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Ronald Hanson 1
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Abstract: We demonstrate heralded initialization of charge state and optical transition 
frequency of diamond tin-vacancy centers, using (off-)resonant lasers, photon detection 
and real-time logic. Using this, we show frequency tunability > 100 MHz and strongly 
improved optical coherence. 

1. Introduction

Group-IV color centers in diamond are an emerging favorable alternative due to their high Debye-Waller
factor [1] and their inversion symmetry [2], which allows for integration in nanophotonic devices [3]. The
negatively charged Tin-Vacancy (SnV−) is of particular interest due to its high quantum efficiency and large
spin-orbit coupling, resulting in elevated operation temperatures compared to other Group-IV color centers [4].

Upon resonant excitation (619 nm) of the SnV− center, the emitter can go into a dark state and it can be
brought back into the bright state by off-resonant excitation (515 nm) [5]. However, the off-resonant repumping
can cause a frequency shift [6]. This is presented in Fig. 1(a), where the resonant frequency is swept over
the optical transition of the SnV−. A repump pulse is applied when no resonant frequency is measured in
the preceding scan. This frequency shift poses two challenges for quantum networking applications based on
SnV-centers: i) initialization errors due to the probabilistic repump process, ii) frequency shifts hinder efficient
optical spin initialization and readout. This causes reduced photon indistinguishability, which negatively impacts
remote entanglement generation which rely on photon interference. Here, we overcome these challenges by
heralded initialization of the charge state and the transition frequency using a combination of (off)-resonant lasers,
photon detection and real-time logic.

Repump Pulse 1 Pulse 2
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Fig. 1. (a) The fluorescence of 1000 PLE scans taken in ∼1.3 GHz/s over the optical transition. The
state of the emitter is estimated from the counts detected during each scan. (b) The pulse sequence
of the experiment data shown in (c) and (d). (c) 2D histogram of C2, as a function of C1.

2. Results

Motivated by the observed spectral stability before ionization, we explore the possibility of using photon counts
during a resonant probe pulse as a heralding signal for the successful preparation of the SnV− center charge state
with its optical transition at a pre-set frequency, see pulse sequence in Fig. 1(b). An off-resonant 515 nm ’repump’
pulse of 50µs and 100µW is followed by two identical resonant 619 nm laser pulses of 50µs and 100 nW, named
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here ’Pulse 1’ and ’Pulse 2’. In Fig. 1(c) we plot in log-scale the distributions of the photons detected during
Pulse 2, C2, as a function of the number of photons detected during the preceding Pulse 1, C1. A clear correlation
between C1 and C2 is visible. The horizontal and vertical bands of uncorrelated counts is attributed to ionization of
the emitter. The horizontal band mainly corresponds to cases where ionization occurred during Pulse 1. Consider-
ing heralded initialization, those cases could lead to an incorrect heralding signal and should thus be minimized.
In Fig. 1(d) we plot C2 conditioned on having more or less than 150 photon counts detected during Pulse 1. It can
be seen that if we condition on C1 > 150, the photon count distribution of Pulse 2 follows a Poisson distribution
centered around 170 counts, while the reverse conditioning shows a broader, lower-counts distribution mixed with
a peak near zero counts. The thresholding approach demonstrated here allows to filter the desired bright state
condition of the color center out of the statistical distribution of possible charge-resonance states.

PLEProbe Counts>Crepump Counts>Cpass

Repump

Yes Yes
No No

CRC

Fig. 2. (a) CRC pulse sequence protocol. (b) CRC preceded PLE scans, for a low (high) Cpass in the
top (middle) panel. Bottom panel: CRC preceded PLE scans with changing frequency set point.

For quantum protocols it is key that the initialization is heralded and that the selecting of the correct charge
state and transition frequency is done real-time [7]. We present a Charge-Resonance-Check (CRC) protocol,
see Fig. 2(a), which relies on photon detection during a resonant probe pulse and two count threshold, Crepump
and Cpass that resemble a check on the charge state and the frequency detuning respectively. We employ the CRC
in conjecture with resonant frequency scans in Fig. 2(b). In the top and middle panel we show the difference be-
tween a low and high Cpass, where we see the emitter make more frequency jumps but of lower magnitude. In the
bottom panel of Fig. 2(b), we employ this measurement on another emitter embedded in a waveguide and sweep
the frequency of the laser during the probe pulse of the CRC. The emitter follows the frequency of the probe
pulse, allowing us to tune the emitter >100 MHz. In addition, we performed a Ramsey interferometry experiment
preceded by a CRC. We obtain a T ∗

2 for Cpass of 100, (10) of (6.3 ± 0.4) ns, ((4.3 ± 1.7) ns). This demonstrates
that implementing a CRC can mitigate the effects of spectral detuning leading to an increase in optical coherence
time, which is key to improve photon interference experiments [8].
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