2Fx,R

)
+ vr, (2-18)

v̇ = 1
m

(
2Fy,F cos δ + 2Fy,R

)
− ur, (2-19)

ṙ = 1
Iz

(
2lFFy,F cos δ − 2lRFy,R

)
. (2-20)

The single-track model can be simplified by assuming that the steering angle δ is significantly
small to approximate cos δ ≈ 1 and sin δ ≈ 0. This assumption impacts the expression of the
single-track model in two ways. The longitudinal component of the front lateral tire force is
no longer affecting the longitudinal dynamics (2-21). Furthermore, the front tire lateral force
is not decreases as of the steering angle becomes larger (2-22), (2-23).

u̇ = 1
m

(
2Fx,R

)
+ vr (2-21)

v̇ = 1
m

(
2Fy,F + 2Fy,R

)
− ur (2-22)

ṙ = 1
Iz

(
2lFFy,F − 2lRFy,R

)
(2-23)

The introduction explained that different types of vehicle motion can be expressed by the
side-slip angle β. In order to differentiate based on the side-slip angle, the state derivatives
can be rewritten such that β becomes one of the states [19].

u̇ = 1
m

(
2Fx,R

)
+ ruβ (2-24)

β̇ = 1
mu

(
2Fy,F + 2Fy,R

)
− r (2-25)

ṙ = 1
I

(
2lFFy,F − 2lRFy,R

)
(2-26)

Again, these expressions are based on the approximation that the steering and side-slip angles
are significantly small to assume cos(δ) ≈ 1, β ≈ v/u and β̇ ≈ v̇/u. Hindiyeh et al. computed
that the small side-slip angle assumption introduces an 4.3% error for |β| ≤ 0.35 rad, for
steering angles |δ| ≤ 0.4 rad an 8.6% error is obtained [19]. It is concluded that the error
is significantly small to justify the use of the single-track model that are derived under the
assumption. When the single-track model is used in the following chapters, there will be a
reference to this chapter to indicate with expression is considered.

Assumptions
It is already mentioned that modeling is a trade-off between accuracy and minimizing the
complexity of the model. In this research, the following assumptions are made:

• Vertical dynamics of the vehicle are neglected
All roads have irregularities which result in vertical movement of the vehicle. Accounting
for vertical dynamics introduces complexity to the vehicle model, making it potentially
more difficult to solve the optimization. Although vertical motion could influence the
normal tire load and therewith the friction limits, it is considered to be out of the scope
of this research.
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• Load transfer is neglected
The maximum force that can be generated at each wheel depends on the acting normal
load. Load transfer due to vehicle dynamics could increase and decrease these normal
loads. It is assumed that load transfer changes the time instance at which the tires reach
the saturation limit, but that it does not fundamentally change the maneuver itself.

• Motor dynamics are neglected
In this work, the rear longitudinal tire force is considered to be one of the inputs.
This implies that motor dynamics are not included. For implementation purposes, the
torque supplied by the motor would be a convenient input. However, since this work
focuses mainly on lateral dynamics, it is assumed that the longitudinal tire force can be
controlled directly.

2-4 Conclusions

This chapter provides an overview of the existing modeling approaches relating to vehicle
dynamics. The aim was to assess the available vehicle and tire models. There exists a trade-
off between model complexity and accuracy. The goal is to find the simplest model that can
describe all relevant dynamics. Based on the analysis in this chapter, the main conclusions
are listed below.

I The Dugoff tire model was selected since it accounts for tire saturation and force coupling
while offering low computational load.

I The single-track model is preferred over the double-track model. Although the latter
is a more accurate description of reality, the single-track model is capable of describing
relevant vehicle dynamics. The reduced computation time due to the lower model
complexity outweighs the limitations of lower model fidelity.

I Assumptions are made to define the boundaries of the dynamics that are considered
in this work. The vertical dynamics of the vehicle are neglected. Furthermore, load
transfer is not taken into account. The rear longitudinal tire force is selected as a
control input, implying that also the motor dynamics are neglected.

The selected models will be used throughout the remainder of this work. The main limitations
lie in the fact that models will always be a simplification of reality. It is assumed, however,
that the model fidelity is sufficiently high to study the nature of the drifting maneuver.
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Chapter 3

Data Preprocessing

A set of experimental data is available from previous research. The signals describe the
dynamics of the scaled-vehicle during varying maneuvers. It can be used to identify the
unknown model parameters. However, it is vital to preprocess the data before proceeding
to this identification step. The sensory data generally have different sampling frequencies.
Furthermore, the data can be subjected to sensor noise. This chapter discusses the data
that is available and explores the preprocessing that is required to prepare the data for the
parameter identification.

Section 3-1 starts with a description of the data that is available from conducted experiments.
The steps of filtering, re-sampling, and aligning the data signals is discussed in section 3-2.
At the end of the chapter, in section 3-3, the conclusions are summarized.

3-1 Data Collection

The experimental data can be divided into two groups: signals resulting from the Motion
Capture System (MCS) and signals resulting from the on-board sensors of the Berkeley Au-
tonomous Race Car (BARC). The configuration of the BARC that was used to perform the
experiments is depicted in Figure 3-1.

3-1-1 BARC Signals

Appendix A presents a schematic overview of the components that are installed on the BARC.
This section discusses how the data signals are retrieved from these components. The vehicle
that was available at the Politenico di Milano was equipped with an Internal Measuring
Unit (IMU), two wheel encoders, and an Electronic Control Unit (ECU).
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18 Data Preprocessing

Figure 3-1: The BARC that is used to perform the experiments at the Politecnico di Milano [37].

Internal Measurement Unit

The IMU is considered to be located at to the Center of Gravity (COG) of the vehicle and
provides the acceleration and angular velocity in three directions (Figure 3-2). The component
consists of a triple-axis gyroscope and a triple-axis accelerometer. Since the IMU is mounted
backward on the vehicle, the signals need to be converted to obtain the acceleration and
angular velocities in the correct signs (3-1).

ax,BARC = −ax,IMU (3-1)
ay,BARC = −ay,IMU (3-2)
az,BARC = az,IMU (3-3)
ωx,BARC = −ωx,IMU (3-4)
ωy,BARC = −ωy,IMU (3-5)
ωz,BARC = ωz,IMU (3-6)

(3-7)

Wheel Encoders

The wheel encoders provide information on the velocity of the wheels. Individual sensors are
placed at both the front and rear axle. The sensor is constructed from placing magnets on a
plastic disc that is fixed to the wheel axle. A hall effect sensor is used to check if a magnet
passes by as a result on the angular wheel velocity ωwheel. A schematic representation of
the wheel encoder is displayed in Figure 3-3. The hall effect sensor, displayed in grey and
located at the top of the disk, measures the magnetic flux density. When it is larger than
the predefined threshold, the binary output signal is switched on. When the magnetic flux
density falls below the threshold, the output returns to off.
The frequency of the magnets passing by can be derived from the binary Hall sensor signals.
The time between two magnets, combined with the circumference of the disk, allows for
computing the wheel velocity (3-8).
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Figure 3-2: Overview of the IMU reference frame. As it is mounted backward on the scaled-
vehicle, the longitudinal axis is in opposite direction [37].

Figure 3-3: Schematic representation of the wheel encoder.

Venc,i ≈
∆s
∆t = 2πrwheel

N (tk − tk−2) , i = {F,R} (3-8)

In this expression ∆s is the distance between two magnets, ∆t the required time to travel that
distance, rwheel is the wheel radius, N is the number of magnets on the disc. The hall sensor
measures a difference in magnetic flux, meaning that the output is triggered when a magnet
enters and leaves the proximity of the sensor. The time between two magnets is therefore
defined as the difference tk − tk−2, where tk denotes the time at instance k. Note that Venc,i
denotes the velocity of the wheel and not the angular velocity ωwheel.

Electronic Control Unit

The ECU provides information about the control signals that are sent to the motor and the
steering servo. Although current is the direct input to the actuators, the available signals
from the ECU are not. Instead, numerical signals with values between 70 and 110 are sent
to the ECU. The motor controller translates the input to a pulse-width modulated signal
that controls the motor power. The input of 90 corresponds to zero motor power, 70 to full
backward power, 110 to maximum power in the forward direction. In case of the steering
servo, a similar pulse-width modulated signal is generated. The identified neutral point of
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the steering mechanism is found to correspond to an input of 90.88. Any input value smaller
than the neutral point result in a left corner, larger values correspond to a right corner.

3-1-2 Motion Capture System

The MCS system returns information on the three-directional position and rotation of the
vehicle. From this data also the velocity and the acceleration of the vehicle can be computed.
Experiments are performed with the BARC in an arena that is equipped with multiple cam-
eras. Each camera records the movement of the vehicle from a different angle. The cameras
send infrared light to the ground, which is reflected by a set of markers on the vehicle. Based
on the reflection of the markers, the cameras can locate the vehicle with 1 mm accuracy.

Figure 3-4: Coordinate frame transformation gab from body orientated coordinate system B to
inertial frame A [24].

The velocity and acceleration of the vehicle are obtained through state transformation (Fig-
ure 3-4), with inertial coordinate system A and body orientated coordinate frame B [24].
The position of point q in inertial coordinates is expressed as a function of the location of the
center of gravity pab and the rotation matrix Rab (3-9).

qa = pab +Rabqb (3-9)

The transformation matrix Rab is the product of the matrices describing rotations around the
x-, y-, and z-axis (3-10).

Rx =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 , Ry =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , Rz =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (3-10)

Rab = Rx ·Ry ·Rz (3-11)

The velocity vqa of point q in coordinate frame A is defined by that same transformation
matrix, the time derivative, and an angular offset matrix ṗab (3-12).
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vqa = d
dtqa =

(
RTabṘab

)
× qb +RTabṗab (3-12)

When the velocities of the vehicle (Vx and Vy) are obtained from the coordinate frame trans-
formation, the accelerations can be calculated using the equations below.

ax = V̇x + ωzVy (3-13)
ay = V̇y − ωzVx (3-14)

The set of reflectors was placed on top of the BARC, with the center around 0.04 m above
the COG of the vehicle. In x− y− z sequence the position offset vector pab is

[
0 0 −0.04

]
.

The rotational offset is tuned in two steps. As can be seen in the figure below, the rotational
offset in each direction affect the velocities that are obtained. Consider Figure 3-5a; it can be
observed that due to the offset φe the vector in the y′ direction can be split into a component
of the y and z axes. In the case of the MCS signals, rotational offsets in the reflectors cause
lower velocities then were achieved during the experiment. Besides, velocity components on
other axes could be observed. The MCS signals, therefore, require calibration.

(a) Offset around the x-axis (b) Offset around the y-axis (c) Offset around the z-axis

Figure 3-5: Overview of the rotational offsets that can exist in each direction.

It is found that only the rotational offset in the z-direction is significant. As a result of the
rotational offset ψe, the longitudinal velocity has a lateral component. When the vehicle is
driving in a straight line, lateral velocity is observed. In order to verify the neutral steering
position, the MCS position data of the straight line experiment (with neutral steering input) is
studied. A small offset in the lateral direction is observed, the displacement is approximately
2% of the longitudinal displacement. This is considered significantly small to assume that the
vehicle is driving in a straight line when the steering angle is in a neutral position.
Then the velocity signals belonging to the straight line experiment are analyzed. Although the
lateral velocity is expected to be equal to zero, an offset is observed. For straight-line driving,
the lateral velocity is much bigger than could result from the small lateral displacement
observed from the position signals. Through an iterative process, the angular offset matrix
ṗab is adjusted until the lateral velocity remains zero for neutral steering input. It is found
that the offset varied over the two test days. Figure 3-6 shows lateral that was measured from
two identical experiments conducted on different days. In the experiment, a sine wave was
applied to the steering servo. At the start of the experiment, the steering is in the neutral
position, and the lateral velocity should be approximately zero. On the first day, the offset
ψe is 0.040 rad (Figure 3-6a), on the second day ψe equals 0.024 rad (Figure 3-6b).
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(a) Experiment 125 (day 1) (b) Experiment 145 (day 2)

Figure 3-6: Calibration of rotational offset ψe of the MCS in the z-direction: lateral velocity
signals resulting from identical experiments performed on two different test days.

3-2 Data Processing

Data processing is a crucial part of system identification. The data that is used later on in
the process first needs to be put in the right form. This section describes the modifications
that have been made to the raw sensor data.

3-2-1 Filtering

Filtering of the raw signals is required to remove sensor noise. Continuing on the work that
was presented in [37], the signals are filtered using the second-order Infinite Impulse Response
Butterworth filter. The primary motivation for this type of filter is that it offers a relatively
small phase delay at high frequencies. The cut-off frequency is set to be 15 Hz. The frequency
response of the Butterworth filter is displayed in Figure 3-7.

(a) Magnitude response (b) Phase response

Figure 3-7: Frequency response of the Infinite Impulse Response Butterworth filter.
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3-2-2 Re-sampling

The measurement signals all have different frequencies. For the identification process, it is
relevant that the signals have an equal amount of data points. Therefore, re-sampling of the
signals is needed.

Table 3-1: List of available data signals and the corresponding sampling frequencies.

Component Signals Frequency
IMU ax, ay, az, ωx, ωy, ωz 100 Hz
ECU uthrottle, usteer 100 Hz
Encoders Vwheel,F , Vwheel,R 50 Hz
MCS x, y, z, φ, θ, ψ 120 Hz

To select a re-sampling frequency, the single-sided amplitude spectra are consulted (Figure 3-
8). The data of experiment 125 is studied, in which a sine-wave steering input was applied to
the vehicle. It is expected that the lateral accelerations will contain the highest frequencies.
The signals of the MCS and IMU are studied. From the original sampling frequencies of
the sensors (Table 3-1), it is concluded that no data extrapolation is required if the re-
sampling frequency is lower than that of the encoders. This way, as much of the original
data as possible can be maintained. In the amplitude spectra, the red dashed line represents
a re-sampling frequency of 40 Hz. It is concluded that no vital information is lost with the
proposed frequency. In the amplitude spectra of the lateral acceleration, frequencies up to
approximately 10 Hz seem to be dominant for both the MCS and IMU signals.

Figure 3-8: Single-sided amplitude spectrum of the filter sensor data of experiment 125.

3-2-3 Aligning

Aligning the data signals is required since each signal has a different starting point. The IMU
gathers data as soon as the experiment begins, the MCS measurements are started manually.
It is reasonable that differences in starting time result from this approach. The relative lag
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between the IMU and MCS signals is calculated based on the cross-correlation of the yaw
rate data signals.

To illustrate the phenomenon, an experiment is selected where the vehicle starts driving in a
straight line (Figure 3-9). At approximately t = 13 seconds, the signals that are retrieved from
the front axis encoder becomes larger than zero. The unaligned MCS signal of the longitudinal
velocity is lagging the BARC approximately 1 second. The relative lag is calculated based on
the yaw rate cross-correlation and is subtracted from the time signal. This process is defined
as the first alignment step.

Although the lag is significantly reduced, there is still a small mismatch observable. To further
improve the alignment of the signals, another iteration of lag calculation based on the cross-
correlation is executed. This time the longitudinal accelerations are compared. The resulting
second alignment accurate resembles the original encoder signal (Figure 3-9).

Figure 3-9: Comparison of the time delay between the IMU and MCS signals for a straight line
driving experiment. Signals are aligned through computation of the cross-correlation between the
signals.

3-3 Conclusions

This chapter discusses the sensory data that is available and elaborates on the required
preprocessing which transform the raw data into the desired format. With regards to this
goal, the following conclusions are formulated.

I Experimental data resulting from previously conducted experiments with a 1 : 10 scaled-
vehicle are available. The data include signals from the Motion Capture System, the
Internal Measurement Unit, and the Electronic Control Unit. The signals provide in-
formation about the position, the lateral and angular velocity, and the acceleration of
the vehicle. Also, the angular velocities of the front and rear axles are obtained.
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I The raw data signals consist of sensor noise and thus require filtering. The Butterworth
filter is found to allow for low-pass filtering, practically without introducing any phase
delay.

I The sensors all use different sampling frequencies. Therefore, re-sampling is required to
transform all signals to the same format. Based on the single-side amplitude spectrum
analysis, it is found that an appropriate sampling frequency is 40 Hz. No extrapolation
of data is required in this case, while maintaining as much of the original data as possible.

I The starting time of the experiments is observed to vary for different sensors. In order to
align the signals, a two-step approach is used. The time difference between two signals
is computed based on the cross-correlation of the signals. First, the time delay based on
the cross-correlation of the yaw rate is computed. Since a small delay remains, another
adjustment based on the cross-correlation of the longitudinal acceleration signals is
made.

After the presented approach, the data is considered to be in the correct format to be used
for parameter identification purposes.
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Chapter 4

Parameter Identification

After having processed the experimental data, the next step is the actual parameter identi-
fication. The models that are discussed in chapter 2 are general expressions, applicable to
a wide variety of different vehicles. System-specific parameter identification is required to
guarantee that the model is matching the dynamics of the vehicle of interest. The following
chapter of this work determines the unknown model parameters which match the identified
model to the dynamics of the scaled vehicle.

Section 4-1 provides an overview of the measurements and experiments that are carried out
to find the model parameters. The chapter continues with the validation of the identified
model in section 4-2. Section 4-3 proposes two modifications to the model that yields a better
match between the simulated dynamics and the validation data. An overview of the most
important findings is presented in 4-4.

4-1 Parameter Estimation

In the models that are presented in chapter 2, multiple variables appear that are unknown to
this point. Consider the expression of the Dugoff tire model (2-7). In order to compute the
tire forces, the longitudinal stiffness Cλ, the lateral stiffness Cα and the friction coefficient
µ needs to be determined. Concerning the expression of the single-track model (2-21), it
is vital to estimate the distances between the axles and the Center of Gravity (COG) (lF ,
lR), the mass of the vehicle (m), and the mass moment of inertia (Iz). Finally, the steering
angle is present in both the tire model and the vehicle model. Only the input signal to the
steering servo is available from the experimental data. Therefore, an accurate description of
the input-output relationship of the steering mechanism needs to be determined.

This section elaborates on the process of estimating the above-described variables. The
methodology is discussed, and the obtained values are presented.
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4-1-1 Measurements

Multiple features of the Berkeley Autonomous Race Car (BARC) can be measured directly
from the geometrical properties of the vehicle; no experimental data is required for this
purpose. An overview is provided in Table 4-1.

Table 4-1: List of model parameters that are measured.

Symbol Value Description
m 1.986 kg Vehicle mass
lF 0.1265 m Distance between the front axle and the COG
lR 0.1335 m Distance between the rear axle and the COG
L 0.26 m Wheel base
w 0.165 m Track width
rwheel 0.00335 m Wheel radius
mwheel 0.04 kg Mass of a single wheel

The parameters lF and lR logically depend on the location of the COG. The values are
obtained from individually measuring the weights on both axles with weighing scales. The
distance to the front and rear axle are calculated using (4-1). Here Fz,F and Fz,R denote the
normal forces that act on the front and rear tire. The track-width is indicated by L.

lf = L
Fz,R

Fz,F+Fz,R (4-1)
lr = L− lf (4-2)

A parameter that can not be measured directly is the moment of inertia. An alternative
method is described in [17]. The method derives an equation for the mass moment of inertia
from studying the dynamics of a bifilar pendulum. When the BARC is suspended by two
wires and rotated slightly around the z-axis, the motion when released can be described by

θ̈ +
(
Kp

I
θ̇
∣∣∣θ̇∣∣∣+ C

I
θ̇

)
+
(
mgD2

4Ih

)
sin θ√

1− 0.5
(
D
h

)2
(1− cos θ)

= 0. (4-3)

This equation is simplified through the neglect of damping. For small rotation angles θ, the
dynamics read as (4-4). The length of the wires are denoted by h, the distance between the
wires is D, and finally, g is the gravitational acceleration.

