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1
Introduction

Urban public transit systems play a crucial role in providing accessibility and mobility for society. They
facilitate the daily commutes of millions of people and are essential for ensuring that individuals can
reach their destinations efficiently. However, disruptions such as delays and cancellations are increas-
ingly common in these systems due to various factors, including system failures, natural disasters,
the growing need for maintenance on aging infrastructure, and construction work (Zhu et al., 2017).
These disruptions can be either planned or unplanned. Unplanned disruptions can be caused by in-
cidents such as signal failures, operational problems, accidents, weather, and vandalism (Liu et al.,
2021; Shires et al., 2019). Planned disruptions typically arise from pre-scheduled activities such as
maintenance closures, strikes, and similar events (Rahimi et al., 2020).

These disruptions can negatively affect urban mobility, leaving travelers who rely on public transport
stranded and causing considerable inconvenience. Vulnerable groups, including the elderly and dis-
abled, might face increased difficulties in accessing their destinations under such conditions. This can
result in a loss of confidence in the public transport network. Disruptions can also lead to economic
and opportunity losses, as well as increased vulnerability within the transit network. For instance, a rail
traffic control malfunction at Amsterdam Central Station in the Netherlands on June 4, 2023, caused a
major blockage that lasted several days, restricting passengers’ access from Amsterdam to Schiphol
Airport Station, one of Europe’s most critical airports by passenger volume (Schiphol, 2022).

Due to the frequent disruptions, passengers might shift to alternative modes of travel, such as cars.
If these alternatives are found more convenient, passengers may continue using them even after the
disruptions are resolved (Karlaftis et al., 2006; Zhu et al., 2017). Cars have always been competi-
tors to transit systems due to their higher comfort, privacy, availability, and shorter travel times. The
emergence of ride-hailing and car-sharing services has increased the threat of alternative modes at-
tracting more transit users. A shift towards car ridership in urban areas could worsen environmental
and congestion issues as more people opt for cars.

1.1. Research Gap and Contributions
The existing literature extensively explores the immediate effects of disruptions on passenger travel be-
havior, evaluating the influence of passenger-related, journey-related, disruption-related, and network-
related factors on passenger responses. However, research into the longer-term effects, extending at
least five to six months post-disruption, is less prevalent and predominantly relies on qualitative meth-
ods such as interviews and surveys, which are limited in sample size, time-consuming, and expensive.

Automatic fare collection (AFC) systems offer a significant opportunity to analyze passenger behavior
comprehensively. These systems record detailed journey information for all passengers, overcoming
sample size limitations and reducing biases. Among the studies utilizing smart card data, most examine
the impact during or immediately after the disruption, with only a few extending their analysis to two
or three months post-disruption. Consequently, there is a gap in investigating changes in passenger
behavior over a longer period after the disruption using AFC data. One of the challenges of looking

1



1.2. Research Objective and Questions 2

into the long-term is that passenger behavior might not remain uniform throughout the post-disruption
period thus their behavior could vary within that relatively long period.

This study aims to address this gap by extending the post-disruption period to five or six months and
dividing it into several sub-periods. This approach allows for a more granular analysis of passenger
behavior, enabling us to capture and understand the evolving patterns in the post-disruption period us-
ing AFC data. Understanding the long-term impacts is important because it reveals the extent to which
temporary changes in passenger behavior due to disruptions become permanent over time. Addition-
ally, it allows for an examination of passengers’ tolerance towards disruptions and the extent to which
they maintain their travel behavior, demonstrating travel behavior inertia despite having experienced
disruptions. If results indicate that passengers leave the system or reduce their usage after a disrup-
tion, the findings can guide the need for implementing mitigating measures not only immediately after
disruptions but also in the following months to prevent users from abandoning the public transport (PT)
in favor of other modes. This can include providing additional discounts to passengers significantly
affected by major disruptions, especially those living in the suburbs who rely on PT.

Scientifically, this study contributes to the existing literature by developing a general framework which
can be applied to other case studies to discover the long-term effects of disruptions on travel behavior.
The method used in this study is a mixture latent Markov model, a novel approach for studying the
long-term impact of disruptions. This model is specifically ideal in this study because it is suitable
for clustering longitudinal data. In addition, it probabilistically assigns the data to clusters in contrast
to deterministic clustering methods such as K-Means, thereby accounting for uncertainties.Moreover,
this model is capable of uncovering unobserved travel patterns among passengers and their specific
likelihood of altering their travel behavior over time. This powerful feature of the model is instrumental
in identifying behavior changes induced by disruptions.

1.2. Research Objective and Questions
The research objective is to gain a deep comprehension of the prolonged effects of public transport
disruptions on passengers travel behavior. To attain this objective, the main research question is for-
mulated as:

Main Research Question: How can we identify passengers’ travel behavior change in the long-term
due to disruptions?

This main question is answered by the following sub-questions:

1. What are the indicators that capture travel behavior regarding travel frequency, travel time regu-
larity, time-of-day, and day-of-week?

2. How can we identify the differences among passengers regarding their travel behavior?
3. How can we measure the changes in travel behavior of passengers post-disruption compared

to the pre-disruption period regarding travel frequency, travel time regularity, time-of-day, and
day-of-week?

1.3. Thesis Organization
The structure of this document is organized as follows: Chapter 2, the literature review, provides an
overview of the existing research and identifies current gaps. Chapter 3 details the methodology used
to answer the research questions, and Chapter 4 is dedicated to the explanation of the case study and
the data sets which are used in the analysis. Chapter 5 presents the analysis results from the case
study. Finally, Chapter 6 delves into a discussion of the results and provides insights for future research
and recommendations.



2
Literature Review

2.1. Search Strategy
The sources used to find relevant papers for the literature review were Scopus and Google Scholar.
The main keyword combinations that we used were ”passenger/traveller”, ”travel behavior/pattern”,
”disruption” together with either of ”public transport”, ”public transit”, ”rail”, and ”metro”. Majority of
these paper resulted in studies that were focused on the immediate impact, therefore, later we also
added the term ”long term impact” to find the papers with a focus on longer term impacts. We excluded
papers that considered COVID-19 as the disruption because our study primarily focuses on public
transport disruptions. Additionally, papers whose main focus was building an estimation model for
predicting passenger choices rather than exploring behavior and influencing factors were also excluded.
Moreover, several additional papers were identified using the backward snowballing technique.

This search resulted in 18 papers. The main focus, analysis method, data source, case study, mode,
and main findings with regards to travel behavior from these papers are summarized in Table 2.1.

Following the line of research in Eltved et al. (2021) and Nazem et al. (2018) who evaluated passen-
ger behavior using segmentation and clustering, we decided to enrich our understanding of papers
that used clustering as the main approach to evaluate passenger behavior. Therefore, we employed
keyword combinations such as ”passenger segmentation/clustering” or ”travel behavior segmentation/-
clustering” and ”AFC or smart card data.” The synthesis of the papers on travel behavior segmentation
is found in Section 2.3.

3
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4

Table 2.1: Overview of the reviewed papers.

Study Main Focus Analysis Data
Source

Case Study Mode Main Finding w.r.t Travel Behavior

Mo et al.
(2022)

Network performance, passen-
ger flow, and mode choice under
unplanned delays

Used graph theory to analyze resilience, vul-
nerability, and redundancy, used binary logit
model to analyze travel mode choices

AFC,
AVL

Chicago, US Rail Passengers switched to alternative lines in high redundancy ar-
eas, and to bus in low redundancy areas. Reduced fare status
passengers were more likely to stick with PT. High-income pas-
sengers weremore likely to use alternativemodes like ridesharing
services.

Tian and
Zheng
(2018)

Commuter behavior during unex-
pected train delays (UTD)

Used DBSCAN to extract commuters’ regu-
lar travel patterns, and compared the trips af-
fected by a disruption to these regular travel
patterns

AFC Singapore Rail 86% continue with the disrupted mode (by waiting or postponing
their departure time), and 14% switch to other modes (bus, taxi,
or bike). Key factors influencing commuter responses included
the cause of UTD, time of day (peak vs. non-peak), and whether
the UTD occurred en-route or pre-trip.

Liu et al.
(2021)

Evaluate network performance
and passengers’ behavior under
unplanned disruptions

Compared system performance metrics (e.g.,
travel times, passenger volumes) between typ-
ical days and disruption days, infer passen-
ger responses such as travel continuation, de-
layed departures, altered OD pairs, and mode
changes (e.g., shuttle bus usage).

AFC,
AVL

Not dis-
closed

Metro Staying within the disrupted mode was more favorable than
switching modes, and most passengers maintained their usual
travel schedules and ODs. The passengers outside the system
when disruptions happen are more likely to change their orig-
in/destination station, their mode, and departure time compared
to those inside. The passengers whose origin and destination
stations are affected are most likely to change their mode.

Zhu et al.
(2017)

Passenger responses during
planned disruptions (capacity re-
duction and station closure)

Analyzed the differences between stated pref-
erences and actual choices, and the impact of
socio-demographics

SP1-RP2
surveys

Washington
D.C, US

Metro Wealthier riders more likely to switch modes compared to low-
income groups who preferred sticking to regular bus services,
20% of respondents did not return even after full service restora-
tion.

Rahimi
et al.
(2020)

Passenger decisions during an un-
planned disruption and the influenc-
ing factors

Random parameter multinomial logit (RPMNL)
model was used to account for heterogene-
ity and panel effects. Socio-demographic,
personal attitude, trip-related, and built-
environment variables tested for significance.

SP-RP
surveys

Chicago, US Metro,
rail, and
bus

Using own vehicle is more favorable for those whose destination
is considered long-distance. Waiting time of the replacement bus
negatively affects its utility. Those in suburban areas, prefer wait-
ing for the replacement bus due to limited alternatives and their
higher cost. Those with higher education and younger people are
more likely to choose ride-sharing.

Murray-
Tuite
et al.
(2014)

Passengers’ behavior changes due
to a deadly metro collision and the
relationships between these changes
and individual/travel characteristics

Employed multinomial logit (MNL) models to
estimate probabilities of making specific be-
havioral changes.

Surveys Washington
DC, US

Metro Not making any changes had the highest utility, followed by avoid-
ing the front and rear rail cars, and then changing modes. Cost
savings and frequent delays after the incident increase the likeli-
hood of changing modes. Frequency of Metrorail use before the
collision did not significantly affect mode change likelihood, but
frequent users were less likely to change seats.

Eltved
et al.
(2021)

Changes in travel behavior before,
during, and after a long-term rail line
closure

Used K-means to group and compare passen-
gers travel behavior before and after the dis-
ruption

AFC Copenhagen,
Denmark

Rail Eight distinct travel behavior clusters were identified, after the dis-
ruption 12% of frequent commuters of the affected line did not
return and a significant amount decreased their travel frequency.

Saxena
et al.
(2019)

Passenger behavior under delays vs.
cancellations, and the difference in
how they weigh wait time, travel time,
and cost differently

Used a latent class choice model with socio-
demographic and trip-specific attributes to cap-
ture variations in preferences under delays vs.
cancellations

SP-RP
surveys

Chicago, US Rail Travelers perceive cancellations three times more inconvenient
than delays. Travelers are more likely to continue using PT in
case of delays, and are less likely to use replacement buses in
case of cancellation.

Drabicki
et al.
(2021)

Travel behavior shifts and travel infor-
mation usage during unplanned dis-
ruptions

Used statistical tests and exploratory analysis
to analyze the behavior.

SP-RP
surveys

Krakow,
Poland

Bus and
tram

Majority (39%) changed their route, 29% waited at the stop, and
the rest either walked or shifted to private modes. Passengers
made long term adjustments (change routes or departure times)
due to frequent PT disruptions. Frequent PT users were less likely
to change their travel routine and more likely to wait at the stop.
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Study Main Focus Analysis Data
Source

Case Study Mode Main Finding w.r.t Travel Behavior

Papangelis
et al.
(2016)

The effects of public transport disrup-
tions on passenger behavior in rural
areas

Used grounded theory and inductive content
analysis, focus groups with bus/car users and
cyclists, and interviews with bus drivers.

Semi-
structured
inter-
views
and
focus
groups

The Scottish
Borders,
The United
Kingdom

Bus Passengers made permanent changes (avoiding certain travel
times or routes) in response to frequent disruptions and lifestyle
changes (buy cars/relocate) in response to long-term disruptions.
Short-term disruptions led to minor adaptations (change mod-
es/routes).

Li, Yao,
Ya-
mamoto,
Huan,
and Liu
(2020)

Passenger choices under unplanned
metro disruptions and the determi-
nant factors

Used nested logit model (upper level for mode
shift decisions (shift or non-shift) and lower
level for specific travel plan choices)

SP
survey

Guangzhou,
China

Metro A longer disruption duration, disruption occurring in peak, and un-
availability of alternative routes increases the likelihood of shifting
to other modes. Females are more likely to change modes. Peo-
ple with higher income shift modes more often as they have a
higher value of time.

Nguyen-
Phuoc
et al.
(2018b)

Mode choice, and factors influencing
the travel behavior of passengers dur-
ing a complete cancellation of all PT
modes for an entire day

Applied MNL and nested logit models to ana-
lyze mode choice and behavior during PT dis-
ruptions. Examined factors such as gender, in-
come, trip purpose, travel cost, transfer incon-
venience, car ownership, driver’s license own-
ership, and station accessibility

SP-RP
surveys

Melbourne,
Australia

Train,
bus,
tram

52% of users switch to driving a car, 31% to cycling or walking
or cancel their trips, 11% to being a car passenger, and 5% to
using taxi/Uber. Car/driver’s license ownership and trip related
trip purpose strongly influenced the preference for car use.

Nguyen-
Phuoc
et al.
(2018a)

The factors influencing the choice of
private car in the event of short-term
and long-term disruptions rather than
PT

Transcribed interviews and analyzed them us-
ing grounded theory principles

Semi-
structured
inter-
views

Melbourne,
Australia

Train,
tram

In a hypothetical ten-year disruption people stated willingness to
buy a car, relocate, and find a job near their home. In this sce-
nario, the key factors are travel time, distance, cost, destination,
and flexibility. In a one-day disruption people consider changing
their route, mode, or cancel their trip. In addition to the previous
factors, car/driving license ownership, income, and trip purpose
were significant in short-term disruptions.

Arslan
Asim
et al.
(2021)

Mode choice behavior during short-
term planned service disruptions
(PSDs), and the influencing factors

Estimated a mixed MNL model and assessed
the influence of travel time, wait time, and cost
on the likelihood of choosing different modes

SP
survey

Calgary,
Canada

Light rail
transit
(LRT)

Ridership dropped by 35% during the disruptions. Transit cus-
tomers with payment plans (students, older people, and low in-
come) and weekend users more often continue using LRT during
PSDs. Decreased wait time for express shuttles increased its ap-
peal for passengers.

Shires
et al.
(2019)

How planned maintenance disrup-
tions influence passengers’ decisions
to continue their journey using the
disrupted mode, alternative mod-
es/routes, reschedule or cancel their
trips

Estimated MNL to examine choices and the
way the different factors affect them

SP-RP
surveys

London, The
United King-
dom

Rail While passengers are relatively adaptable, the type of replace-
ment service, the management of connections and disruption pe-
riods significantly influence their decisions. Replacement buses
result in higher demand loss compared to rail diversions. Aware-
ness of disruptions does not significantly alter passenger behav-
ior.

Adelé
et al.
(2019)

The behavior of suburban train pas-
sengers in response to disruptions of
varying causes and severity

Used ascending hierarchical clustering (AHC)
to define homogeneous groups of users with
similar behavioral patterns during disruptions.

RP
survey

Paris,
France

Rail Most passengers changed their arrival/departure stations or used
other modes (car, bus, metro, tram) during major disruptions (de-
lays of at least 30 minutes) while only a few opted to wait. Pas-
sengers with time constraints were less willing to wait. Those who
received disruption information before starting their journey were
more likely to change modes or routes.

Nazem
et al.
(2018)

The changes in ridership of disrupted
stations and individual travel patterns
due to a planned medium-term sta-
tion closure

Daily ridership after the disruption was com-
pared to the normal level. Travel pattern of
frequent passengers was analyzed based on
their used mode sequences (metro and bus)

AFC Montreal,
Canada

Metro Ridership dropped at the closed stations during the disruption and
increased at adjacent stations. Post-disruption, ridership at the
closed stations did not fully recover to pre-closure levels. Fre-
quent users showed a reduction in overall PT usage during and
after the closures.
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Study Main Focus Analysis Data
Source

Case Study Mode Main Finding w.r.t Travel Behavior

Li, Yao,
Ya-
mamoto,
Tang,
and Liu
(2020)

Understand metro passengers’
choice behavior under unplanned
service disruptions, and how socio-
demographic and travel charac-
teristic attributes influence these
choices

Error component latent class model (LCM)
to capture the heterogeneity in travel plan
choices under conditions of uncertainty.

SP
survey

Guangzhou,
China

Metro Two latent classes are found: (1) uncertainty pessimists (high-
income, female, and older) who are sensitive to disruption dura-
tion. (2) Uncertainty optimists (lower-income, male, younger) who
are less sensitive to the disruption duration. Frequent travelers
are more likely to belong to class 2.

This
study

Understand how passengers’ behav-
ior changes in the long-term after dis-
ruptions

Estimating a mixture latent Markov model
(MLMM) to cluster passenger travel behavior
before and after a disruption (divided into sev-
eral periods) based on a number of indicators.

AFC Washington
DC, US

Metro Five travel patterns and three mobility styles are found. Unlike ex-
pectations, differences between affected and reference passen-
gers were minimal. The affected group show a travel behavior
inertia similar to the reference. The largest pattern, frequent less
flexible peak travelers, exhibit the highest inertia (85%) among
the affected passengers. Tendency towards decreased travel fre-
quency was not significant among the affected.

1SP: Stated preference
2RP: Revealed preference
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2.2. Passenger Responses to Disruption
The majority of the literature on the impacts of transit disruptions on passenger behavior focus on the
immediate impacts, with only a limited number of studies exploring the longer term consequences.
For example, Nazem et al. (2018) studied the effect of a planned station closure of three months on
the ridership and passenger travel frequency. The results showed that even four months after the
disruption, the level of ridership of the disrupted station did not return to the level under the normal
situation. The ridership of adjacent stations which had increased during the closure did not revert
back either; thus, suggesting long-term impacts on station ridership. Moreover, travel frequency of the
frequent passengers decreased during the closure and did not increase to its pre-disruption level even
two months after the closure was resolved. However, it should be investigated whether the findings of
the paper would be valid for longer periods or not.

Additionally, Eltved et al. (2021) investigated the impacts of a planned line closure that lasted for three
months. The study found that the level of ridership on the affected line did not return to its normal level
even three months after the disruption had resolved. The author suggests that this is an indication of
a long-term effect. Moreover, they found that among passengers who are considered to be regular
commuters (people who travel everyday during peak-hour from Monday to Friday) 23% never returned
to the system after the service resumed. The study speculates that when these commuters, who
account for more than half the trips per day, face a disrupted service and switch to alternative modes to
commute, they might find the new mode a better alternative to the public transport, and consequently
not return to the system after the disruption.

Drabicki et al. (2021) uses a SP-RP surveys to study the short-term and long-term passenger behavior
under unplanned disruptions and finds that 77% reported that they made long-term changes in their
travel behavior as a result of experiencing frequent disruptions. These adjustments included changing
their usual bus or tram routes to avoid routes that are frequently disrupted or changing their departure
time. Additionally, 20% reported increased car usage.

Shires et al. (2019) uses a RP survey to understand passengers response to the disruptions caused by
planned engineering works in the past 12 months. Majority of the passengers (64%) stated that they
made no difference to their journeys due to the disruptions, and 18% stated that they are less likely
to travel via the places they experienced disruptions. The limitations of the study is that the majority
of the planned engineering works takes place in the weekend so the majority of the respondents were
non-commuters. Additionally, the RP survey did not ask about the magnitude of the disruptions that
passengers had experienced thus the author is not sure if there were any major disruptions to lead to
long term impacts. Moreover, most of these people had experienced only one disruption in the past 12
months which can impact the outcome.

Among the few studies on the long-term effects, it is also worth mentioning the study by Murray-Tuite et
al. (2014) which examines the effect of the Washington D.C. metro fatal accident in 2009 on travellers’
long-term mode choice and the factors influencing their behavior. To capture the long-term effect, a
survey was conducted in three waves spanning over a one-year period after the accident. The results
of the study revealed that 10% of the respondents changed their travel mode and 17% changed their
seating location on the train following the collision.

2.2.1. Factors Influencing Passenger Responses to Disruptions
The responses that passengers exhibit in the event of a disruption, can vary between changing the
mode, the route, the departure time/station, waiting for the service to resume, and cancelling the jour-
ney. These responses are influenced by the context and the characteristics of the individual, the jour-
ney, the network, and the disruption itself. This section synthesizes the findings of the papers which
are mentioned in Table 2.1 in more detail and analyzes the passenger responses in relation to the
influencing factors.

Travel Purpose

Several studies have found that when the purpose of a journey is critical and urgent (e.g., work, school),
passengers are more likely to change their routes (Adelé et al., 2019; Drabicki et al., 2021) or switch to
modes other than PT, such as cars and taxis (Nguyen-Phuoc et al., 2018b; Mo et al., 2022; Papangelis
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et al., 2016; Tian and Zheng, 2018; Nguyen-Phuoc et al., 2018a). Additionally, they are less likely to
cancel their journeys (Rahimi et al., 2020), which is likely due to the mandatory nature of the trip, time
inflexibility, and the higher urgency to arrive on time.

Travel Duration

For trips of longer durations and distances, passengers are more likely to change their modes (Li,
Yao, Yamamoto, Huan, and Liu, 2020; Tian and Zheng, 2018) and switch to driving (if they own a car)
(Rahimi et al., 2020; Nguyen-Phuoc et al., 2018b; Nguyen-Phuoc et al., 2018a). This behavior might be
because the uncertainty of arrival time increases when PT is disrupted; therefore, passengers switch
to other modes, like cars, which are more convenient and faster.