θ̈ + mgD2

4hI θ = 0 (4-4)

The movement of the suspended vehicle will be a sine wave with a particular natural frequency
of oscillation ωn. The moment of inertia can, therefore, be computed as:

Ibp = mgD2

4hω2
n

. (4-5)
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The frequency of oscillation ωn is calculated from measuring the time intervals between the
maximum angles of rotation. The detailed estimation is described in appendix B. The afore-
mentioned approach is validated by assuming that the BARC is a cuboid with length L and
width w. The mass moment of inertia of a cuboid is defined by

Ic = m

12
(
L2 + w2

)
. (4-6)

The resulting moment of inertia, denoted by Ic, is within 21% of the value obtained with
the bifilar pendulum method Ibp (Table 4-2). Although this is a significant difference, it is
disputable which method provides the most accurate value. The bifilar pendulum method is
based on more measurements. However, the maximum heading angle θ is approximately π

6 rad
(30◦). This is conflicting with the assumption that the rotation angles are small. However,
it is calculated that this could yield an error of 4.3%. Given the fact that it is challenging to
estimate the length and width of the cuboid accurately, would the BARC be considered as
such, the bifilar pendulum method is considered to be the most accurate.

Table 4-2: Mass moment of inertia values resulting from the bifilar pendulum method (Ibp) and
the cuboid method (Ic).

Symbol Value Description
Ibp 2.25 · 10−2 kg m2 Moment of inertia resulting from bifilar pendulum method
Ic 2.72 · 10−2 kg m2 Moment of inertia resulting from cuboid method

4-1-2 Steering Identification

The Electronic Control Unit (ECU) provides the input signal that was sent to the steering
servo during the experiments. From the motion of the vehicle, the steering angle can be
retrieved. An accurate estimation of the steering angle is relevance since this allows for
determining the tire-related parameters. This will be addressed in section 4-1-3.

Multiple approaches can be applied to determine the relationship between the input of the
steering servo and the actual angle of the front wheels. In this chapter, a dynamic approach
is discussed based on the experimental data of the moving vehicle. The results are validated
with a static identification method. The dynamic identification is considered to yield more
accurate results, as it takes into account the force that acts on the steering mechanism during
vehicle motion. A detailed description of the static steering identification is provided in
appendix B-3.

In the dynamic identification, the relationship between the steering servo input and the front
steering angle is estimated based on the experimental data. The experiments that are selected
for the steering identification are those in which a ramp signal is applied to the steering servo
(Table 4-3). It can be observed that there are significantly fewer experiments for right-hand
corners (negative steering angles). This is motivated by the practical issue that the maximum
steering angle for a right-hand corner is smaller compared to the opposite side. Making the
right corner requires more space which was not available in the testing arena.
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Table 4-3: List of experiments that are used for the dynamic steering identification.

Experiments Maneuver type Steering range
110 Left corner [0, 0.087] rad [0, 5]◦
113, 114 Left corner [0.087, 0.174] rad [5, 10]◦
117, 155, 156, 158, 159, 161 Left corner [0.174, 0.262] rad [10, 15]◦
120 Right corner [−π36 , 0] rad [−5, 0]◦
119 Right corner [−π18 ,

−π
38 ] rad [−10,−5]◦

122 Right corner [−π12 ,
−π
18 ] rad [−15,−10]◦

Based on the Motion Capture System (MCS) signals, the steering angle is computed from
the Ackermann steering expression:

δackermann = (lF + lR) r
Vx

. (4-7)

Nonlinear least-squares fitting is used to estimate the steering angle. The yaw rate r and
longitudinal velocity Vx are obtained from the MCS data.

δ̂d,left = min
(
b1, b2 (uservo − 90.88)

)
(4-8)

δ̂d,right = max
(
b3, b4 (uservo − 90.88)

)
(4-9)
(4-10)

The estimated steering angle δ̂d (subscript d indicates the dynamic approach) depends on
steering servo input uservo and the fitting coefficients (b1, b2, b3, b4), which are obtained from
least-squares fitting.

min
b1,b2,b3,b4

∥∥eδ(b1, b2, b3, b4)
∥∥2

2 = min
b1,b2,b3,b4

∥∥∥δackermann − δ̂d(b1, b2, b3, b4)
∥∥∥2

2
(4-11)

Figure 4-1 displays the identified steering fit. For left cornering, i.e. positive steering angles,
8110 data points are available, and the root-mean-squared error of the fit is 0.018 rad (1.03◦).
For right cornering, indicated by negative steering angles, 1488 data points are available, and
a fit with a root mean squared error of 0.017 rad (0.95◦) is obtained.

Although it was already observed in practice that the maximum attainable steering angle for
left-hand corners was larger than for right turns, the difference is significant. With maximum
angles of 0.291 rad (16.7◦) and −0.239 rad (−13.7◦) for right and left side, the right-hand
turn is almost 18% smaller.

Steering Delay

From square-steer experiments, it is observed that the steering dynamics introduces a time
delay in the lateral velocity. Therefore a delay of 0.1 second is introduced in the steering
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Figure 4-1: Dynamic steering identification based on the computed ackermann steering angle.

input. The yaw response for the square wave steering input is displayed in Figure 4-2. The
validation data, in purple, is the yaw rate that was obtained from the MCS. The green line
represents the yaw rate that is recorded by the Internal Measuring Unit (IMU) of the vehicle.
The dashed line is the initial response, and the solid line is the response with the time delay.
It is observed that the response of the simulation is more in line with the validation data
when the delay is included

Figure 4-2: Comparison of yaw response between the validation data and the simulation with
unshifted and shifted steering input.
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4-1-3 Tire Identification

The next step towards being able to model the dynamics of the BARC accurately is the
estimation of the tire-related parameters. In section 2-2 it is mentioned that the generated
tire forces are fundamental for the vehicle dynamics. The Dugoff tire model is selected, which
requires the estimation of the friction coefficient µ, the lateral cornering stiffness of the front
and the rear tires; Cα,F and Cα,R respectively.

Due to the coupling of tire forces, tires can only generate a limited amount of force. Since
this is the resultant of the directional tire forces, also the longitudinal tire stiffness is relevant.
The availability of an accurate longitudinal slip signal is a necessity for this purpose (2-5).
Given the fact that the vehicle’s drive-train is a Rear Wheel Drive (RWD) configuration,
only the rear wheels provide significant longitudinal slip values that allow for estimating the
longitudinal tire stiffness.

For the tire identification, steady-state cornering (zero yaw acceleration) is assumed. From
the equations of motion (2-21), the tire forces under steady-state cornering conditions can be
calculated. The longitudinal acceleration is a result of the forces generated at the two rear
wheels. The lateral dynamics are caused by the sum of the lateral forces generated at all
tires. For a single front and a single rear tire, the steady-state (zero yaw acceleration) tire
forces are expressed as:

Fx,R,ss = 1
2m (u̇− vr) , (4-12)

Fy,F,ss = 1
2

lR
lF+lRm (v̇ + ur) , (4-13)

Fy,R,ss = lF
lR
Fy,F,ss. (4-14)

The equations described above are based on the assumption that the steering angle is signif-
icantly small such that cos(δ) = 1. The maximum steering angle during the experiments is
found to be 0.288 rad (16.50◦), which introduces an error of 4.12%. From (2-5) and (2-6), the
steady-state longitudinal and lateral slip values are computed.

αF,ss = δ̂ − tan−1
(
v+lF r
u

)
(4-15)

αR,ss = − tan−1
(
v−lRr
u

)
(4-16)

λi,ss = rwheel·ωwheel,i−u
max(rwheel·ωwheel,i, u) i = {F,R} (4-17)

Table 4-4: Overview of the experimental data that is used for the tire identification.

Experiments Description
155, 158, 161, 163 Increasing steering angle, constant longitudinal velocity
165, 167 Constant steering angle, increasing longitudinal velocity
104, 105, 108 Vehicle accelerates in a straight line
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Rear wheels

Since the BARC is rear-wheel driven, it is more convenient to use the rear axle to determine
the friction coefficient µ. The longitudinal experiments are limited. Any slip at the driven
wheels would be more visible at the rear wheels than at the front wheels.

The tire parameters are obtained using the nonlinear optimization toolbox of Matlab. The
tire forces calculated from (4-12). The steady-state values of the longitudinal and lateral slip
are inputs to the Dugoff tire model. The friction coefficient µ and tire stiffness coefficient
Cλ,R and Cα,R result from the nonlinear least-squares fitting (4-18).

min
x

∥∥eFR (x)
∥∥2

2 = minx
∥∥∥[Fx,ss,R, Fy,ss,R]− fDugoff (x1, x2, λR, αR, x3, Fz,R

)∥∥∥2

2
(4-18)

x1 = Cλ,R (4-19)
x2 = Cα,R (4-20)
x3 = µ (4-21)

With,

λR =



λR,ss(1)
...

λR,ss(Nlon)
0
...
0


, αR =



0
...
0

αR,ss(1)
...

αR,ss(Nlat)


, Fx,R =



Fx,R,ss(1)
...

Fx,R,ss(Nlon)
0
...
0


, Fy,R =



0
...
0

Fy,R,ss(1)
...

Fy,R,ss(Nlat)


(4-22)

From the structure of the above described matrices it becomes apparent that the tire identi-
fication is performed under the assumption of pure longitudinal and lateral dynamics. The
longitudinal experiments (100, 105, 108) provide Nlon data points. The lateral experiments
(155, 158, 161, 163, 165, 167) together provide Nlat data points. Therefore, the vectors λR,
αR, Fx,R and Fy,R have dimension R(Nlon+Nlat)×1.

The resulting coefficients are listed in Table 4-5. Based on 7176 data points, the root-mean
squared error is 0.58 N. The fit of the tire curves are displayed in Figure 4-3

Table 4-5: Tire parameters resulting from the rear tire identification.

Symbol Value Description
µ 0.57 Tire-road friction coefficient
Cλ,R 19.57 N rad−1 Rear tire longitudinal tire stiffness
Cα,R 39.65 N rad−1 Rear tire lateral cornering stiffness
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(a) Longitudinal direction (b) Lateral direction

Figure 4-3: Tyre identification fit of the rear wheels. Based on 7176 data points, the root-mean
squared error is 0.58 N.

Front wheels

The friction coefficient µ that was obtained from the rear wheels are used to estimate the front
wheel coefficients. Since the front wheels are non-driven, the longitudinal slip is marginal,
which makes it more challenging to estimate a relationship between slip angles and the re-
sulting longitudinal tire forces. Therefore, the rear longitudinal tire stiffness is also used for
the front wheels.

The nonlinear least squares problem for the front tires is formulated as:

min
x

∥∥eFF (x)
∥∥2

2 = minx
∥∥∥∥[Fx,F , Fy,F ]− fDugoff (Cλ,F , x, λF , αF , µ, Fz,F)∥∥∥∥2

2
(4-23)

x = Cα,F (4-24)

Where,

λF =


0
...
0

 , αF =


αF,ss(1)

...
αF,ss(Nlat)

 , Fx,F =


0
...
0

 , Fy,F =


Fy,F,ss(1)

...
Fy,F,ss(Nlat)

 (4-25)

Since the longitudinal tire stiffness is not identified for the front tire, only the experiments that
focus on the lateral dynamics are used. The vectors λF , αF , Fx,F and Fy,F have dimension
RNlat×1. The resulting coefficients are listed in Table 4-6. Based on 6797 data points, the
root-mean squared error is 0.17 N. The fit of the tire curve is displayed in Figure 4-4.

From Figure 4-4 unexpected results are observed for the experiments 165 and 167. Positive
lateral tire forces are found to correspond with negative lateral slip angles. It is assumed that
this is caused by offsets in the MCS measurements.
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Figure 4-4: Tyre identification fit of the rear wheels. Based on 6797 data points, the root-mean
squared error is 0.17 N.

Table 4-6: Tire parameters resulting from the front tire identification.

Symbol Value Description
Cα,F 30.652 N rad−1 Front tire lateral cornering stiffness

4-2 Model Validation

The identified model is validated based on three experiments. The primary motivation for
selecting these specific experiments is that high motor power and large steering angles are
combined (Table 4-7). This way, the tires are pushed towards the limits of friction. When
the model can accurately describe the dynamics of the vehicle during these experiments, the
model is considered to be suitable for optimization purposes. Although the tire identification
was performed based on the tire forces, the dynamics of the vehicle are assessed to validate
the identified model. If the model is capable of accurately describing the generation of tire
force, it is expected that the motion that results from the forces is a match with the validation
data.

Table 4-7: Overview of the experiments that are used for the validation of the identified model.

Code Experiment Description
A Sine-steer Fx,R 2.25 N - δ sine with amplitude 0.44 rad (25◦) and f = 0.5 Hz
B Steer-ramp Fx,R 2.7 N - δ gradually increases 0.17− 0.44 rad (10− 25◦)
C Force-ramp Fx,R gradually increases 1− 3.75 N - δ 0.26 rad (15◦)
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Experiment A: sine-steer maneuver

From Figure 4-5 it is concluded that the model accurately described the dynamics of the
BARC for the sine-steer maneuver that is specified in Table 4-7. Although the peak values of
the side-slip angle are not exactly matched, probably due to a small offset in lateral velocity,
the yaw rate is followed more closely.

Figure 4-5: Experiment A: Comparison between the validation and simulation data based on the
side-slip angle β and the yaw rate r.

Experiment B: steer-ramp maneuver

The comparison for the increasing steering angle maneuver is displayed in Figure 4-6. For this
experiment, the side-slip angle resulting from the simulation is different from the validation
data. Where the validation data shows a positive body side-slip angle as soon as the steering
input is applied, the simulation side-slip angle becomes positive only 20 seconds later. In the
right graph of Figure 4-6, a close match is observed for the yaw rate signals.

The tire side-slip angles are displayed in Figure 4-7. It is contradicting that the simulation
slip angles are higher than the validation data since this would imply higher lateral tire forces,
thus higher lateral velocity and therewith an increased body side-slip angle.

Experiment C: force-ramp maneuver

During the final experiment, both the body side-slip angle and yaw rate become oscillatory,
unstable Figure 4-8. The cause is found in the longitudinal slip of the rear tire Figure 4-9.

Around t = 23 s, the longitudinal slip ratio becomes equal to 1, indicating that the rear tire
starts spinning. The vehicle loses grip and spins out of control.
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Figure 4-6: Experiment B: Comparison between the validation and simulation data based on the
side-slip angle β and the yaw rate r.

Figure 4-7: Experiment B: Comparison between the validation and simulation data based on the
front αF and rear lateral slip angle αR.

Assessment of the fitting quality

Studying the comparison of the validation and simulation signals is one method to conclude on
the quality of the identified model. A more value-based approach is to compute the Variance
Accounted For (VAF) and Root Mean Squared Error (RMSE). For the three experiments,
values are listed in Table 4-8.

Similar conclusions are drawn. Both the VAF and RMSE are decent for experiment A. For
experiment B, the results are reasonable, but for experiment C, the model is not an accurate
description of the validation data.
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Figure 4-8: Experiment C: Comparison between the validation and simulation data based on the
side-slip angle β and the yaw rate r.

Figure 4-9: Experiment C: Comparison between the validation and simulation data based on the
rear longitudinal slip ratio λR.

Table 4-8: Assessment of the fit between the validation and simulation data: VAF and RMSE
for body sideslip angle and yaw rate signals.

Code VAF β RMSE β VAF r RMSE r

A 86.91% 0.014 rad (0.79◦) 99.34% 0.103 rad (5.90◦)
B 64.65% 0.018 rad (1.06◦) 97.71% 0.076 rad (4.34◦)
C -1.55 ·103% 0.280 rad (16.03◦) -220.26% 0.975 rad (55.88◦)

4-3 Modifications to the Identified Model

Although the identified vehicle model yields accurate results for a great variety of experiments,
two particular types of experiments are problematic. In these experiments (B & C of Table 4-
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7), lateral maneuvers are executed with the highest motor torque. These conditions push
the tires to the limit of friction, which is interesting with regards to drifting. In this section,
modifications to the identified Dugoff model that increase the accuracy of the vehicle model
in describing the BARC dynamics are discussed.

4-3-1 Increased Friction Coefficient

A deeper understanding of the tire-road interaction is required to understand why the dynam-
ics resulting from the model are so different from the validation data. In figure Figure 4-10,
the effect of the longitudinal slip on the lateral tire force is depicted. The dots correspond to
the steady-state values that are computed from the experimental data (Section 4-1-3). The
lateral tire forces Fy are plotted against the longitudinal slip ratio λ. The dots are categorized
based on the value of the steady-state lateral slip angle α. The lines are obtained from the
Dugoff tire model. For a specific lateral slip angle, the lateral tire forces are computed for
varying slip ratios. The lines are referred to as constant-α lines. As the graphs show the
lateral tire forces as a function of the slip conditions, it provides insight into the coupling
effect of the tire model.

It is observed that the tire model does not accurately describe the force coupling. The blue
dots denote slip angles between 0 and 0.1 rad, the red dots denote slip angle between 0.1 and
0.2 rad. With the current tire model, some of the data points obtained from the validation
data do not lie within the corresponding region defined by the constant-α lines. Only 58.3%
and 48.6% of the data points of the front and the rear wheel is in the correct region.

Figure 4-10: Coupling effect of the tires. Longitudinal slip λ versus lateral tire force Fy. Blue
dots denote 0 rad ≤ α < 0.1 rad, red dots denote 0.1 rad ≤ α < 0.2 rad.

To solve this problem, the friction coefficient is increased. The result of this approach is
displayed in Figure 4-11. The friction coefficient is increased by 10%. This value is the result
of an iterative process. For higher values, the percentage of data points that fit decrease.
With the increased friction coefficient, 59.4% and 84.0% of the data points of the front and
rear validation data are in the correct range. The increase in friction is implemented by
multiplying the friction coefficient in the Dugoff tire model (2-7) with the coefficient eµ = 1.1.
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Figure 4-11: Coupling effect of the tires with increase friction coefficient. Longitudinal slip λ
versus lateral tire force Fy. Blue dots denote 0 rad ≤ α < 0.1 rad, red dots denote 0.1 rad ≤
α < 0.2 rad.

The renewed comparison of the side-slip angle and yaw rate is shown in Figure 4-6. The
simulated body side-slip angle more accurately matches the validation data. Although the
signal is slightly lower than the validation data, the moment at which it becomes positive is
approximately the same.

Figure 4-12: Experiment B with increased µ: Comparison between the validation and simulation
data based on the side-slip angle β and the yaw rate r.

4-3-2 Modified Coupling Effect

The tire characteristics of experiment C are depicted in Figure 4-13. Again, it is observed
that the constant-α lines are lower than the validation data points. Therefore increasing the
friction coefficient would be the first improvement. It is increased with 10%, similar to the
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previous section. Additionally, the coupling effect of the tires is too strong. For increasing
longitudinal slip λ, the decrease in lateral force Fy of the lines is too steep compared to what
is observed from the validation data.

Figure 4-13: Coupling effect of the tires for experiment C. Longitudinal slip λ versus lateral tire
force Fy. Blue dots denote 0 rad ≤ α < 0.1 rad, red dots denote 0.1 rad ≤ α < 0.2 rad, yellow
dots denote 0.2 rad ≤ α < 0.3 rad.

In order to solve this problem, the characteristics of the Dugoff model needs to be adjusted. A
modification is proposed that weakens the coupling effect, by introducing a parameter ecoupled.
The parameter is added to the original Dugoff model (2-7). The modified tire model reads
as:

Fx = Cλ
λ

1+λf(ζ), (4-26)

Fy = Cα
tan(α)
1+λ f(ζ), (4-27)

f(ζ) =

(2− ζ)ζ , if ζ < 1
1 , if ζ ≤ 1

, (4-28)

ζ = µFz(1+λ)
2
√
ecoupled·(Cλλ)2+(Cα tanα)2 . (4-29)

From an iterative process of varying the coupling factor and evaluating the percentage of data
points that fit within the iso-lines result in Figure 4-14. The coupling factor ecoupled equals
0.5. For the front and rear, the fit was previously 44.2% and 37.4%. With the combination of
the reduced coupling coefficient and increased friction coefficient, this changes to 58.2% and
56.8%.

The newly obtained dynamics now better match the validation data. The simulated no longer
becomes unstable; both signals are free from oscillations (Figure 4-15). The side-slip angle
is not perfectly matched, but it must be noted that the validation data is obtained under
the assumption of steady-state conditions. Especially on this experiment, which the highest
motor power, this could introduce a mismatch between the simulation and validation data.
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Figure 4-14: Coupling effect of the tires for experiment C with decreased ecoupled. Longitudinal
slip λ versus lateral tire force Fy. Blue dots denote 0 rad ≤ α < 0.1 rad, red dots denote
0.1 rad ≤ α < 0.2 rad, yellow dots denote 0.2 rad ≤ α < 0.3 rad.

Figure 4-15: Experiment C with decreased ecoupled: Comparison between the validation and
simulation data based on the side-slip angle β and the yaw rate r.

Selection of Tire Model Modification
In the previous sections, two different approaches are discussed that yield more accurate
results for specific experiments. This section will evaluate the effect of these modifications
on the three experiments. In addition to the comparison that is already made without any
modification to the tire model, the following scenarios are considered.

1. Only the friction coefficient is increased
(
eµ = 1.1, ecoupled = 1

)
2. Also the tire coupling effect is weakened

(
eµ = 1.1, ecoupled = 0.5

)
For each scenario, the experiments are simulated with the corresponding modification to the
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tire model. The VAF and RMSE are computed and listed in Table 4-9.

Increasing the friction coefficient (scenario 1) increases the VAF and decreases the RMSE
values for all the experiments. For experiment C, however, the values are still unsatisfactory.
As was previously concluded, the combination of the increased friction coefficient and the
modified coupling parameter achieves satisfactory results. From Table 4-9 it is observed that
even for experiment C2 the VAF and RMSE values are now in of the same order of magnitude
as the other experiments. Given the fact that the results of A1 and B1 are approximately
equal to the values obtained in A2 and B2, this modification will be used throughout the
remaining of the research.

Table 4-9: Assessment of the fit between the validation and simulation data for varying tire
model modifications: VAF and RMSE for body sideslip angle and yaw rate signals with adjusted
Dugoff model.

Code VAF β RMSE β VAF r RMSE r

A 86.91% 0.014 rad (0.77◦) 99.34% 0.103 rad (5.90◦)
A1 92.15% 0.012 rad (0.67◦) 98.98% 0.128 rad (7.35◦)
A2 92.18% 0.012 rad (0.67◦) 98.98% 0.128 rad (7.32◦)

B 64.65% 0.018 rad (1.06◦) 97.71% 0.076 rad (4.34◦)
B1 77.76% 0.008 rad (0.44◦) 97.19% 0.093 rad (5.32◦)
B2 76.15% 0.007 rad (0.41◦) 97.32% 0.089 rad (5.07◦)

C -1.55e+03% 0.280 rad (16.03◦) -220.26% 0.975 rad (55.88◦)
C1 -939.54% 0.218 rad (12.48◦) -123.00% 0.808 rad (46.29◦)
C2 82.94% 0.027 rad (1.54◦) 96.19% 0.112 rad (6.41◦)

4-4 Conclusions

The purpose of this chapter is to determine the unknown model parameters such that the
identified model matches the dynamics of the scaled vehicle. This is done either through direct
measurements or through numerical parameter estimation. In this chapter, it is described
that:

I Several model parameters are directly measured. This includes the mass of the vehicle,
the location of the center of gravity, the mass moment of inertia, the wheel radius, and
the mass of each wheel.

I The steering identification uses the experimental data in which the vehicle performed
various maneuvers. The steer relation is identified based on the Ackermann steering
angle with nonlinear least-squares fitting. For positive steering angles, 8110 data points
are available, and the root-mean-squared error of the fit is 0.018 rad (1.03◦). For negative
steering angles, 1488 data points are available, and a fit with a root mean squared error
of 0.017 rad (0.95◦) is obtained.
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I Nonlinear least-squares curve-fitting is applied to determine the directional tire stiffness
of the front and rear tires, as well as the friction coefficient. The obtained root-mean-
squared error for the rear wheels is 0.58 N, based on 7176 data points. The fit of the
front wheel yield a root-mean-squared error is 0.17 N, based on 6797 data points.

I Based on the validation with experimental data, it is concluded that modifications to
the tire model are required. Increasing the friction coefficient and decreasing the force
coupling effect of the model yields an accurate description of validation data. With the
proposed modification, the dynamics of the scaled vehicle are closely approximated.
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Chapter 5

Steady-State Equilibrium Analysis

So far, the previous chapters have focused on establishing a model that accurately describes
the dynamics of the scaled vehicle. This chapter studies the advantages of drifting over
normal driving under steady-state conditions. The purpose of this chapter is to deepen the
understanding of the differences between normal driving and drifting.

The equilibria of the system are discussed in 5-1. The stability of these points is analyzed
through the construction of the phase portraits in section 5-2. In order to comment on
the controllability of the equilibria, an analysis based on the Controllability Grammian is
discussed in section 5-3. Section 5-4 concludes with an overview of the findings.

5-1 System Equilibria

Starting from the equations of motions, one can analyze the steady-state behavior of the
system by setting the state derivatives equal to zero. The authors of [12] showed that this
approach allows to find the steady-state cornering equilibria of a vehicle. Three types of
cornering can be identified. As was discussed in the introduction (Chapter 1), vehicle motion
can be categorized by the side-slip angle β. The analysis of this chapter considers two groups:

• β ≥ 0 Normal driving equilibria

• β < 0 Drift equilibria

In order to differentiate based on the side-slip angle, the expression of the single-track model
of (2-24) is used in this chapter.

u̇ = 1
m2Fx,R + ruβ (5-1)

β̇ = 1
mu

(∑
Fy,F + Fy,R

)
− r (5-2)

ṙ = 1
Iz

(∑
lFFy,F −

∑
lRFy,R

)
(5-3)
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To find the steady-state equilibria, the system inputs and side-slip angle that bring the state
derivatives to zero need to be obtained. A nonlinear least-squares problem is formulated that
is solved using the nonlinear optimization toolbox of Matlab.

min
δ,Fx,R,β

∥∥∥∥[u̇ β̇ ṙ
]T ∥∥∥∥2

2
(5-4)

The tire forces are computed using the identified Dugoff model of the previous chapter. The
modifications that were proposed in section 4-3 is also incorporated. The nonlinear least
squares problem (5-4) is solved for a range of cornering radii and velocities. In order to find
the normal equilibria, the initial variables are defined as δ0 = π

18 rad (10◦), Fx,R,0 = 0 N,
β0 = 0 rad. The values corresponds to the motion that is expected for the normal equilibria;
low tire forces and a positive steering angle. In case of the drift equilibria, negative side-slip
angles combined with negative steering angles and tire saturation is expected. Therefore the
initial values are in this case defined as: δ0 = π

18 rad (10◦), Fx,R,0 = 2 N, β0 = −π
6 rad

(−30◦). Starting from the initial values, the non-linear least squares algorithm converges to
the equilibria by minimizing (5-4).

Figure 5-1: System equilibria for a 1-meter radius left-hand corner. Equilibria with a positive
side-slip angle are indicated by the blue asterisks, the red triangles represent drift equilibria.

An overview of the equilibria for a 1-meter radius left-hand corner is displayed in Figure 5-1.
The distinction is made between equilibria with a zero or positive body side-slip angle (blue
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asterisks) and equilibria with a negative side-slip angle (red triangles). The equilibria are
plotted for increasing velocity along the corner curvature, which is defined as:

V =
√

(u)2 + (v)2. (5-5)

What stands out is the relationship between the cornering velocity and the steering angle. For
velocities up to 2 m/s the steering angle gradually increases. After this point, the relationship
is nonlinear. When the cornering velocity is further increased, the equilibrium steering angle
decreases and eventually becomes negative. The vehicle is drifting at this point, indicated
by the negative body side-slip angles and saturated rear tires. Interesting to note that the
highest yaw rates can be obtained at the negative side-slip equilibria.

5-2 Phase Portraits

Finding the system equilibria is one, but it does not provide any information about the sta-
bility at and around these points. Insights into the stability of the equilibria can be obtained
through the computation of the phase portraits. The system is linearized at an equilibrium,
and the system responses following from small perturbations with respect to the equilibrium
state values are analyzed. In the current form, the Dugoff tire model consists of a disconti-
nuity (2-7). This prevents from directly linearizing the vehicle model. The discontinuity in
f(ζ) is displayed in Figure 5-2. A continuous approximation of f(ζ) is constructed following
the approach that is presented in [32].

Figure 5-2: Discontinuity of the Dugoff Tire Model: f(ζ) versus ζ.

Following this method, the discontinuous function f(ζ), over the domain
[
ζ0, ζf

]
, can be

divided into two continuous functions Ψ0 and Ψ1.

Ψ0 = ζ (2− ζ) (5-6)
Ψ1 = 1 (5-7)
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The domain of f(ζ) is split into two partition domains by the discontinuity point ζ1 = 1. In
the first partition interval [ζ0, ζ1], f(ζ) is described by Ψ0, in the second partition interval[
ζ1, ζf

]
by Ψ1. The approximation Ω(ζ) of f(ζ) over the whole domain

[
ζ0, ζf

]
is formulated

as:

Ω(z) = F0(ζ) + F1(ζ)χ(ζ, ζ1), (5-8)

where χ(y, ζ1) represents a connection function at the discontinuity point ζ1.

χ(ζ, ζ1) = tanh


( ζ − ζ0

ζf − ζ0

)2(
ζ − z1
ζf − ζ0

)(
ζf − ζ
ζf − ζ0

)2
−1

 (5-9)

Furthermore, F0(z) and F1(z) are auxiliary functions obtained from solving the linear system
of equations:

[
S0,0 S0,1
S1,0 S1,1

] [
F0(ζ)
F1(ζ)

]
=
[
Ψ0(ζ)
Ψ1(ζ)

]
. (5-10)

The coefficients S0,1 and S0,1 represent the average values of the connecting function χ over
the partition intervals, [ζ0, ζ1] and

[
ζ1, ζf

]
respectively.

S0,0 = 1 (5-11)
S1,0 = 1 (5-12)
S0,1 = 1

ζ1−ζ0

∫ ζ1
ζ0
χ(ζ, ζ1)ζ (5-13)

S1,1 = 1
ζf−ζ1

∫ ζf
ζ1
χ(ζ, ζ1)ζ (5-14)

The resulting approximation is displayed in Figure 5-3. The Variance Accounted For (VAF)
is 100% and the Root Mean Squared Error (RMSE) is 1.09e-16. It is concluded that the
approach successfully constructs an continuous function Ω(ζ) that approximates the Dugoff
term f(ζ).

Now that the model can be linearized, two specific equilibria are studied for a 1-meter radius
left-hand corner (Figure 5-4).

• Normal equilibrium
The vehicle is driving at a cornering velocity of V = 1.71 m/s. The sideslip angle is
positive (β = 0.10 rad), similar to the steering angle (δ = 0.27 rad).

• Drift equilibrium
The cornering velocity is increased to V = 2.35 m/s. The motion is now character-
ized by a negative side-slip angle (β = −0.46 rad) and and a negative steering angle
(δ = −0.21 rad).
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Figure 5-3: Comparison between the original the discontinuity of the Dugoff Tire Model f(ζ)
and the approximation Ω(ζ).

Figure 5-4: Bird-view perspective of two cornering equilibria for a 1-meter radius left-hand corner.

For both the equilibria, normal and drift, the phase portraits are constructed. The equilibrium
values of the side-slip angle and raw rate are perturbed, and the response of the linearized
system resulting from the perturbed states is computed. Combining all the responses for a
range of perturbations results in the phase portraits of Figure 5-5.

From the phase portraits, it is observed that for the normal equilibrium, all the responses
return to the calculated equilibria (indicated by the red dot). Where this equilibrium thus is a
stable equilibrium, the drift corner is found to be an unstable saddle point. When perturbed,
the state trajectories move away from the equilibrium.
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Figure 5-5: Phase portraits of two cornering equilibria for a 1-meter radius left-hand corner. The
body side-slip angle and yaw rate are perturbed from βeq and req. The red dot indicates the
equilibrium point.

5-3 Controllability Grammians

To obtain more information regarding the controllability of the equilibria, the controllability
matrices are computed. All equilibria are found to be controllable, based on the observation
that the controllability matrix has full row rank. To get a broader understanding, rather than
the binary statement of controllability, an approach based on the Controllability Grammian
is proposed.

If the linearized has an A-matrix that is Routh Hurwitz, the Controllability Grammian CG
is obtained from solving the following Lyapunov equation.

CG =
∫ ∞

0
eAtBBT eA

T tdt (5-15)

ACG + CGA
T = −BBT (5-16)

For the linearized systems where the A is non-Hurwitz, the Controllability Grammian is
computed differently. Under the assumption that A has no eigenvalues on the imaginary axis,
the transformation T is used to decouple the system [25].

[
TAT−1 TB
CT−1 0

]
=

A1 0 B1
0 A2 B2
C1 C2 0

 (5-17)

In this decoupled system A1 is stable and A2 is anti-stable. Based on the structure of (5-17),
two individual Lyapunov functions are solved (5-18). The Controllability Grammian CG is
now formed from the solutions to these Lypunoc equations and the transformation matrix T
(5-20).
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A1P1 + P1A
T
1 +B1B

T
1 = 0 (5-18)

A2P2 + P2A
T
2 +B2B

T
2 = 0 (5-19)

CG = T−1
[
P1 0
0 P2

] (
T−1

)T
(5-20)

The eigenvalues and eigenvectors of the Controllability Grammian contain information about
the controllability. The eigenvectors corresponding to a normal and a drift equilibrium are
displayed in Figure 5-6. The direction of the eigenvector ξi, corresponding to the largest
eigenvalue λi, is the direction in which the system is most controllable [43].

Figure 5-6: Eigenvectors of the Ccontrollability Grammian for a 1-meter radius left-hand corner.

The eigenvalue λi thus indicates how easy the system can be controlled in the corresponding
direction ξi. When the eigenvalues are approximately the same size, it requires roughly the
same input energy to control the system in the direction of each eigenvector. If there is a
large difference in eigenvalues, the controllability in each of the directions varies significantly.
Note that the system still can be steered in each direction; it merely will require more input
energy to move into some directions.

Consider the example of a supermarket pushcart. Imagine that the caster wheels are fixed
such that the cart can move freely in the longitudinal direction. In this situation, it is easy
to move the vehicle longitudinally. However, the force that is required to move the cart in
the lateral direction is significantly bigger. For a specified amount of force, the displacement
that can be achieved in the longitudinal direction is larger than in the lateral direction.
Furthermore, the ratio of the eigenvalues provides information about the robustness of the
system. In the example of the pushcart, lateral movement can be achieved by applying a
large force. When this force is applied with an offset (under a small angle), the longitudinal
component of the force will yield large longitudinal displacement as a result of the difference
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in resistance. When there is a dominant eigenvalue, the system can be subject to robustness
issues in the direction of the other eigenvectors.

The ratio between the lowest and the highest eigenvalue of the controllability is computed.
For a specific equilibrium, it indicates how close the degree of controllability in each direction
is. The results for the left-hand, 1 meter radius corner are shown in Figure 5-7. The ration
is defined as λmin

λmax
. As smaller ratios are observed for normal equilibria, it is concluded that

the difference between the eigenvalues is larger at these points. The degree to which there
exist a dominant direction is lower for drift equilibria. It is assumed that, during a drift, it is
easier to steer the system in the direction of each eigenvector ξi.

Figure 5-7: Visualization of the eigenvectors of the Controllability Grammian for two equilibria
for a 1-meter radius left-hand corner.

5-4 Conclusions

This chapter studies the advantages that drifting poses on vehicle maneuverability under
the assumption of steady-state conditions. The analysis specifically focuses on the identified
model of the scaled vehicle. The most important findings are presented in this section.

I Compared to normal equilibria, drifting equilibria are characterized by higher cornering
velocities and higher yaw rates. Additionally, the rear tires are at the saturation limit.
The concept of force coupling implies increased controllability of the vehicle during a
drift.

I From the phase portraits, it is concluded that drifting is an unstable equilibrium, normal
equilibria are found to be stable. While the vehicle will converge towards a normal
equilibrium, it is more challenging to maintain the drift motion.
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I The Controllability Grammian revealed that during drifting, the ratio of the eigenvalues
is smaller compared to normal equilibria. A small ratio indicates that there is a main
direction of response, and other directions are subject to robustness issues.
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Chapter 6

Dynamic Trajectory Optimization

In chapter 5, the benefits of drifting were derived under steady-state conditions. The remain-
ing research question is whether the same benefits become apparent in a dynamic driving
scenario. This chapter describes the driving scenario and explains how to formulate this
scenario in an optimization problem.

Section 6-1 present the scenario and elaborates on the assumptions that are made. Section
6-2 explains how this driving scenario is written into a multi-objective optimization problem.
Section 6-3 introduces the structure that is used to solve the optimization. The conclusions
are formulated in Section 6-4.

6-1 Single Corner Scenario

The focus is narrowed to a single corner scenario. The vehicle should negotiate a π
2 rad (90◦)

corner. At the start and the end of the maneuver, the vehicle should be in a stable driving
situation. A schematic overview of the maneuver is presented in Figure 6-1. The desired
trajectory is an arc with constant radius R, and the center located at (xc, yc). The vehicle is
initially driving in a straight line, with an initial velocity Vinit. The initial steering angle is
0 rad, the yaw rate and side-slip rate at the start and end time should be equal to 0 rad/s

The single-corner scenario is selected since it captures the relevant aspects of driving. The
maneuver starts with steady-state conditions. When the vehicle steers into the corner tran-
sient motion is observed, and eventually, steady-state cornering is reached. At the end of
the corner, the vehicle returns to steady-state driving through another segment of transient
motion. The advantage of this maneuver lies in the close resemblance with the identified cor-
nering equilibria of chapter 5. The vehicle is expected to reach steady-state cornering along
the corner. Through variation the desired cornering velocity, specific steady-state cornering
equilibria can be matched.

Assumptions
Before the optimization problem can be formulated, the boundaries need to be defined. This
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Figure 6-1: Schematic representation of the dynamic driving scenario.

section serves that purpose. Concerning the dynamic driving scenario, the following assump-
tions are made.

• Constant µ is assumed during the maneuver
In reality, the amount of friction between the tire and the road surface will constantly
change. Throughout the optimization, the friction (unless stated differently) will be
equal to the value obtained in chapter 4. As this coefficient is estimated based on mul-
tiple experiments, it is considered to be an accurate estimation to simulate maneuvers
that correspond to real-life experiments performed with the scaled vehicle.

• Longitudinal wheel dynamics neglected
It is assumed that there is no longitudinal wheel slip since the main focus is to study
the lateral dynamics. The rotational velocity of the tire is considered to be equal to the
velocity of the wheel hub. The identified Dugoff model is slightly modified to account for
this simplification. In the absence of longitudinal slip λ, the effect of tire force coupling
is included through the use of derating factor η [20].

η =
√

(µFz)2−F 2
x

µFz
(6-1)

As the longitudinal force increases, η decreases from 1 to 0. The scenario in which
η = 0 corresponds to the situation where the total attainable tire force is applied in the
longitudinal direction. The lateral tire force is then calculated as:

Fy = Cα tan (α) f(ζ) (6-2)

f(ζ) =

ζ (2− ζ) if ζ < 1
1 else

(6-3)

ζ = ηµFz
1

2
√

(Cα tan(α))2
. (6-4)
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• Limits are imposed on steering
To make sure that the result of the optimization is a close representation of the dynamics
of the scaled vehicle, limits are imposed on the steering mechanism. It must be noted
that the limits of the steering servo are not exactly copied. The vehicle is currently
equipped with a standard steering servo. Better hardware is expected to yield larger
steering range and rate. Therefore, some margin is incorporated in the limits. The
maximum steering angle is π6 rad (30◦), the maximum steering rate is 10π

3 rad/s (600◦/s).
This rate corresponds to a steering mechanism that is capable of moving from one end
of the steering range to the other in 0.1 s.