Disruption Time (peak, off-peak)

Disruptions occurring during morning and evening peak hours increase the likelihood of passengers
shifting to other modes compared to off-peak disruptions. This may be because passengers need to
arrive at their destinations, such as work or school, on time or because they are tired and need to arrive
home earlier (Li, Yao, Yamamoto, Huan, and Liu, 2020; Tian and Zheng, 2018). Additionally, Li, Yao,
Yamamoto, Tang, and Liu (2020) found that if a disruption happens during peak hours, passengers are
more willing to spendmoney to reduce travel costs, including travel time, disruption duration uncertainty,
minimum disruption duration, and transfer time.

Income and Employment

People with higher incomes are more likely to change their mode of transportation (Li, Yao, Yamamoto,
Huan, and Liu, 2020; Rahimi et al., 2020), switch to driving their own cars, or use car-sharing alterna-
tives like Uber and Lyft (Zhu et al., 2017; Saxena et al., 2019), or take taxis (Li, Yao, Yamamoto, Tang,
& Liu, 2020). Low-income groups, students, and the elderly generally continue using the PT or use
the back-up shuttle bus, which is likely because urban transit is more affordable for them (Arslan Asim
et al., 2021; Zhu et al., 2017; Mo et al., 2022).

Travel Frequency

Passengers who use PT more frequently are more likely to continue using the transit system in the
event of a disruption, due to their high level of familiarity with the network, which enables them to
navigate and find alternative routes more easily (Papangelis et al., 2016; Mo et al., 2022). Passengers
with high travel frequency demonstrate a lower sensitivity to disruption uncertainties and exhibit more
adaptable behavior towards unplanned service disruptions (Li, Yao, Yamamoto, Tang, & Liu, 2020).

Availability of Alternative Routes

In areas where alternative, undisrupted routes within PT modes are available, the majority of the de-
mand can be accommodated by these alternatives. For example, Rahimi et al. (2020) found that in
suburban areas, passengers opt for the backup shuttle bus when trains are disrupted. However, the
lack of alternative routes increases the likelihood of passengers opting out of PT and choosing other
modes (Li, Yao, Yamamoto, Huan, and Liu, 2020; Mo et al., 2022). In suburban areas with a limited
supply of public transport, there is a lower likelihood that passengers change their routes in response
to a disruption (Adelé et al., 2019).

Disruption Duration

Using a semi-structured survey, Nguyen-Phuoc et al. (2018a) found that when the disruption is short-
term (at least one day), people consider changing their route and mode or canceling their journey. How-
ever, longer disruption durations increase the likelihood of shifting to other modes (Li, Yao, Yamamoto,
Huan, & Liu, 2020).

Disruption Frequency

Drabicki et al. (2021) found that among passengers who frequently experience PT disruptions 77%
stated that they made long-term adjustments to their behavior such as changing their route or departure
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time to avoid the routes/times that are likely to be disrupted. Frequent disruptions likely push passen-
gers to find more reliable travel patterns. Similarly, in a study by Papangelis et al. (2016) passengers
stated that due to frequent disruptions they made significant and permanent behavioral changes, such
as mode changes, relocation, and job changes in the past.

Waiting Time of the Alternative Mode

The long waiting time for replacement buses can decrease the probability of choosing this mode and
encourage passengers to turn to alternatives other than transit (Arslan Asim et al., 2021; Rahimi et al.,
2020). Furthermore, additional inconveniences associated with these buses, such as walking from
the platform and overcrowding, increase the likelihood that passengers switch to other modes (Zhu
et al., 2017). Bus replacements were found by Shires et al. (2019) to be a less preferred mode in the
case of planned disruptions. The results show that the loss in rail demand is three times higher when
replacement buses are provided compared to rail diversions.

Driver’s License and Car Ownership

Passengers with a driver’s license or access to a car are more likely to change their mode and switch
to driving (Nguyen-Phuoc et al., 2018b; Adelé et al., 2019). These individuals also have the option to
rent a vehicle, whereas others, especially students who are less likely to own a driver’s license, would
continue using public transport or cancel their trip in response to a disruption (Nguyen-Phuoc et al.,
2018a).

Gender

Male passengers are more likely than the female passengers to wait for the service. Females are
more sensitive to the uncertainty caused by the disruption and are more willing to pay for the reduction
of travel time, minimize disruption duration, uncertain disruption duration, and transfer times (Li, Yao,
Yamamoto, Tang, & Liu, 2020).

2.2.2. Methods in Current Literature
The methods used in the papers which are reviewed in this study are either survey-based or smart
card data based. In order to investigate the travel behavior, mode choice, trip characteristics, and
socio-demographics, the most traditional method to gather data is using surveys. However, there are
a number of limitations to the RP and SP surveys. For example, the SP surveys can be unreliable
because what passengers state they would choose under a hypothetical situation might differ from
what they actually choose in reality. Moreover, the sample size is limited and the collection of the data
requires a lot of investment and time (Liu et al., 2021).

A more recent method that can be seen in some of the papers is data-driven analysis using automated
fare collection (AFC) data from passengers’ smart cards. Smart card readers inside stations or vehicles
record a transaction each time a passenger taps their card, capturing the time, location, and card ID.
While some systems require passengers to tap in and tap out, others only require tapping in. Unlike
surveys, use of AFC data would require the inference of individual choices, i.e., whether passenger
waited in the system, changed their routes, etc. Moreover, unlike surveys, socio-demographic informa-
tion is not available in the AFC transaction and needs to be provided separately by the public transport
authorities if available.

2.3. Passenger Segmentation
To study long-term changes in behavior due to disruptions, segmentation is employed. This method
allows us to test our expectations about how the behavior of different passenger profiles might change.
For instance, we might expect frequent travelers to reduce their travel frequency after a disruption,
or passengers to avoid traveling at times when they previously experienced disruptions. Segmenta-
tion helps identify passenger profiles, enabling an efficient analysis of passenger behavior without the
need to investigate each individual’s behavior in detail. This approach also avoids the shortcomings of
aggregate-level evaluations, which can miss nuanced differences.

By forming behavioral clusters that capture passenger behaviors across different periods, we can track
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the transition of passengers among these clusters over time. This provides a better understanding of
how the behavior changes.

To segment passengers, a set of indicators should be defined to capture the varying aspects of travel
behavior. The choice of indicators is guided by our expectations about behavior changes, data availabil-
ity, and existing literature. In this section, we provide an overview of some papers that use clustering
methods to group passengers and analyze their behavior, synthesizing these papers based on the
indicators they use for travel behavior.

2.4. Travel Behavior Indicators
One of the most frequently used indicators of travel behavior in the literature is the share of days with
at least one journey made by a passenger, often referred to as ”active days.” This indicator has been
widely employed in various studies as a measure of travel intensity and regularity. For instance, studies
by Eltved et al. (2021), Wang et al. (2023), and Ma et al. (2013) have utilized active days, among other
indicators, to segment passengers and create user profiles using K-Means clustering based on smart
card data. Additionally, Ou, Cai, et al. (2018) applied an affinity propagation algorithm to segment
passengers using several indicators, including active days. Ma et al. (2017) also used this indicator
to analyze spatiotemporal regularities and patterns in commuting behavior through the iterative self-
organizing data analysis technique (ISODATA).

In addition to active days, Eltved et al. (2021) also used the share of weeks with at least one journey
made by passengers to further capture travel intensity and regularity.

Several studies have utilized the boarding time of journeys as an indicator of travel regularity. For
instance, Ma et al. (2013) calculates the number of weekdays on which a passenger’s first journey
of the day occurred at a similar time to characterize travel behavior. Expanding on this, Ma et al.
(2017) also considers the consistency in the boarding times of passengers’ last journeys of the day.
Similarly, Ghaemi et al. (2017) employs boarding time as a key metric for segmenting passengers
using a generative model-based clustering approach.

Moreover, both Bhaskar, Chung, et al. (2014) and Medina (2018) use DBSCAN to identify regular
boarding times for each passenger, aiming to uncover habitual time patterns. Medina (2018) further
integrates the duration of activities (such as work or study) with boarding time to infer travel purposes.
Additionally, Briand et al. (2017) uses a Gaussian mixture generative model to explore passengers’
temporal activity patterns based on disaggregated time series of their boarding times and the day of
the week.

Another approach is presented by Zhao et al. (2017), who captures temporal travel patterns by dividing
the day into three-hour slots and counting the number of days in which journeys were made during the
same time slot for each passenger. Furthermore, Lathia et al. (2013) clusters passengers based on the
similarity of their boarding times across weekdays. This study divides the day into five time bins and
calculates the number of journeys a passenger made in each bin, grouping passengers with similar
frequency vectors accordingly.

Additionally, several studies define temporal features to differentiate between journeys on weekdays
and weekends or exclude weekends from the analysis altogether. For instance, Wang et al. (2023)
incorporates the number of active weekdays and the number of journeys on weekdays as key features
in the study, while Eltved et al. (2021) includes the share of journeys made on weekends alongside
other indicators.

In addition to these temporal features, other studies have utilized various metrics such as the number of
journeys with at least one transfer (Ou, Cai, et al., 2018), total number of journeys, and average travel
time (Wang et al., 2023). Finally, while some studies also include spatial features, such as similar
boarding stations, similar alighting stations, and similar route sequences (Bhaskar, Chung, et al., 2014;
Ma et al., 2013, 2017; Wang et al., 2023), these aspects are not the focus of this study and are therefore
not discussed in this literature review.



2.5. Conclusion and Discussion 11

2.5. Conclusion and Discussion
By reviewing the literature, we find that a substantial body of work exists on the immediate impact of
transit disruptions on passenger travel behavior. These immediate responses include changing modes,
routes, departure times and/or stations, waiting, or canceling journeys. The factors influencing these
behaviors are diverse: trip-related factors such as travel purpose, duration, and frequency; disruption-
related factors such as the time, duration, and frequency of the disruption; service-related factors like
the availability of alternative routes and waiting times for alternative modes; and passenger-related
factors such as income, employment, car ownership, and gender. The literature review helps establish
what behavioral changes can be expected among passengers as a result of a disruption and provides
the foundation for identifying relevant travel behavior indicators.

Despite extensive research on the immediate impacts, there is a gap in understanding the long-term
effects, defined as at least five to six months post-disruption. Studying these long-term impacts reveals
whether the temporary changes in passenger behavior due to the disruption persist in the long run and
to what extent passenger behavior changes or remains stable over time. In this study, we use AFC
data to gather information on passenger journeys, and we divide the post-disruption period into several
subperiods to obtain a detailed view of the evolution of behavior. We employ clustering to identify travel
patterns based on various indicators across these periods. By examining passengers’ membership in
these behavior groups and their transitions over time, we aim to propose a framework to study the
long-term impact of a disruption.



3
Methodology

In this chapter, the methodology for addressing the sub-questions is outlined which can also be seen in
Figure 3.1. The first step is to identify the disruption instance and filter the passengers who are affected
by it to study their behavior. In order to account for external factors such as seasonal trends, which
might affect behavior regardless of the disruption, a group of passengers is considered as reference
and the behavior of the affected passengers is compared to that of the reference. Next, we compare the
behavior of each passenger before the disruption to after the disruption. We divide the post-disruption
period into several periods for a more granular view of the behavior change. To understand behavior
in each period, we calculate a set of indicators, e.g., average number of journeys, share of active
days and etc, based on the smart card transactions of each passenger in each period. The result of
this is a row of data which summarizes a passenger’s behavior in a period. Next, these passenger
behaviors are clustered using a mixture latent Markov model. With this method, a number of clusters
are formed each showing a travel pattern. We can trace the membership of each passenger in these
travel patterns across the periods, calculate the probability of shifting from one travel pattern to another
over time, test our expectations against the actual outcome, and therefore conclude about passengers’
behavior changes.

Figure 3.1: Methodology Steps

This chapter is organized as follows: The process of identifying the disruption instance and the division
of the analysis periods are discussed in Sections 3.1 and 3.2, respectively. Next, the identification of
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the affected passengers and the reference passengers is explained in Sections 3.3, and 3.4. Section
3.5 provides an explanation about the mixture latent Markov model (MLMM) and 3.6 details the appli-
cation of MLMM to segment passengers based on a set of temporal features which are extracted from
Automated Fare Collection (AFC) transactions. Following that, the examination of passenger behavior
change due to disruptions is elaborated upon in Section 3.7.

3.1. Disruption Identification Process
In this section, we explain the criteria for identifying a suitable disruption for the analysis. Subsequently,
we discuss the process of exploring three datasets—the planned disruptions log, the unplanned dis-
ruptions log, and the AVL dataset—with the objective of finding a disruption. A suitable disruption is
one which is most likely to have a lasting impact. For example, a single disruption of one hour would
probably not have such impact. Therefore, the chosen disruption should be one which lasts for at least
a few days or weeks. Alternatively, it can consist of multiple disruptions of smaller scale (a few hours
or less) which happen repeatedly in a rather short period.

3.1.1. Disruption Identification Criteria
Several factors must be considered when identifying a suitable disruption. These factors lead to specific
criteria that restrict the process of selecting the optimal disruption event. Each factor, along with the
corresponding criterion it leads to, is outlined below:

The primary focus of this study is on passengers who predominantly travel during weekdays and work-
ing hours, as this group is more likely to consist of commuters rather than tourists who use the network
sporadically. Therefore, the first criterion is:

• The disruption should occur on weekdays (excluding public holidays) and before 9 PM.

It’s important that the disruption has the potential for a lasting impact on passenger behavior. This
leads to the second criterion:

• The disruption should ideally last several days/weeks in a station or a set of adjacent stations.
Multiple repeated disruptions of a few hours or less are also suitable.

Considering the significant decline in public transport usage during the Covid-19 pandemic (WMATA,
2024a), this study focuses exclusively on the pre-pandemic period, leading to the third criterion:

• The disruption must occur during the pre-Covid period, spanning from 1 August 2019 (when the
data becomes available) to 1 March 2020.

To effectively assess the impact of the disruption, it’s necessary to compare passenger behavior before
and after the event, which informs the fourth criterion:

• There must be at least three weeks prior to the disruption, as the pre-disruption period, and a
minimum of four or five months following the disruption for the post-disruption analysis.

Finally, to ensure the disruption’s impact is isolated, meaning no other events skew the data, the final
criterion is:

• There should be no other significant disruptions in the affected area during both the pre- and
post-disruption periods.

Considering the second and third criteria, the effective period for identifying a disruption is between
21 August and 1 October 2019. This timeframe allows for sufficient pre- and post-disruption analysis
without overlap from the Covid pandemic.

3.1.2. Finding a Disruption from the Planned/Unplanned Disruptions Log
First, we analyze the planned disruptions log to identify major maintenance works within the network
that result in extended disruptions, either through reduced service frequency or complete closure of
a line or station. These disruptions must meet the previously established criteria. Additionally, we
consult the official WMATA website and review news coverage of the metro system to ensure that
all significant planned maintenance works have been accounted for. Furthermore, we examine the
unplanned disruptions log as an alternative source of disruptions.
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It is important to recognize that disruptions may impact stations in one direction while the opposite
direction remains unaffected. Therefore, during our analysis, we must carefully distinguish between
disruptions occurring in opposite directions at the same station.

3.1.3. Finding a Disruption from the AVL Data
As a third source for identifying the occurrence of disruptions, we analyze the AVL dataset. One method
to detect disruptions based on train movements involves calculating the time interval between the de-
partures of two consecutive trains at a station. A significant interval suggests a delay at that particular
station. To assess the occurrence of delays, we compute two specific measures based on the departure
times of trains:

• Headway per line per direction: This metric calculates the time difference between the depar-
ture of two consecutive trains that visit the same station and travel in the same direction on the
same line.

• Headway per direction: This metric measures the time difference between the departure of two
consecutive trains at a station traveling in the same direction, regardless of their line.

Whenever large values are observed for both of these two measures at the same time, we can conclude
that a significant delay has occurred.

The rationale for incorporating the second measure is that some stations are served by multiple lines,
and while one line may be disrupted, others might operate normally. Therefore, depending on their
destination, some passengers could remain unaffected by the disruption due to the availability of al-
ternative lines. Consequently, observing a large value for the first measure while the second remains
small does not necessarily signify a disruption for all passengers, as the availability of alternative lines
can mitigate the impact.

3.2. Defining the Pre- and Post-disruption Periods
After finding a suitable disruption instance, a period of at least three weeks to one month before the
disruption should be determined as the pre-disruption period. The period after the disruption is divided
into intervals of around one month in order to construct the five or six post-disruption periods required
for the analysis. The public holidays shall be removed from these periods because the frequency
and opening hours of the metro network differs on public holidays compared to normal days (WMATA,
2024d).

3.3. Identification of the Affected Passengers
Once a suitable disruption is identified, the next step is to filter out the passengers whowere impacted by
it. The approach for identifying affected passengers depends on the type of disruption. If the disruption
is a single event lasting several weeks or days, the identification process differs from that used for
multiple short disruptions occurring over several days, which last only a few hours or less (e.g. around
30-40 minutes) each. Each disruption type demands a specific method to accurately determine which
passengers’ travel was disrupted.

3.3.1. First Scenario: One Disruption
Passengers who frequently begin their journeys from the disrupted station are more likely to be affected
by the disruption and change their behavior due to their frequent use of the station. Therefore, we
identify these frequent travellers as the relevant passengers for our analysis.

To determine frequency, the number of journeys that a passenger has made from the disrupted station
within a typical, undisrupted month—potentially during the pre-disruption period is calculated. A thresh-
old is determined to label passengers with journeys greater than that threshold as frequent and thus
relevant travellers and others as irrelevant for our study.

Choosing a small threshold would include many passengers who do not frequently use the disrupted
stations in the analysis, while a higher threshold would risk excluding some of the relevant passengers.
To strike a balance between filtering out irrelevant passengers and retaining information on frequent
travellers, we choose four journeys as the suitable threshold.



3.3. Identification of the Affected Passengers 15

3.3.2. Second Scenario: Multiple Disruptions
In the second scenario, similar to the first, we begin by filtering out the frequent travellers. These
are passengers who, during an undisrupted period, initiated at least four journeys from the affected
stations around the time of disruption. For instance, if the disruptions consistently occur around 8 AM
in September, we should focus on those who made at least four journeys around 8 AM at that station
before September.

To accurately determine whether the start time of a journey aligns with the disruption time, a specific
window is defined. This window is the interval (referred to as ”headway”) between the disrupted train’s
departure time and the departure of the preceding train. An additional thirty-minute margin is added to
account for variations, as illustrated in Figure 3.2. We have opted for a 30-minute margin to capture a
wider range of tap-in times for passengers. This approach ensures we include those who usually tap
in at varying times, not just those with a fixed schedule around the disruption. Using a smaller margin
would exclude passengers whose tap-in times differ more broadly, limiting our understanding of the
disruption’s impact. This wider margin helps us better analyze how different passengers react to the
disruption.

Therefore, for each journey i if tap ini falls within the range [delayed train departure time - headway -
30 min, delayed train departure time + 30 min] the journey is classified as a frequent journey occurring
around the disruption time. This ”headway” parameter is the same as the headway per line per direction
discussed in Section 3.1.3.

Figure 3.2: The range for tap ini to consider i a frequent journey made around the disruption time.

Having identified the frequent travellers, the next step is to identify the frequent travellers who have
experienced the disruptions at least twice. Some passengers might have not experienced any of the
disruptions at all. Some might have experienced them only once which might be interpreted as an
accidental disruption by the passengers. Therefore, setting the threshold at two disruptions provides
evidence that these incidents occurred recurrently, affecting the same passengers multiple times.

The criteria to determine whether journey i of a passenger has been affected by a disruption or not is
based on the timing of their tap-in relative to the train’s departure. Specifically, a journey is considered
affected by a disruption if tap ini falls within the range [delayed train departure time - headway, delayed
train departure time - scheduled headway]. This range is visualized in Figure 3.3.

Figure 3.3: The range for tap ini to consider i a journey affected by a disruption (delay).
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This criteria ensures that people who have tapped-in just before the departure of the delayed train (and
did not fully experience the long delay) are excluded. The scheduled headway is deducted from the
departure time for this purpose because it is the usual interval between two trains on that line.

3.4. Identification of the Reference Passengers
To ensure that any observed changes in passenger behavior are directly attributable to disruptions,
it’s essential to control for external factors such as seasonal trends which can affect travel behavior
regardless of disruptions. In order to understand these natural trends we can look at the behavior
change of another group of passengers as a reference point.

In the case of a single event disruption leading to a complete station closure, we identify a group
of passengers who travel via another station(s) that closely resemble the disrupted station in terms of
redundancy, regional characteristics (whether they are in residential or workplace areas), and proximity
to the city center. The behavior of these passengers is analyzed as a reference. Otherwise, if we have
multiple disruptions leading to delays rather than a complete closure, we can use the users of the
disrupted station who have not experienced the disruptions as the reference group.

Importantly, the reference should remain unaffected by any disruptions to accurately reflect the natural
trend in passenger behavior. Passengers who traveled via the reference stations for at least four times
in the pre-disruption period are selected as the reference group. This criterion ensures that sporadic
travelers, including tourists, are excluded from the analysis. Consequently, a temporal travel pattern
analysis is conducted for both the affected passengers and those from the reference group. Comparing
the differences between the behavior of the affected and reference passengers can provide insights
into the impact of disruptions.

3.5. Passenger Segmentation
Using clustering, we can identify unobserved travel patterns that represent passengers’ travel behav-
ior across different periods. By tracking how passengers transition between these clusters from one
period to the next, we can assess whether changes in behavior align with our expectations, such as
whether travel frequency decreases. This approach allows us to draw conclusions about the impact of
disruptions. Moreover, investigating each individual’s behavior separately is time-consuming and com-
putationally expensive. On the other hand, evaluating passengers at an aggregate level fails to capture
their similarities and differences. Clustering provides an effective framework to study the behavioral
patterns of different passenger groups. By addressing both their similarities and differences, clustering
enables targeted analysis and allows for the tailoring of interventions or policies to meet the needs of
different segments.

This section of the study adopts a clustering approach inspired by Briand et al. (2017), which inves-
tigated the year-to-year changes in passenger groups, and Eltved et al. (2021), which focused on
behavior changes following a disruption using clustering. The current study differentiates itself by eval-
uating the long-term changes in clusters in several periods, in contrast to the single-event focus of
Eltved et al. (2021) and the annual analysis of Briand et al. (2017). Additionally, this research uses the
mixture latent Markov model which addresses the limitations of traditional clustering methods such as
K-Means which is used by Eltved et al. (2021).