−π6 rad ≤ δ ≤ π

6 rad (6-5)

−10π
3 rad/s ≤ δ̇ ≤ 10π

3 rad/s (6-6)

6-2 Formulation of the Multi-Objective Optimization Problem

The driving scenario is schematically displayed in Figure 6-2. The goal of the optimization
is to find the inputs that make the vehicle track the dotted curved trajectory. In a standard
vehicle, one can control the steering and the throttle. In this work, the steering rate δ̇ and the
longitudinal force on the rear wheels Fx,R are considered to be the input signals. The selection
of the steering rate δ̇ is motivated by the practical benefit that it allows for defining limits
on the steering rate. The optimization is solved for a fixed end time tf . The time domain
is discretized with the fixed time step (tk−1 − tk) of 0.05 s. Furthermore, the maneuver is
divided into two segments. In the first segment t0 ≤ t ≤ t1, the vehicle negotiates the corner.
The time instance t1 is determined based on the satisfaction of the condition ψ + β ≥ π

2 rad
(90◦). After that point, for t1 > t ≥ tf , the cost-function is defined such that the vehicle
drives a straight line.

Figure 6-2: Schematic representation of the optimization. The maneuver is split into two
segments: cornering (t0 ≤ t ≤ tf ) and straight line driving (t1 ≤ t ≤ tf ).
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The performance of the vehicle is evaluated using on a cost-function. Based on the desired
vehicle motion, four relevant terms are identified. The physical meaning of the cost-function
terms varies. However, each term consists of a variable the quantifies the difference between
the observed and desired motion. The time vector is described by the vector t ∈ RN×1.
As a result, the errors will be vectors that have the same dimension as the time vector,
e ∈ RN×1. Suppose that the time vector is divided into the segments t0 ≤ t ≤ t1 ∈ Rn×1

and t1 < t ≤ tf ∈ R(N−n)×1. A weight matrix W is constructed that contains the individual
weights wi (6-7). These weights determine the importance of the error at time step ti to the
total cost-function.

W =



w1 0 . . . 0 0
0 w2 . . . 0 0
...

... . . . ...
...

0 0 . . . wn−1 0
0 0 . . . 0 wn

0

0

wn+1 0 . . . 0 0
0 wn+2 . . . 0 0
...

... . . . ...
...

0 0 . . . wN−1 0
0 0 . . . 0 wN



(6-7)

This section defines the cost-function of the optimization. For each of the cost-function terms,
the relevance concerning the optimization goal is discussed. Furthermore, a brief description
of how the terms depend on the available inputs is added. An extensive elaboration of this
dependency, based on the dynamics of the model, can be found in appendix C. Finally, for
each term, the mathematical expression will be derived.

Position
Based on the desired trajectory, the reference position of the vehicle at each time instance
tk can be computed. Any error from the desired position means that the vehicle is not
negotiating the corner at the reference trajectory. The presented system equilibria (Chapter
5) are computed under the assumption of a constant cornering radius. In order to make a valid
comparison with these equilibria, the curvature

(
κ = 1

R

)
of the vehicle must approximate the

curvature of the equilibria as close as possible.

Before deriving the formula of the error signals, it is relevant to consider how the available
input signals could influence the position of the vehicle. In this section, the position of the
vehicle is defined in the inertial coordinate frame (xinertial,yinertial). The position of the
vehicle in the inertial and the body-orientated reference frame are directly related to each
other (2-1). Since it is more convenient to explain the vehicle dynamics in the body-orientated
frame, the explanation will focus on the longitudinal and lateral position instead of the inertial
position. Both inputs δ̇ and Fx,R can alter the position of the vehicle. Changing the steering
rate will yield in a different heading angle. The other input, the longitudinal force of the rear
tire, obviously can change the position in the longitudinal direction of the vehicle. In the
particular scenario of tire saturation, the longitudinal force can also change the lateral force

M.D. Goldschmeding Master of Science Thesis



6-2 Formulation of the Multi-Objective Optimization Problem 59

that is generated. This allows for changing the lateral position of the vehicle through Fx,R as
well.

Figure 6-3: Schematic overview of the cross-track error between the position of the vehicle and
the reference velocity.

The error of the position is determined by the cross-track error (Figure 6-3). It defines
the shortest distance between the location of the vehicle and the reference trajectory. For
implementation purposes, two different definitions are used. In the first segment, cross-track
error is computed as epos,1 (6-8). It defines the difference between the desired radius of the
corner and the radius that the vehicle is driving with respect to the center of the corner
(xc, yc). The weight matrix Wpos,1 is defined such that this expression only applies to the
first segment.

epos,1 =
√

(xinertial − xc)2 + (yinertial − yc)2 −R (6-8)

Wpos,1 =



1 0 . . . 0 0
0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0
0 0 . . . 0 1

0

0 0


. (6-9)

In the second segment, when ψ + β ≥ π
2 rad (90◦), the vehicle needs to drive in a straight

line. The cross-track error in this segment can be described as the lateral deviation from the
trajectory. The error epos,2 is defined as the difference between the inertial position (xinertial)
and the cornering radius R. The mathematical expression of epos,2 and the corresponding
weight matrix Wpos,2 are:
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epos,2 = xintertial −R (6-10)

Wpos,2 =



0 0

0

1 0 . . . 0 0
0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0
0 0 . . . 0 1


. (6-11)

The cost-function term accounting for the position of the vehicle can then be written as (6-12).
To make sure that all terms of the total cost-function are equally important, the individual
terms will be scaled based on the expected domain of the error terms. The scaling of the
position term is based on an average position error of 0.1 m. With the dimension of the time
vector t ∈ RN×1, the scale factor equals 1

0.1·N . Here, N is the length of the discrete-time
vector.

Jpos = 1
0.1·N

(
eTpos,1Wpos,1epos,1 + eTpos,2Wpos,2epos,2

)
(6-12)

Velocity
The second term in the cost-function is the cornering velocity of the vehicle, which is essential
since this was found to be a differentiator between normal and drifting equilibria (Chapter
5). When the desired velocity is not accurately tracked, the vehicle is negotiating the corner
at a different equilibrium.

The cornering velocity can be changed through both inputs. The rear longitudinal force is
related to the cornering velocity, as it directly changes the longitudinal velocity. Varying the
steering angle with a constant throttle input introduces tire slip and therewith friction, which
also changes the cornering velocity.

The error between the reference velocity and the actual velocity of the vehicle is denoted by
eV (6-13). The vehicle should maintain the reference velocity over the full duration of the
maneuver, thus during both time segments. Therefore, the weight matrix WV is equal to the
identity matrix with dimension RN×N .
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eV = V− Vref (6-13)

WV =



1 0 . . . 0 0
0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0
0 0 . . . 0 1

0

0

1 0 . . . 0 0
0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0
0 0 . . . 0 1



(6-14)

The average velocity error is estimated to be equal to 0.1 m/s. With an error eV of dimension
RN×1, the scaling of the velocity term equals 0.1 · N (6-15). Again, N is the length of the
discrete time vector.

JV = 1
0.1 ·N

(
eTVWV eV

)
(6-15)

Yaw rate
The requirements on the yaw rate only apply to the initial and final conditions. To guarantee
that the vehicle is in a stable driving situation at these time instance, the desired yaw rate
at the beginning and end of the maneuver is zero.
The steering rate changes the yaw rate since it alters the steering angle and therewith the
lateral force of the front tire. As was described in the position section, the rear longitudinal
force affects the yaw rate through rear tire force coupling when the tire is saturated.
Since the desired value of the yaw rate at the two-time instances is zero, the vector er is
defined as (6-16). The weight matrix Wr only has nonzero entries at the top left and bottom
right positions, corresponding to the yaw error at initial (t0) and final time (tf ).

er = r (6-16)

Wr =



1 0 . . . 0 0
0 0 . . . 0 0
...

... . . . ...
...

0 0 . . . 0 0
0 0 . . . 0 0

0

0

0 0 . . . 0 0
0 0 . . . 0 0
...

... . . . ...
...

0 0 . . . 0 0
0 0 . . . 0 1



(6-17)
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As will be explained in the following section, the model that is used in the optimization
consists of integrator-blocks that allow for defining the initial conditions. Therefore, the yaw
rate at t0 can be set equal to zero. The total error er is thus completely determined by the
yaw rate at time tf . In the optimization, the vehicle needs to make a π

2 rad (90◦) corner
within a time frame of 1 s. The average yaw rate that will be observed should therefore
equals π

2 rad/s (90 ◦/s). This value is used to scale the cost-function term Jr:

Jr = 2
π

(
eTr wrer

)
. (6-18)

Side-slip rate
Similar to the conditions imposed on the yaw rate, the requirements for the side-slip rate
only apply to two-time instances. At the start of the maneuver, the vehicle is expected to be
dynamically stable, therefore having zero side-slip rate. The other requirement is that the side-
slip rate is zero at the end of the corner, at the inertial position (xinertial, yinertial) = (R,R).
This is motivated by the idea that a zero side-slip rate at the end of the corner stimulates
steady-state cornering. This would make for a better comparison with the previously obtained
equilibria, which are also based on the assumption of steady-state cornering.

The side-slip rate is dependent on the lateral and longitudinal velocity of the vehicle. It
is evident that the side-slip rate is controllable through both inputs. The side-slip rate is
a function of the longitudinal velocity, the lateral velocity, and their time derivatives. The
steering rate can influence the lateral dynamics. The longitudinal can logically alter the
longitudinal velocity; however, through force coupling also the lateral velocity.

The side-slip rate error vector eβ̇ is equal to the discrete model output β̇. The corresponding
weight matrix Wβ̇ only has entries that equal 1 at the first and last time instance of the first
segment (t0 ≤ t ≤ t1).

eβ̇ = β̇ (6-19)

Wβ̇ =



1 0 . . . 0 0
0 0 . . . 0 0
...

... . . . ...
...

0 0 . . . 0 0
0 0 . . . 0 1

0

0 0


(6-20)

The estimation of the side-slip rate scaling coefficient is set equal to the value that was derived
for the yaw rate. This yields the following cost-function term:

Jβ̇ = 2
π

(
eT
β̇
Wβ̇eβ̇

)
. (6-21)

General Optimization Problem
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The total cost-function is equal to the summation of the scaled individual terms. Given a
time vector t ∈ RN×1, the expressed reads as:

J = qpos · Jpos + qV · JV + qr · Jr + qβ̇ · Jβ̇ (6-22)

= qpos · 1
0.1·N

(
eTpos,1Wpos,1epos,1 + eTpos,2Wpos,2epos,2

)
+ (6-23)

qV · 1
0.1·N

(
eTVWV eV

)
+ qr · 2

π

(
eTrWrer

)
+ qβ̇ ·

2
π

(
eT
β̇
Wβ̇eβ̇

)
(6-24)

Note that additional weights q appear in the expression. These weights provide the possibility
of tuning the cost-function to improve the convergence of the algorithm. The derivation of
the weights values is discussed in the following chapters. Based on the cost-function, a multi-
objective optimization problem is formulated (6-25). The optimization searches those control
inputs δ̇ and Fx,R that minimize the cost-function and satisfies the constraints.

min
δ̇,Fx,R

J = qpos ·
1

0.1 ·N
(
eTpos,1Wpos,1epos,1 + eTpos,2Wpos,2epos,2

)
+

qV ·
1

0.1 ·N
(
eTVWV eV

)
+ qr ·

2
π

(
eTrWrer

)
+ qβ̇ ·

2
π

(
eT
β̇
Wβ̇eβ̇

)
subject to u̇ = 1

m

(
2Fx,R

)
+ vr

v̇ = 1
m

(
2Fy,F + 2Fy,R

)
− ur

ṙ = 1
Iz

(
2lFFy,F − 2lRFy,R

)
u̇0 = 0
u0 = 2
v̇0 = 0
v0 = 0
ṙ0 = 0
r0 = 0∣∣∣δ̇∣∣∣ ≤ 10 · π

6
|δ| ≤ π

6∣∣Fx,R∣∣ ≤ µ
1
2Fz,R

(6-25)

The optimization problem is subject to the dynamics of the single-track model. The expression
that was derived under the assumption or small steering angles is used (2-21). Furthermore,
the initial conditions of the states and their derivatives are included. The final constraints
describe the bounds that are defined for the control inputs of the vehicle.
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6-3 Optimization Structure

Now that the optimization problem is defined, this section addresses the structure that is
used to generate the trajectory. The ultimate goal of the optimization is to find a set of input
signals that make the vehicle negotiate the corner in the best way possible. This basically is
a dynamic inversion problem. However, since the model is too complex to solve the inversion
problem, it is written into a minimization problem. The optimization is subject to a set of
constraints. The most important condition is that the dynamics of the single-track model
are satisfied. This is achieved through using the vehicle model, that was derived in the
previous chapters, to solve a simulation-based optimization. Since the initial conditions of
an optimization algorithm can determine the convergence, it is crucial to evaluate the initial
conditions. For this issue, one could think of two possible solutions. A global-search algorithm
can be used, which evaluates multiple trial points with varying initial conditions. The other
option is to choose the initial conditions wisely, such that convergence, whether it is a drift
equilibrium or not, is stimulated.

The optimization problem as it is formulated above incorporates the vehicle dynamics in
a Simulink-model. The cost-function is computed based on the outputs of this model.
Applying a global-search algorithm on this simulation-based optimization would have an
enormous impact on the computation time. A more elegant approach would be to find an
educated guess of the optimal inputs based on a simplified model. Spline optimization is used
for this purpose. The literature provides various applications for spline optimization as a
path planning method. In aerospace engineering it is used to generate trajectories for quad-
rotor helicopters [6, 36], in vehicle engineering there is a study that addresses the suitability
for a truck-trailer combination [5]. To summarize, the dynamic trajectory optimization is a
two-phase approach (Figure 6-4).

• Spline optimization
The aim of the spline optimization is to initiate the search of the simulation-based
optimization. The time domain signals are parameterized. Starting from a set of ran-
domly generated control points (Px,Py,Pψ,Pδ,PFx,R), the spline optimization outputs
the signals δ̇init and F initx,R . As speed of convergence is considered to be more important
than accuracy, the optimization is based on a simplified cost-function and vehicle model.
The modifications that are made to (6-25) are described in the next chapter.

• Simulation-based optimization.
The spline optimization is based on a simplified optimization problem. The results will
therefore not directly be applicable to the higher fidelity model that was derived in
the previous chapter. The purpose of the simulation-based optimization is to refine the
signal resulting from the spline optimization until the eventual δ̇ and Fx,R are a solution
to the original optimization problem (6-25).

The following chapter describe each optimization step in more detail. The spline optimization
is discussed in chapter 7, the simulation-based optimization is addressed in chapter 8.
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Figure 6-4: Schematic overview of the two phases of the dynamic trajectory optimization.

6-4 Conclusions

This chapter provides a description of the dynamic driving scenario and explains how it is
written into an optimization problem. This section provides the conclusions that are drawn.

I The single corner scenario captures the relevant aspects of vehicle dynamics; it consists
of transient steady-state motion. Since steady-state cornering is part of the maneuver, it
creates the possibility of comparing the dynamic driving scenario with the steady-state
cornering equilibria of chapter 5.

I The single corner maneuver can be written into a multi-objective optimization problem
by defining a cost-function that consists of error terms accounting for the position, the
velocity, the yaw rate, and the side-slip rate. The total cost-function is a weighted sum
of the cost-function terms. Depending on the importance of each term, the weights need
to be defined.

I To achieve convergence of the trajectory optimization in a reasonable time, a two-phase
optimization structure is used. In the first step, a spline parameterization is performed,
based on a simplified model and a modified cost-function. The results of this step are
then used as initial conditions for a higher fidelity simulation-based optimization. The
signals are refined such that the optimization problem of the dynamic driving scenario
is solved and the constraints are satisfied.
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Chapter 7

Spline Optimization

The structure of the dynamic trajectory optimization is discussed in the previous chapter.
The spline optimization is used to obtain initial input signals that result in vehicle motion
that already partly matches the desired maneuver. The main purpose of this approach is to
reduced the time that the simulation-based optimization requires to converge to the solution
in the second phase. This chapter describes how initial input signals can be obtained from
the spline optimization.

Section 7-1 explains the working principle of spline optimization. Section 7-2 discusses which
signals need to be approximated by a spline in order to describe the motion of the vehicle. The
spline optimization is based on a simplified expression of the single-track model. Section 7-3
elaborates on the modifications that are made to the optimization problem that was derived
in the previous chapter. The results of the spline optimization are presented in section 7-4.
Finally, the conclusions are drawn in section 7-5.

7-1 General Working Principle

A spline is defined as the product of several basis functions and spline coefficients. The main
motivation for using splines is that it allows for parameterizing high order signals with a
relatively small amount of spline-coefficients. Consider the expression of the spline segment
Si(τ):

Si(τ) =
[
C1(τ) C2(τ) C3(τ) C4(τ) C5(τ) C6(τ)

]


Pi−2
Pi−1
Pi
Pi+1
Pi+2
Pi+3


. (7-1)
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The spline segment is defined as the summation of the products of the basis functions
Ck(τ), k ∈ {1, . . . , 6} and the control points Pi, i ∈ {−2, . . . , 3}. As an example, the basis
functions of the quintic Bézier-splines are displayed in Figure 7-1. Each function has a unique
shape and is a function of τ , which is defined between 0 and 1. The larger the control point,
the more dominant the corresponding basis function will be in the summation. Through
changing the control points, different higher-order polynomials can be approximated. When
all the control points have the same value, the result of the summation

∑1:6
i Ci(τ) will be a

straight line. For unequal control points, the spline segments are the weighted sum of the
basic polynomials multiplied by the control points. The goal of the spline optimization is to
find the specific combination of control points that result in the spline that match the desired
signal.

Figure 7-1: Overview of the basis functions of the quintic Bézier spline

Various types of spline definitions are described in the literature. The distinction is made
between cubic and quintic splines [31]. The difference between them is the highest order
that is present in the basis functions. The basis functions of the cubic splines are third-order
polynomials, the functions of the quintic splines are fifth-order. Because of these higher-
order terms, quintic spline provides C2 continuity. This implies that the second derivative
of the spline is continuous and smooth. In the scope of the dynamic optimization of this
work, achieving continuity is required as discontinuities in the signals would yield unfeasible
dynamics. Furthermore, the quintic splines are formed by six basis functions, where the
cubic spline only has four. The increased number of basis functions gives more freedom to
approximate a trajectory that satisfies the constraints.

An illustrative example of spline optimization is displayed in Figure 7-2. The spline that
describes the position consists of four segments Si(t). It can be seen that the spline does
not visit all control points. This is caused by the dependency on the surrounding control
points (7-1). Consider, for example, the first segment S1(t). It is a connection between P2
and P3. However, it also depends on the previous two and the following two control points.
The continuity of the position, velocity, and acceleration signals is guaranteed by the fact
that each consecutive spline segments share five control points with the previous segment. As
can be observed in Figure 7-2, both the velocity and the acceleration signals are smooth and
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continuous.

Figure 7-2: Visualization of the C2 continuity provided by the quintic Bézier spline expression.

Quintic Bézier-splines are used in this work. The definition of a single Bézier spline segment
reads as (7-2), the expression is derived from [31].

Si(τ) =
[
1 τ τ2 τ3 τ4 τ5

]
1
5!



1 26 66 26 1 0
−5 −50 0 50 5 0
10 20 −60 20 10 0
−10 20 0 −20 10 0

5 −20 30 −20 5 0
−1 5 −10 10 −5 1





Pi
Pi+1
Pi+2
Pi+3
Pi+4
Pi+5


(7-2)

A typical spline with N segments reads as (7-3). The time interval t is divided in N sub-
intervals, where τ varies from 0 to 1.

z(t) =
[
Sz,1(τ) Sz,2(τ) ... Sz,N (τ)

]
(7-3)

t =
[
τ 1 + τ ... N + τ

]
(7-4)

τ =
[
0 0.1 ... 1

]
(7-5)
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7-2 Spline Expressions

It has been described how the control points belonging to one or multiple spline segments can
parameterize a continuous-time signal. In order to describe the dynamics of the vehicle, five
signals need to be expressed as a spline: the position in the inertial coordinate frame (xinertial
and yinertial), the heading of the vehicle ψ, the steering angle δ and the longitudinal force
Fx,R. All other variables can be written as a function of these signals and the time derivatives.
Assuming N segments, the five basis spline are therefore defined as (7-6). In this chapter,
the inertial coordinate frame is denoted by x and y. The velocities in the longitudinal and
lateral direction are denoted by u and v, respectively.

x(t) =
[
Sx,1(τ) Sx,2(τ) ... Sx,N (τ)

]
(7-6)

y(t) =
[
Sy,1(τ) Sy,2(τ) ... Sy,N (τ)

]
(7-7)

ψ(t) =
[
Sψ,1(τ) Sψ,2(τ) ... Sψ,N (τ)

]
(7-8)

δ(t) =
[
Sδ,1(τ) Sδ,2(τ) ... Sδ,N (τ)

]
(7-9)

Fx,R(t) =
[
SFx,R,1(τ) SFx,R,2(τ) ... SFx,R,N (τ)

]
(7-10)

The first and second time-derivatives of each spline are computed. For example, the deriva-
tives of the x-direction spline are:

ẋ(t) = 1
tf

[
dSx,1(τ)

dτ
dSx,2(τ)

dτ ... dx,SN (τ)
dτ

]
, (7-11)

ẍ(t) = 1
tf

[
d2Sx,1(τ)

dτ2
d2Sx,2(τ)

dτ2 ... d2x,SN (τ)
dτ2

]
. (7-12)

Note that each spline has a set of unique control points. The trajectory of the vehicle is
therefore described by nsplines ·

(
nP + (N − 1)

)
control points. Here nsplines is the number of

basis splines, nP the number of control points needed to define a single spline segment, and
N is the number of segments. The time derivatives are defined by the same control points as
the corresponding basis spline, therefore adding no extra control points. For the remainder
of this chapter, the short notation for the control points will be used (7-13).

Px =
[
Px,1 · · · Px,(np+(N−1))

]T
(7-13)

Py =
[
Py,1 · · · Py,(np+(N−1))

]T
(7-14)

Pψ =
[
Pψ,1 · · · Pψ,(np+(N−1))

]T
(7-15)

Pδ =
[
Pδ,1 · · · Pδ,(np+(N−1))

]T
(7-16)

PF x,R =
[
PFx,R,1 · · · PFx,R,(np+(N−1))

]T
(7-17)
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The body orientated velocities and accelerations can be expressed as a function of the above-
described splines (7-18).

u(t) = ẋ(t) cos
(
ψ(t)

)
+ ẏ(t) sin

(
ψ(t)

)
(7-18)

u̇(t) = du(t)
dt (7-19)

v(t) = −ẋ(t) sin
(
ψ(t)

)
+ ẏ(t) cos

(
ψ(t)

)
(7-20)

v̇(t) = dv(t)
dt (7-21)

7-3 Modified Optimization Problem

The schematic of Figure 7-3 summarizes the goal of the spline optimization. For each set
of control points, the spline that results from these points describes a vehicle motion. A
cost-function is computed to quantify how closely this motion matches the cornering scenario
of chapter 6. The goal of the spline optimization is to find those control points that yield the
lowest objective value.

Figure 7-3: Schematic overview of the spline optimization: the initial input signals δ̇init and
F initx,R are parameterized with by a finite number of control points.

The original optimization problem (6-25) can not directly be applied to the spline optimiza-
tion. In order to reduce the computation time of the spline optimization, the complexity of
the single-track model is reduced. It can be argued that this yields a less accurate description
of the vehicle dynamics. However, as the resulting signals are further refined in the second
optimization phase (Figure 7-3), quick convergence to a solution is considered to be the main
priority. Furthermore, the constraints that were defined needs to be written in terms of the
splines. The optimization problem that was formulated in (6-25) is modified to account for
these changes. The spline optimization can mathematically be formulated as in (7-22).

min
P

J = qpos,spline ·
1

0.1 ·N
(
eTpos,splineepos,spline

)
+

qV,spline ·
1

0.1 ·N
(
eTV,splineeV,spline

)
Anl,eq (P) = 0

AeqP = beq
AineqP ≤ bineq
−1e3 ≤ P ≤ 1e3

(7-22)
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Here, P =
[
Px Py Pψ Pδ PFx,R

]T
represents the vector containing the control points of

the predefined spline (Section 7-2). Furthermore, epos,spline and eV,spline are the cost-function
terms, with corresponding weights qpos,spline and qV,spline. The dynamics of the vehicle are
written into a set of nonlinear equality constraints Anl,eq (P) = 0. The equality constraints
are combined in AeqP = beq. The inequality constraints are denoted by AineqP ≤ bineq.
The splines are bounded by defining minimum maximum values of the control points. The
following sections elaborate on the structure of the modified optimization problem. First the
cost-function is considered, then the constraints are discussed.

Cost-Function
Two important modifications are made with respect to the cost-function (6-25). In order to
reduce the complexity, the maneuver is assumed to consist of one segment. The vehicle is not
expected to drive in a straight line after ψ + β > π

2 (90◦). Instead, the desired motion is a
circular trajectory with a constant radius R. Furthermore, the desired conditions on the yaw
rate and side-slip rate are not included in the cost-function. As both variables are described
by a spline, the desired value at any time step can be formulated as an equality constraint.
Therefore, the remaining cost-function terms are the position and the velocity of the vehicle.

The position error epos,spline is defined as the cross-track error (Figure 6-3) (7-23). Note that
the no weight matrix W is included since the cost-function is not split into two segments.

epos,spline =
√

(x(t)− xc)2 + (y(t)− yc)2 −Rref . (7-23)

Similar to the cost-function term in the previous chapter, eV,spline denotes the difference
between the cornering velocity and the reference velocity (7-24). Again, no weight matrix is
required.

eV,spline =
√
u(t)2 + v(t)2 − Vref . (7-24)

The modified cost-function is defined as the weighted sum of the two terms (7-25). The
weights are denoted by qpos,spline and qV,spline. Following the approach that was presented in
the previous chapter, both terms are scaled by 0.1·N . HereN is the length of the discrete-time
vector.

J = qpos,spline ·
1

0.1 ·N
(
eTpos,splineepos,spline

)
+ qV,spline ·

1
0.1 ·N

(
eTV,splineeV,spline

)
(7-25)

The cost-function is evaluated over a discrete time domain. When the time vector is denoted
by t ∈ RN×1, both epos,spline and eV,spline are vectors with dimension RN×1. The cost-function
J is a function of the control points of each splines.

Nonlinear constraints
The nonlinear constraints account for the variables that are a nonlinear function of the splines.
The state equations of the single-track model are rewritten into (7-26). The concept of
writing system dynamics into spline constraints has been presented in [9, 23]. Note that the
steering angle is not included in the constraints. It is assumed that δ is very small such
that cos (δ) ≈ 1. The justification for using this assumption, and the corresponding errors, is
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previously addressed in chapter 5. Note that instead of r(t), the yaw rate is denoted by ψ̇(t).
The notation is more intuitive in this context since it is the time derivative of the ψ(t) spline.

z1(t) = −u̇(t) + 1
m

(
2 · Fx,R(t)

)
+ v(t) · ψ̇(t) (7-26)

z2(t) = −v̇(t) + 1
m

(
2 · Fy,F (t) + 2 · Fy,R(t)

)
− u(t) · ψ̇(t) (7-27)

z3(t) = −ψ̈(t) + 1
I

(
2 · lR · Fy,F (t) + 2 · lF · Fy,R(t)

)
(7-28)

The tire forces are described by the linear tire model (7-29). The tire model coefficients Cy,F ,
Cy,R, result from the tire identification. In addition to the Dugoff tire model, the identification
steps are also performed for the linear tire model.

Fy,F (t) = Cy,F · αF (t) (7-29)
Fy,R(t) = Cy,R · αR(t) (7-30)

The lateral slip angles at the front and the rear tire are defined as:

αF (t) = δ − v(t)+lF ·ψ̇(t)
u(t) , (7-31)

αR(t) = −v(t)−lR·ψ̇(t)
u(t) . (7-32)

In addition to the state equations, the reference cornering velocity is included in the nonlinear
constraints matrix Anl,eq (P) (7-33).

Anl,eq (P) =
[
z1(t) z2(t) z3(t)

(√
u(t)2 + v(t)2 − Vref

)]
(7-33)

Equality constraints
The equality constraint matrix AeqP contains all the conditions that apply to a single spline
function. The initial position expressed in the inertial reference frame, the initial value of the
heading and the initial steering angle are included. Additionally, the longitudinal force of the
rear tire should initially be zero.

AeqP = beq (7-34)

AeqP =
[
x(0) y(0) ψ(0) δ(0) Fx,R(0)

]T
(7-35)

beq =
[
0 0 0 0 0

]T
(7-36)

Inequality constraints
The inequality constraints allow for defining physical boundaries. The location of the vehicle

Master of Science Thesis M.D. Goldschmeding



74 Spline Optimization

is restricted to −3 m and 3 m for both the x and y direction. The maximum absolute value
of the yaw rate is set equal to π rad/s, which allows the vehicle to rotate 180◦/s. The steering
limits are π

6 rad (30◦). The longitudinal force Fx,R is bounded by the physical limits of the
normal force that act on the rear tire, equal to 2.37 N.

−3 ≤ x(t) ≤ 3 (7-37)
−3 ≤ y(t) ≤ 3 (7-38)
−π ≤ ψ̇(t) ≤ π (7-39)
−π6 ≤ δ(t) ≤ π

6 (7-40)

−2.37 ≤ Fx,R(t) ≤ 2.37 (7-41)

The boundaries are written into the inequality constraint matrix AineqP.

AineqP ≤ bineq (7-42)

AineqP =
[
−x(t) x(t) −y(t) y(t) −ψ̇(t) ψ̇(t) −δ(t) δ(t) −Fx,R(t) Fx,R(t)

]T
(7-43)

bineq =
[
3 3 3 3 π π π

6
π
6 2.37 2.37

]T
(7-44)

Bounds
The bounds of the splines apply to the control points since these are optimized. The op-
timization is solved with a global search algorithm (Appendix E) which evaluates multiple
initial control points. Any trial point that has at least one initial control point that exceeds
the bound will not be evaluated. It could be possible that a trial point that initially violates
the bounds can converge to a local optimum within the bounds. However, evaluating a wider
variety of trial points comes at the cost of increased computation time. Defining the bounds
is, therefore, a trade-off between optimality and computation time. In an iterative process,
the optimization is performed with varying bounds. Each time the time domain response of
the optimization result and computation time are assessed. The best solution to this trade-off
is found to be the bound having a value equal to 1e3.

7-4 Results

To provide the inputs to the simulation-based optimization, the spline optimization is per-
formed for a circular trajectory with reference radius R = 1 m. In the optimization, only a
single spline segment is considered to keep the computational load as low as possible. The de-
sired velocity is Vref = 2 m/s. To further reduce the complexity of the two-phase optimization
approach, only a single set of initial input signals is computed. Although the simulation-based
optimization is performed under varying cornering velocities, the initial signals resulting from
this single spline optimization are used. Computing a specific set of initial signals for each
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optimization scenario can potentially improve convergence. However, this is out of the scope
of this work.

The initial control points of the spline are randomly generated values that lie between the
predefined bounds. The spline optimization is performed with a global search method. A
detailed description of this algorithm is presented in appendix E. The objective function is
evaluated at the time steps of the discrete-time signal t ∈ [0 : 0.05 : 1]. The weights on the
position (qpos,spline) and the velocity term (qV,spline are equal to 1e3. The resulting vehicle
maneuver is displayed in Figure 7-4.

Figure 7-4: Overview of the maneuver resulting from the spline optimization.

Deviations in both the trajectory and the velocity are observed. Instead of traveling along
the circular trajectory, the resulting motion of the vehicle can be described as a single corner
followed by a straight line. It is expected that this is a result of the fact that only a single spline
segment is considered. Supposing that the vehicle drives a perfect circle, the position (and
therewith the velocity and acceleration) in either the longitudinal or lateral direction will be a
sinusoidal signal. The expression of the acceleration spline (7-12) is a third-order polynomial.
Therefore, multiple spline segments are required to approximate a sinusoidal signal. An
increased number of spline segments could improve the optimization results. However, this is
not included in this work.

The control inputs of the vehicle, the steering angle δ and the rear tire longitudinal force Fx,R,
are depicted in Figure 7-5. The steering angle is observed to stay between the defined limits,
which is an indication that the inequality constraints are satisfied. The rear tire longitudinal
force is negative for the majority of the trajectory. This is a direct result of the assumption
that the steering angle is small, implying cos (δ) ≈ 1. When the vehicle steers into the
corner, the lateral slip angle of the tires increase. Lateral tire forces are generated, and the
lateral velocity increases. As the lateral tire forces do not influence the longitudinal dynamics
(7-26), the longitudinal velocity u remains constant. The cornering velocity is defined as
V =

√
u2 + v2, thus negative Fx,R is applied to track the reference velocity.

When the assumption of small steering angles is released, the dynamics of the single-track
model reads as (7-45). Note that the front tire lateral force appears in the expression of the
longitudinal acceleration.
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Figure 7-5: Overview of the control inputs resulting from the spline optimization.

u̇(t) = 1
m

(
2 · Fx,R(t)− 2 · Fy,F · sin δ(t)

)
+ v(t) · ψ̇(t), (7-45)

v̇(t) = 1
m

(
2 · Fy,F (t) · cos δ(t) + 2 · Fy,R(t)

)
− u(t) · ψ̇(t), (7-46)

ψ̈(t) = 1
I

(
2 · lR · Fy,F (t) · cos δ(t) + 2 · lF · Fy,R(t)

)
. (7-47)

Based on these equations, the longitudinal velocity u will decrease when the vehicle enters the
corner. As a result of the non-zero steering angle, the front tire lateral force has a negative
component in the longitudinal direction. Due to the increased slip angles of the tire, the
cornering velocity is expected to decrease. In order to track the reference velocity, a positive
Fx,R needs to be applied. At t = 0.3 s, the steering angle is approximately 0.4 rad (Figure 7-5).
Therefore, the negative longitudinal component of Fy,R is equal to 38.9% (sin (0.4)) of that
force. The linear tire model is used in this optimization, so tire saturation and force coupling
are not incorperated in the model. The result of the spline optimization is expected not to
change significantly. However, it is important to assess the effect on the simulation-based
optimization.

The dynamics of the vehicle were written into nonlinear constraints (7-26). To verify whether
the constraints are satisfied, the splines of the longitudinal velocity, the lateral velocity, and
the yaw acceleration are displayed in Figure 7-6. In addition, the signals that the splines
should equal, according to (7-26), are plotted. If the constraints are satisfied, the two signals
are a perfect match. Any error between the signals indicates that the nonlinear constraints
are not satisfied. This means that the resulting vehicle motion violates the dynamics of the
single-track model at each time step.

The match between the splines and the corresponding constraints is expressed in terms of the
Variance Accounted For (VAF) and Root Mean Squared Error (RMSE) (Table 7-1). For the
spline that describes the longitudinal acceleration, the VAF is too low to state that the spline
optimization is an accurate description of the single-track model.

Based on the analysis of the nonlinear constraints, it is concluded that the spline optimization
is unsuccessful in generating a trajectory that is physically feasible at each time step. Although
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Figure 7-6: Overview of the state derivative (expressed in splines) and the corresponding con-
straints.

Table 7-1: Assessment of the fit between the spline signals and the constraints that describe the
dynamics of the single-track model, based on the VAF and the RMSE

Spline VAF RMSE
u̇ 82.2148% 0.1630 m/s2

v̇ 94.1379% 0.1460 m/s2

ψ̈ 99.9219% 0.3656 rad/s2

the results resemble the desired maneuver, the signals need further refinement to satisfy the
dynamics of the single-track model. This is currently achieved through the model-based
optimization, as discussed in chapter 8. Further improving the spline optimization could
also be an option. The number of segments could be optimized, or a more advanced tire
model could be implemented. Both options increase the complexity of the optimization.
Motivated by the idea that the results are only used as an initialization of the simulation-
based optimization, any modifications to the spline optimization are considered to be potential
subjects for further research.

7-5 Conclusions

The purpose of this chapter is to assess how initial input signals can be obtained from spline
optimization. The following conclusions can be drawn:

I The splines are a parameterization of the time domain signals. Five splines (xinertial,
yinertial, ψ, δ, Fx,R) are sufficient to describe the motion of a moving vehicle. The
dynamics of the single-track model can be expressed as a function of these splines. The
state derivatives are written into nonlinear constraints of the optimization problem.

I To improve the speed of convergence, the original optimization problem is simplified.
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The maneuver is considered to consist of a single segment, which reduces the complexity
of the cost-function. Furthermore, the linear model is used to describe the tire forces.

I Although the vehicle motion that results from the spline optimization resembles the
desired trajectory, the dynamics are unfeasible at some time steps. The nonlinear
constraints are not zero, indicating that the dynamics of the single-track are violated.
However, the results are considered to be suitable for the purpose of initializing the
simulation-based optimization.

I The initial conditions of the simulation-based optimization are obtained from a single
spline optimization. In this scenario the radius is 1 m and the reference velocity is 2 m/s.
This specific initialization is used for all simulation-based optimization scenarios.
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Chapter 8

Simulation-Based Optimization

The previous chapters described the dynamic cornering scenario and the methodology for
obtaining the initial input signals. In this chapter, the simulation-based optimization is
discussed. This chapter studies whether the characteristics of drifting obtained in the steady-
state analysis (Chapter 5) also become apparent in the dynamic driving scenario. The op-
timization is performed for a set of different cornering velocities and under varying friction
conditions. The purpose is to match a subset of the previously obtained cornering equilibria
in terms of dynamics.

Section 8-1 starts with a verification as initialization of the simulation-based optimization.
The objective function of the optimization problem is the weighted sum of four terms. Based
on the sensitivity analysis that is presented section 8-2, the values of the weights are deter-
mined. The results of the optimization are presented in section 8-3. Section 8-4 contains a
discussion about the optimization results. The conclusions are listed in section 8-5.

8-1 Verification of the Spline Initialization

The spline optimization is used to initialize the search of the second optimization step (Fig-
ure 8-1). In order to justify the use of the spline optimization, it is compared with initial
conditions that correspond to a vehicle that drives in a straight line. The optimization problem
(6-25) is solved for both initial conditions. The results are compared based on the objective
function, and the computational load of the optimization (Table 8-1).

The initial input signals resulting from the spline optimization are found to converge to a
lower objective function. This comes with a longer computation time since the algorithm
needs more function evaluations to yield the results. The objective function is considered to
carry the biggest importance. Although this is only a comparison based on a single scenario,
it is assumed that the spline optimization provides initial input signals that are closed to
the output signals resulting from the simulation-based optimization. It is expected that the
spline initialization improves the convergence of the second optimization.
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Table 8-1: Performance of the simulation-based optimization for two scenarios: initial conditions
provided by the spline optimization and initial conditions corresponding to driving in a straight
line.

Metric Straight line Spline
Objective function 0.0487 0.0192
Number of function evaluations 385 594
Computation time 310.96 s 479.86 s

Figure 8-1: Schematic overview of the simulation-based optimization: the initial input signals
are refined such that δ̇ and Fx,R solve the dynamic trajectory optimization.

8-2 Weight Sensitivity Analysis

The cost-function of the optimization problem was a weighted summation of cost-function
terms. This section presents a weight sensitivity analysis that is used to determine the
values of the weights. Although various approaches can be applied, this work sets out to
determine the weights for each cost-function term individually. The order in which the terms
are evaluated is based on the relevance concerning the desired motion. In each step, the best
possible weight for a specific cost-function term is selected. The renewed expression of the
cost-function is then used to analyze the following term.