This section begins with an overview of the most widely used clustering methods in travel behavior
research in Section 3.5.1. It then introduces the chosen clustering method for this analysis, along with
the model assumptions, in Section 3.5.2. Finally, the specific indicators used to capture the travel
behavior of passengers are explained in Section 3.5.3.

3.5.1. Clustering Methods
Hierarchical clustering algorithms are designed to create a nested structure of clusters and are cat-
egorized into agglomerative and divisive algorithms. Agglomerative algorithms employ a bottom-up
approach, and start with considering each data point as a separate cluster. These clusters are then
progressively combined based on a measure of dissimilarity until all points are consolidated into one
cluster. Conversely, divisive algorithms start with all data points in one cluster and systematically split
this cluster until each data point stands alone (Ghaemi et al., 2017). One significant advantage of
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hierarchical clustering algorithms is their ability to visually represent the clustering results through a
dendrogram, which illustrates the sequence of cluster mergers or splits. Additionally, the number of
clusters does not need to be predetermined; various numbers of clusters can be achieved by cutting
the dendrogram at different levels. However, this method demands substantial computational power
and requires a decision on the level at which to cut the dendrogram to obtain the desired clusters (Ran
et al., 2023; Xu and Tian, 2015).

K-means is an unsupervised clustering algorithm that groups data points into k different clusters based
on their distance to the cluster center. The data points within each cluster are similar to one another
but distinct from those in other clusters. The K-means clustering algorithm is valued for its efficiency,
flexibility, and low computational complexity, making it particularly suitable for handling large datasets
(Ikotun et al., 2023). However, K-means has several drawbacks: it requires pre-specifying the number
of clusters, may converge to a local optimum, is sensitive to outliers, and performs poorly with non-
convex data (Xu & Tian, 2015).

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is an algorithm that identifies
dense clusters in data by separating them from regions of lower density. DBSCAN operates with two
parameters, ϵ and MinPts. MinPts represents the minimum number of points to form a cluster, with
clusters falling below this threshold classified as noise. ϵ indicates the maximum distance between
two points to be considered as neighbors. Unlike K-Means, which is influenced by noise and outliers,
DBSCAN can automatically handle noise (Ester et al., 1996). Additionally, DBSCAN is capable of
detecting clusters in data with arbitrary and non-convex shapes. The downside however, is that the
result of the clustering is highly sensitive to the value of the parameters and the outcome of the clustering
could be of low quality if the data space’s density varies significantly (Xu & Tian, 2015).

Model-based clustering approaches assume that the data is generated by a combination of underlying
probability distributions (Magidson & Vermunt, 2002). Each cluster is indicated by a parametric distribu-
tion, and the overall data is modeled as a mixture of these distributions (Xu & Tian, 2015). One of the
commonmodel-based clustering algorithms is the Gaussian mixture model (GMM). GMM assumes that
the data is generated based on a mixture of several Gaussian distributions and the data generated from
the same distribution belong to the same cluster (Xu & Tian, 2015). The GMM algorithm however has a
relatively high time complexity. The assumption that the data within each cluster is normally distributed
may not hold for all datasets and might potentially lead to poor clustering performance. Additionally,
GMMs are sensitive to the initial parameter values; poor initialization can lead to convergence at local
optima, thereby compromising the quality of the clustering results (Xu & Tian, 2015).

3.5.2. Model conceptualization
Hierarchical clusteringmethods are computationally expensive for large datasets and require a decision
over which level of the dendogram to cut to obtain clusters. K-Means requires the arbitrary specification
of the number of clusters and is highly sensitive to outliers. GMM models are time-intensive and their
underlying assumption may not always hold.

Therefore, in this study we use one of the variants of a model-based clustering approach called latent
class analysis (LCA) which assumes that each data point belongs to one of the K latent or unobserved
discrete classes. Data points belong to a similar latent class or cluster based on the similarity of their
values regarding a number of observed indicator variables. We use a variant of LCA to cluster passen-
gers’ behavior in each period, thus the latent variable represents travel pattern. The main assumption
of LCA is that membership in each latent class can explain the response patterns to the indicators. The
relationship between the indicators and latent class variables is estimated via multinomial logit models.
LCA typically uses maximum likelihood estimation to estimate model parameters. This involves find-
ing the parameter values that maximize the likelihood function, which indicates the probability of the
observed data given the model parameters (Magidson & Vermunt, 2002).

One of the main advantages of LCA is that the decision over the optimal number of clusters is guided
by statistical tests, making it less arbitrary. Additionally, LCA accommodates variables of mixed scale
types without the need for standardization (Magidson & Vermunt, 2002).

Despite the capabilities of LCA, there are a few limitations to this method. LCA assigns individuals to
classes based on the probability of class membership given a certain response pattern; therefore, the
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most suitable class membership is not guaranteed and the share of individuals in each cluster cannot
be precisely determined. Moreover, in LCA the latent classes are named by researchers; thus, issues
could arise from whether the class labels properly represent the behavior of the class members (Weller
et al., 2020).

The Mixture Latent Markov Model

Our objective is to understand how passengers’ behavior evolves over time, which requires a longi-
tudinal analysis. That is why we utilize a variant of LCA particularly suited for clustering longitudinal
data: the Latent Markov Model (LMM) (Vermunt & Magidson, 2013). This model allows individuals to
transition between clusters over time, with these clusters—referred to as latent states—representing
different travel patterns in our study. The dynamic nature of LMMs offers a significant advantage over
static models, as it enables us to capture the evolving nature of travel behavior by estimating the likeli-
hood of passengers transitioning between different travel patterns over time.

A basic LMM assumes that all individuals share the same transition probabilities, meaning each person
has an equal likelihood of moving from one travel pattern to another over time. However, in reality, there
may be differences in how individuals transition between travel patterns. To account for this variability,
we employ a mixture latent Markov model (MLMM), which is a case of LMM that accommodates het-
erogeneity in transition probabilities by assuming the population is composed of several classes, each
with its own Markov process and distinct transition probabilities (Kroesen & van Cranenburgh, 2016).

Inspired by the approach of Kroesen and van Cranenburgh (2016), we refer to each class as a ”mobility
style”, reflecting the unique characteristics and underlying attitudes with which passengers change their
travel patterns over time. Identifying these varying mobility styles, rather than assuming homogeneity,
is important for our analysis as it allows us to observe what mobility styles exist and whether the affected
passengers are more or less likely to belong to each of these mobility styles. For instance, if we expect
a reduction in travel frequency after a disruption, we can see whether a mobility style reflecting this
trend has emerged or not. Additionally, we can assess whether affected passengers are more likely
than the reference group to belong to this particular mobility style due to them having experienced the
disruption. That is why uncovering the different mobility styles is necessary.

Moreover, MLMMs are well-suited for handling missing data, which is a particular challenge in this
study, where some passengers may not have recorded activity during certain periods. These models
are also capable of managing a large number of time points and supporting indicators of various scale
types, thus offering great flexibility in the types of indicators that can be included (Vermunt & Magidson,
2013).

Another advantage of using MLMMs that motivated our choice is their ability to incorporate additional
variables, often sociodemographic factors, known as covariates (Magidson & Vermunt, 2004), such as
age, gender, education, etc. Although these variables are not part of the observed indicators, they can
still impact transition probabilities, travel patterns, and mobility styles. This capability is crucial for our
study because whether a passenger is affected or reference may influence their likelihood of belonging
to a specific mobility style and their transition probabilities. Therefore, ”type” (i.e., whether a passenger
is affected or a reference) is included in the model as a covariate, and its significance is subsequently
tested.

One of the strengths of MLMMs is their ability to differentiate between individuals who maintain the
same travel pattern over time (referred to as ”stayers”) and those who change their travel pattern (re-
ferred to as ”movers”). Separating the stayers allows us to more accurately capture the heterogeneity
among the movers (Kroesen & van Cranenburgh, 2016), thereby providing a better understanding of
the phenomena of behavioral stability and change within the population. This approach is often referred
to as the ”mover-stayer” model.

For stayers, the model assigns a probability of 1 for remaining in the same state, indicating no transition
in their travel pattern, and a probability of 0 for changing states, meaning their probabilities are fixed
at either 0 or 1, with no intermediate values. In contrast, for movers, the model calculates probabilities
that describe the likelihood of transitioning from one state to another between consecutive periods, with
these probabilities ranging from 0 to 1. This process follows a Markov model, where the current state
membership is assumed to depend on the previous state membership (Magidson et al., 2009).
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Model Assumptions

First, it is assumed that passengers’ travel behavior can be captured by a set of latent variables, i.e.
travel patterns, which vary over time and at each period represent travel behavior with the smallest
possible number of logit parameters. Six features are used as indicators of these latent variables:
share of active days, average number of journeys per weekday, share of weekend journeys, share of
peak-hour journeys, share of days with similar first boarding time, and share of days with similar last
boarding time (feature selection is discussed in Section 3.5.3).

Secondly, we assume that another latent class variable, i.e., mobility style, explains the initial travel
pattern membership and the probabilities of transitioning between different travel patterns over time.
Mobility styles capture the heterogeneity in the transition probabilities. Contrary to travel patterns,
mobility styles are not dependent on time (Vermunt & Magidson, 2013). For example, one such mobility
style mentioned earlier is the stayers who do not change behavior over time. Mobility styles are not
known beforehand and are identified after the clustering.

Figure 3.4: Graphical representation of the latent class model.

Third, the data points are clustered based on their similarity regarding the indicators. This part of
the model is called the measurement model (Haustein & Kroesen, 2022). In a latent Markov model the
indicators are assumed to be independent conditional on a latent process. This assumption is known as
the local independence assumption (Bartolucci et al., 2010). This assumption is graphically presented
in Figure 3.4, where the six indicators are assumed to be independent conditional on the latent travel
patterns.

Fourth, the part of the model which probabilistically assigns data points to the latent classes is called
the structural model. This part of the model allows for the inclusion of additional covariates. Figure
3.4 graphically illustrates the structural model where the covariate ”type” is included in the model as an
influential factor in class membership, initial state membership and the transition probabilities.

Figure 3.4 shows that for every period t ∈ {0, ..., T} the Markov model includes a latent state variable
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(travel pattern). Given that the latent state variable is nominal, a multinomial logit model is utilized
to estimate the relationship between successive latent state variables. The resulting logit parameters
can be used to create a matrix of transition probabilities, which indicate the likelihood of latent state
membership at the next period based on the current period. Thus the first-order Markov assumption
indicates that the probability of transitioning to a future state depends on the current state, and not on
any previous states (Vermunt & Magidson, 2013).

Another assumption is that the logit parameters that describe the relationships between the latent travel
patterns and the indicators are equal in all periods. This implies that the structure and nature of the
travel patterns does not vary over time. This assumption is known as the measurement invariance
assumption. This assumption is crucial for interpreting transitions between travel patterns over time
because it is difficult to analyze transitions if the patterns in one period are different from the next
(Kroesen & van Cranenburgh, 2016).

3.5.3. Selected Indicators
We have specific expectations regarding how passenger behavior may change following a disruption,
which inform our selection of indicators for the model. For example, we anticipate a decrease in travel
frequency, with frequent travelers making fewer journeys on fewer days. This change could be driven by
passengers choosing to work from home or use their own vehicles on certain days after the disruption.
Therefore, it is essential to include indicators that effectively capture this expectated shift in behavior.

Additionally, the timing of the disruption—whether it occurs during peak or off-peak hours—can affect
passenger activity during peak times. This necessitates another indicator to account for this aspect. If
the disruption happens on weekdays, passengers might reduce their use of public transport for commut-
ing, opting instead to use it primarily for leisure activities on weekends. Furthermore, to avoid frequently
disrupted hours, passengers might alter their usual travel times on certain days, leading to variations
in their boarding times. Therefore, indicators are chosen based on these expectations, data availability
and limitations, as well as insights from the literature review on passenger segmentation indicators.

Based on these indicators, travelers are clustered, and changes in their behavior due to a disruption
are analyzed. The indicators are divided into several categories:

Travel frequency: Travel frequency is a crucial aspect of passenger segmentation, helping to identify
passengers who use public transport intensively versus those who use it sporadically. This distinction
provides insights into the users with the highest contribution to the total journeys in public transport.
The following indicators are used in this study to capture the travel frequency of each passenger during
the study period:

• Share of active days

This indicator is defined as the percentage of days during the period on which a passenger made
at least one journey. In order to calculate this feature, the number of unique days on which at
least one journey has been recorded for a card ID is calculated. This features ranges from zero
to one.

• Average number of journeys per weekday

This indicator is defined as the average number of journeys a passenger has made on weekdays
(Monday to Friday). In order to calculate this feature, the data is first filtered on the weekdays.
Next, the number of journeys per passenger is calculated and divided by the total number of
weekdays in the period.

Time-of-day / Day-of-week: Another aspect of the temporal travel pattern is the time-of-day or day-of-
week in which passengers start their journeys. This feature provides useful insights into the charac-
teristics of a passenger, e.g., whether the passenger often travels during the peak hours and whether
he/she travels mostly during the week rather than the weekend.

• Share of weekend journeys

This indicator is defined as the share of journeys during the whole period which were made on
Saturday and Sunday per passenger. In order to calculate this feature the data is filtered on the
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weekends, the number of weekend journeys per passenger is calculated and divided by the total
number of journeys per passenger in the period.

• Share of peak-hour journeys

This indicator is defined as the share of weekday journeys in the whole period which were made
during the peak hours per passenger. The definition of peak-hours is derived from WMATA’s
website where 6AM to 9AM in the morning and 3PM to 7PM in the evening is indicated as the
busiest periods of the day (WMATA, 2023). In order to calculate this feature, the data is first
filtered on the weekdays. Next, the number of peak-hour journeys per passenger is calculated
and divided by the total number of weekday journeys in the period.

Travel regularity: This category of indicators account for the travel pattern regularity and flexibility.

• Share of similar first boarding time

This indicator is defined as the share of days a passenger started his/her first journey of the day
around a similar time. This indicator enables the identification of travel time regularity and the
extent to which passengers travel at the same time everyday which is a suitable measure of time
flexibility of passengers.

To calculate this indicator, some studies divide each day into bins of one hour or 30 minutes and
calculate the number of days a passenger starts his/her first journey in a similar bin. However,
one of the limitations of this method is that journeys occurring near the border of the bins might
be placed into different bins as is the case for two journeys at 08:02 AM and 07:58 AM and thus
be considered as two journeys with different boarding times. Therefore, an alternative approach
introduced by Bhaskar, Chung, et al. (2014) is to use DBSCAN to identify the densest areas in
the dataset as a group of days with approximately similar boarding times. In order to calculate
this indicator, the data is filtered on the first tap-in of each day per passenger. Next, the tap-in
time is translated into minutes-from-midnight, e.g., 07:00 AM is transformed into 420 minutes.

DBSCAN requires two parameters, ϵ and MinPts, as input. MinPts represents the minimum
number of points to form a cluster, with clusters falling below this threshold classified as noise.
Moreover, ϵ indicates the maximum distance between two points to be considered as neighbors.
As a rule of thumb, the MinPts is twice the dimension (i.e., two in this case). Since eventually
the largest cluster is selected as the value for the number of similar boarding times, the value of
MinPts is trivial as smaller clusters are set aside automatically.

To determine the proper value for ϵ, Sander et al. (1998) argues that the ϵ of the smallest (least
dense) clusters are good candidates for this value. Given that MinPts is known the first step is
to calculate the distance of each data point to its kth nearest neighbor. Here k is MinPts. Then
the distances are sorted in descending (or ascending) order and plotted in a graph like Figure
3.5. This graph provides some insights into the density distribution of the data points. The elbow
of the graph is chosen as the value for ϵ. All the points with a larger distance than the elbow are
labeled as noise, and all the points with a distance smaller than the elbow is assigned to a cluster.

Figure 3.5: Example of a sorted distance plot (Sander et al., 1998).

The output of this DBSCAN algorithm consists of several clusters, each representing groups of
days with similar boarding times per passenger. We use the size of the largest cluster, divided
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by the total number of active days for a passenger, as the value for this feature. For instance, if
the algorithm identifies two clusters for a passenger’s boarding times—such as one with 15 days
and another with 8 days—the largest cluster size, 15 days, is selected. If the number of active
days of the passenger is 30 days, the value for this feature would be 0.5.

• Share of similar last boarding time

This indicator is defined as the share of days a passenger started his/her last journey of the day
around a similar time. A similar approach to calculating the first boarding time is used to calculate
this indicator.

The indicators are calculated for each affected and reference passenger based on their smart card
transactions during each period. This results in a dataset where each row represents the behavior of
one passenger, defined by the six specified indicators for a particular period. These rows are then
sorted by passenger and ordered chronologically by period, as the Markov algorithm uses the first row
for each passenger as the initial period. This dataset is then clustered using the ”Markov” model in
the LatentGold 6.0 software package. To avoid local optima, the model is estimated using 200 sets
of random starting values for the parameters and 200 iterations for the Expectation-Maximization (EM)
algorithm. These settings can be adjusted in the ”Technical” tab of the model.

3.6. Clustering Procedure
In the previous sections, the chosen clustering method, the model assumptions, and the selected indi-
cators were discussed in detail. In this section, the specific steps involved in performing the clustering,
and model estimation are outlined.

3.6.1. Model Estimation
The mover-stayer model is composed of several mobility styles (classes) and travel patterns (states).
To identify the optimal number of travel patterns and mobility styles, we use the two-step approach
introduced by Kroesen and van Cranenburgh (2016). In this method, the number of travel patterns is
determined first (without including the latent mobility styles) and is then used to decide the number of
mobility styles.

Determining the Number of States

To identify the optimal number of travel patterns (states), we estimate LCA models (without any covari-
ates) starting with one state and incrementally increasing the number of states up to 10. The number
of states is input into the model via the ”Variables” tab. The criterion chosen to determine the opti-
mal model is the Bayesian Information Criterion (BIC), which identifies the optimal model based on
the model fit and complexity (as measured by the number of parameters) and is typically used for this
purpose (Nylund et al., 2007). The model which shows the lowest BIC value is selected as the optimal
model, thus determining the optimal number of states.

Determining the Number of Classes

After determining the optimal number of states, a similar approach is used to identify the optimal number
of mobility style classes. We begin by estimating mixture latent Markov models with five states and a
varying number of mobility styles, ranging from one to four. From the model with two classes onwards,
the ”stayer” class is included in the estimation, which can be configured via the ”Advanced” tab. The
model which shows the lowest BIC value is then selected as the optimal model.

Determining the Significance of the Indicators and the Covariate

The next step is to test whether the indicators are significant, i.e., to determine whether there is a
meaningful relationship between the latent travel patterns and the indicators in the population. Con-
versely, insignificance indicates that the indicator does not contribute to distinguishing between the
travel patterns and can be removed from the model.

One method to test the significance of the indicators and the covariate is the Wald test (Vermunt &
Magidson, 2013). This test evaluates whether the parameters associated with each indicator in the
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multinomial logit models are significantly different from zero. Specifically, the null hypothesis is that
all parameters related to an indicator are zero in the population. The alternative hypothesis is that at
least one parameter is not zero, indicating a significant effect (Gudicha et al., 2017). The Wald test
calculates a statistic for each indicator, and the p-value determines the significance. If the p-value is
found to be smaller than 0.05, we need to reject the null hypothesis, and conclude that the indicator is
significant. This p-value can be found under the ”parameters” tab in the output of the model.

The final step is to add the covariate to the optimal model and re-estimate it to test the significance of
the covariate. If the covariate is found to be insignificant in its relationship with either initial state mem-
bership, transition probabilities, or class membership, the insignificant relationship can be removed
from the model via the ”Model” tab.

3.7. Interpretation of the Results
Based on the output of the mixture latent Markov model, we can evaluate travel patterns by analyzing
the mean values of indicators within each pattern, following the approach commonly used in studies
employing latent class analysis. For simplicity, these studies often assign labels to each pattern to
facilitate reference.

Furthermore, the model allows us to examine the probabilities of transitioning between travel patterns
over time. By comparing these probabilities for affected passengers and a reference group, we can
gain insights into their behavioral differences. Additionally, the characteristics of different mobility styles
can be derived from their transition probabilities, and labels can be assigned to these styles accordingly.
This approach also enables us to determine whether the outcomes observed in our case study align
with our initial expectations. A comprehensive discussion of the results and related analyses is provided
in Section 5.



4
Case Study Description

This chapter begins with a description of the metro network used in the case study and the different
datasets. Section 4.1 provides information on the disruption identified as the case study. Section
4.2 and Section 4.3 detail the identification of the affected passengers and the reference passengers
respectively. Finally, Section 4.4 discusses the preparation of the data for the clustering.

The data which is used in this research is provided by theWashington Metropolitan Area Transit Author-
ity (WMATA) through the Smart Public Transport Lab at TU Delft. The metro network of Washington
D.C., also called the Metrorail, consists of 128 miles of track and serves 98 stations across Virginia,
Maryland, and the District of Columbia through six color-coded rail lines as seen in Figure 4.1. Metrorail
offers service to over 600,000 passengers daily across the Washington, DC area and is the second
busiest transit system in the United States. The design of the system ensures that passengers tap-in
their smart cards upon entrance to the network as well as the exit (WMATA, 2024c)(WMATA, 2024b).

The data provided consists of comprehensive information on Metrorail’s operations and service disrup-
tions from August 2019 to December 2022 which includes Automated Fare Collection (AFC), Automatic
Vehicle Location (AVL), planned and unplanned disruptions log.

The AFC dataset provides crucial information on the journeys of individual smart card users, including
date, card ID, tap-in time, tap-out time, tap-in station, tap-out station, and train line. For the purposes
of this study, we assume each smart card represents a single passenger.

The AVL dataset offers comprehensive data on train movements, with each row representing a train’s
service at a station, also known as a stop visit. Key fields in this dataset include date, train ID, station
name, next station name, arrival time, departure time, train line, direction, headway, and scheduled
headway.

The planned disruptions log details each recorded disruption, specifying the date, start time, train line,
and description. Similarly, the unplanned disruptions log records each incident’s start time, train line,
station name, direction, description, passenger delay, line delay, and train delay.