The most important term is the position since accurately following the trajectory makes it
easier to compare the dynamics with the obtained steady-state equilibria. When considering
a corner with a certain radius, one of the differences between normal and drift equilibria is
the cornering velocity. For this reason, the velocity is the second most important. The yaw
rate and the side-slip rate are about equally important. As the yaw rate is closely related to
a stable driving situation, that term is preferred over the side-slip rate.

The first step of the sensitivity analysis is, therefore, to determine the value of the weight
qpos. The weight is varied in value, and the resulting cost-function term values are compared.
With qpos = {1, 10, 100}, the cost-function used in this step is displayed in (8-1). The weights
are increased on the logarithmic scale to obtain an indication of the ideal order of magnitude
of the weights. Further refinement of the weight values could yield better result but is out of
the scope of this research.

J = qpos · Jpos + JV + Jr + Jβ̇ (8-1)

The resulting cost-function values are listed in Table 8-2. It is concluded that the tracking
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of the trajectory can be improved by increasing the weight of Jpos. For qpos = 10, both the
velocity and yaw rate term decrease as well. When the largest weight is applied, the tracking
error is reduced by 93.30%. This comes at the cost of the other terms. Based on the idea
that decreasing Jpos is the main priority, it is decided that qpos = 100 is set as the weight
of the position cost-function term. This is motivated by the observation that Jr and Jβ̇ can
still be considered significantly small. Besides, the cost-function term of the velocity can be
decreased in the next step of the sensitivity analysis.

Table 8-2: Comparison of cost-function terms for varying weight qpos.

Weight Jpos ∆% JV ∆% Jr ∆% Jβ̇ ∆%

qpos = 1 0.0113 [−] 0.0073 [−] 0.0003 [−] 0.0000 [−]
qpos = 10 0.0032 −71.70 0.0029 −60.48 0.0000 −97.26 0.0000 66.15
qpos = 100 0.0008 −93.30 0.0464 533.99 0.0005 69.03 0.0003 1149.04

The second step of the analysis is to determine the weight qV that is applied to the veloc-
ity cost-function term. The previously derived weight for Jpos is included, resulting in the
following cost-function.

J = 100 · Jpos + qV · JV + Jr + Jβ̇ (8-2)

Table 8-3 shows the results of the varying weight qV . Although the velocity cost-function
term is successfully decreased, it is observed that both Jpos and Jβ̇ suffer from increasing
the weight. To decrease JV as much as possible while minimizing the change of Jpos, it is
decided that qV = 10 is the best trade-off. The additional benefit of choosing this weight over
qV = 100 is that the yaw rate term does not increase.

Table 8-3: Comparison of cost-function terms for varying weight qV .

t

Jpos ∆% Weight JV ∆% Jr ∆% Jβ̇ ∆%

0.0008 [−] qV = 1 0.0464 [−] 0.0005 [−] 0.0003 [−]
0.0026 243.06 qV = 10 0.0086 −81.56 0.0000 −98.31 0.0116 3550.24
0.0034 344.82 qV = 100 0.0002 −99.55 0.0020 286.97 0.0077 2305.90

In the third step of the sensitivity analysis, the weight of the yaw rate terms is varied. The
cost-function then becomes:

J = 100 · Jpos + 10 · JV + qr · Jr + Jβ̇ (8-3)

From the results (Table 8-4) it is found that the weight qr = 10 has a positive effect on all
the cost-function terms except for the term Jβ̇. Further increasing the weight qr yields worse
results for the position and velocity terms, which is undesired given the fact that these terms
have the highest priority. It is decided to select qr = 10.

As a final step, the weight that is applied to the term that accounts for the side-slip rate is
determined. At this point the weighted cost-function reads as:
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Table 8-4: Comparison of cost-function terms for varying weight qr.

Jpos ∆% JV ∆% Weight Jr ∆% Jβ̇ ∆%

0.0026 [−] 0.0086 [−] qr = 1 0.0000 [−] 0.0116 [−]
0.0013 −49.33 0.0020 −76.33 qr = 10 0.0000 −82.93 0.0233 100.50
0.0074 185.37 0.0309 260.05 qr = 100 0.0000 452.37 0.0048 −69.06

J = 100 · Jpos + 10 · JV + 10 · Jr + qβ̇ · Jβ̇ (8-4)

Unsatisfactory results are obtained for every weight qβ̇ (Table 8-5). Jβ̇ is the only term that
decreases, at the cost of the other terms. Given the fact that Jβ̇ has the lowest priority, it is
decided not to increase the weight of this term.

Table 8-5: Comparison of cost-function terms for varying weight qβ̇ .

Jpos ∆% JV ∆% Jr ∆% Weight Jβ̇ ∆%

0.0013 [−] 0.0020 [−] 0.0000 [−] qβ̇ = 1 0.0233 [−]
0.0019 41.15 0.0030 45.93 0.0000 768.83 qβ̇ = 10 0.0000 −99.98
0.0017 28.47 0.0030 45.83 0.0000 300.10 qβ̇ = 100 0.0000 −99.93

Based on the presented results and the described priority of each cost-function term, the
sensitivity analysis concludes that the final cost-function can be expressed as:

J = 100 · Jpos + 10 · JV + 10 · Jr + Jβ̇ (8-5)

8-3 Results of the Dynamic Trajectory Optimization

At this point, the optimization problem (6-25) is formulated, and the weights of the cost-
function are determined. In order to compare the results of the dynamic trajectory optimiza-
tion with the steady-state equilibria, the optimization is solved under varying conditions. It
has previously been concluded that drifting equilibria exist near the saturation limits of the
tire. Two types of experiments are designed to bring the vehicle close to the friction limits.
First, the trajectory optimization is performed for a variety of reference velocities. As the
velocity is gradually increased, drifting is expected to become part of the vehicle motion.
Another set of optimizations are performed in which the friction coefficient is decreased. The
purpose of this analysis is to study what advantages the drift motion offers on low friction
surfaces.

8-3-1 Variation of the Cornering Velocity

The optimization is performed for a range of velocities. The motivation for selecting the
specific range lies in the equilibrium analysis of chapter 5. When narrowing the scope to an
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1 m radius corner, the velocities of the obtained equilibria are between 0.1 and 2.4 m/s. By
choosing the velocity range to be {1.6, 1.8, 2.0, 2.2, 2.4}, both stable and unstable equilibria
should be part of the optimization results (Figure 8-2).

Figure 8-2: Cornering equilibria that are obtained for an 1m radius corner and a cornering velocity
between 1.6 and 2.4 m/s.

Based on the fact that both normal and drift equilibria are within this range, it is expected
that the optimization will yield different types of vehicle motion, depending on the cornering
velocity. For velocities higher than 2.2 m/s it is expected that drift equilibria will be observed.
These will be characterized by negative side-slip angles and rear tire saturation. For some
equilibria also a negative steering angle will be observed.
Table 8-6 presents an overview of the cost-function terms under the different cornering ve-
locities. It is concluded that position and velocity are tracked for all scenarios, except for
V = 2.4 m/s. Furthermore, the optimization is capable of finding solutions that bring the
yaw rate and side-slip rate close to zero. Only for the scenario in which V = 1.8 m/s, the
term Jβ̇ is significantly larger.

Table 8-6: Overview of the cost-function terms that result from the simulation-based optimization
under varying cornering velocities.

V Jpos JV Jr Jβ̇

1.6 0.3728 e-3 0.2368 e-3 0.0036 e-3 0.0983 e-3
1.8 0.0014 0.0036 0.0029 0.2830
2.0 0.0013 0.0020 0.0000 0.0233
2.2 0.0051 0.0471 0.0002 0.0047
2.4 0.0084 0.2463 0.0000 0.0002

The values presented in Table 8-6 only provide a limited view of the optimization results. The
time-domain responses of the vehicle dynamics help to deepen the understanding of the effect
that the cornering velocity has on the maneuverability. In order to maintain the readability of
the chapter, only the vital graphs will be discussed. A complete overview of the optimization
results can be found in appendix F.
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The optimized trajectories are displayed in the left graph of Figure 8-3. Based on the cornering
velocity, the distance that the vehicle can travel within the fixed time frame differs. It is
relevant to consider that although the cornering velocities vary, the simulation time remains
constant. This effect can be observed from the trajectory plots. Where the vehicle just
completes the corner for V = 1.6 m/s, the vehicle travels for almost another meter after the
corner for V = 2.4 m/s. In the ideal situation, the simulation times would be scaled. In this
case, either the length of the discrete-time vector or the time between two consecutive data
points would change, therewith influencing the value of the objective function. In order to
make a comparison based on the terms of the objective function, the simulation time is kept
constant. A possible implication could be that the trade-off between following the trajectory
and minimizing the yaw rate becomes apparent when the cornering velocity is lower. It is,
however, assumed that this does not fundamentally change the outcome of this research since
especially the higher velocities are interesting when analyzing in the drift motion.

Figure 8-3: Time domain responses of the trajectory and sideslip angle resulting from the tra-
jectory optimization under varying cornering velocities.

The side-slip angle during the maneuver is shown in the right graph of Figure 8-3. It is
observed that as the velocity increases, the side-slip angle becomes negative during the ma-
neuver. This corresponds to the conclusions that were drawn in chapter 5. The drift motion
allows for negotiating the corner in the scenarios where the cornering velocity is highest.

The input signals are displayed in Figure 8-3. Since the initial steering angle and yaw rate are
equal to zero, there is inevitably an initial trajectory tracking error (left graph of Figure 8-3).
The error is corrected by the negative longitudinal force on the rear wheel, and the increased
the steering angle (right graph of Figure 8-3). As was previously observed in section 7-4,
the rear longitudinal tire force is negative in some scenarios. It is caused by the assumption
of small steering angles. The implications of this assumption on the result are addressed in
section 8-4.

As the cornering velocity increases, the steering angle also become bigger. In case of the
highest velocity (V = 2.4 m/s), the steering limits is reached. This observation is expected
when considering the system dynamics (2-21). According to the expression of the single-track
model, higher velocities will yield higher tire forces. In the Dugoff tire model, higher slip
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Figure 8-4: Time domain responses of the steering angle and throttle inputs resulting from the
trajectory optimization under varying cornering velocities.

angles result in higher tire forces. The steering angle is directly related to the slip angle of
the front tires. Therefore, the steering limits will be reached when the cornering velocity of
the vehicle is increased.

Figure 8-5: Time domain responses of the front and rear resultant tire forces resulting from the
trajectory optimization under varying cornering velocities.

The relation between cornering velocity and tire forces can also be deduced from Figure 8-5.
As the velocity increases, the tire forces grow in magnitude until the saturation limits are
reached. In this saturation region, an further increase in tire forces can only be achieved
through larger slip angles, eventually yielding the drift motion.
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8-3-2 Variation of the Friction Coefficient

In the expression of the Dugoff tire model, the tire force that can be generated is depending
on the normal force acting on the tire and the friction coefficient. It is therefore expected
that when µ is decreased while keeping the cornering velocity constant, the tire will reach
the saturation limits in an earlier stadium. In this analysis, the cornering velocity is constant
(V = 2 m/s) and the friction coefficient is varied. The identified friction coefficient µiden is
selected as the nominal case, which is then gradually decreased to simulate loose surfaces:
µ = {µiden, 0.75 · µiden, 0.5 · µiden}.

The cost-function terms resulting from the optimization under varying µ are combined in
Table 8-7. Based on the presented values, it is concluded that lowering the friction coefficient
has the most substantial impact on the ability to track the trajectory and the velocity. Both
Jpos and JV increase significantly when less friction is available.

Table 8-7: Overview of the cost-function terms that result from the simulation-based optimization
under varying friction conditions.

µ Jpos JV Jr Jβ̇

µiden 0.0013 0.0020 0.0000 0.0233
0.75 · µiden 0.0089 0.0451 0.0150 0.0743
0.5 · µiden 0.1882 1.3648 0.0017 0.0255

The same conclusions are drawn from the figure containing the trajectories (Figure 8-6).
Where the path can be tracked under normal conditions (µ = µiden), the vehicle can not
negotiate the corner for lower friction conditions. As a result, the cornering radius of the
vehicle’s trajectory increases. From the right graph of Figure 8-6, it is observed that the
side-slip angle becomes negative during the low friction scenarios. Low friction conditions
decrease the amount of force that can be generated. In order to generate the tire forces that
are required to track the reference trajectory, large lateral slip angles need to be achieved.
The drifting motion can facilitate these large slip angles.

Figure 8-6: Time domain responses of the trajectory and sideslip angle resulting from the tra-
jectory optimization under varying friction coefficients.
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The steering angle that is required to negotiate the corner also increases, indicating that lower
tire forces are generated for the same slip angles (Figure 8-7). As the steering angle remains
positive, it is concluded that only under-steer drift equilibria are obtained. The term under-
steer is used to describe the situation in which the vehicle is maneuvering with a negative
side-slip angle β but with a positive steering angle δ. Only for the scenario with the lower
friction, negative steering angles are present at the end of the maneuver (after t = 0.7 s).
Although it could be argued that the motion of the vehicle at this point is similar to drifting,
it was expected that this behavior becomes apparent during the corner. Section 8-4 elaborates
on this topic.

Figure 8-7: Time domain responses of the steering angle and throttle inputs resulting from the
trajectory optimization under varying friction coefficients.

The resultant tire forces corresponding to the friction variation simulations math the expec-
tations (Figure 8-8). Due to the decreased µ, the saturation limits of the tire becomes lower.
As a result, the tires are saturated during cornering for the scenario in which µ = 0.5.

Figure 8-8: Time domain responses of the front and rear resultant tire forces resulting from the
trajectory optimization under varying friction coefficients.
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8-4 Discussion of the Optimization Results

Although drifting equilibria were obtained in the results, no counter-steer drift equilibria
were observed. Even for the highest reference velocity, only under-steer behavior is observed.
Figure 8-9 shows the time domain signals of the cornering velocities. It is observed that the
reference velocity can be tracked accurately up to V = 2 m/s. For higher reference velocities
(the green and the purple line), a steep decrease in velocity is present around t = 0.1 s. It
is assumed that the fact that the cornering velocity is too low is the underlying cause for
the absence of counter-steering drift equilibria. This is supported by the observation that
counter-steering equilibria only exist for cornering velocities above 2.3 m/s (right graph of
Figure 8-2). Three possible causes for the inaccurate tracking of the velocity are discussed in
this section.

Figure 8-9: Time domain responses of the cornering velocity resulting from the trajectory opti-
mization under varying velocities.

Assumption of small steering angles
In the optimization results, the rear longitudinal force input is found to be negative during
the maneuver. In the previous chapter is was explained that this caused by the assumption
of small steering angles. When the cornering scenario of V = 2.4 m/s is considered, it is
observed that the steering angle reaches the maximum angle of δ = π

6 rad (30◦) (Figure 8-4).
Although it is motivated that cos π6 = 0.86 only introduces a 14% error, sin π

6 = 0.5 yields
an error of 50%. This implies that the longitudinal component of the front lateral tire force
is equal to half the total force. From Figure 8-5 it is observed that the front tire force at
this time (t = 0.2 s) is approximately 3 N. When the assumption of small steering angles is
released (2-18), the longitudinal component (Fy,F sin δ) would equal −1.5 N. If this was to
be compensated with Fx,R, it would almost certainly yield saturation of the rear tire. This
is motivated by the observation that the rear tire is already close to the saturation limits
(Figure 8-5).
To verify whether the optimization results would change when the assumption of small steering
angles is released, the optimization is performed with (2-18) as the expression of the single-
track model. The highest velocity scenario V = 2.4 m/s is optimized with and without the
small steering angle assumption. This velocity is selected since counter-steering equilibria
correspond to the highest equilibrium velocities. The results are included in appendix F. The
main findings are discussed below.
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When the assumption is released, positive values are obtained for the input Fx,R. Counter-
steering drift equilibria, however, are not observed. The results of the optimization do not
improve in terms of the cost-function terms(Table F-2). Although the assumption was released
to improve the tracking of the velocity, the error becomes bigger (Figure F-7). As a result,
the slip angles of the tires and therewith the tire forces decrease. The tires are concluded not
to be closer to the friction limits. Smaller side-slip angles are obtained because the velocity
is lower.

It must be stated that the cost-function weights are determined based on the assumption
of small steering angles. It can be possible that adjusted weights improve the optimization
results. This step is not included in this research. With the currently derived weights, it is
expected that the assumption of small steering angles is not preventing the optimization from
converging to counter-steering drift equilibria.

Cost-function
Another possibility is that the derived cost-function is limiting the convergence. In Table 8-2
it became apparent that increasing the weight of the Jpos had a negative effect on the velocity
error. As was observed from Figure 8-4, the combination of braking and maximum steering
is applied to reduce the error with respect to the reference path. The cost-function terms
of the position and velocity are conflicting at this point in the maneuver. Furthermore, the
constraints of a zero initial and final yaw rate could be a limiting factor. When a vehicle is
negotiating a corner, the yaw rate can physically not be zero. The desire to have zero yaw
rate at the beginning and the end of the maneuver can, therefore, be conflicting with the
objective of tracking the cornering velocity.

To test whether the statements are true, the optimization scenario of Vref = 2.4m/s is per-
formed with two modified cost-functions. The complete comparison of the time domain
responded is added in appendix F-5. The main findings are listed below.

• Reduced weight of Jpos
Reducing the weight qpos from 100 to 10 improves tracking of the reference velocity.
This comes at the cost of the trajectory tracking. The vehicle is traveling at a wider
radius, which requires lower tire forces. As a result, no counter-steering equilibria but
only under-steer motion is observed.

• Reduced weight of Jr
The weight qr is reduced from 10 to 1, resulting in slightly better tracking of the velocity.
Again, this comes at the cost of the trajectory tracking. The motion of the vehicle can
be characterized as under-steer

Based on the observations that are stated above, it is assumed that the structure of the
cost-function is probably not causing the unexpected optimization results.

Initial conditions
Another explanation could be that the initial conditions provided by the spline optimization
limit the solution space of the model-based optimization. The current form of spline opti-
mization uses simplified versions of the vehicle and tire models. The results of the spline
optimization did not consist of tire saturation or negative side-slip angles. It would be in-
teresting to study whether different initial conditions could improve the convergence of the
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model-based optimization. This is considered to be out of the scope of this work but would
be a valuable topic for further research.

8-5 Conclusions

The goal of this chapter is to study whether the characteristics of the drift motion also be-
come apparent in a dynamic driving scenario. Starting from the spline parameterization, the
dynamic trajectory optimization is performed using a simulation-based approach. The opti-
mization problem is solved for varying cornering velocities and friction coefficients. Overall,
the following conclusions are drawn.

I The results of the trajectory optimization show that the vehicle successfully negotiates
the corner while satisfying the posed optimization constraints. It can be concluded
that the cost-function terms derived in chapter 6 are suitable for the single corner
optimization purpose. Furthermore, different types of vehicle motion are observed.
Maneuvers with positive and negative side-slip angles are obtained, indicating that the
simulation-based optimization can accurately describe the vehicle dynamics, also at the
limits of friction.

I The saturation limits of the tires can be lowered by either increasing the cornering ve-
locity or decreasing the friction coefficient. This causes the vehicle to reach the friction
limits in an earlier stage. In order to generate the required tire forces to negotiate the
corner, higher slip angles and therewith a negative side-slip angle and a large steering
angle are observed. These findings correspond to the conclusions of the steady-state
equilibrium analysis. The resemblance is considered to be a verification of the opti-
mization results.

I In the dynamic driving scenario, the drift motion is found to enable the vehicle to reach
higher cornering velocities. Furthermore, the drift motion comes with large slip angles
which allow for the generation of higher tire forces when the vehicle is driving on low
friction surfaces.