Given that the COVID-19 pandemic began in March 2020 in Washington D.C., leading to a significant
decline in public transport usage (WMATA, 2024a), our study focuses exclusively on the pre-pandemic
period from August 2019 to March 2020.

4.1. Disruption Identification
In this section the analysis steps and the subsequent results of exploring the planned and the unplanned
disruptions log are explained. After mentioning the findings and limitations of these two datasets, the
analysis of the AVL data is discussed in detail. At the end, the disruption instance which was chosen
to focus on is introduced.

24
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Figure 4.1: Washington DC metro map in 2019

4.1.1. Finding a Disruption from the Planned/Unplanned Disruptions Log
The investigation of the planned disruptions log, as the first source of data to be analyzed, indicated that
all of the recorded planned disruptions take place either in the weekend or after 9PM on weekdays. This
does not satisfy the first criteria of choosing the suitable disruption. This means that public transport
users who travel during the week and in working hours are barely affected by these disruptions.

Additionally, the official website of WMATA along with news about the metro system were explored
in order to confirm if there were no major planned maintenance works in the system in the period of
interest. The investigation indicated that several stations of the yellow and the blue line were closed
for maintenance work from May 2019 until September 2019; however, due to the unavailability of the
data, this disruption instance could not be further investigated.

Alternatively, we explored the unplanned disruption log for the period of 21 August to 1 October 2019.
Three values are recorded for each logged disruption in this dataset which indicate the amount of delay
(in minutes) caused for the passengers, line, and the train. These three values could serve as a proxy
of the immediate impact of the disruption.

Figure 4.2 shows the cumulative proportion of delays caused by the disruptions. The figure indicates
that over 90% of the disruptions cause delays of less than 10 minutes for either of the passengers, the
line, or the train. Moreover, the largest delays are below 50 minutes. Therefore, there are no records
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of disruptions that last for hours or days. An alternative to large disruptions could be a number of
considerable delays (for example above 20 minutes) happening in a short period in the same place.
This instance could also have a long term impact on passenger travel behavior. Thus, the next step is
to look for such instance.

Figure 4.2: Empirical cumulative distribution function plot of the delays.

Although the three measures of delay are available per disruption in the unplanned disruptions log,
there are two limitations to this dataset:

(1) First, it does not contain information on the scope of each disruption. For example, it is not possible
to infer from this dataset whether a delay in a station propagated to adjacent stations or not.
(2) Second, the exact time when each disruption has ended is not recorded in the dataset.

Thus, we continue the investigation with the AVL dataset as a source of information about the train
movements enabling us to identify the scope and duration of each disruption.

4.1.2. Finding a Disruption from the AVL Data
Prior to this analysis, the AVL data was processed and several errors were removed from this dataset:

(1) In this dataset the line name is inferred based on the observed stop sequence. The rows where the
line name has not been inferred correctly were removed.
(2) Every station is served by a specific line or a number of lines. For example station ’Glenmont’ is
served solely by the red line. However, there are instances in the dataset where a station which belongs
to a specific line, is served by a train which belongs to another line. Such instances could occur due to
vehicle repositioning among other things. Therefore, they were removed from the dataset.

Next, the twomeasures of headway per line per direction and the headway per directionwere calculated
and added to the dataset as indicators of disruptions. Whenever large values are observed for both
of these measures, a large delay has happened. Figure 4.3 shows the cumulative proportion of the
headways observed for the trains in the period of 21 August to 1 October 2019. It is evident from the
graph that the majority of the headways are below 20 minutes which is in line with the findings from the
unplanned disruptions dataset.
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Figure 4.3: Empirical cumulative distribution function plot of the headway.

For every station and every direction, the instances where the values of headway per line per direction
and headway per direction were higher than 20 minutes were filtered to be analyzed. We looked for a
short period of time in which multiple large headways happened repeatedly, as this could serve as a
suitable instance for the disruption.

4.1.3. The Chosen Disruption Instance
This investigation identified a period in September during which several delays ranging from 20 to
37 minutes affected five stations on the orange line heading towards Vienna. Figure 4.4 shows the
locations of the affected stations on the metro network. Table 4.1 provides the specific dates of the
disruptions at each station, as well as the total number of delay occurrences per station. Notably, there
were days when more than one significant delay occurred. This particular instance meets all the criteria
established for selecting an appropriate disruption for our study.

Table 4.1: Disrupted stations and disruption dates.
Disrupted Station Dates (in September 2019) Number of Occurrences Range

Minnesota Ave 9 - 11 - 19 - 20 - 23 - 24 11 times 20 to 37 min
Deanwood 11 - 19 - 20 - 23 - 24 8 times 20 to 33 min
Cheverly 11 - 19 - 20 - 23 - 24 9 times 20 to 32 min
Landover 19 - 20 - 23 - 24 7 times 20 to 32 min
New Carrollton 11 - 16 - 17 - 19 - 20 - 23 - 24 12 times 20 to 31 min

Next, the pre- and the post-disruption periods were determined as can be seen in Table 4.2. These
periods were chosen in such a way to keep the ratio of the number of weekend days to the total number
of days similar across all of the periods. Moreover, the public holidays were removed from the analysis
for all of the periods.
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Figure 4.4: Disrupted area identified for the analysis.

Table 4.2: Pre- and post-disruption periods.
Period Start End Duration

Pre-Disruption 2019-08-11 2019-09-07 27 days
Post-Disruption 1 2019-09-25 2019-10-26 31 days
Post-Disruption 2 2019-10-27 2019-11-26 30 days
Post-Disruption 3 2019-11-27 2019-12-21 24 days
Post-Disruption 4 2020-01-01 2020-02-01 30 days
Post-Disruption 5 2020-02-02 2020-02-29 29 days

4.2. Identification of the Affected Passengers
Having identified a suitable disruption to focus on, the passengers who were affected by the disruption
were identified and filtered. Since our disruption instance consists of multiple disruptions, we followed
the procedure laid out for this specific kind of disruption.

First the people who frequently traveled from the disrupted stations in the pre-disruption period around
the disruption time were identified and labeled as frequent travellers. For each journey i if tap ini falls
within [train departure time - headway - 30 min, train departure time + 30 min] the journey is counted
as a journey that has happened around the disruption time. A passenger with at least four of such
journeys is a frequent traveller. The total number of frequent travellers for the five disrupted stations



4.3. Identification of the Reference Passengers 29

with the mentioned criteria amounted to 5976 passengers.

Next, the frequent travellers who had experienced the disruptions at least twice were filtered. If tap
ini of journey i of a passenger is in the range [train departure time - headway, train departure time
- scheduled headway], that journey is considered to have been affected by the disruption. The total
number of affected passengers among the frequent travellers who have experienced the disruptions at
least twice amounted to 138 passengers.

4.3. Identification of the Reference Passengers
One of the most suitable candidates for the reference passengers are the frequent travellers who travel
via the disrupted station but have not experienced any of the disruptions. Therefore, the identification
of the reference can be done in parallel to identification of the affected passengers. After identifying
the frequent passengers, i.e. passengers who have started their journeys at least four times from the
disrupted stations in the pre-disruption period, we can calculate the number of times each of these
frequent passengers have actually experienced any of the disruptions. If a passengers has not been
affected by any of the disruptions, he/she can be categorized as a reference passenger. Otherwise, if a
passengers has experienced at least two of the disruptions, he/she is labeled as an affected passenger.

The total number of candidates for the reference passengers amounted to 4969 passengers. A last
filter is applied here on these candidates to further refine the selection of the reference: Each of the
affected passengers is a frequent user of one of the five disrupted stations, e.g., because they live in the
vicinity of that stations, and they often use that station. Therefore, we can identify the ”most frequently
used station” for each of the affected passengers as well as the reference passengers. Then use the
distribution of the stations among the affected passengers, to select the reference passenger.

the distribution of the five stations among the affected passengers in this case study is New Carrollton
60%, Minnesota Ave 14%, Landover 14%, Deanwood 7%, and Cheverly 5%. Thus, we select the
reference passengers in such a way to keep the same distribution of stations among them. Eventually,
the number of reference passengers amounts to 3965 people.

4.4. Data Preparation for the Clustering
Next, the travel behavior of the affected and reference passengers in each of the six periods (one pre-
and five post-disruption) are formed based on calculating the six behavioral indicators using smart card
transactions. However first, the AFC data is processed and cleaned using the following filters:

(1) The transactions where the tap-in and tap-out stations are the same are removed.
(2) The transactions where the tap-in and tap-out stations are the same but are presented with different
names are removed.
(3) The transactions with missing tap-in and/or tap-out information are removed.
(4) The transactions where the tap-out time is earlier than the tap-in time are removed.
(5) The transactions with journey times longer than three hours are removed. Because the longest
paths in the network are around two hours and several minutes.
(6) The transactions with journey times shorter than two minutes are removed. Because the shortest
paths in the network are around two minutes.
(7) The duplicated transactions are removed.

This filtering removes 1% of the transactions of the affected passengers (aggregated over all periods)
and results in 21090 rows of transaction for the 138 affected passengers. Similarly, the filtering results
in a 2% reduction of the transactions of the 3965 reference passengers and consequently 423088 rows
of data are left.

After the cleaning process, we calculate the indicators for each passenger per period. This produces a
dataset where each row represents the behavior of an individual, characterized by the six indicators for
a given period. This dataset is then clustered using the ”Markov” model in the LatentGold 6.0 software
package.



5
Results

This chapter presents the results of the analysis and is divided into two main sections. Section 5.1
explains the initial clustering results and how we select the optimal model, based on the ideal number
of states and classes. Section 5.2 then examines this optimal model by explaining the resulting travel
patterns (states), the transition probabilities between these patterns over time, and the nature of the
behavior represented by each identified mobility style. Finally, we compare the observed outcomes
with our expected outcomes to assess whether the disruption had the anticipated impact.

5.1. Model Definition
This section begins by outlining the specifications used in calculating the indicators in Section 5.1.1.
Following that, Section 5.1.2 discusses the results of the steps taken to determine the optimal model,
including the identification of the optimal number of states and classes, along with the reasoning behind
these decisions. Finally, Section 5.1.3 examines the significance of the indicators and the covariate, as
well as the resulting implications. The purpose of this section is to provide a comprehensive overview
of the process involved in obtaining the optimal model.

5.1.1. Calculation of the Indicators
The value of the six indicators are calculated for each of the affected passengers and the reference
passengers based on their smart card transactions in the pre- and post disruption periods. Since there
are five post-disruption periods and one pre-disruption period, there are six rows calculated for each
passenger and stored in one dataset. An illustrative example of the dataset ready to be clustered can
be seen in Appendix B.1.

The calculation of the last two indicators, the similar first boarding time and the similar last boarding
time using DBSCAN required the specification of two parameters namely ϵ and MinPts. Since the
boarding time is one dimensional, the value of MinPts is equal to two (2×Dimension = 2).

As explained in Section 3.5.3, the ϵ of the smallest (least dense) clusters are good candidates for this
value. The histogram of the distance of each data point to its kth nearest neighbor (k = MinPts) is
illustrated in Figure 5.1 for the first boarding times of the affected passenger in the pre-disruption period.
The distance of 5 minutes is chosen as the proper value for ϵ. All the points with a larger distance to
their kth nearest neighbor than 5 min are labeled as noise, and all the points with a distance smaller
than 5 minutes are clustered.

30
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Figure 5.1: Histogram of the kth nearest neighbor distances for the first boarding time

The same approach regarding the last boarding times results in Figure 5.2. The distance of 7 minutes
is chosen as the proper value for ϵ for the last boarding times of the affected passenger in the pre-
disruption period. All the points with a larger distance to their kth nearest neighbor than 7 minutes are
labeled as noise, and all the points with a distance smaller than 7 min are clustered.
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Figure 5.2: Histogram of the kth nearest neighbor distances for the last boarding time

5.1.2. Model Selection and Clustering
To determine the optimal number of travel patterns, we start from estimating the LCA model with one
travel pattern and increase the number of travel patterns incrementally up to 10. Typically, the model
with the lowest BIC value is selected as the optimal model. However, as shown in Table 5.1, the BIC
value tends to decrease consistently as the number of travel patterns increases favoring a model with
at least ten states. Since ten states is too large for a mixture latent Markov model to handle (Kroesen
& van Cranenburgh, 2016), an alternative approach is used to decide on the best model fit.

To address this, we consider the interpretability and relevance of the clusters as additional criteria for
selecting the optimal model. Using these criteria, we chose the model with five clusters because from
the six-cluster model onwards the distinction and relevance of clusters decreases and there is not much
added value in increasing the clusters.

Table 5.1: Model fit results.
No. of states LL BIC(LL) Param
(travel patterns)

1 -12973 26068 12
2 45460 -90667 25
3 57297 -114209 38
4 62975 -125434 51
5 67774 -134901 64
6 72203 -143628 77
7 75294 -149679 90
8 77585 -154129 103
9 79615 -158058 116
10 81721 -162139 129

LL = log-likelihood
BIC(LL) = Bayesian information criterion (based on log-likelihood)
Param = number of parameters
BICLL = −2LL + ln(samplesize)Param
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After the optimal number of states (travel patterns) are identified, a similar approach is taken to deter-
mine the optimal number of classes (mobility styles). We start by estimating a mixture latent Markov
model with five states and one class and then incrementally increase the number of classes while
keeping the number of states constant at five. The models with a ”stayer” class are estimated from two
classes onwards. Based on the results illustrated in Table 5.2, the model with the lowest BIC value is
the ”1 stayer class 3 mover classes”. However, the decrease in BIC for this model compared to the ”1
stayer class 2 mover classes” is not very substantial while the increase in the number of its parameters
(21%) is quite significant. Therefore, we decide to interpret the results using the ”1 stayer class 2 mover
classes” model. Next, we add the ”type” as a covariate to the model and re-estimate it.

Table 5.2: Model fit results.
No. of classes (mobility styles) LL BIC(LL) Param

1 mover class 73801 -146904 84
2 mover classes 74488 -148069 109
1 stayer class 1 mover class 74200 -147660 89
3 mover classes 74655 -148195 134
1 stayer class 2 mover classes 74626 -148303 115
4 mover classes 74752 -148182 159
1 stayer class 3 mover classes 74760 -148363 139

LL = log-likelihood
BIC(LL) = Bayesian information criterion (based on log-likelihood)
Param = number of parameters
BICLL = −2LL + ln(samplesize)Param

5.1.3. Significance of the Indicators and the Covariate
The significance of the indicators are evaluated to determine whether there is a meaningful relation-
ship between the latent travel patterns and the indicators in the population. Conversely, insignificance
indicates that the indicator does not contribute to distinguishing between the travel patterns and can
be removed from the model.

As mentioned in the methodology section, one of the methods to test the significance of indicators is
the Wald test. The Wald test calculates a statistic for each indicator, and the p-value determines the
significance. All six indicators in our model have p-values below 0.05 and are thus significant. This
finding supports the inclusion of these indicators in themodel, as they play a crucial role in differentiating
the latent travel patterns.

Next, we add the covariate ”type” to the optimal model and estimate it to evaluate the significance of
the covariate. While the results show that the relationship between the covariate and both the initial
state membership and transition probabilities is significant (p-value < 0.05), this relationship was not
significant for class membership (p-value (0.27) > 0.05). This means that whether a passenger is
affected or reference would not change their likelihood of belonging to a certain mobility style. For
example, the reference passengers would not be more probable to belong to the stayer class than the
affected. Therefore, the relationship between the covariate and class membership is removed from
the model. The estimated model parameters are displayed in Appendix B.2, and are used for the
calculation of the results that are provided in the following section.

5.2. Analysis of the Results
In this section we discuss the optimal model in detail. First, Section 5.2.1 explains what behavior each
of the resulting travel patterns exhibit and provides a description and label for each. Next, Section
5.2.2 shows the overall probabilities of transitioning from each pattern to the other over time for the
affected and reference passengers. Here we can observe how probable passengers are to not change
their behavior (inertia) or if they do change behavior to what direction and to what extent. Therefore,
we are able to compare the observed outcome with what we expected of behavior change directions.
Next in Section 5.2.3, we analyze the transitions in more detail by looking into the mobility styles which
differentiate between the individuals based on their transitions. The characteristics of each mobility
style is explained followed by a comparison between the affected and reference passengers regarding
these styles in Section 5.2.3.
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5.2.1. Travel Pattern Profiles
The travel pattern sizes (averaged over periods) and the mean value of the indicators for each travel
pattern are displayed in Table 5.3. In addition, Figure 5.3 displays the range and different quartiles for
each indicator. The information is displayed for the whole data, thus both the affected and reference.
Using this information we describe the characteristics of each travel pattern and provide a representa-
tive label for them. However, first, we mention the criteria that we used for naming the patterns:

The patterns with a share of active days above 50% and journeys per weekday above one are called
frequent travellers because the large values of these two indicators shows a high travel frequency. The
patterns with a share of active days below 50% and journeys per weekday below one are called occa-
sional travellers because the small values of these two indicators show a low travel frequency. Lastly,
those with a value below 10% for the share of active days and journeys per weekday are considered
as sporadic traveler because these passengers rarely travel with metro. The patterns who performed
more than 50% of their journeys during peak hours are called peak travellers. Finally, patterns with
values below 50% for the share of days with similar first boarding time and values below 40% for the
share of days with similar last boarding time are called flexible travelers.

Table 5.3: Profiles of the latent travel patterns (for the affected and reference passengers, averaged over all
periods).

1. Frequent 2. Occasional 3. Frequent flexible 4. Occasional very 5. Sporadic
less flexible less flexible peak travellers flexible travellers travellers

peak travellers peak travellers (with weekend) (with weekend)

Cluster size 33% 27% 19% 15% 6%
Indicators (mean)

share of active days 0.57 0.25 0.70 0.33 0.04
journeys per weekday 1.53 0.62 1.55 0.55 0.07
share of weekend journeys 0.00 0.00 0.15 0.28 0.16
share of peak journeys 0.76 0.63 0.59 0.46 0.40
share of similar first boardings 0.56 0.47 0.44 0.29 1.00
share of similar last boardings 0.49 0.44 0.38 0.29 1.00

• pattern 1 (size: 33%): Frequent less flexible peak travellers
These passengers are classified as frequent travelers due to their high travel frequency, being
active on 57% of days and averaging 1.53 journeys per weekday. They do not travel on weekends
and have the highest proportion of journeys during peak hours (76%). Because their peak-hour
activity exceeds 50%, we refer to them as peak travelers. Additionally, their boarding times show
moderate flexibility compared to other groups, with 56% of days having a similar first boarding
time and 49% having a similar last boarding time.

• pattern 2 (size: 27%): Occasional less flexible peak travellers
These passengers are the second least active group, traveling on only 25% of days with an
average of 0.62 journeys per weekday. Hence, they are referred to as occasional travelers. They
show no interest in traveling on weekends and make 63% of their journeys during peak hours.
Their boarding times indicate moderate flexibility, with 47% of days having a similar first boarding
time and 44% having a similar last boarding time.

• pattern 3 (size: 19%): Frequent flexible peak travellers (with weekend)
These passengers are the most active group, traveling on 70% of days with an average of 1.55
journeys per weekday. They show an interest in weekend travel, accounting for 15% of their
journeys, and 59% of their trips occur during peak hours. This group is the second most flexible
in terms of boarding times, with 44% of days having a similar first boarding time and 38% of days
having a similar last boarding time.

• pattern 4 (size: 15%): Occasional very flexible travellers (with weekend)
These passengers are active on only 33% of the days with 0.55 journeys per weekday and are
thus called occasional travelers. They perform 28% of their journeys in the weekend and are
the most active pattern in the weekend. They perform 46% of their journeys during peak hours
and are the second least active pattern during peak hours. They are the most flexible group with
similar first and last boarding times of 29%.
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Figure 5.3: Box plots of each indicator and each travel pattern.

• pattern 5 (size: 6%): Sporadic travellers
These passengers are active on just 4% of days, with an average of 0.07 journeys per weekday.
Due to their infrequent travel, they are referred to as sporadic travelers. They make 16% of their
journeys on weekends and 40% during peak hours. Additionally, they tend to start their first and
last journeys at similar times each day.

5.2.2. Travel Pattern Transition Probabilities
Transition probabilities represent the likelihood of individuals shifting from one travel pattern to another
between consecutive periods. By analyzing these probabilities, we can determine the extent and direc-
tion of passengers’ behavior changes, allowing us to assess whether these shifts align with our initial
expectations and whether the disruption had a significant impact. Additionally, these probabilities re-
veal the degree to which passengers maintain consistent travel behavior, known as travel behavior
inertia. Overall, this analysis helps us evaluate the effects of the disruption on passenger behavior and
understand the dynamics of these changes.

We can examine whether these transition probabilities differ across the five pairs of consecutive pe-
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riods. However, interpreting five separate transition matrices is complex, and the number of model
parameters increases significantly. To simplify the model, we assume that transitions among the post-
disruption periods are consistent, reducing the analysis to two matrices: one for the transition from the
pre-disruption period to the first post-disruption period, and another for transitions between consecutive
post-disruption periods.

To test this, we introduce a dummy variable into the data, assigning a value of 0 for pre-disruption
period rows and 1 for all post-disruption period rows. This dummy variable is then added as a time-
varying covariate and the model is re-estimated. However, this model fails to converge to an optimal
solution even after 200 iterations and 200 parameter starting sets. This suggests that the model was
unable to identify an appropriate set of parameters to accurately capture the model relationships, indi-
cating potential issues with model specification. To address this, we may need to simplify the model
by reducing the number of parameters and relaxing certain constraints. Another approach could be
to increase the number of iterations and starting sets, although we have already set this number quite
high (200) compared to the default. As a result, we opt to relax the constraint of varying transition
probabilities and instead assume that these probabilities are consistent across all pairs of consecutive
periods which might be because the disruption did not lead to a substantial difference in the transitions
between periods in the first place.

Table 5.4 shows the overall transition probabilities of the affected and reference passengers. The values
which are substantially large (greater than 0.15) have been highlighted in bold. Below we provide a
discussion about our observations based on this table, the expected outcomes and the actual observed
outcomes. We interpret these observations to derive conclusions about the behavior changes of the
affected passengers and their difference with the reference.