I Although the optimization yields maneuvers consisting of drifting, no counter-steer
motions (β < 0, δ<0) are obtained in the first segment of the maneuver. It is assumed
that the initial conditions of the model-based optimization limit the convergence towards
these solutions. The over-steer equilibria were previously observed to yield the highest
steady-state yaw rate. It is expected that an optimization algorithm capable of including
over-steer motion will be able to improve the trajectory optimization further.
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Chapter 9

Conclusions

In this chapter, the answers to the research questions posed in the introduction are provided.
Each section restates the question, followed by the findings of this research.

9-1 Modelling Requirements

I What are the modeling requirements to describe the drift maneuver accurately?

The tire model should have the ability to account for force coupling, which makes the direc-
tional tire forces dependent on each other. Additionally, the tire model should include the
phenomenon of tire saturation. During a drift, the lateral force of the front wheel can be
controlled by changing the steering angle. This is not possible for the rear wheels. When
the tire is at or near the saturation limit, however, varying the longitudinal force of the tire
through the throttle also changes the lateral force generated at the rear wheel. In this way,
the yaw dynamics of the vehicle can be controlled. It can, therefore, be assumed that any
tire model that includes both force coupling and tire saturation can describe the drift motion.
Concerning the vehicle model, the only requirement is that the tire forces dictate the motion.
Dynamic vehicle models are, therefore, superior over kinematic models.

In the field of modeling, the possibilities are limited by the computational load of the model.
High fidelity models tend to increase computation time, making them less suitable for opti-
mization purposes. For the scope of this thesis, the combination of a single-track model with
Dugoff tire was considered to be the best solution to the trade-off between model fidelity and
computational load.

9-2 The Drift Motion under Steady-State Conditions

I What are the advantages of drift equilibria compared to normal driving under the as-
sumption of steady-state conditions
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The analysis of the system equilibria has shown that differences exist between normal driving
and drifting. An equilibrium is considered to be a drift motion if the side-slip angle is negative.
When all the equilibria for a specific cornering radius are compared, it is observed that drifting
corresponds to higher cornering velocities. As a result, the yaw rate is higher. In terms of
tire dynamics, the tires are operating closer to, or at, the saturation limits.

The study of the phase portraits revealed that in terms of stability, normal driving and drifting
are fundamentally different. Where normal driving is found to be a stable equilibrium, drifts
are found to be unstable saddle points. Without any form of control, small deviations from
the equilibrium result in an unstable system.

Computation of the controllability matrices has identified that both types of cornering are
controllable. In addition to the binary statement of the controllability matrix, an approach
based on eigenvalues the Controllability Grammians is presented. Although the approach
provides limited information, it allows to conclude on the amount of input energy that is
required to control the system in the direction of the eigenvectors. It is observed that for the
drift equilibria, the ratio of the eigenvalues is smaller compared to normal equilibria. This
indicates that for normal equilibria, there is a main direction of response; other directions
can be subjected to robustness issues. It is concluded that the drift motion has the potential
to increase the controllability (and the corresponding robustness) of the vehicle motion.

9-3 The Drift Motion in a Dynamic Driving Scenario

I What are the advantages of the drift motion in a dynamic driving scenario, when the
assumption of steady-state cornering conditions is released?

The multi-objective trajectory optimization is found to yield similar observations as the
steady-state analysis. When the tires are pushed towards the saturation limits, negative
side-slip angles become apparent in the optimization result. Drifting is observed to allow for
higher cornering velocities and therewith higher yaw rates. During a drift, the slip angles of
the tire are bigger than during normal driving. When the maximum tire force that can be
generated is lower due to low friction, increased slip angles are required to achieve lateral tire
forces that are sufficient to negotiate the corner. In this case, the drift motion increases the
maneuverability as it facilitates larger slip angles.

It must be noted that the optimization only considers a single corner, under the assumption
of various simplifications. Despite the narrow scope of this analysis, the optimization results
certainly add to the understanding of the effect drifting has on vehicle maneuverability. When
the vehicle is near the limits of friction, either due to a high velocity or due to low friction,
large side-slip motion contributes to generating higher tire forces then are possible during
low side-slip maneuvers. The tire forces directly determine the vehicle dynamics. The drift
motion is, therefore, is concluded to have the ability to increase the operating envelope of the
vehicle.
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9-4 Main conclusions

This research bridges the gap between the steady-state analysis and a more realistic dynamic
driving scenario. A detailed description of the steps towards a multi-objective trajectory
optimization is provided. Notwithstanding the encountered limitations of the method, the
author is confident that the method presented in this work can contribute to further research
on deepening the understanding of drifting and the potential application in autonomous
vehicles. The presented work can function as the basis on which future studies can continue
in the investigation on how to exploit the full operating envelope of autonomous vehicles.
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Chapter 10

Recommendations

This chapter identifies the areas that are interesting for further research. It elaborates on the
potential improvements that are expected to yield valuable insights in addition to the results
that were presented in the previous chapters.

1. Vary friction coefficient over the corner segment. In the current optimization scenario,
the friction is assumed to be constant. Since it was concluded that the drift motion
is related to the tires reaching the saturation limit, it would be interesting to study
how the vehicle reacts to changes in friction. The corner could be divided into two
segments, starting on high friction asphalt followed by a mid-corner transition to low
friction gravel.

2. Increase the model fidelity. The model that is derived in this work consists of multiple
simplifications. Increasing the model complexity makes the results of the optimization
more accurate compared to reality. The assumption of steering angles has been discussed
in the previous chapters. Performing the optimization without this assumption yields
a more accurate description of the required throttle input. Motor dynamics could be
included, replacing the longitudinal force as input with motor torque. Instead of the
single-track model, a double-track model could be implemented. The effect of load
transfer could model different saturation limits for each tire.

3. Change the corner configuration. Currently, a fixed radius corner with a radius of 1
meter is optimized. There is room for further research to determine the effect of an
increased corner radius. The maneuver as it is formulated in this work is a combina-
tion of transient and steady-state motion. The cornering segment in which the vehicle
can achieve steady-state cornering is relatively small compared to the entire trajectory.
The length of the segments directly depends on the cornering radius, which determines
the circumference and therewith the length of the trajectory. Another interesting con-
cept would be to vary the cornering radius over the trajectory. In this way, clothoid
trajectories can be simulated.
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4. Improve the initial conditions provided by the spline optimization condition. In this
work, the same initial conditions resulting from a single spline optimization are used for
all optimization scenarios. The cornering velocity and friction coefficient are not varied
in the spline optimization. Additionally, the spline optimization used the linear tire
model to reduce the model complexity. This is decided since the spline optimization was
found not to satisfy the dynamics incorporated in the nonlinear constraints. Another
improvement could be made by optimizing the number of spline segments that are used
to parameterize the continuous-time signals. Future research is required to establish if
these modifications allow for exploring a larger portion of the operating envelope than
is possible with the approach discussed in this work.

5. Solve the optimization on a device with a bigger computational power. Designing the
optimization was a constant trade-off between accuracy and computational time. Having
a device with more computation power allows increasing the complexity of the model.
Furthermore, the discrete-time steps can be decreased, which is expected to be especially
beneficial to the spline optimization.

6. Deeper analysis of the Controllability Grammian eigenvectors. The analysis based on
the Controllability Grammian focused on the ratio between the eigenvalues. It would be
valuable to include the direction of the corresponding eigenvectors in terms of the system
states. Such an approach could yield insights into the states that could be controlled
at each equilibria, and how much input energy is required to do so. Supported by
the unstable nature of the drift motion, it is expected that especially the side-slip angle
could be controlled with less input energy when the vehicle is already sliding to a certain
degree.

7. Refinement of weight sensitivity analysis In the weight sensitivity analysis, the value of
the weights increase exponentially. It can be interesting to refine the weight sensitiv-
ity and study whether smaller adjustments to the weights yields improvement in terms
of the cost function terms. Furthermore, the weights analysis only considers one cor-
nering velocity. Tuning the cost-function weights for specific cornering velocities could
potentially improve the convergence of the optimization.

M.D. Goldschmeding Master of Science Thesis



Appendix A

BARC Structure

This appendix provides an overview of the components that are installed on the Berkeley
Autonomous Race Car (BARC). This test platform is developed at Berkeley University
of California. More information on the BARC project can be found on the Github. The
schematic overview of the scaled vehicle is presented in Figure A-1. The numbers correspond
with the overview of the electronics architecture, shown in Figure A-2

Figure A-1: Schematic overview of individual components that form the BARC.

The BARC is equipped with a set of sensors and actuators (Figure A-2). The operating
system of the scaled vehicle is installed on the Odroid, which can communicate with a remote
computer through the use of a WiFi router. The Odroid directly receives the measurement
signals from the Internal Measuring Unit (IMU) and the camera. The latter component is
installed on the vehicle, however, not used in this work. Measurement of the other sensors,
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the wheel encoders, are sent via the Arduino. That same Arduino is used to send the control
inputs to the Electronic Control Unit (ECU) and the steering servo.

Figure A-2: Schematic overview of the electronics of the BARC.

For more detailed descriptions about the components, an overview of the components and
the corresponding link to the web-page of the manufacturer is provided (Table A-1).

Table A-1: List of components and the corresponding links to the manufacturer web-pages.

# Component Link
1 Odroid http://ameridroid.com/products/odroid-xu4
2 IMU http://ameridroid.com/products/myahrs
3 Arduino https://store.arduino.cc/arduino-nano
4 Camera https://www.amazon.com/ELP-Driver-Camera-Module
5 Engine https://hobbyking.com/nl_nl/rz-4-v2-kit.html
6 ECU https://hobbyking.com/nl_nl/rz-4-v2-kit.html
7 Steering servo http://www.rchobbyestore.co.uk/servo
8 Wheel encoders https://www.sparkfun.com/products/9312
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Appendix B

BARC Measurements

The process of parameter identification is discussed in chapter 4. It was mentioned that both
the wheel diameter and the mass moment of inertia were calculated based on measurements.
This appendix provides an overview of the measurements that were used for this purpose.
Furthermore, a static steering identification is performed in addition to the dynamic identifi-
cation. The methodology and results are presented in section B-3.

B-1 Wheel Diameter

Accurately measuring the wheel diameter is crucial for the model identification. Any mis-
match will yield incorrect longitudinal velocity data. Therefore, the wheel diameters are
measured three times, and the average of these values are used.

Table B-1: Measurements of wheel diameters, expressed in [mm]

Front Left Front Right Rear Left Rear Right
1 67.24 66.88 66.95 66.84
2 66.99 66.88 66.82 66.78
3 67.02 66.91 66.91 66.83

Average 67.08 66.89 66.89 66.82

B-2 Mass Moment of Inertia

The mass moment of inertia is calculated based on the method that was presented in [17].
The vehicle is suspended by two wires and slightly rotated. The motion can be approximated
by the dynamics of the bifilar pendulum (Figure B-1).
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(a) Most left position (b) Most right position

Figure B-1: Examples of two video frames in which the vehicle (suspended by wires) reaches the
maximum angle of rotation.

Every time the vehicle reaches the outer position of the rotation, the rotational velocity will
be zero. Measuring the time between two of these time instance allows to determine the
frequency of the oscillation. An overview of the measurements is presented in Table B-2.

In this table, the time at the outer left position is denoted by tleft, for the right side, the
symbol tright is used. From the measurements, it is computed that the average time between
the maximum angles of rotation equals ∆t = 0.95 s. This yields a frequency of oscillation
equal to ωn = 3.29 Hz. The resulting frequency is used in chapter 4 to compute the mass
moment of inertia.

Table B-2: Time instances, expressed in [s], at which the rotational velocity of the vehicle is
zero.

tleft tright ∆t
1 0.73 1.67 0.94
2 2.65 3.61 0.96
3 4.57 5.51 0.94
4 6.50 7.46 0.96
5 8.44 9.42 0.98
6 10.37 11.32 0.95
7 12.28 13.23 0.95
8 14.20 15.21 1.01
9 16.18 17.12 0.94
10 18.13 19.08 0.95
11 20.05 21.00 0.95
12 21.98 22.91 0.93

Average - - 0.955

B-3 Static Steering Identification

In order to verify the dynamic identification result, a static (zero velocity) experiment was
performed. A sinusoidal signal was sent to the servo, and the steering angle resulting from
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this input was captured with video recording. The steering angle is recovered from the video
frame using a protractor, which center is aligning with the steering point of the wheel. The
alignment of the wheel is slightly toe-out, which means that both tires face to the outside
of the vehicle. As a result, different angles are obtained from the left and right wheel for a
specific steering angle. The average of the two angles is used as an estimation of the total δ.
A timer is added to allow for determining the time instances of the frames.

First of all, the maximum steering angles are studied. The input signal of the steering
servo has an amplitude which is significantly large to guarantee that the servo will reach the
boundaries. In this case, more steering input no longer yields a larger steering angle; the
steering is saturated. Studying the video frames at which the steering enters and leave the
saturation regions, the maximum steering angles are found to be equal to 0.42 rad (24◦) for
steering left and −0.30 rad (−17◦) for steering right Figure B-2. It must be noted that due to
the angular movement of the tire, the vehicle was moving slightly. As a result, the alignment
of the camera changed. The accuracy of this approach is, therefore, limited.

Figure B-2: Video frames of the time instance where the steering wheel enters and leaves the
saturated region.

To obtain the servo input values corresponding to the steering limits, the time instances at
which the steering mechanism enters and leaves the saturation region are plotted together
with the steering input (Figure B-3). The dashed red line represents the neutral steering
input for which the steering angle is zero, 90.88. The steering boundaries for both sides are
indicated by the grey dashed line. Although a sinusoidal signal was sent to the Arduino, the
signal that reaches the servo shows similarities with a trapezoidal signal. This is caused by
the internal servo dynamics. The Arduino translates the signal such that the servo output is
sinusoidal. It is found that the servo input that corresponds to the left and right saturation
are 132 and 43, respectively. Additionally, it can be observed that the time of the video
frames that correspond with entering and leaving the steering saturation are not exactly on
the boundary lines. This is due to play in the steering mechanism, causing steering delay,
which will be discussed later on.

The saturation regions are therewith found. In order to identify the input-output relationship
of the servo, the steering angles at intermediate inputs are studied. The range between the
neutral steering point and the saturation limits is explored in discrete steps. For steering to
the right the inputs uservo = {80, 70, 60, 50} are considered (Figure B-5). For the opposite
side, the inputs are uservo = {100, 110, 120} (Figure B-4). These data points, together with
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Figure B-3: Sinusoidal input signal that is applied to the steering servo in the static experiment.
The dots represent the time instances where the steering enters and leave the saturated region.

the saturation regions, are used for the static steering identification.

(a) 100 (b) 110 (c) 120

Figure B-4: Sequence of video frames that correspond to steering towards left steering limit.

(a) 80 (b) 70 (c) 60 (d) 50

Figure B-5: Sequence of video frames that correspond to steering towards right steering limit.

The new steering identification is now obtained by finding the coefficients c1, c2, c3 and c4 of
(B-1). The estimated steering angle based on the static method is denoted by δ̂s The results
are displayed in Figure B-6.

δ̂s,left = min
(
c1, c2, (uservo − 90.88)

)
(B-1)

δ̂s,right = max
(
c3, c4, (uservo − 90.88)

)
(B-2)

The resulting fit is displayed in Figure B-6. Although higher maximum steering angles are
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found, the usability of the steering fit is questionable. Under dynamic load, the acting tire
forces will affect the steering angle. This phenomenon does influence the vehicle dynamics,
and this is something that needs to be included in the model. Therefore the dynamic steering
model is used in the thesis.

Figure B-6: Input-output relationship resulting resulting from the static steering identification.
The blue triangles correspond to the video frames.
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Appendix C

Input Dependency of the
Cost-Function

The model-based optimization was discussed in chapter 6. It is briefly addressed how the
two model inputs, the steering rate δ̇ and the rear longitudinal force Fx,R influence the cost-
function terms. This appendix contains an extensive explanation based on the system dynam-
ics. The fact that the system consists of a nonlinear tire model makes it more complicated
to express input-output relationships. This appendix sets out to describe the dependency as
accurate as possible.

The cost-function of 6 consists of four different terms.

• The position of the vehicle, expressed in inertial coordinates xinertial and yinertial

• The velocity along the trajectory V

• The yaw rate ψ̇ (r)

• The rate of the side-slip angle β̇

Note that the position of the vehicle in the inertial coordinate frame is considered. The
identified vehicle and tire model, however, are based on the body orientate reference frame.
The first step in understanding the relationship between the control inputs and the cost func-
tion terms is, therefore, to perform the state transformation from inertial to body-orientated
reference frame (C-1).

u = ẋinertial cos (ψ)− ẏinertial sin (ψ) (C-1)
v = ẏinertial cos (ψ) + ẏinertial sin (ψ) (C-2)

The longitudinal and lateral dynamics are described as:
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max =
∑
Fx, (C-3)

m
(
u̇− vψ̇

)
= Fy,F sin (δ) + Fx,R, (C-4)

u̇ = 1
m

(
Fy,F sin (δ) + Fx,R

)
+ vψ̇, (C-5)

may =
∑
Fy, (C-6)

m
(
v̇ − uψ̇

)
= Fy,F cos (δ) + Fy,R, (C-7)

v̇ = 1
m

(
Fy,F cos (δ) + Fy,R

)
+ uψ̇. (C-8)

Based on the longitudinal (u) and lateral velocity (v) of the vehicle, the dynamics of the yaw
rate and the side-slip angle can be expressed (C-9).

β = arctan
(
v
u

)
(C-9)

The yaw rate is depending on the tire forces and the steering angle:

Izψ̈ =
∑
Mz, (C-10)

ψ̈ = 1
Iz

(
lFFy,F cos (δ)− lRFy,R

)
. (C-11)

The expression of the lateral tire forces that are used in the model-based simulations read as:

Fy,F = CαF tan (αF ) f(ζ), (C-12)
Fy,R = CαR tan (αR) f(ζ). (C-13)

Here, f(ζ) is the nonlinear component that accounts for the tire saturation (C-14).

f(ζi) =

ζi (2− ζi) if ζi < 1
1 else

i = {F,R} (C-14)

ζi = ηeµµFz,i
1

2
√

(Cα,i tan(αi))2
i = {F,R} (C-15)

For the front wheels, η will always be zero as only the rear wheels are driven. For the rear
wheels, η is defined as:

η =

√
(eµµFz,R)2−F 2

x,R

eµµFz,R
. (C-16)
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The lateral slip angles of the tires are:

αF = δ + arctan
(
Vwheel,y
Vwheel,x

)
, (C-17)

αR = arctan
(
Vwheel,y
Vwheel,x

)
. (C-18)

Since the track-width of the bicycle model is zero, the longitudinal velocities of the front and
rear tire equal the velocity of the body u. The lateral velocities, however, depend on the yaw
rate (C-19).

Vwheel,F,y = v + lF ψ̇ (C-19)
Vwheel,R,y = v − lRψ̇ (C-20)

With all the relevant variables expressed in the presented equations, it can be analyzed which
of the inputs can affect each of the cost-function terms. The lateral slip angles of the tire
depend on the steering angle and through the wheel velocities on the longitudinal velocity, the
lateral velocity, and the yaw rate. In combination with the definitions of the wheel velocities,
the original expression (C-17) can be summarized as:

αF = fαF

(
δ, Vwheel,F,x, Vwheel,F,y

)
= fαF

(
δ, u, v, ψ̇

)
= fαF

(
δ, ẋ, ẏ, ψ̇, ψ

)
, (C-21)

αR = fαR

(
Vwheel,R,x, Vwheel,R,y

)
= fαR

(
u, v, ψ̇

)
= fαR

(
ẋ, ẏ, ψ̇, ψ

)
. (C-22)

Continuing this way of reasoning, the next formulas that are rewritten are those of the tire
forces. In addition to the lateral slip angles, extra parameters are introduced through f(ζ)
(C-14). Through the force coupling term η, the dependency on the longitudinal tire force
appears. However, since longitudinal dynamics are considered to be out of the scope, this
force coupling effect only applies to the rear tires. This yields the following expressions of the
lateral tire forces:

Fy,F = fFy,F (αF , ζF ) = fFy,F (αF , ηF ) = fFy,F

(
δ, ẋ, ẏ, ψ̇, ψ

)
, (C-23)

Fy,R = fFy,R (αR, ζR) = fFy,R (αR, ηR) = fFy,R

(
Fx,R, ẋ, ẏ, ψ̇, ψ

)
. (C-24)

Referring to the original inputs, it can be observed that the front and rear lateral tire force
can be controlled using the steering and throttle inputs respectively. With the renewed
expression of the tire force, it is possible to conclude on the relationship between the inputs
and the cost-function term.