Table 5.4: Transition matrices of the affected and reference passengers.
Travel pattern in period t

Travel pattern in period (t-1) 1 2 3 4 5

Affected

1. Frequent less flexible peak travellers 0.849 0.064 0.083 0.003 0.000
2. Occasional less flexible peak travellers 0.179 0.675 0.018 0.095 0.035
3. Frequent flexible peak travellers (weekend) 0.235 0.011 0.656 0.080 0.019
4. Occasional very flexible travellers (weekend) 0.113 0.367 0.138 0.356 0.026
5. Sporadic travellers 0.012 0.609 0.012 0.013 0.355

Reference

1. Frequent less flexible peak travellers 0.772 0.121 0.089 0.009 0.009
2. Occasional less flexible peak travellers 0.091 0.699 0.026 0.094 0.091
3. Frequent flexible peak travellers (weekend) 0.174 0.081 0.618 0.111 0.016
4. Occasional very flexible travellers (weekend) 0.006 0.234 0.048 0.612 0.100
5. Sporadic travellers 0.021 0.292 0.018 0.165 0.504

Travel Behavior Inertia

This table shows that passengers in the three largest travel patterns (1.frequent less flexible peak
travellers, 2.occasional less flexible peak travellers, and 3.frequent flexible peak travellers (weekend))
tend to remain in the same pattern, with a likelihood of at least 66% among the affected group and
62% among the reference group. These three patterns contribute to almost 80% of the data (based on
Table 5.3). This large likelihood of remaining in the same travel pattern from each period to the next is
an indication of travel behavior inertia among the majority of the passengers.

The highest probability of staying in the same travel pattern is observed among passengers in the
largest pattern, pattern 1 (frequent less flexible peak travelers). These passengers have an 85% prob-
ability of maintaining their behavior from one period to the next in the affected group and a 77% proba-
bility in the reference group. This is significant given that pattern 1 is the largest in both groups.

Another insight is that among the affected group, the frequent travelers (patterns 1 and 3) aremore likely
to stay in the same behavioral pattern (85% and 66%, respectively) compared to occasional travelers,
i.e., patterns 2 and 4 (67% and 36%, respectively). This indicates a strong travel behavior inertia among
passengers with high travel frequency. This observation aligns with the findings of Adelé et al. (2019)
and Li, Yao, Yamamoto, Tang, and Liu (2020), which noted that frequent travelers are less likely to
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change their behavior and use other modes when facing disruptions. While these studies analyzed the
immediate response of passengers to disruptions, our findings suggest that travel behavior inertia is
also observed over a longer period following the disruption.

Travel Behavior Inertia: Affected vs. Reference

We expected to observe lower travel behavior inertia (likelihood of staying in the same travel pattern)
among the affected passengers compared to the reference group. This expectation was based on the
idea that affected passengers, having experienced disruptions, would be more likely to modify their
travel behavior. However, this expectation is not fully met. While the diagonal values—indicating the
likelihood of staying in the same pattern—are indeed larger among the reference group compared to
the affected passengers for patterns 2, 4, and 5, this trend does not hold for patterns 1 and 3. In
these patterns, the affected passengers exhibit higher diagonal values, indicating greater inertia than
the reference.

Travel Frequency

We initially expected that disruptions might lead passengers to travel less frequently with public trans-
port, possibly opting to work from home or use other modes of transportation like driving a car. There-
fore, we anticipated high transition probabilities from frequent to occasional travel patterns among the
affected group. However, based on Table 5.4, the data shows a different trend. Among the affected
passengers, the majority of frequent travelers (patterns 1 and 3) remain in the same pattern, with prob-
abilities of 85% and 66%, respectively. Additionally, 23% of passengers in pattern 3 shift to pattern 1,
which is also a frequent travel pattern.

The behavior of the affected occasional travelers (patterns 2 and 4) also contradicts our expectations.
Among passengers in pattern 2, 20% transition to patterns 1 and 3, indicating a shift towards more
frequent travel behavior. Similarly, for passengers in pattern 4, 25% transition to patterns 1 and 3
(frequent travelers). Lastly, among sporadic travelers who rarely use public transport, 61% shift to
pattern 2 which has a higher travel frequency.

Peak-hour Activity

Among the affected passengers, those who did not often travel during peak hours (pattern 4) are more
likely to shift to patterns with higher activity during peak hours (patterns 1, 2, and 3) compared to the
reference group. One possible reason for this is that the disruptions in our case study primarily occurred
during off-peak hours. As a result, some passengers might adjust their travel timing to avoid potential
disruptions similar to what they experienced during off-peak hours. Specifically, 62% of the affected
passengers in pattern 4 (off-peak travelers) transition to the first three groups (peak travelers), whereas
this value is only 30% for the reference group.

Travel Flexibility

We observe that, in both the affected and reference groups, patterns with less flexibility in first and
last boarding times (patterns 1 and 2) exhibit higher travel behavior inertia compared to more flexible
patterns (patterns 3 and 4). One possible reason for this could be that the habitual behavior of traveling
at the same time every day has extended to their overall travel patterns, making them more likely to
stick with familiar routines. As a result, they tend to exhibit higher inertia and are less likely to change
their travel behavior.

Overall Comparison of Affected and Reference Groups

In conclusion, the differences that exist between the reference and affected passengers are not very
substantial, whereas the extent of this difference was expected to be more pronounced given the oc-
currence of the disruption. It is evident that this difference is less substantial for the first three patterns,
which comprise 80% of the data. The main differences are observed in patterns 4 (Occasional very
flexible travellers (weekend)) and pattern 5 (Sporadic travellers) which are the smaller patterns. It is
possible that if the disruptions were more significant, the differences would become more pronounced.
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5.2.3. Analysis of the Mobility Styles
The differences in the temporal dynamics of individuals’ travel patterns (states) are captured by the
mobility styles (classes). In other words, passengers are grouped into various mobility styles based
on the differences and similarities in their travel pattern transition probabilities over time. Unlike travel
patterns, which can change for a passenger over time, these mobility styles are constant over time.

These different mobility styles within the population can be identified using the mixture latent Markov
model. Unlike simple latent Markov models, which assume all passengers belong to a single mobility
style and thus share homogeneous transition probabilities, mixture latent Markov models account for
heterogeneity by assuming the population consists of multiple latent mobility styles. Each style follows
its own Markov process with unique transition probabilities. For example, a simple Markov model would
not differentiate between a group of passengers that decreases their travel frequency over time and
another group that maintains their frequency. In contrast, the mixture model distinguishes between
these groups, revealing their differing tendencies.

This model is particularly useful in our study because it allows us to test specific expectations. For
example, we anticipate that affected passengers will be more or less likely to belong to certain mobility
styles, or that some mobility styles will emerge while others may not form due to the disruption. The
mixture latent Markov model enables us to test these hypotheses by identifying the different mobility
styles, analyzing their characteristics and sizes, and drawing conclusions about the behavioral changes
resulting from the disruption.

Description of the Mobility Styles
In this section the purpose is to use the transition probability matrices of the affected and the reference
passengers (Tables 5.5, 5.6, and 5.7), to provide information on each mobility style. This helps us in
identifying the different behavior traits that exist among the passengers. Later in Section 5.2.3 and 6 the
definition of the mobility styles is used to draw conclusions about the differences among the reference
and the affected passengers.

Mobility style 1 (stayers)

The first mobility style is labeled as ”stayers” because passengers in this class maintain the same travel
pattern across all periods and never change their behavior. This is evident from Table Table 5.5, which
shows a likelihood of 1 for staying in the same pattern and 0 for transitioning to other patterns.

Table 5.5: Transition matrices of mobility style 1.
Travel pattern in period t

Travel pattern in period (t-1) 1 2 3 4 5

Affected

1. Frequent less flexible peak travellers 1 0 0 0 0
2. Occasional less flexible peak travellers 0 1 0 0 0
3. Frequent flexible peak travellers (weekend) 0 0 1 0 0
4. Occasional very flexible travellers (weekend) 0 0 0 1 0
5. Sporadic travellers 0 0 0 0 1

Reference

1. Frequent less flexible peak travellers 1 0 0 0 0
2. Occasional less flexible peak travellers 0 1 0 0 0
3. Frequent flexible peak travellers (weekend) 0 0 1 0 0
4. Occasional very flexible travellers (weekend) 0 0 0 1 0
5. Sporadic travellers 0 0 0 0 1

Mobility style 2

This class is inclined towards travelling more frequently, less flexibly, more during peak, and less in the
weekend. This inclination is more pronounced among the affected passengers than the reference:

• Higher frequency: Passengers tend to shift towards traveling more frequently. Based on Table
5.6, frequent patterns (1 and 3), in both the affected and reference groups, are most likely to
transition within the frequent patterns 1 and 3. This is due to the large transition probabilities
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of pattern 1 to 1 (80% among the affected and 67% among the reference), as well as pattern 3
to pattern 1 (82% among the affected and 63% among the reference) and pattern 3 to 3 (16%
among the affected and 21% among the reference). Moreover, in the affected group, pattern
2 (the largest occasional pattern) is more inclined towards transitioning to the frequent pattern
1 rather than staying in the same pattern. Moreover, in the affected group, pattern 5 (sporadic
travelers) shifts to pattern 2 (occasional travelers with higher frequency) with a 78% probability.
In the reference group, however, the behavior of the occasional and sporadic patterns is more
inclined towards maintaining their frequency.

• Less flexibility: Passengers tend to become less flexible regarding boarding times. In both the
affected and reference groups, the sum of the probabilities of shifting to less flexible patterns (1
and 2) is significantly higher than shifting to more flexible patterns (3 and 4). This trend is less
pronounced among the reference group.

• More peak-hour activity: Passengers are more likely to transition to patterns with higher activity
during peak hours. This is evident from the large transition probabilities towards patterns 1, 2,
and 3, which have high activity during peak hours, with pattern 1 being the most active pattern
during peak.

• Less weekend activity: Passengers are more likely to transition to patterns with less weekend
activity. This is shown by the large transition probabilities towards patterns 1 and 2, which have
no activity on weekends.

Table 5.6: Transition matrices of mobility style 2.
Travel pattern in period t

Travel pattern in period (t-1) 1 2 3 4 5

Affected

1. Frequent less flexible peak travellers 0.798 0.124 0.077 0.001 0.000
2. Occasional less flexible peak travellers 0.490 0.426 0.008 0.032 0.043
3. Frequent flexible peak travellers (weekend) 0.818 0.011 0.162 0.004 0.006
4. Occasional very flexible travellers (weekend) 0.168 0.807 0.001 0.023 0.002
5. Sporadic travellers 0.052 0.779 0.002 0.002 0.166

Reference

1. Frequent less flexible peak travellers 0.668 0.203 0.108 0.006 0.015
2. Occasional less flexible peak travellers 0.161 0.649 0.020 0.059 0.111
3. Frequent flexible peak travellers (weekend) 0.629 0.134 0.215 0.011 0.011
4. Occasional very flexible travellers (weekend) 0.014 0.772 0.001 0.070 0.144
5. Sporadic travellers 0.035 0.366 0.006 0.057 0.537

Mobility style 3

This class is inclined towards travelling more flexibly, less during peak, and more in the weekend while
travelling with the same frequency. This inclination is more pronounced among the affected than the
reference:

• Same frequency: Passengers tend to maintain their travel frequency. We can see that the fre-
quent patterns (1 and 3) are more likely to transition within the frequent patterns (1 and 3). For
pattern 1, the sum of transition probabilities to patterns 1 and 3 is 94% among the affected, and
84% among the reference. For pattern 3, the sum of transition probabilities to patterns 1 and 3
is 86% among the affected, and 65% among the reference. Similarly, the occasional patterns
(2 and 4) majorly transition to occasional patterns (2 and 4). The sporadic travellers (pattern 5)
either remain as sporadic travellers or transition to pattern 2 and 4 (occasional travellers) and
thus increase their frequency slightly.

• More flexibility: Passengers tend to become more flexible regarding the boarding times. For
example among the affected and the reference groups, passengers in pattern 1 (less flexible) are
most likely to transition to pattern 3 (more flexible) rather than staying in the same pattern which
is less flexible. The probability of the transition from pattern 1 to 3 is 58% among the affected and
61% among the reference group. Similarly, pattern 2 (less flexible) transitions to pattern 4 (more
flexible) with a probability of 39% among the affected and 41% among the reference.
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• Less peak-hour activity: Passengers tend to travel less often during peak. For example pattern 1
(most active pattern during peak) most likely transitions to pattern 3 which has less peak activity
compared to pattern 1 and 2. Pattern 2 most often transitions to pattern 4 which has even lower
activity in peak. Finally, pattern 3 mostly remains as is.

• More weekend activity: Passengers tend to travel more often during the weekend. We observe
substantial transitions from patterns 1 and 2 (with no weekend activity) to patterns 3 and 4 which
are active in the weekend.

Table 5.7: Transition matrices of mobility style 3.
Travel pattern in period t

Travel pattern in period (t-1) 1 2 3 4 5

Affected

1. Frequent less flexible peak travellers 0.359 0.017 0.582 0.042 0.000
2. Occasional less flexible peak travellers 0.041 0.398 0.065 0.392 0.104
3. Frequent flexible peak travellers (weekend) 0.164 0.013 0.690 0.109 0.024
4. Occasional very flexible travellers (weekend) 0.116 0.373 0.173 0.335 0.003
5. Sporadic travellers 0.000 0.727 0.016 0.016 0.241

Reference

1. Frequent less flexible peak travellers 0.225 0.021 0.611 0.142 0.000
2. Occasional less flexible peak travellers 0.008 0.344 0.088 0.407 0.152
3. Frequent flexible peak travellers (weekend) 0.079 0.102 0.573 0.217 0.029
4. Occasional very flexible travellers (weekend) 0.006 0.209 0.072 0.599 0.114
5. Sporadic travellers 0.000 0.191 0.036 0.337 0.436

Discussion of the Mobility Styles and Initial Travel Patterns Sizes
The probability of mobility style membership, i.e., the total size, is presented in Table 5.8 for the affected
and reference groups. Comparing these probabilities among the affected and reference passengers,
we do not observe substantial differences which is against our expectations. First, we expected that
the affected passengers would be less likely to belong to the stayers class (passengers maintaining the
same travel pattern) compared to the reference group. Our expectation was based on the assumption
that passengers who experienced the disruption would be more likely to alter their behavior, while those
in the reference group, who did not experience any disruption, would be more inclined to maintain their
existing travel patterns. However, the likelihood of being a stayer is 27% among the affected group and
24% among the reference, indicating that the likelihood of never changing behavior is quite similar for
both groups.

Furthermore, we anticipated observing a mobility style characterized by a tendency toward traveling
less frequently, and we expected that affected passengers would be more likely to belong to this class
compared to the reference group. However, this expected mobility style did not emerge. Instead,
mobility style 2 and 3 either maintain the same travel frequency or increase it.

Moreover, the affected passengers are just as likely (46%) to belong to mobility style 2 (tendency
towards traveling more frequently) as the reference group (46%). This indicates that the tendency
towards traveling more frequently does not differ between the affected passengers and the reference
group. This finding contradicts our expectation that the affected passengers would be more likely to
travel less frequently. We expected that this value would be significantly lower among the affected
passengers compared to the reference.

Regarding the third mobility style, which consists of passengers with a tendency towards off-peak travel,
the class sizes are again quite similar. However, the 3% difference between the affected and the
reference passengers might be due to the fact that the disruptions in this case study often occur during
off-peak hours. Therefore, the affected passengers are slightly less inclined towards traveling during
off-peak hours, as they experienced multiple disruptions during those times.
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Table 5.8: Mobility style size of the affected and reference passengers.
Total size

Mobility style affected reference

1 (stayer) 0.267 0.238
2 0.462 0.456
3 0.272 0.307

Next, the initial travel pattern sizes (in the pre-disruption period (t = 0)) are presented in Table 5.9 for
both the affected and the reference passengers. Based on these initial travel pattern sizes for the
affected passengers in the first row, it is evident that pattern 1 (frequent less flexible peak travellers) is
most strongly represented in the sample (59%). The next largest travel pattern is the occasional less
flexible peak travellers (19%) followed by pattern 3, the frequent flexible peak travellers (17%), and the
occasional very flexible travellers (5%). The smallest pattern is the sporadic travellers (0.1%).

This distribution differs somewhat among the reference passengers, as seen in Table 5.9. Pattern 1
is not as strongly represented among the reference group as it is among the affected group. Instead,
patterns 2, 3, and 4 are more strongly represented in the reference group compared to the affected
group. Ideally, the reference group would have a similar initial distribution of travel patterns as the af-
fected passengers, making the reference group more representative and the comparison more reliable.
However, some differences between the two groups are inevitable since the reference passengers are
different individuals from the affected passengers. One potential reason for this difference is the pro-
cess used to identify the reference and affected passengers. Reference passengers are those who
have no overlapping journeys with the disruptions, and depending on the day, time, and number of
disruptions, this can filter out certain groups of passengers, leading to differences in the composition
of the two groups.

Table 5.9: Travel pattern size of the affected and reference passengers at t = 0 (pre-disruption).
1. Frequent 2. Occasional 3. Frequent flexible 4. Occasional very 5. Sporadic

Total state size less flexible less flexible peak travellers flexible travellers travellers
(t = 0) peak travellers peak travellers (with weekend) (with weekend)

Affected 0.594 0.186 0.171 0.048 0.001
Reference 0.380 0.215 0.281 0.124 0.000
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Discussion and Conclusion

In this study, we proposed a framework to investigate the long-term effects of public transport disrup-
tions on passenger behavior and applied it to a case study in the Washington D.C. metro network.
Using a mixture latent Markov model, we identified five distinct travel patterns and monitored the tran-
sitions of passengers between these patterns over time. Based on these travel patterns and transition
probabilities, we categorized passengers into three mobility styles: (1) those who maintain the same
travel behavior over time, (2) those who tend to travel more frequently, less flexibly, more often during
peak hours, and less on weekends, and (3) those who travel more flexibly, less during peak hours, and
more on weekends, while maintaining the same frequency of travel.

The analysis of the results reveals that the difference between the affected and reference passengers is
not as substantial as initially expected, especially regarding the three largest travel patterns (patterns 1,
2, and 3). Some differences are observed in pattern 4, the occasional very flexible travelers, and pattern
5, the sporadic travelers, but these are the smallest patterns and consist of only a small proportion of
the passengers.

The insignificance of the difference between the affected and reference passengers could indicate that
the disruption studied did not have a substantial effect on passenger behavior. This might be because
the disruptions had a low frequency and duration, leading to only temporary delays and therefore having
little long-term impact. This observation aligns with previous findings in the literature. For example,
Drabicki et al. (2021) found that the higher the frequency of disruptions, the more likely it is to result in
long-term behavioral changes among passengers. In their study, 77% reported changing their route or
departure time to avoid routes/times that are frequently disrupted. Moreover, in a study by Papangelis
et al. (2016), passengers also reported making permanent behavioral changes, such as mode changes,
relocation, and job changes due to experiencing frequent long-term disruptions in the past. Tian and
Zheng (2018) also found that in response to minor delays (of less than 30 minutes) leading to frequency
reductions, the majority (86%) of passengers remained in the system and either waited or postponed
their departure time (if not in the system when the disruption occurred).

Another reason for this minimal impact could be that the disruptions in our case study primarily occur
during off-peak hours. According to the literature, one of the determining factors in passengers’ re-
sponses to disruptions is whether the disruption happens during peak or off-peak hours. If disruptions
occur during peak hours, passengers are more likely to change their travel mode and opt for taxis,
buses, or bikes instead of waiting (Li, Yao, Yamamoto, Huan, and Liu, 2020; Tian and Zheng, 2018).
This behavior is often driven by the need to arrive at their destinations, such as work or school, on time.
Li, Yao, Yamamoto, Tang, and Liu (2020) also found that during peak hours, passengers perceive travel
time more negatively and are willing to pay more to reduce it. Although these observations are based
on passengers’ immediate responses to disruptions, they might extend to the long term if disruptions
are repeated and frequent, as observed by Drabicki et al. (2021) and Papangelis et al. (2016).

Based on the transition probabilities in Table 5.4, we observed a high level of travel behavior inertia,
i.e., the tendency to maintain the same travel pattern over time, among the affected passengers. This
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inertia is most pronounced in the three largest travel patterns (patterns 1, 2, and 3), where passengers
remain in the same travel pattern between consecutive periods with a probability of at least 67%. The
largest pattern, pattern 1 (frequent less flexible peak travelers), exhibits the highest inertia at 85%.

We initially expected that passengers experiencing disruptions would be more likely to adjust and
change their behavior, resulting in lower travel behavior inertia compared to those who do not ex-
perience disruptions. However, Table 5.4 reveals that while this expectation holds for most patterns
(patterns 2, 4, and 5), where the transition probability of staying in the same travel pattern is lower
among affected passengers compared to the reference group, it does not hold for patterns 1 and 3.

We also anticipated that frequent travelers affected by the disruptions would transition to occasional
travel patterns and thus travel less frequently due to the inconvenience they experienced because
of the disruptions. For instance, they might choose to work from home on some days or drive their
cars to reach their destinations. However, our findings did not support this expectation. Instead, the
affected frequent travelers (patterns 1 and 3) exhibited high travel behavior inertia, continuing to travel
as frequently as before, as evident from Table 5.4. This observation aligns with the findings of Adelé
et al. (2019) and Li, Yao, Yamamoto, Tang, and Liu (2020), who noted that frequent travelers are less
likely to change their routes or modes when facing disruptions and are more likely to wait for the service
to resume.

Several factors could explain this behavior. Frequent travelers might be employees who are required
to commute to the office daily without the option of working from home, or they may not own a car,
limiting their alternatives to public transport. As a result, they are unable to reduce their reliance on
public transport even when disruptions occur. Additionally, their frequent use of public transport might
have become habitual, making them less sensitive to disruptions. Adelé et al. (2019) suggests that,
according to the theory of bounded rationality, individuals tend to seek solutions that are ”good enough”
rather than optimal. They simplify their decision-making processes by balancing the time and effort
required to find a solution with the perceived quality of that solution. This may explain why frequent
travelers tend to stick with their usual behaviors, despite disruptions.

In contrast, we observe less travel behavior inertia among occasional and sporadic travelers (patterns 2,
4, and 5) compared to frequent travelers (patterns 1 and 3). This may be because occasional travelers
have more flexibility, such as the option to work from home or access to personal vehicles, which might
be why they initially use public transportation less frequently. Furthermore, their use of public transport
may be less habitual, making them more responsive to disruptions.