Yaw rate
The yaw rate is obvious since it depends directly on the tire forces. The yaw dynamics
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provided an expression for the yaw acceleration, which provides information on how the yaw
rate changes. The tire forces (C-23) are substituted in the yaw dynamics (C-10).

ψ̈ = fψ̈
(
δ, Fy,F , Fy,R

)
= fψ̈

(
δ, Fx,R, ẋ, ẏ, ψ̇, ψ

)
(C-25)

The first observation is that the yaw acceleration depends on each of the control inputs
since both the steering angle (δ) and the rear longitudinal tire force (Fx,R) appear in fψ̈.
Furthermore, the yaw dynamics depend on the velocities in the inertial reference frame. The
cost-functions of the position (Jpos) and the yaw rate (Jψ̇) are thus to some degree dependent
on each other.
Position
The transformation between the inertial and body-orientated reference frames showed that
the velocities in one reference frame depend on the velocity in the other frame, together
with the yaw angle. Consider the expression of the longitudinal ((C-3)) and lateral ((C-6))
dynamics. With the previously derived dependencies, the formulas can be written into:

u̇ = fu
(
δ, Fx,R, Fy,F , v, ψ̇

)
= fu

(
δ, Fx,R, ẋ, ẏ, ψ̇, ψ

)
(C-26)

v̇ = fv
(
δ, Fy,F , Fy,R, u, ψ̇

)
= fv

(
δ, Fx,R, ẋ, ẏ, ψ̇, ψ

)
(C-27)

Under the assumption that the acceleration of a vehicle determines the velocity, and the
velocity then determines the position, it is concluded that the parameters that can change
the acceleration will also be the parameters that change the position. Combining this idea
with the observation that the transformation from the body-orientated reference from to the
inertial frame only add the yaw angle ψ allows to conclude the dependency of the position
cost-function term. It is concluded that both the steering rate and the rear longitudinal force
can influence the position of the vehicle.
Velocity
The cornering velocity is defined as the V =

√
u2 + v2. Since the dependencies of both the

longitudinal and lateral accelerations, and therewith the velocities, are already known, it is
concluded that both inputs can change the cornering velocity. This is derived under the
assumption that u and v depend on the same variables as u̇ and v̇.

V = fV (u, v) = fu
(
δ, Fx,R, , ẋ, ẏ, ψ̇, ψ

)
(C-28)
(C-29)

Side slip rate
The side-slip angle only depends on the longitudinal and lateral velocity (C-9). The side-slip
rate, therefore, depends on the velocities and their time derivatives in the body-orientated
frame. Following the same reasoning as was applied in the previous section, it can be con-
cluded that the steering and throttle commands can influence the side-slip rate.

β̇ = fβ̇ (u, v, u̇, v̇) = fu
(
δ, Fx,R, , ẋ, ẏ, ψ̇, ψ

)
(C-30)
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Appendix D

Sequential Quadratic Programming
Algorithm

This appendix provides a detailed description of the Sequential Quadratic Programming
(SQP) algorithm that is used in the trajectory optimization. The method is discussed
in [14,15]. The algorithm is a nonlinear programming method that converges to the solution
in a number of iterations. At each iteration, an approximation of the Hessian matrix of the
Lagrangian function is made, which is used to form a quadratic programming sub-problem.
The solution to this problem is used in a line search to obtain the new iterate. Before the
individual steps of the algorithm is discussed, first the definition of the Lagrangian function
is explained.

D-1 Lagrangian Function

Since the SQP algorithm approximates the Lagrangian function, this section will provide an
overview of the definition and the way it is used in optimization strategies. Consider the
classical constrained optimization problem that is written as

min f(x) (D-1)

subject to



c(x) ≤ 0
ceq = 0
Ax ≤ 0
Aeqx = beq

LB ≤ x ≤ UB.

(D-2)

Here c(x) represent the nonlinear inequality constraint, ceq(x) the nonlinear equality con-
straints. The linear inequality and equality are described by Ax ≤ 0 and Aeqx = beq respec-
tively. Finally, LB and UB correspond to the lower and upper bounds.
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A common approach to finding a local minimum or maximum for such a problem is to apply
the method of Lagrange multipliers. The general concept revolves around restructuring the
constrained problem in such a way that stationary point can be obtained from analyzing
where the derivative of the function is zero.
According to the Lagrange multiplier theorem, any stationary points where the constraints
are satisfied can be written as a linear combination of the gradient of the constraints and the
Lagrangian multipliers. Consider the following Lagrangian function.

L = f(x)−
m∑
i=1

λigi(x) (D-3)

In this expression λi is the i-th Lagrange multiplier and gi(x) denotes the i-th constraint.
In order to find the stationary points where also the constraints are satisfied, the following
conditions should hold:

∇L(x, λ) = ∇f(x)−
m∑
i=1

λi∇gi(x) = 0 (D-4)

gi(x) = 0 (D-5)

It is important to note that the stationary points resulting from the Lagrangian multipliers
method can only be considered to be a local minimum or maximum.

D-2 Algorithm Description

The introduction already stated that the SQP consists of multiple steps that are performed
each iteration. A detailed description of each step is provided in this section.
Update of the Hessian matrix
The Hessian of the Lagrangian function is approximated by computing the quasi-Newton
approximation.

Hk+1 = Hk + qkq
T
k

qT
k
qk
− Hksks

T
kH

T
k

sT
k
Hksk

(D-6)

sk = xk+1 − xk (D-7)
qk =

(
∇f(xk+1) +

∑m
i=1 λi · ∇gi(xk+1)

)
−
(
∇f(xk) +

∑m
i=1 λi · ∇gi(xk)

)
(D-8)

Here, sk is the difference between two iterates and qk is the change in Lagrangian functions.
Solution to the Quadratic Programming problem
Based on the update Hessian, a new Quadratic Programming sub-problem is formulated.

min q(d) = 1
2d

THkd+ cTd (D-9)

Aid = bi, i = 1, · · · ,mc (D-10)
Aid ≤ bi, i = mc, · · · ,m (D-11)
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To find a solution to the sub-problem, first a feasible point d is searched. Then, an iterative
sequence of feasible points is calculated that converges to the solution of the sub-problem.

Line search
The solution dk, obtained in the previous, is used in a line search to generate the new iterate
xk+1.

xk+1 = xk + αkdk (D-12)

The parameters αk represents the step length, which is determined based on the decrease of
a merit function, defined by [18,28].
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Appendix E

Global Search Algorithm

This appendix discusses the algorithm that is used to find the best solution to the spline
optimization problem. A global search method is implemented, which solves the constrained
optimization various times.

E-1 Types of Global Search Algorithms

The result that is obtained from an optimization depends strongly on the initial values of the
optimization parameters. One option to overcome this limitation is to think of a method to
choose the initial values. However, the result of the optimization is then directly limited by
the initial values that are selected. Another option is to use a global search algorithm, which
does multiple trial runs and select the best result as the final solution to the optimization
problem. The fact that the global search algorithm performs multiple runs, with different
initial values, is appealing since this increase the chance that the algorithm finds the best
solution. The optimality only applies to all the trial points that are investigated by the
algorithm. It is, therefore, possible that there exist solutions that could yield slightly better
results.

Various global search algorithms are available. However, the majority of them can be divided
into two categories. The first type is the multi-start approach, where a set of initial opti-
mization variables is computed, referred to as trial points. The optimization is run for each
trial point, and afterward, the best results in terms of objective function and constraints are
selected to be the global solution. The other type of global search algorithm differs from the
multi-start approach in the sense that not all trial points are evaluated. The initial conditions
are compared to each other to reduce the number of trial points that are run, to minimize
the computation time of the algorithm. The latter type of global search algorithms is used
to solve the spline optimization. The working principle of the algorithm will be discussed int
his section.
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E-2 Working Principle

The global search method is described by four phases [35]. It works with the concept of
basins, areas in the solution-space in which the states converge to a local optimum. Through
analysis of different trial points, the space is divided into various basins. The center of each
basis represents the corresponding local optimum. It could be imaged as a funnel. When it
is known that a specific trial point falls into one of the defined basis (the funnel), it will end
up in the same local optimum that was already obtained. There, the trial point does not
need to be evaluated. This way, a large number of trial points can efficiently be evaluated
without ending up in the same optimum multiple times. The four phases of the algorithm
are summarized below.

1. Initialization
The algorithm runs the constrained optimization for the initial values provided by the
user. The first run gets a score that is defined by the final objective function and a term
that accounts for any violation of the constraints.

A set of trial points is found using scatter search [16]. For each trial point, the ob-
jective function is computed, and the highest one is selected to be the stage 1 starting
point. The optimization is run for this point. The two runs performed so far, the initial
conditions and the first trial point, are used to define the location and radius of the
basins of attraction.

The basins of attraction are considered to be spherical. Two basins are formed; one
belonging to the initial run and one to the first trial point run. The radius of each basin
is equal to the distance between the initial and final optimization variable values. Addi-
tionally, two counters are defined. The first equal the number of consecutive trial points
that lie within the basin, the second is the number of trial points that have objective
function higher than the threshold.

2. Stage 1
With the basins and counters defined, all the remaining trial points are evaluated. After
each run, the basins and counters are updated.

3. Stage 2
In stage 2, the remaining trial points, equal to the total number of trial points minus
the stage 1 points, are considered. Of these points, those that satisfy the following
conditions are run:

• The trial point does not lie within one of the existing basins
• The initial objective function evaluation is smaller than the current threshold
• The trial point satisfies the bounds and inequality constraints that are provided to
the optimization algorithm

When a trial point is run, the basin is only updated when the final result, after conver-
gence, is different from previously obtained optima.
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If the trial point does not run, the counters of the basin, in which the trial point is
located, are updated. If the counter reaches the maximum value, the radius of the basin
is reduced.

4. Formulation of the global solution
The optima, belonging to each basin, are ordered smallest to largest based on the
objective function. The smallest one is selected to be the results of the global search.

E-3 Tuning the Algorithm

The two-stage structure of the optimization algorithm provides the possibility to tune the
algorithm. The user can define the number of trial points that are evaluated in both stages.
Stage 1 evaluates all trial points. In stage 2, however, only those trial points that satisfy
the conditions of the bounds and inequality are evaluated. The number of stage 1 trials is
reduced, from the default number 2e2 to 1e1. The total number of trial points is set equal
to 1e4. This way, the majority of trial points are evaluated based on bounds and inequality
constraint. These modifications increase the time efficiency of the global search optimization.

Another fundamental aspect of the global search method is the formulation of the basins of
convergence and the reduction of their radii during the evaluation of the trial points. The
variables that determine the speed of the radius reduction are therefore, interesting parameters
to study. It is decided that this is not within the scope of this thesis.
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Appendix F

Simulation-Based Optimization
Results

This appendix consists of the results of the trajectory optimization. The results are presented
based on the analyses that are discussed in chapter 6.

Variation of the Cornering Velocity
To make a comparison with the steady-state cornering equilibria, the velocity at which the
corner is negotiated is varied. The set V = {1.6, 1.8, 2.0, 2.2, 2.4} is considered. The signals
that describe the vehicle dynamics are displayed in Figure F-1. The lateral slip angles and
tire forces are depicted in Figure F-2.

Variation of the Friction Coefficient
In order to simulate different types of surface, the optimization is performed with varying
friction coefficient. The starting point is the identified friction coefficient µiden, which is then
gradually decreased. An overview of the vehicle and tire dynamics are displayed in Figure F-3
and Figure F-4, respectively.

Variation of the Cost-Function
In chapter 8 it is discussed that no counter-steering drift maneuver are observed. The hy-
pothesis is formulated that the cost-function weights, as derived in section 6-2, prevent the
algorithm from converging to the counter-steer equilibria. In order to test the hypothesis, the
optimization is performed with slightly modified cost-functions. Three scenarios are consid-
ered:

• Normal weights
This is the cost-function that was derived in section 6-2.

• Reduced yaw rate weight
The weight qr that is applied to the yaw rate cost-function term Jr is reduced from 10
to 1. The resulting cost-function reads as J = 100 · Jpos + 10 · JV + Jr + Jβ̇.
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• Reduced position weight
The weight qpos, which corresponds to the position cost-function term Jpos, is reduced
from 100 to 10. This yields J = 10 · Jpos + 10 · JV + 10 · Jr + Jβ̇.

The resulting vehicle dynamics are displayed in Figure F-5, the corresponding tire dynamics
can be found in Figure F-6. A comparison of the cost-function terms is presented in Table F-1.

Assessing the effect of the small steering angle assumption
The scenario in which the reference velocity is Vref = 2.4 m/s is solved with and without the
assumption of small steering angles. The aim of the analysis is to verify the assumption and to
study whether it limits the convergence of the algorithm towards counter-steering equilibria.

The resulting vehicle dynamics are displayed in Figure F-7, the corresponding tire dynamics
can be found in Figure F-8. A comparison of the cost-function terms is presented in Table F-
10.
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F-1 Variation of the Cornering Velocity - Vehicle Dynamics

Figure F-1: Overview of the time domain responses describing the vehicle dynamics resulting
from the trajectory optimization under varying cornering velocities.
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F-2 Variation of the Cornering Velocity - Tire Dynamics

Figure F-2: Overview of the time domain responses describing the tire dynamics resulting from
the trajectory optimization under varying cornering velocities.
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F-3 Variation of the Friction Coefficient - Vehicle Dynamics

Figure F-3: Overview of the time domain responses describing the vehicle dynamics resulting
from the trajectory optimization under varying friction coefficients.
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F-4 Variation of the Friction Coefficient - Tire Dynamics

Figure F-4: Overview of the time domain responses describing the tire dynamics resulting from
the trajectory optimization under varying friction coefficients.
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F-5 Variation of the Cost-Function - Vehicle Dynamics

Figure F-5: Overview of the time domain responses describing the vehicle dynamics resulting
from the trajectory optimization under varying cost-function weights.
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F-6 Variation of the Cost-Function - Tire Dynamics

Figure F-6: Overview of the time domain responses describing the tire dynamics resulting from
the trajectory optimization under varying cost-function weights.
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F-7 Variation of the Cost-Function - Cost-Function Terms

Table F-1: Cost-function terms resulting from the model-based optimization with modified cost-
functions.

Cost-Function structure Jpos JV Jr Jβ̇
Normal weights 0.0084 0.2463 0.0000 0.0002
Reduced yaw rate weight 0.0489 0.2206 0.1802 0.0010
Reduced position weight 0.1068 0.0196 0.0006 0.0011
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F-8 Verification of the Small Steering Assumption - Vehicle Dy-
namics

Figure F-7: Overview of the time domain responses describing the vehicle dynamics resulting
from the trajectory optimization with and without the assumption of small steer angles.
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F-9 Verification of the Small Steering Assumption - Tire Dynamics

Figure F-8: Overview of the time domain responses describing the tire dynamics resulting from
the trajectory optimization with and without the assumption of small steer angles.
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F-10 Verification of the Small Steering Assumption - Cost-Function
Terms

Table F-2: Cost-function terms resulting from the model-based optimization with and without
the assumption of small steer angles.

Scenario Jpos JV Jr Jβ̇
With assumption 0.0084 0.2463 0.0000 0.0002
Without assumption 0.0237 0.6229 0.0000 0.0239
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List of Acronyms

SAE Society of Automotive Engineers

ESC Electronic Stability Control

COG Center of Gravity

BARC Berkeley Autonomous Race Car

RWD Rear Wheel Drive

ESP Electronic Stability Program

ADAS Advanced Driver Assitance System

ABS Anti-Lock Brakes

ESP Electronic Stability Program

ACC Active Cruise Control

IMU Internal Measuring Unit

ECU Electronic Control Unit

MCS Motion Capture System

VAF Variance Accounted For

RMSE Root Mean Squared Error

SQP Sequential Quadratic Programming
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List of Symbols

α Lateral slip angle
β Side-slip angle
δ Steering angle
ψ̇, r Yaw rate
λ Longitudinal wheel slip ratio
λi i-th eigenvalue of the Controllability Grammian
λi i-th eigenvector of the Controllability Grammian
µ Friction coefficient
ωx Angular velocity around x-axis
ωy Angular velocity around y-axis
ωz Angular velocity around z-axis
ωwheel Angular wheel velocity
φ Roll angle
ψ Heading angle
τ Spline time variable
Aeq Equality constraints matrix of the spline optimization
Aineq Inequality constraints matrix of the spline optimization
Anleq Nonlinear equality constraints matrix of the spline optimization
eβ̇ Error vector of the side-slip rate
epos,spline Error vector of the position in the spline optimization
epos Error vector of the position
er Error vector of the yaw rate
eV,spline Error vector of the velocity in the spline optimization
eV Error vector of the velocity
Pδ Vector containing the spline control points of the steering angle
Pψ Vector containing the spline control points of the heading angle
PFx,R Vector containing the spline control points of the rear longitudinal tire force
Px Vector containing the spline control points of the inertial x location
Py Vector containing the spline control points of the inertial y location
Wβ̇ Weight of the side-slip rate error
Wpos Weight matrix of the position error
Wr Weight matrix of the yaw rate error
WV Weight matrix of the velocity error
θ Pitch angle
ax Longitudinal acceleration
ay Lateral acceleration
Ck(τ) k-th spline control point
Cα Lateral tire stiffness
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Cλ Longitudinal tire stiffness
eµ Coefficient accounting for increased friction
ecoupled Coefficient accounting for decreased coupling effect
Fx Longitudinal tire force
Fy Lateral tire force
Fz Normal tire load
Iz Mass moment of inertia
J Cost-function
Jβ̇ Cost-function term of the side-slip rate
Jpos Cost-function term of the position
Jr Cost-function term of the yaw rate
JV Cost-function term of the velocity
L Wheel base
lF Distance between the front axle and the Center of Gravity (COG)
lR Distance between the rear axle and the COG
m Vehicle mass
Mz Moment around the COG
Pi i-th spline control point
qβ̇ Weight on the side-slip rate cost-function term
qpos Weight on the position cost-function term
qr Weight on the yaw rate cost-function term
qV Weight on the velocity cost-function term
R Cornering radius
rwheel Wheel radius
V Cornering velocity
Vx, u Longitudinal velocity
Vy, v Lateral velocity
Venc Velocity obtained from wheel encoder
x Longitudinal axis of the body-orientated reference frame
xinertial Horizontal axis of the inertial reference frame
y Lateral axis of the body-orientated reference frame
yinertial Vertical axis of the inertial reference frame
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Body-Orientated Reference Frame, 7
Butterworth Filter, 22

Controllability Grammian, 50
Cost-Function (Simulation-Based), 63
Cost-Function (Spline), 72
Cost-Function Weight Matrix, 58
Cost-Function Weight Sensitivity, 80
Cross-Correlation Alignment, 23

Derating Factor, 56
Double-Track Model, 12
Dugoff Tire Model, 11
Dugoff Tire Model Modifications, 38
Dynamic Driving Scenario, 55
Dynamic Vehicle Model, 12

Electronic Control Unit, 19

Inertial Reference Frame, 7
Internal Measurement Unit, 18

Kinematic Vehicle Model, 11

Lateral Slip Angle, 9
Longitudinal Slip Ratio, 9

Motion Capture System, 20

Optimization Problem (Simulation-Based), 63
Optimization Problem (Spline), 71

Phase Portait, 47

Quintic Bézier Spline, 69

Side-Slip Angle, 1

Single-Sided Amplitude Spectra, 23
Single-Track Model, 12
Spline Basis Function, 67
Spline Control Point, 67
Steering Identification, 29
System Equilibrium, 45

Tire Identification, 32

Wheel Encoder, 18
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