Regarding the sizes of mobility styles presented in Table 5.8, we did not observe substantial differences
between the affected and the reference groups, which contradicts our expectations. Specifically, we
anticipated a smaller size for mobility style 1 (the stayers) among the affected passengers compared to
the reference group. This expectation was based on the assumption that affected passengers, having
experienced disruptions, would bemore likely to modify their behavior and thus be less likely to maintain
the same travel pattern across periods. In contrast, we expected reference passengers, who did not
experience disruptions, to have a higher likelihood of staying in the same travel pattern.

Furthermore, both the affected and reference groups show similar likelihoods of belonging to mobility
style 2 (tendency towards traveling more frequently and less flexibly). We expected this likelihood to
be smaller among the affected passengers, as we hypothesized that they would travel less frequently
due to the inconveniences caused by disruptions.

The likelihood of membership in the third mobility style, which consists of passengers with a tendency
towards off-peak travel, is also quite similar between the reference and affected groups. The slightly
smaller value of 3% among the affected passengers could be attributed to the fact that our disruptions
often occur during off-peak hours. Consequently, the affected passengers are slightly less inclined to
travel during off-peak hours, making them less likely to be members of mobility style 3. Lastly, the
absence of a mobility style characterized by a tendency towards less frequent travel might be another
indication of the minimal impact of the disruptions observed in our case study.

Lastly, we observed that the model, which included a dummy variable as a covariate to differentiate
between the transition probabilities from the pre-disruption period to the first post-disruption period
and those from other post-disruption periods, did not converge to an optimal solution even after 200
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iterations and 200 different parameter starting sets. This indicates that the model could not identify a
proper set of parameters to define the relationships effectively. As a result, we relaxed the constraint
of varying transition probabilities and instead assumed that these probabilities are consistent across all
pairs of consecutive periods. One possible explanation for this outcome is that the disruption may not
have had a significant effect, leading to minimal differences in transitions between pairs of periods.

6.1. Limitations and Future Research
One of the limitations of this study was the availability of detailed data on the disruptions, specifically
accurate data regarding the start and end times of the disruptions. Due to this limitation, we had to
infer the occurrence of disruptions based on train movements from the AVL dataset, which required
extensive data cleaning and special handling.

Another limitation was the restricted effective period available for analyzing disruptions. The onset of
COVID-19 in Washington, DC, in March 2020 limited our analysis to a seven-month period before the
pandemic. Ideally, we would prioritize analyzing significant disruptions, such as station or line closures,
over frequency reductions, as these are more likely to have a substantial long-term impact. However,
such significant disruptions were not present in the available data for the case study period.

Additionally, the unavailability of socio-demographic data was a limitation. Understanding the impact of
factors such as income, age, education, and car ownership on passengers’ long-term travel behavior
would be valuable. Literature suggests that these characteristics significantly influence passengers’
immediate responses to disruptions. Therefore, evaluating their impact in the long term would also be
worthwhile.

Future research can extend the current methodology by analyzing changes in the spatial aspect of
travel behavior in addition to the temporal aspect. This is important because some passengers might
maintain their usual travel times but alter their travel routes. For instance, regular commuters may
not be able to change their departure times or reduce their travel frequency due to the need to be at
work at the same time every day. However, they might adjust their routes by traveling from different
stations than usual. Researchers can explore whether passengers change their frequent boarding and
alighting stations after a significant disruption or if they use these stations less frequently. For example,
if a regular station is disrupted for an extended period, passengers might switch to nearby, undisrupted
stations instead. It would be interesting to determine whether passengers return to their initial stations
once the disruption is resolved, to what extent their usage levels recover, or if they continue using the
new stations.

A second avenue for future research is incorporating socio-demographic information, such as age,
income, education, and car ownership as covariates in the model to evaluate the impact of these char-
acteristics on transition probabilities, initial state membership, and class membership. Understanding
the socio-demographic composition of each class can provide insights into why certain travel patterns
emerge, such as preferences for peak versus off-peak travel. For instance, younger individuals might
prefer off-peak hours due to flexible schedules, while older adults might travel during specific times
for routine activities. These insights can inform targeted strategies to optimize transport services and
address the specific needs of different user groups.

Moreover, other references could be explored to determine whether they would more accurately repre-
sent the affected passengers’ behavior under normal conditions. One potential reference could be the
affected passengers’ own behavior during the same period in the previous year. For example, if the
pre-disruption period is in January 2024, the behavior of affected passengers in January 2023 could
be used as the reference for the pre-disruption period.

Lastly, the framework can be applied to other case studies, particularly those involving more significant
disruptions such as long-term station or line closures. Additionally, the impact of the characteristics
of the disruption can be studied by replicating the methodology for different disruptions that vary in
magnitude and duration. For example, results could indicate that when station or line closures last
longer than a certain number of months, the changes in passenger travel behavior are less likely to
be reversible. This could provide valuable insights for public transportation operators when planning
major maintenance works.
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6.2. Recommendations
There are several recommendations to make the analysis more comprehensive and reliable. One
key recommendation is to collect detailed data about the disruptions, including start time, end time,
location, and impact, and use this information instead of inferring disruption times from the AVL data
to identify affected passengers. Relying on AVL data to infer disruptions, as was done in this study,
might negatively influence the results if the AVL data quality is insufficient. For instance, if a system
malfunction fails to record train movements, the period might be mistakenly counted as a disruption
because no trains are observed serving a station. Additionally, AVL data often require special handling
and preparation, such as addressing missing values in some columns, as was necessary in this study.

Another recommendation, if disruption data is available, is to incorporate the cause of the disruption
as a factor when analyzing passenger behavior changes. For example, examining whether disruptions
caused by system failures have different impacts compared to those caused by severe weather could
provide valuable insights. Passengers might be more annoyed by disruptions resulting from system
failures and malfunctions because they may perceive these issues as a sign of poor maintenance by
PT operators, potentially leading to a loss of trust in the reliability of public transportation. In contrast,
disruptions caused by accidents, severe weather, or other factors beyond the control of PT operators
might result in a lesser loss of trust, as passengers might be more understanding of such uncontrollable
events.

Lastly, when other studies implement our framework, practical recommendations can be derived from
the results. For example, if the results show that a group of passengers reduces their use of public
transport after a major disruption, this observation can provide evidence for public transport authorities
that they would need to not only implement mitigating measures immediately after a disruption, but
also extend these measures in the long-term to prevent passengers from abandoning the system. For
instance, authorities could offer discounts to passengers who were highly affected by the disruptions,
especially those in suburban areas with limited alternative modes of transport who might have experi-
enced greater frustration due to the disruptions. The goal would be to provide an incentive for these
passengers to continue using public transport as frequently.

6.3. Conclusion
In conclusion, this study aimed to develop a framework for gaining a deep understanding of the pro-
longed effects of public transport disruptions on passengers’ travel behavior by extending the analysis
to five to six months post-disruption, in contrast to most previous studies that focus only on immediate
impacts. To achieve this, we applied a mixture latent Markov model (MLMM) to uncover the unobserved
travel patterns of passengers across six periods. This analysis was based on a range of indicators, in-
cluding (1) share of active days, (2) average number of journeys per weekday, (3) share of weekend
journeys, (4) share of peak-hour journeys, (5) share of similar first boarding times, and (6) share of sim-
ilar last boarding times. The selection of these indicators was informed by our expectations regarding
potential passenger responses to disruptions, a review of relevant literature, and data availability.

Using these indicators five travel patterns were identified that captured travel behavior in each period:

• Frequent less flexible peak travellers: These passengers travel frequently with high peak-hour
activity and moderate flexibility in their boarding times.

• Occasional less flexible peak travellers: These passengers travel occasionally, primarily during
peak hours, with moderate flexibility in their boarding times.

• Frequent flexible peak travellers (with weekend): These passengers are the most active, trav-
eling frequently on both weekdays and weekends, with peak-hour activity and relatively flexible
boarding times.

• Occasional very flexible travellers (with weekend): These passengers travel occasionally with
significant weekend activity, less peak-hour activity, and the highest flexibility in their boarding
times.

• Sporadic travellers: These passengers rarely travel, with minimal activity on both weekdays and
weekends, and consistent boarding times.
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Given that the MLMM accounts for heterogeneity in transition probabilities among individuals—unlike
standard latent Markov models which assume homogeneity—we specifically employed the MLMM to
uncover distinct classes, or mobility styles, among the passengers. As a result, the MLMM identified
three mobility styles: (1) those who maintain the same travel behavior over time, (2) those with a ten-
dency towards traveling more frequently, less flexibly, more during peak, and less in the weekend, and
(3) those with a tendency towards travelling more flexibly, less during peak, and more in the weekend
while travelling at the same frequency level.

The analysis of transition probabilities and mobility styles reveals that the long-term effects of the case
study disruption on passenger travel behavior were less significant than initially expected. The ob-
served differences between affected and reference passengers in terms of transition probabilities and
mobility style membership were minimal and did not align with our initial expectations. Notably, a high
level of travel behavior inertia was observed among the affected passengers, contrary to our antici-
pation that they would exhibit lower inertia due to their experience of disruption, which was expected
to prompt modifications in their behavior. This suggests that the disruptions had a limited impact on
altering the travel behaviors of these passengers. Additionally, we observed that inertia was highest
among frequent travelers, an observation that is consistent with current literature. Factors such as the
low frequency and duration of the disruptions, their occurrence during off-peak hours, and the habitual
nature of travelers’ routines likely contributed to this outcome.

These findings underscore the complexity of travel behavior adaptation and highlight the need for further
research on the interplay between disruption characteristics and passenger responses. The framework
however can successfully reveal the travel patterns and the mobility styles and thus can be easily
applied to other case studies.
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Abstract
Disruptions in urban public transport networks significantly impact urban mobility, causing inconve-
niences for passengers, economic losses, and vulnerabilities in transit systems. Major disruptions may
lead some passengers to permanently switch to alternative modes like cars, even after the disruptions
resolve, potentially worsening congestion and environmental issues. While the immediate impact of
disruptions on behavior has been extensively studied, there is limited research on the long-term effects,
often restricted to qualitative methods. This study aims to address this gap by proposing a framework
to investigate the prolonged effects of public transport disruptions on passenger travel behavior us-
ing smart card data. A mixture latent Markov model is used to track passenger behavior from the
pre-disruption to the post-disruption period. This framework identifies travel patterns and tracks how
passengers transition between these patterns over time, thus inferring the impact of disruptions on be-
havior. Each passenger is assigned a mobility style that reflects their general travel attitude, such as
those who do not change their behavior. The results from our case study reveal that the impact of the
disruption was not as substantial as anticipated, with a high proportion of passengers maintaining their
behavior.

Keywords: Disruption, public transport, long-term effect, travel behavior, AFC, mixture latent Markov

1. Introduction
In urban public transport networks, disruptions
are inevitable, often arising from maintenance
works, signal failures, weather conditions, and
other causes. These disruptions significantly im-
pact urban mobility, leading to economic losses
and increased vulnerabilities within transit net-
works. They also affect passenger travel behav-
ior, influencing mode and route choices, departure
times, and causing trip cancellations. Major con-
secutive disruptions may result in passengers who
experimented with alternative travel modes, such
as cars, during disruptions to permanently switch
to these new modes even after the disruptions
resolve (Karlaftis et al., 2006) (Zhu et al., 2017).
The rise of sharing-economy travel options, such
as ride-hailing and car sharing, further intensifies
competition with public transit, encouraging more
people to opt for these alternatives (Rahimi et al.,
2020). If passengers shift towards cars due to the
resulting inconvenience, it can exacerbate conges-
tion and environmental issues.

1.1. Scientific Gap and Contributions
This study fills a gap in the literature by introducing
a framework to investigate long-term behavioral
changes, specifically extending five to six months
after a disruption. While immediate changes in
passenger behavior are extensively studied, long-
term impacts remain underexplored. Understand-
ing these long-term impacts is crucial because it
reveals whether temporary changes in behavior
become permanent. Additionally, it allows for an
examination of passengers’ tolerance towards dis-
ruptions and the extent to which theymaintain their
travel behavior, demonstrating travel behavior in-
ertia after a disruption. If results indicate that pas-
sengers leave the system or reduce their usage
after a disruption, the findings can guide the need
for extended mitigation measures beyond the im-
mediate aftermath to prevent this decline in usage.

The aim of this study is to develop a general frame-
work for understanding how passengers change
their behavior in the long term after a disruption.
To achieve this, we cluster passengers’ travel be-
havior across different periods to uncover the un-
observed travel patterns. By examining how pas-
sengers transition between these travel patterns,
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we analyze the impact of the disruption. One of
our main contributions is that we use a mixture la-
tent Markov model, which is particularly suitable
for clustering longitudinal data and probabilistically
assigns data to clusters, accounting for uncertain-
ties in the process.

The remainder of this paper is organized as fol-
lows: Section 2 discusses previous work on the im-
pact of disruptions on passenger behavior and the
influencing factors. Section 3 explains the method-
ology and section 4 provides information on the
case study and the results. Finally, Section 5 pro-
vides a discussion of the results and directions for
future research.

2. Related Literature
Most studies on the impact of transport disrup-
tions focus on immediate passenger responses,
with few examining long-term behavior. Surveys
are the most common data source, while stud-
ies using AFC transaction data are rare. Re-
search by Nazem et al. (2018) and Eltved et al.
(2021), using AFC data, indicates that station rid-
ership and travel frequency do not return to pre-
disruption levels even months after the disruption
ends. However, these studies need to extend the
post-disruption period to determine if the impacts
persist long-term and to consider other aspects of
travel behavior beyond travel frequency.

We review the literature to understand potential re-
sponses to disruptions and the factors that influ-
ence them. This helps us form expectations about
how certain passenger groups might change their
behavior, which we can later test. Additionally,
studying these factors guides our selection of clus-
tering indicators based on data availability.

2.1. Factors Influencing Passenger Re-
sponses to Disruptions
Passenger responses to disruptions can include
changing modes, routes, departure times or sta-
tions, waiting for service to resume, or cancel-
ing journeys. These responses are influenced by
various factors, including individual characteristics,
journey specifics, network conditions, and the na-
ture of the disruption. This section synthesizes
findings from reviewed papers on how these fac-
tors influence passenger responses.

Travel Purpose

When the purpose of a journey is critical and
urgent (e.g., work or school), passengers are
more likely to change their routes (Adelé et al.,
2019; Drabicki et al., 2021) or switch to alterna-

tive modes like cars and taxis (Nguyen-Phuoc et
al., 2018b; Mo et al., 2022; Papangelis et al.,
2016; Tian and Zheng, 2018; Nguyen-Phuoc et al.,
2018a). They are less likely to cancel their jour-
neys due to the mandatory nature and urgency of
the trip (Rahimi et al., 2020).

Travel Duration

For longer trips, passengers are more likely to
switch to cars or other modes (Li, Yao, Yamamoto,
Huan, and Liu, 2020; Tian and Zheng, 2018)
due to increased uncertainty with public transport
during disruptions (Rahimi et al., 2020; Nguyen-
Phuoc et al., 2018b; Nguyen-Phuoc et al., 2018a).

Disruption Time (peak, off-peak)

Disruptions during peak hours increase the likeli-
hood of passengers switching modes to ensure
timely arrival at their destinations (Li, Yao, Ya-
mamoto, Huan, and Liu, 2020; Tian and Zheng,
2018). Passengers are more willing to spend
money to reduce travel time and uncertainty during
peak hour disruptions (Li, Yao, Yamamoto, Tang,
& Liu, 2020).

Income and Employment

Higher-income individuals aremore likely to switch
modes, such as driving their own cars or using ride-
sharing services, while lower-income groups, stu-
dents, and the elderly tend to continue using pub-
lic transport or shuttle buses (Li, Yao, Yamamoto,
Huan, and Liu, 2020; Rahimi et al., 2020; Zhu et
al., 2017; Saxena et al., 2019; Arslan Asim et al.,
2021; Mo et al., 2022).

Travel Frequency

Frequent public transport users are more likely to
continue using the system during disruptions due
to their familiarity with the network, allowing them
to find alternative routes more easily (Papangelis
et al., 2016; Mo et al., 2022). These passengers
exhibit lower sensitivity to disruption uncertainties
(Li, Yao, Yamamoto, Tang, & Liu, 2020).

Availability of Alternative Routes

In areas with available alternative public transport
routes, most demand can be accommodated by
these alternatives (Rahimi et al., 2020). In sub-
urban areas with limited public transport options,
passengers are less likely to change routes and
more likely to switch modes (Li, Yao, Yamamoto,
Huan, and Liu, 2020; Mo et al., 2022; Adelé et al.,
2019).
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Disruption Duration

Short-term disruptions lead passengers to con-
sider changing routes or modes or canceling their
journey (Nguyen-Phuoc et al., 2018a). Longer
disruptions increase the likelihood of switching to
other modes (Li, Yao, Yamamoto, Huan, & Liu,
2020).

Disruption Frequency

In response to frequent disruptions, Drabicki et al.
(2021) found that 77% of passengers made long-
term adjustments, such as changing their routes
or departure times to avoid disruptions. Similarly,
Papangelis et al. (2016) reported that passengers
switched modes, relocated, and changed jobs to
cope with these disruptions.

Driver’s License and Car Ownership

Passengers with a driver’s license or access to a
car are more likely to switch to driving during dis-
ruptions (Nguyen-Phuoc et al., 2018b; Adelé et al.,
2019). Those without a license, such as students,
are more likely to continue using public transport
or cancel their trips (Nguyen-Phuoc et al., 2018a).

3. Methodology
To study long-term changes in passenger behav-
ior due to disruptions, we first need to define as-
pects of this behavior, such as travel frequency
and regularity, using a set of indicators. This al-
lows us to measure and compare passenger be-
havior before and after a disruption and assess its
impact. We have specific expectations about how
certain passenger profiles might change their be-
havior; therefore, we use segmentation as it helps
us identify and track these profiles over time. We
implement a mixture latent Markov model, a prob-
abilistic clustering algorithm, to identify travel pat-
tern profiles in each period. By tracking how pas-
sengers transition between these patterns, we can
observe changes in behavior, the extent of travel
behavior inertia and other internal tendencies.

The analysis begins by selecting a suitable dis-
ruption and identifying the affected passengers.
To ensure that behavior changes are directly at-
tributable to the disruption, we control for external
factors and seasonal trends by comparing affected
passengers’ behavior changes to those of a refer-
ence group.

3.1. Disruption Identification
To identify a suitable disruption several criteria
are considered: (1) The disruption must occur

on weekdays (excluding public holidays) and be-
fore 9 PM to primarily capture commuter behav-
ior. (2) The disruption should last long enough
to potentially have a lasting impact, such as sev-
eral days/weeks at a station or multiple repeated
shorter disruptions. (3) The Covid-19 pandemic
period is excluded due to the significant decline in
public transport usage. (4) There must be around
one month prior to the disruption for the pre-
disruption period, and a minimum of five months
following the disruption for the post-disruption anal-
ysis. (5) There should be no other significant dis-
ruptions in the affected area during the pre- and
post-disruption periods to isolate the disruption’s
impact.

Once a suitable disruption is identified, the pre-
disruption period is determined to be approxi-
mately one month. The post-disruption period is
then divided into intervals of roughly one month
each, with public holidays excluded from these pe-
riods.

Automatic Vehicle Location (AVL) data is used to
identify disruptions by analyzing the intervals be-
tween consecutive train departures. If these in-
tervals are larger than usual, it indicates a poten-
tial delay at that station. To assess this, we com-
pute two measures based on the departure time of
trains:

• Headway per line per direction: The time
between the departure of two consecutive
trains at a station traveling in the same di-
rection on the same line.

• Headway per direction: The time between
the departure of two consecutive trains at
a station traveling in the same direction, re-
gardless of their line.

Whenever large values are observed for both of
these two measures at the same time, we can con-
clude that a significant delay has occurred.

3.2. Identification of the Affected Pas-
sengers
Once a suitable disruption is identified, the next
step is to filter out the passengers impacted by
it. Frequent travelers who often start their jour-
neys from the disrupted station are more likely to
change their behavior due to their reliance on that
station. Therefore, these frequent travelers are
the focus of our analysis.

For a single event disruption, passengers with at
least four journeys from the disrupted station dur-
ing the pre-disruption period are considered af-
fected passengers. For multiple disruptions, a two-
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step process is used: (1) Identify passengers who
initiated at least four journeys from the affected sta-
tions around the time of the disruptions during the
pre-disruption period. A specific time window is
used to determine if a journey aligns with the dis-
ruption. This window is the interval (”headway”)
between the disrupted train’s departure time and
the preceding train’s departure, plus an additional
thirty-minute margin to account for variations, as il-
lustrated in Figure A.1. A journey is considered fre-
quent if its start time falls within the range [delayed
train departure time - headway - 30 min, delayed
train departure time + 30 min]. This ”headway” pa-
rameter is the same as the headway per line per
direction discussed in Section 3.1.

Figure A.1: The range for tap ini to consider i a frequent
journey made around the disruption time.

(2) Among these frequent travelers, select those
who experienced the disruptions at least twice. A
journey is considered affected by a disruption if
the tap-in time falls within [delayed train depar-
ture time - headway, delayed train departure time
- scheduled headway]. This range is visualized in
Figure A.2. This criteria ensures that people who
tap-in just before the departure of the delayed train
and do not fully experience the long delay are ex-
cluded. The scheduled headway is deducted from
the departure time for this purpose because it is
the usual interval between two trains on that line.

Figure A.2: The range for tap ini to consider i a journey
affected by a disruption (delay).

3.3. Identification of the Reference Pas-
sengers
The reference group includes passengers who use
a station similar to the disrupted one in terms of re-
dundancy, regional characteristics (residential or

workplace areas), and proximity to the city center.
This group must remain unaffected by any disrup-
tions to accurately reflect natural passenger be-
havior trends. Alternatively, reference passengers
can be selected from the disrupted station if they
were not impacted by the disruption. Passengers
with at least four journeys during the pre-disruption
period are chosen for the reference group.

3.4. Passenger Segmentation
In the literature, various clustering methods have
been employed to study passenger travel behav-
ior. This paper uses a variant of latent class anal-
ysis (LCA) known as the mixture latent Markov
model (MLMM), which is suitable for clustering
longitudinal data. This model allows individuals
to transition between different latent states (travel
patterns) over time (Vermunt & Magidson, 2013).
Membership in these travel patterns is determined
by several observed indicators capturing the dif-
ferent aspects of travel behavior. Model relation-
ships are estimated via multinomial logit models
and maximum likelihood estimation is used to de-
termine model parameters (Magidson & Vermunt,
2002).

Individuals are assigned to latent classes based
on their transition similarities between the states
(Vermunt & Magidson, 2013). Inspired by the ap-
proach of Kroesen and van Cranenburgh (2016),
we refer to each class as a ”mobility style”, reflect-
ing the underlying attitudes that influence changes
in travel patterns over time.

An advantage of MLMMs that motivated our choice
is their ability to incorporate additional variables,
often sociodemographic factors, known as covari-
ates (Magidson & Vermunt, 2004). Although these
variables are not part of the observed indicators,
they can impact transition probabilities, travel pat-
terns, and mobility styles. This capability is cru-
cial for our study because whether a passenger
is affected or reference may influence their likeli-
hood of belonging to a specific mobility style and
their transition probabilities. Therefore, ”type” (i.e.,
whether a passenger is affected or a reference) is
included in the model as a covariate, and its signif-
icance is subsequently tested.

A notable variant of MLMMs is the ”mover-stayer”
model, which distinguishes between individuals
who remain in the same state (stayers) and those
who change states (movers). This model is partic-
ularly useful for highlighting behavior stability and
change within the population (Vermunt & Magid-
son, 2013). Additionally, separating the stayers
helps better capture the heterogeneity among the
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movers (Kroesen & van Cranenburgh, 2016).

Model Assumptions

First, it is assumed that passengers’ travel behav-
ior is captured by a set of time-varying latent states,
i.e., travel patterns, which at each period represent
travel behavior with the smallest possible number
of logit parameters. Six indicators are used to
capture these latent travel patterns which are dis-
cussed in Section 3.4.1.

Secondly, we assume that a time-constant latent
variable, referred to asmobility style, explains both
the initial travel pattern membership and the proba-
bilities of transitioning between different travel pat-
terns over time. Mobility styles account for the het-
erogeneity in these transition probabilities.

Third, data points are clustered based on their simi-
larity regarding the indicators, a process called the
measurement model (Haustein & Kroesen, 2022)
which is indicated in Figure A.3. These indicators
are assumed to be mutually independent condi-
tional on the latent state variable, known as the
local independence assumption (Magidson & Ver-
munt, 2002). Furthermore, the part of the model
which probabilistically assigns data points to the
latent classes (mobility styles) is called the struc-
tural model (Haustein & Kroesen, 2022). This part
of the model allows for the inclusion of covariates
to explain class membership.

Finally, Figure A.3 shows that for every period
t ∈ {0, ..., T}, the Markov model includes a latent
state variable (travel pattern), and a multinomial
logit model estimating relationships between suc-
cessive latent state variables. This creates a ma-
trix of transition probabilities, indicating the likeli-
hood of transitioning to a future state based on the
current state, following the first-order Markov as-
sumption (Vermunt & Magidson, 2013).

3.4.1. Selected Indicators
We expect several changes in passenger behav-
ior following a disruption, which guide our selec-
tion of indicators. Specifically, we expect reduced
travel frequency, fewer travel days, and a de-
creased number of journeys, necessitating the def-
inition of corresponding indicators. Additionally,
the impact of disruptions may vary based on them
happening during peak/off-peak hours and week-
days/weekends, altering passenger activity during
these times. To avoid frequently disrupted hours,
passengers might also adjust their usual travel
times, leading tomore variability in their daily travel
start time. To test these expectations and capture
all aspects of passengers’ temporal travel behav-

ior, the following indicators are defined and calcu-
lated for each passenger per period:

• Share of active days: The percentage of
days during the period on which a passen-
ger made at least one journey.

• Average number of journeys per week-
day: The average number of journeys on
weekdays.

• Share of weekend journeys: The share of
journeys during the whole period which were
made on Saturday and Sunday.

• Share of peak-hour journeys: The share
of weekday journeys during the peak hours
(6AM to 9AM and 3PM to 7PM) in a period.

• Share of similar first boarding time: The
share of days a passenger started his/her
first journey of the day around a similar time.
This indicator enables the identification of
travel time regularity and the extent to which
passengers travel at the same time everyday
which is a suitable measure of time flexibility
of passengers.

To calculate this indicator, an approach intro-
duced by Bhaskar, Chung, et al. (2014) in-
volves using DBSCAN to identify the dens-
est areas in the dataset as groups of days
with approximately similar boarding times.
The tap-in time of the first journey of a
day is converted into minutes-from-midnight.
DBSCAN requires two parameters, ϵ and
MinPts. MinPts represents the minimum
number of points needed to form a cluster,
with clusters below this threshold classified
as noise. MinPts is typically set to twice the
dimension (i.e., two in this case). ϵ indicates
the maximum distance between two points
to be considered neighbors.

To determine the appropriate value for ϵ
Sander et al. (1998) suggest using the ϵ of
the smallest cluster. With MinPts known,
the first step is to calculate the distance of
each data point to its kth nearest neighbor
(where k is MinPts). These distances are
then sorted and plotted, with the elbow of
the resulting graph chosen as the value for ϵ.
Points with distances larger than this value
are labeled as noise, while the rest are as-
signed to clusters. The largest cluster size
divided by the total number of active days
for a passenger is set as the value for this
feature.

• Share of similar last boarding time: This
indicator is defined as the share of days a
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Figure A.3: Graphical representation of the latent class model.

passenger started his/her last journey of the
day around a similar time. A similar ap-
proach to calculating the first boarding time
is used to calculate this indicator.

4. Case Study
4.1. Case Study Description
The data used in this study is provided by the
Washington Metropolitan Area Transit Authority
(WMATA). The Washington D.C. metro network,
known as Metrorail, consists of six color-coded
lines as seen in Figure 4.4. The system design re-
quires passengers to tap in their smart cards upon
entering and exiting the network. The provided
data includes Automated Fare Collection (AFC)
data, Automatic Vehicle Location (AVL) data, and
logs of planned and unplanned disruptions from
August 2019 to December 2022.

The disruption identified in this study occurred in
September, causing delays ranging from 20 to 37
minutes at five stations on the orange line towards
Vienna. The locations of the affected stations are
shown in Figure A.4, and the specific dates of dis-
ruptions, along with the total number of delay oc-
currences per station, are provided in Table A.1.

Next, the pre- and post-disruption periods were de-
termined, as shown in Table A.2. These periods
were selected to maintain a similar ratio of week-
end days to the total number of days across all pe-
riods. Additionally, public holidays were excluded
from the analysis for all periods.

4.2. Results
This section outlines the analysis procedure and
presents the clustering results, divided into two
sections. Section 4.2.1 discusses the selection of
the optimal model, while Section 4.2.2 provides an
analysis of travel patterns, transition probabilities,
and mobility styles.

4.2.1. Model Definition
This section outlines the process of determining
the optimal model, by explaining the selection of
the optimal number of states and classes and the
reasoning behind these choices. It also discusses
the significance of the indicators and the covariate,
and the resulting implications.

Optimal Model Selection

To determine the optimal number of travel patterns
(states) and mobility styles (classes), a two-step
approach based on the method by Kroesen and
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Figure A.4: Disrupted area identified for the analysis.

Table A.1: Disrupted stations and disruption dates.
Disrupted Station Dates (in September 2019) Number of Occurrences Range

Minnesota Ave 9 - 11 - 19 - 20 - 23 - 24 11 times 20 to 37 min
Deanwood 11 - 19 - 20 - 23 - 24 8 times 20 to 33 min
Cheverly 11 - 19 - 20 - 23 - 24 9 times 20 to 32 min
Landover 19 - 20 - 23 - 24 7 times 20 to 32 min
New Carrollton 11 - 16 - 17 - 19 - 20 - 23 - 24 12 times 20 to 31 min

Table A.2: Pre- and post-disruption periods.
Period Start End Duration

Pre-Disruption 2019-08-11 2019-09-07 27 days
Post-Disruption 1 2019-09-25 2019-10-26 31 days
Post-Disruption 2 2019-10-27 2019-11-26 30 days
Post-Disruption 3 2019-11-27 2019-12-21 24 days
Post-Disruption 4 2020-01-01 2020-02-01 30 days
Post-Disruption 5 2020-02-02 2020-02-29 29 days
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van Cranenburgh (2016) is used. First, the optimal
number of states is determined without consider-
ing covariates, which then is used for the selection
of the number of classes.

Thus, first, LCA models are estimated, starting
with one state and increasing up to ten states, with
the optimal model chosen based on the Bayesian
Information Criterion (BIC) (Nylund et al., 2007).
The model with the lowest BIC value is selected
as optimal. However, since the BIC value con-
sistently decreases (as shown in Table A.3), and
a ten-state model is impractical for a mixture la-
tent Markov model (Kroesen & van Cranenburgh,
2016), an alternative approach is taken, prioritiz-
ing cluster interpretability and relevance. As a re-
sult, a five-cluster model is chosen, as beyond five
clusters, the distinctions between clusters become
less meaningful.

After determining the optimal number of states, a
similar method is applied to identify the optimal
number of classes. Mixture latent Markov models
are estimated with five states and varying numbers
of mobility styles, from one to four. Starting with
models that include two classes, the ”stayer” class
is incorporated. Although the model with ”1 stayer
class and 3 mover classes” has the lowest BIC
value (see Tabble A.4), the reduction in BIC com-
pared to the ”1 stayer class and 2 mover classes”
model is minimal, while the increase in the number
of parameters is significant (21%). Consequently,
the ”1 stayer class and 2 mover classes” model is
selected for interpretation. The model is then re-
estimated with the addition of the ”type” covariate.

Significance of the Indicators and the Covari-
ate

The significance of the model’s indicators was
evaluated using theWald test, revealing that all six
indicators are significant, with p-values below 0.05.
This supports their inclusion in the model, as they
are important for distinguishing between travel pat-
terns. Next, the covariate ”type” was added to the
optimal model, and it was found to significantly
influence initial state membership and transition
probabilities (p-value < 0.05), but not class mem-
bership (p-value 0.27). This indicates that the co-
variate does not impact a passenger’s likelihood of
belonging to a specific mobility style, leading to the
removal of the covariate’s relationship with class
membership from the model.

4.2.2. Analysis of the Results
This Section provides an explanation of travel pat-
tern profiles, followed by the general transition
probabilities between the patterns, which reveal

the degree of travel behavior inertia along with
the directions and extent of transitions from each
pattern to the other over time. Additionally, the
mobility styles and their characteristics are de-
scribed, offering insight into the underlying tenden-
cies among passengers. In this Section we assess
the extent to which our expectations regarding the
behavior change are met.

Travel Pattern Profiles

The travel pattern sizes (averaged over periods)
and the mean value of the indicators for each of
the five travel patterns are displayed in Table A.5.
The information is displayed for the whole data,
thus both the affected and reference. Using this in-
formation, we describe the characteristics of each
travel pattern and provide a representative label
for them.

• pattern 1 (size: 33%): Frequent less flexi-
ble peak travellers
These passengers are classified as frequent
travelers due to being active on 57% of days
and averaging 1.53 journeys per weekday.
They do not travel on weekends, as evident
from the table and the graph, and have the
highest proportion of journeys during peak
hours (76%). Because their peak-hour activ-
ity exceeds 50%, we refer to them as peak
travelers. Additionally, their boarding times
show moderate flexibility compared to other
groups, with 56% of days having a similar
first boarding time and 49% having a similar
last boarding time.

• pattern 2 (size: 27%): Occasional less flex-
ible peak travellers
These passengers are the second least ac-
tive group, traveling on only 25% of days with
an average of 0.62 journeys per weekday.
Hence, they are referred to as occasional
travelers. They do not travel on weekends
and make 63% of their journeys during peak
hours. Their boarding times indicate moder-
ate flexibility.

• pattern 3 (size: 19%): Frequent flexible
peak travellers (with weekend)
These passengers are themost active group,
traveling on 70% of days with an average
of 1.55 journeys per weekday. They show
an interest in weekend travel, accounting for
15% of their journeys, and 59% of their trips
occur during peak hours. This group is the
second most flexible in terms of boarding
times.

• pattern 4 (size: 15%): Occasional very flex-
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Table A.3: Model fit results.
No. of states LL BIC(LL) Param
(travel patterns)

1 -12973 26068 12
2 45460 -90667 25
3 57297 -114209 38
4 62975 -125434 51
5 67774 -134901 64
6 72203 -143628 77
7 75294 -149679 90
8 77585 -154129 103
9 79615 -158058 116
10 81721 -162139 129

LL = log-likelihood
BIC(LL) = Bayesian information criterion (based on log-likelihood)
Param = number of parameters
BICLL = −2LL + ln(samplesize)Param

Table A.4: Model fit results.
No. of classes (mobility styles) LL BIC(LL) Param

1 mover class 73801 -146904 84
2 mover classes 74488 -148069 109
1 stayer class 1 mover class 74200 -147660 89
3 mover classes 74655 -148195 134
1 stayer class 2 mover classes 74626 -148303 115
4 mover classes 74752 -148182 159
1 stayer class 3 mover classes 74760 -148363 139

LL = log-likelihood
BIC(LL) = Bayesian information criterion (based on log-likelihood)
Param = number of parameters
BICLL = −2LL + ln(samplesize)Param

Table A.5: Profiles of the latent travel patterns (for the affected and reference passengers, averaged over all
periods).

1. Frequent 2. Occasional 3. Frequent flexible 4. Occasional very 5. Sporadic
less flexible less flexible peak travellers flexible travellers travellers

peak travellers peak travellers (with weekend) (with weekend)

Cluster size 33% 27% 19% 15% 6%
Indicators (mean)

share of active days 0.57 0.25 0.70 0.33 0.04
journeys per weekday 1.53 0.62 1.55 0.55 0.07
share of weekend journeys 0.00 0.00 0.15 0.28 0.16
share of peak journeys 0.76 0.63 0.59 0.46 0.40
share of similar first boardings 0.56 0.47 0.44 0.29 1.00
share of similar last boardings 0.49 0.44 0.38 0.29 1.00
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ible travellers (with weekend)
These passengers are active on only 33% of
the days with 0.55 journeys per weekday and
are thus called occasional travelers. They
perform 28% of their journeys in the week-
end. They perform 46% of their journeys dur-
ing peak hours and are the second least ac-
tive pattern during peak hours. They are the
most flexible group with similar first and last
boarding times of 29%.

• pattern 5 (size: 6%): Sporadic travellers
These passengers are active on just 4% of
days, with an average of 0.07 journeys per
weekday. Thus, they are referred to as spo-
radic travelers. They make 16% of their jour-
neys on weekends and 40% during peak
hours. Additionally, they tend to start their
first and last journeys at similar times each
day.

Travel Pattern Transition Probabilities

Table A.6 shows the overall transition probabilities
of the affected and reference passengers which
shows how likely individuals are to move from one
travel pattern to another between consecutive pe-
riods. The values which are substantially large
(greater than 0.15) have been highlighted in bold.
Below we provide a discussion about our observa-
tions based on this table, the expected outcomes,
and the actual observed outcome. We interpret
these observations to derive conclusions about the
behavior changes of the affected passengers and
their difference with the reference.

Travel Behavior Inertia:

This table shows that passengers in the three
largest travel patterns (patterns 1, 2, and 3) tend
to remain in the same pattern, with a likelihood of
at least 66% among the affected group and 62%
among the reference group. These three patterns
contribute to almost 80% of the data (based on Ta-
ble A.5). This large likelihood of remaining in the
same travel pattern from each period to the next is
an indication of travel behavior inertia among the
majority of the passengers.

The highest travel behavior inertia is observed
among passengers in the largest pattern, pattern
1 (Frequent less flexible peak travelers). These
passengers have an 85% probability of maintain-
ing their behavior from one period to the next in
the affected group and a 77% probability in the ref-
erence. This is significant given that pattern 1 is
the largest pattern in both groups.

Another insight is that among the affected group,

the frequent travelers (patterns 1 and 3) are more
likely to stay in the same pattern (85% and 66%,
respectively) compared to occasional travelers of
pattern 2 and 4 (67% and 36%, respectively). This
indicates a strong travel behavior inertia among
passengers with high travel frequency.

Travel Behavior Inertia: Affected vs. Reference:

We expected to observe lower travel behavior iner-
tia (likelihood of staying in the same travel pattern)
among the affected passengers compared to the
reference group. This expectation was based on
the idea that affected passengers, having experi-
enced disruptions, would be more likely to modify
their travel behavior. This expectation is only par-
tially met, as the diagonal values among the ref-
erence group are larger compared to the affected
passengers for most patterns (patterns 2, 4, and 5
which are the occasional and sporadic travelers).
However, this is not the case for patterns 1 and 3,
where the affected passengers exhibit higher val-
ues on the diagonal.

Travel Frequency:

We initially expected that disruptions might lead
passengers to travel less frequently with public
transport, possibly opting to work from home or
use other modes of transportation like driving a
car. Therefore, we anticipated high transition prob-
abilities from frequent to occasional travel patterns.
However, the majority of frequent affected travel-
ers (patterns 1 and 3) remain in the same pattern,
with probabilities of 85% and 66%, respectively.
Additionally, 23% of passengers in pattern 3 shift
to pattern 1, which is also a frequent travel pattern.

Peak-hour Activity:

Among the affected passengers, those who did not
often travel during peak hours (pattern 4) are more
likely to shift to patterns with higher activity dur-
ing peak hours (patterns 1, 2, and 3) compared
to the reference group. One possible reason for
this is that the disruptions in our case study pri-
marily occurred during off-peak hours. As a result,
some passengers might adjust their travel timing
to avoid potential disruptions similar to what they
experienced during off-peak hours. Specifically,
62% of the affected passengers in pattern 4 (off-
peak travelers) transition to the first three groups
(peak travelers), whereas this value is only 30%
for the reference group.

Travel Flexibility:

We observe that the patterns which are less flexi-
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Table A.6: Transition matrices of the affected and reference passengers.
Travel pattern in period t

Travel pattern in period (t-1) 1 2 3 4 5

Affected

1. Frequent less flexible peak travellers 0.849 0.064 0.083 0.003 0.000
2. Occasional less flexible peak travellers 0.179 0.675 0.018 0.095 0.035
3. Frequent flexible peak travellers (weekend) 0.235 0.011 0.656 0.080 0.019
4. Occasional very flexible travellers (weekend) 0.113 0.367 0.138 0.356 0.026
5. Sporadic travellers 0.012 0.609 0.012 0.013 0.355

Reference

1. Frequent less flexible peak travellers 0.772 0.121 0.089 0.009 0.009
2. Occasional less flexible peak travellers 0.091 0.699 0.026 0.094 0.091
3. Frequent flexible peak travellers (weekend) 0.174 0.081 0.618 0.111 0.016
4. Occasional very flexible travellers (weekend) 0.006 0.234 0.048 0.612 0.100
5. Sporadic travellers 0.021 0.292 0.018 0.165 0.504

ble regarding their first and last boarding time (pat-
tern 1 and 2) exhibit a higher travel behavior iner-
tia compared to the patterns with higher flexibility
(pattern 3 and 4). One possible reason might be
because they have developed a habit of traveling
at the same time every day (on the days that they
use PT) and this habitual behavior might have ex-
tended to their overall travel pattern. Thus they
tend to maintain the same travel behavior.

Overall Comparison of Affected and Reference
Groups:

In conclusion, differences exist between the refer-
ence and affected passengers; however, the ex-
tent of this difference was expected to be more
pronounced given the occurrence of the disrup-
tion. It is evident that this difference is less sub-
stantial for the first three patterns, which comprise
80% of the data. It is possible that if the disrup-
tions were more significant, the differences would
become more pronounced.

Analysis of the Mobility Styles

The passengers are divided into three mobility
styles, based on their travel behavior changes
over time. In this section the purpose is to use
the transition probabilities of each of the travel pat-
terns (Tables A.7, A.8, and A.9) for the affected
and the reference, to provide a description for each
mobility style. This helps us in identifying the dif-
ferent behavior traits that exist among the passen-
gers (mobility styles).

Mobility style 1 (stayers):

The first mobility style is labeled as stayers, who
stay in the same travel pattern across all periods
and never change their behavior. Table A.7 shows
that within this mobility style, the likelihood of stay-
ing in the same pattern is 1 as opposed to 0 for
transitioning to other patterns.

Mobility style 2 (Commuter travellers):

This class is inclined towards travelling more fre-
quently, less flexibly, less in the weekend, and
more during peak. This inclination is more pro-
nounced among the affected passengers than the
reference:

• Higher frequency: Passengers tend to shift
towards traveling more frequently. Based
on Table A.8, frequent patterns (1 and 3),
in both the affected and reference groups,
are most likely to transition within the fre-
quent patterns 1 and 3. This is due to the
large transition probabilities of pattern 1 to 1
(80% among the affected and 67% among
the reference), as well as pattern 3 to pat-
tern 1 (82% among the affected and 63%
among the reference) and pattern 3 to 3
(16% among the affected and 21% among
the reference). Moreover, in the affected
group, pattern 2 (the largest occasional pat-
tern) is more inclined towards transitioning to
the frequent pattern 1 rather than staying in
the same pattern. Moreover, in the affected
group, pattern 5 (sporadic travelers) shifts
to pattern 2 (occasional travelers with higher
frequency) with a 78% probability.

• Less flexibility and no weekend activity: Pas-
sengers tend to become less flexible and not
travel on weekends. In both the affected and
reference groups, the sum of the probabili-
ties of shifting to less flexible patterns with-
out weekend activity (1 and 2) is significantly
higher than shifting to more flexible patterns
with weekend activity (3 and 4).

• More peak-hour activity: Passengers are
more likely to transition to patterns with
higher peak-hour activity, particularly to-
wards patterns 1, 2, and 3, with pattern 1 be-
ing the most active during peak hours.

Mobility style 3 (Leisure travellers):

This class is inclined towards travelling more flex-
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Table A.7: Transition matrices of mobility style 1.
Travel pattern in period t

Travel pattern in period (t-1) 1 2 3 4 5

Affected

1. Frequent less flexible peak travellers 1 0 0 0 0
2. Occasional less flexible peak travellers 0 1 0 0 0
3. Frequent flexible peak travellers (weekend) 0 0 1 0 0
4. Occasional very flexible travellers (weekend) 0 0 0 1 0
5. Sporadic travellers 0 0 0 0 1

Reference

1. Frequent less flexible peak travellers 1 0 0 0 0
2. Occasional less flexible peak travellers 0 1 0 0 0
3. Frequent flexible peak travellers (weekend) 0 0 1 0 0
4. Occasional very flexible travellers (weekend) 0 0 0 1 0
5. Sporadic travellers 0 0 0 0 1

Table A.8: Transition matrices of mobility style 2.
Travel pattern in period t

Travel pattern in period (t-1) 1 2 3 4 5

Affected

1. Frequent less flexible peak travellers 0.798 0.124 0.077 0.001 0.000
2. Occasional less flexible peak travellers 0.490 0.426 0.008 0.032 0.043
3. Frequent flexible peak travellers (weekend) 0.818 0.011 0.162 0.004 0.006
4. Occasional very flexible travellers (weekend) 0.168 0.807 0.001 0.023 0.002
5. Sporadic travellers 0.052 0.779 0.002 0.002 0.166

Reference

1. Frequent less flexible peak travellers 0.668 0.203 0.108 0.006 0.015
2. Occasional less flexible peak travellers 0.161 0.649 0.020 0.059 0.111
3. Frequent flexible peak travellers (weekend) 0.629 0.134 0.215 0.011 0.011
4. Occasional very flexible travellers (weekend) 0.014 0.772 0.001 0.070 0.144
5. Sporadic travellers 0.035 0.366 0.006 0.057 0.537

ibly, less during peak, and more in the weekend
while travelling with the same frequency. This in-
clination is more pronounced among the affected
than the reference:

• Same frequency: Passengers tend to main-
tain their travel frequency. For example, fre-
quent patterns (1 and 3) are more likely to
transition within patterns 1 and 3. For pattern
1, the total transition probability to patterns 1
and 3 is 94% among the affected, and 84%
among the reference. For pattern 3, the to-
tal transition probabilities to patterns 1 and 3
is 86% among the affected, and 65% among
the reference. Similarly, the occasional pat-
terns (2 and 4) majorly transition to occa-
sional patterns (2 and 4). The sporadic trav-
ellers (pattern 5) either remain as sporadic
travellers or transition to pattern 2 and 4 (oc-
casional travellers) and thus increase their
frequency slightly.

• More flexibility: Among the affected and the
reference groups, passengers in pattern 1
(less flexible) are most likely to transition to
pattern 3 (more flexible) rather than staying
in the same pattern. The probability of the
transition from pattern 1 to 3 is 58% among
the affected and 61% among the reference
group. Similarly, pattern 2 (less flexible) tran-

sitions to pattern 4 (more flexible) with a prob-
ability of 39% among the affected and 41%
among the reference.

• Less peak-hour activity: Pattern 1 (most ac-
tive pattern during peak) most likely transi-
tions to pattern 3 which has less peak activ-
ity compared to pattern 1 and 2. Pattern 2
most likely transitions to pattern 4 which has
even lower activity in peak. Finally, pattern
3 mostly remains as is.

• More weekend activity: We observe substan-
tial transitions from patterns with no week-
end activity (patterns 1 and 2) to patterns 3
and 4 which are active in the weekend.

Mobility Styles and Travel Patterns Sizes

The size of the mobility styles for the affected and
reference passengers is presented in Table A.10.
Comparing the probability of mobility style mem-
bership, i.e., total sizes, between the affected and
reference passengers in Table A.10, we do not ob-
serve substantial differences. We expected the
affected passengers to be less likely to be stay-
ers compared to the reference. In other words,
we anticipated a smaller class size for stayers
among the affected passengers. Since these pas-
sengers have experienced the disruption, we ex-
pected them to be more likely to modify their be-
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Table A.9: Transition matrices of mobility style 3.
Travel pattern in period t

Travel pattern in period (t-1) 1 2 3 4 5

Affected

1. Frequent less flexible peak travellers 0.359 0.017 0.582 0.042 0.000
2. Occasional less flexible peak travellers 0.041 0.398 0.065 0.392 0.104
3. Frequent flexible peak travellers (weekend) 0.164 0.013 0.690 0.109 0.024
4. Occasional very flexible travellers (weekend) 0.116 0.373 0.173 0.335 0.003
5. Sporadic travellers 0.000 0.727 0.016 0.016 0.241

Reference

1. Frequent less flexible peak travellers 0.225 0.021 0.611 0.142 0.000
2. Occasional less flexible peak travellers 0.008 0.344 0.088 0.407 0.152
3. Frequent flexible peak travellers (weekend) 0.079 0.102 0.573 0.217 0.029
4. Occasional very flexible travellers (weekend) 0.006 0.209 0.072 0.599 0.114
5. Sporadic travellers 0.000 0.191 0.036 0.337 0.436

havior rather than continue traveling in the same
manner as before. However, the percentage of
stayers is 27% among the affected group and 24%
among the reference, indicating that the likelihood
of never changing behavior is almost similar for
both groups.

Furthermore, the affected passengers are just as
likely (46%) to belong to mobility style 2 (tendency
towards traveling more frequently) as the refer-
ence group (46%). This indicates that the ten-
dency towards traveling more frequently does not
differ between the two group which contradicts our
expectation that the affected passengers would be
more likely to travel less frequently. We expected
that this value would be significantly lower among
the affected passengers compared to the refer-
ence. Regarding the third mobility style, which
consists of passengers with a tendency towards
off-peak travel, the class sizes are again quite sim-
ilar with only 3% difference.

5. Discussion and Conclusion
In this study, we investigated the long-term effects
of a public transport disruption in the Washington
DC metro network on passenger travel behavior.
Using a mixture latent Markov model, we identified
five distinct travel patterns and monitored the tran-
sitions of passengers between these patterns over
time.

The results reveal that the differences between
the affected and reference passengers are not as
significant as expected, particularly for the three
largest travel patterns. This observation could in-
dicate that the disruption did not have a substan-
tial effect on changing passenger behavior. This
might be because the disruptions had a low fre-
quency and duration, leading to only temporary de-
lays. This observation aligns with findings in the lit-
erature. For example, Drabicki et al. (2021) found
that the higher the frequency of disruptions, the
more likely it is to result in long-term behavioral

changes among passengers. Moreover, in a study
by Papangelis et al. (2016), passengers reported
making permanent behavioral changes, such as
mode changes, relocation, and job changes due
to experiencing frequent long-term disruptions in
the past.

Another reason for the minimal impact of the dis-
ruptions in this study could be that they primar-
ily occurred during off-peak hours. Literature in-
dicates that the timing of disruptions significantly
influences passenger responses. During peak
hours, passengers are more likely to change their
travel mode, opting for taxis, buses, or bikes to
avoid delays and ensure timely arrival (Li, Yao, Ya-
mamoto, Huan, and Liu, 2020; Tian and Zheng,
2018). Li, Yao, Yamamoto, Tang, and Liu (2020)
also found that passengers perceive travel time
more negatively during peak hours and are willing
to pay more to reduce it. Although these findings
are based on immediate responses to disruptions,
they may extend to long-term behavior if disrup-
tions are frequent and repetitive, as noted by Dra-
bicki et al. (2021) and Papangelis et al. (2016).

Furthermore, we observed a high level of travel
behavior inertia among the affected passengers.
Whereas we initially expected that passengers
experiencing disruptions would be more likely to
change their behavior, resulting in lower travel be-
havior inertia compared to unaffected passengers.
In addition, we expected that the affected frequent
travelers would shift to occasional travel patterns,
and reduce their travel frequency due to the dis-
ruption. Instead, frequent travelers displayed high
travel behavior inertia, continuing to travel as fre-
quently as before. This observation aligns with
the findings of Adelé et al. (2019) and Li, Yao, Ya-
mamoto, Tang, and Liu (2020), who noted that
frequent travelers are less likely to change their
routes or modes when facing disruptions and are
more likely to wait for the service to resume.

Several factors could explain this behavior. Fre-
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Table A.10: Mobility style size of the affected and reference passengers.
Total size

Mobility style affected reference

1 (stayer) 0.267 0.238
2 0.462 0.456
3 0.272 0.307

quent travelers might be employees required to
commute to the office daily without the option of
working from home, or they might not own a car,
limiting their alternatives. Consequently, they can-
not reduce their use of public transportation even
when experiencing disruptions. Additionally, their
frequent use of public transportation might have
become habitual, making them less sensitive to
disruptions.

Regarding the sizes of mobility styles, we did not
observe substantial differences between the af-
fected and reference groups, which contradicts
our expectations. Specifically, we anticipated a
smaller size for mobility style 1 (stayers) among
affected passengers, assuming they would modify
their behavior due to disruptions and be less likely
to maintain the same travel pattern. Lastly, the ab-
sence of a mobility style characterized by less fre-
quent travel further indicates the minimal impact of
the disruptions observed in our case study.

In conclusion, this study successfully develops a
framework for studying the long-term impact of
disruptions. However, the implementation of this
framework in this study revealed that the case
study disruption did not have a very substantial
long-term impact.

5.1. Limitations and Future Research
One of the limitations of this study is a lack of de-
tailed and accurate data on the start and end times
of disruptions. This required inferring disruptions
from train movements in the AVL dataset, which
involved extensive data cleaning and special han-
dling. Another limitation is the restricted effective
period available for analyzing disruptions. The
onset of COVID-19 in Washington, DC, in March
2020 limited our analysis to a seven-month period
before the pandemic. Ideally, we would prioritize
analyzing significant disruptions, such as station or
line closures, over frequency reductions, as these

are more likely to have a substantial long-term im-
pact. However, such significant disruptions were
not present in the available data for the case study
period. Additionally, the unavailability of socio-
demographic data was a limitation. Understanding
the impact of factors such as income, age, car own-
ership, etc, on passengers’ long-term travel behav-
ior would be valuable.

Future research can extend the current methodol-
ogy by incorporating socio-demographic informa-
tion, such as age, income, education, etc., as co-
variates to evaluate their impact on transition prob-
abilities, initial state membership, and class mem-
bership. Understanding the socio-demographic
composition of each class can provide insights into
why certain travel patterns emerge, such as pref-
erences for peak versus off-peak travel. For in-
stance, younger individuals might prefer off-peak
hours due to flexible schedules, while older adults
might travel during specific times for routine activi-
ties. These insights can inform targeted strategies
to optimize transport services and address the spe-
cific needs of different user groups.

A second avenue for future research is analyzing
changes in the spatial aspect of travel behavior in
addition to the temporal aspect. Researchers can
investigate whether the frequent boarding and/or
alighting stations of passengers change after a
significant disruption or if passengers use these
stations less frequently. For example, when a
regular boarding/alighting station is disrupted for
an extended period, passengers might use other
nearby, undisrupted stations instead. It would be
interesting to determine whether passengers re-
turn to their frequent stations once the disruption
is resolved, to what extent their usage levels re-
cover, or if they continue using the new stations.
Lastly, the framework can be applied to other case
studies, particularly those involving more signifi-
cant disruptions such as long-term station or line
closures.
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Table B.2: Parameters of the mixture latent Markov model.
term coef s.e. z-value p-value Wald(0) df p-value Wald(=) df p-value

Class(1) 1 -0.30 0.04 -7.15 8.60E-13 86 2 1.80E-19
Class(2) 1 0.35 0.04 8.55 1.20E-17
Class(3) 1 -0.05 0.04 -1.16 0.24
State[=0](1) 1 Class(1) 2.69 0.93 2.90 0.0037 494 12 4.00E-98 453 8 7.60E-93
State[=0](2) 1 Class(1) 1.45 0.93 1.56 0.12
State[=0](3) 1 Class(1) 0.61 0.94 0.65 0.52
State[=0](4) 1 Class(1) -0.76 1.00 -0.76 0.45
State[=0](5) 1 Class(1) -4.00 3.64 -1.10 0.27
State[=0](1) 1 Class(2) 3.27 0.96 3.41 0.00064
State[=0](2) 1 Class(2) 1.88 0.96 1.95 0.051
State[=0](3) 1 Class(2) 0.30 0.97 0.31 0.76
State[=0](4) 1 Class(2) -1.25 1.03 -1.21 0.23
State[=0](5) 1 Class(2) -4.21 3.76 -1.12 0.26
State[=0](1) 1 Class(3) 0.94 0.88 1.07 0.29
State[=0](2) 1 Class(3) 0.88 0.88 1.00 0.32
State[=0](3) 1 Class(3) 1.83 0.88 2.08 0.038
State[=0](4) 1 Class(3) 0.61 0.93 0.66 0.51
State[=0](5) 1 Class(3) -4.26 3.41 -1.25 0.21
State[=0](1) type -0.25 0.93 -0.28 0.78 25 4 4.40E-05
State[=0](2) type 0.42 0.93 0.45 0.65
State[=0](3) type 1.17 0.94 1.25 0.21
State[=0](4) type 1.61 0.98 1.64 0.1
State[=0](5) type -2.94 3.63 -0.81 0.42
State(1) 1 Class(2) State[-1](1) 0.00 . . . 948 40 8.80E-173 803 20 3.90E-157
State(2) 1 Class(2) State[-1](1) -1.86 0.27 -6.87 6.40E-12
State(3) 1 Class(2) State[-1](1) -2.34 0.29 -7.95 1.80E-15
State(4) 1 Class(2) State[-1](1) -6.39 1.23 -5.21 1.80E-07
State(5) 1 Class(2) State[-1](1) -9.07 7.42 -1.22 0.22
State(1) 1 Class(2) State[-1](2) 0.14 0.55 0.26 0.8
State(2) 1 Class(2) State[-1](2) 0.00 . . .
State(3) 1 Class(2) State[-1](2) -3.93 1.06 -3.70 0.00021
State(4) 1 Class(2) State[-1](2) -2.58 0.65 -3.98 6.80E-05
State(5) 1 Class(2) State[-1](2) -2.30 0.63 -3.64 0.00028
State(1) 1 Class(2) State[-1](3) 1.62 0.37 4.38 1.20E-05
State(2) 1 Class(2) State[-1](3) -2.69 1.05 -2.56 0.011
State(3) 1 Class(2) State[-1](3) 0.00 . . .
State(4) 1 Class(2) State[-1](3) -3.84 0.90 -4.26 2.10E-05
State(5) 1 Class(2) State[-1](3) -3.38 1.07 -3.14 0.0017
State(1) 1 Class(2) State[-1](4) 1.99 1.69 1.17 0.24
State(2) 1 Class(2) State[-1](4) 3.56 0.94 3.78 0.00015
State(3) 1 Class(2) State[-1](4) -3.35 7.23 -0.46 0.64
State(4) 1 Class(2) State[-1](4) 0.00 . . .
State(5) 1 Class(2) State[-1](4) -2.52 7.47 -0.34 0.74
State(1) 1 Class(2) State[-1](5) -1.16 8.91 -0.13 0.9
State(2) 1 Class(2) State[-1](5) 1.55 3.45 0.45 0.65
State(3) 1 Class(2) State[-1](5) -4.65 8.04 -0.58 0.56
State(4) 1 Class(2) State[-1](5) -4.69 7.98 -0.59 0.56
State(5) 1 Class(2) State[-1](5) 0.00 . . .
State(1) 1 Class(3) State[-1](1) 0.00 . . .
State(2) 1 Class(3) State[-1](1) -3.04 1.37 -2.22 0.027
State(3) 1 Class(3) State[-1](1) 0.48 0.39 1.23 0.22
State(4) 1 Class(3) State[-1](1) -2.16 1.13 -1.90 0.057
State(5) 1 Class(3) State[-1](1) -11.88 10.48 -1.13 0.26
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State(1) 1 Class(3) State[-1](2) -2.27 1.07 -2.12 0.034
State(2) 1 Class(3) State[-1](2) 0.00 . . .
State(3) 1 Class(3) State[-1](2) -1.82 1.05 -1.73 0.083
State(4) 1 Class(3) State[-1](2) -0.02 0.65 -0.02 0.98
State(5) 1 Class(3) State[-1](2) -1.34 0.64 -2.09 0.037
State(1) 1 Class(3) State[-1](3) -1.44 0.33 -4.30 1.70E-05
State(2) 1 Class(3) State[-1](3) -3.95 1.01 -3.90 9.50E-05
State(3) 1 Class(3) State[-1](3) 0.00 . . .
State(4) 1 Class(3) State[-1](3) -1.85 0.39 -4.80 1.60E-06
State(5) 1 Class(3) State[-1](3) -3.36 0.72 -4.65 3.30E-06
State(1) 1 Class(3) State[-1](4) -1.06 0.91 -1.16 0.25
State(2) 1 Class(3) State[-1](4) 0.11 0.68 0.16 0.87
State(3) 1 Class(3) State[-1](4) -0.66 0.87 -0.76 0.45
State(4) 1 Class(3) State[-1](4) 0.00 . . .
State(5) 1 Class(3) State[-1](4) -4.89 7.43 -0.66 0.51
State(1) 1 Class(3) State[-1](5) -6.61 11.47 -0.58 0.56
State(2) 1 Class(3) State[-1](5) 1.10 3.37 0.33 0.74
State(3) 1 Class(3) State[-1](5) -2.71 7.95 -0.34 0.73
State(4) 1 Class(3) State[-1](5) -2.70 7.95 -0.34 0.73
State(5) 1 Class(3) State[-1](5) 0.00 . . .
State(1) type State[-1](1) 0.00 . . . 51 20 0.00018
State(2) type State[-1](1) 0.67 0.27 2.47 0.014
State(3) type State[-1](1) 0.52 0.30 1.72 0.085
State(4) type State[-1](1) 1.70 1.14 1.49 0.14
State(5) type State[-1](1) 5.25 7.42 0.71 0.48
State(1) type State[-1](2) -1.53 0.54 -2.84 0.0046
State(2) type State[-1](2) 0.00 . . .
State(3) type State[-1](2) 0.46 1.05 0.44 0.66
State(4) type State[-1](2) 0.18 0.63 0.29 0.77
State(5) type State[-1](2) 0.53 0.63 0.84 0.4
State(1) type State[-1](3) -0.55 0.35 -1.55 0.12
State(2) type State[-1](3) 2.22 1.02 2.18 0.029
State(3) type State[-1](3) 0.00 . . .
State(4) type State[-1](3) 0.88 0.40 2.22 0.026
State(5) type State[-1](3) 0.36 0.75 0.49 0.63
State(1) type State[-1](4) -3.63 1.03 -3.52 0.00043
State(2) type State[-1](4) -1.16 0.68 -1.71 0.088
State(3) type State[-1](4) -1.46 0.88 -1.66 0.097
State(4) type State[-1](4) 0.00 . . .
State(5) type State[-1](4) 3.24 7.43 0.44 0.66
State(1) type State[-1](5) -1.59 8.91 -0.18 0.86
State(2) type State[-1](5) -1.93 3.42 -0.56 0.57
State(3) type State[-1](5) 0.20 7.97 0.03 0.98
State(4) type State[-1](5) 2.44 7.96 0.31 0.76
State(5) type State[-1](5) 0.00 . . .
share active days 1 0.38 0.00 236.27 1.1e-12124 55,822 1 1.1e-12124
share active days State(1) 0.19 0.00 104.47 1.1e-2372 113,111 4 9.9e-24558
share active days State(2) -0.13 0.00 -54.55 1.2e-648
share active days State(3) 0.32 0.00 121.40 3.5e-3203
share active days State(4) -0.05 0.00 -11.81 3.50E-32
share active days State(5) -0.34 0.00 -212.92 3.5e-9847
journeys per weekday 1 0.87 0.00 207.37 9.3e-9341 43,001 1 9.3e-9341
journeys per weekday State(1) 0.67 0.01 129.49 1.1e-3643 76,431 4 6.3e-16593
journeys per weekday State(2) -0.25 0.01 -40.56 1.4e-359
journeys per weekday State(3) 0.69 0.01 83.73 6.1e-1525
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journeys per weekday State(4) -0.31 0.01 -42.51 7.4e-395
journeys per weekday State(5) -0.80 0.00 -181.94 4.2e-7191
share weekend journeys 1 0.12 0.00 40.07 5.1e-351 1,605 1 5.1e-351
share weekend journeys State(1) -0.12 0.00 -40.07 5.1e-351 12,534 4 1.1e-2718
share weekend journeys State(2) -0.12 0.00 -40.07 5.1e-351
share weekend journeys State(3) 0.04 0.00 11.01 3.50E-28
share weekend journeys State(4) 0.16 0.00 36.34 3.80E-289
share weekend journeys State(5) 0.04 0.01 3.86 0.00011
share peak journeys 1 0.57 0.00 149.16 4.5e-4834 22,248 1 4.5e-4834
share peak journeys State(1) 0.19 0.00 43.33 3.3e-410 2,619 4 2.3e-566
share peak journeys State(2) 0.06 0.01 11.11 1.10E-28
share peak journeys State(3) 0.02 0.01 3.82 0.00013
share peak journeys State(4) -0.11 0.01 -16.77 4.30E-63
share peak journeys State(5) -0.16 0.01 -12.31 8.00E-35
similar first boardings 1 0.55 0.00 403.65 2.5e-35383 162,930 1 2.5e-35383
similar first boardings State(1) 0.01 0.00 2.36 0.019 115,625 4 1.0e-25103
similar first boardings State(2) -0.08 0.00 -26.82 1.80E-158
similar first boardings State(3) -0.11 0.00 -31.88 4.70E-223
similar first boardings State(4) -0.26 0.00 -87.93 7.5e-1682
similar first boardings State(5) 0.45 0.00 328.45 7.5e-23429
similar last boardings 1 0.52 0.00 400.10 8.2e-34765 160,082 1 8.2e-34765
similar last boardings State(1) -0.03 0.00 -11.78 4.80E-32 137,729 4 3.0e-29903
similar last boardings State(2) -0.08 0.00 -27.22 3.30E-163
similar last boardings State(3) -0.14 0.00 -43.01 3.7e-404
similar last boardings State(4) -0.23 0.00 -74.19 5.5e-1198
similar last boardings State(5) 0.48 0.00 368.65 1.2e-29513
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