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a b s t r a c t

Patient-ventilator asynchrony is one of the largest challenges in mechanical ventilation and is
associated with prolonged ICU stay and increased mortality. The aim of this paper is to automatically
detect and classify the different types of patient-ventilator asynchronies during a patient’s breath using
the typically available data on commercially available ventilators. This is achieved by a detection
and classification framework using an objective definition of asynchrony and a supervised learning
approach. The achieved detection performance of the near-real time framework on a clinical dataset
is a significant improvement over current clinical practice, therewith and, this framework has the
potential to significantly improve the patient comfort and treatment outcomes.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Mechanical ventilation is a life-saving therapy used in Inten-
ive Care Units (ICUs) to assist patients who need support to
reathe sufficiently. The main goals of mechanical ventilation are
o ensure oxygenation and carbon dioxide elimination (Warner
Patel, 2013). Especially during the flu season or a world-wide
andemic such as the COVID-19 pandemic Wells et al. (2020)
nd Borrello (2021), mechanical ventilation is a life saver for
any patients around the world.
A common mode of ventilation is Pressure Support Ventilation

PSV). In PSV, the ventilator supports a spontaneously breathing
atient who is unable to breathe sufficiently by itself. When the
entilator detects an inspiration by the patient, the ventilator
ncreases the pressure levels to increase the air flow and assist
he patient’s breath. Then, when the patient starts its expiration,
he ventilator should lower the pressure to allow the patient’s ex-
iration. To maximize the patient’s comfort, recovery, and safety,
t is important that the ventilator support is synchronized with
he patient’s breathing. In other words, the ventilator’s inspira-
ion and expiration start times should be synchronized with the
atient’s inspiration and expiration start times. Synchronization
f the ventilator’s and patient’s timing is one of largest challenges
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nc-nd/4.0/).
in PSV. A mismatch between these timings is called Patient-
Ventilator Asynchrony (PVA). Severe levels of PVA are observed in
many ventilated patients, ranging from 24% in Thille, Rodriguez,
Cabello, Lellouche, and Brochard (2006) to 43% in Vignaux et al.
(2009). According to Blanch et al. (2015), Epstein (2011), Pham,
Telias, Piraino, Yoshida, and Brochard (2018), Thille et al. (2006),
PVA is associated with prolonged ICU stay and even increased
mortality.

Further improvement of ventilation outcomes therefore hinges
on preventing these asynchronies. A first step towards preventing
asynchronies is detecting them. However, detecting asynchronies,
using the available flow and pressure waveforms, is highly time-
consuming and challenging for clinicians (Colombo et al., 2011).
Additionally, the workload for medical staff is already very high
and expected to further increase in the future (Angus, Kelley,
Schmitz, White, Popovich, 2000). Therefore, it is necessary to
detect and classify PVA automatically and reliably.

For this research, a set of requirements for the automatic de-
tection approach is defined, with the goal to develop an approach
that can be implemented on ventilators. These requirements in-
clude the following:

1. The detection approach must be able to detect asynchronies
near real-time, i.e., during a breath, to be able to visualize
and present it in a timely fashion to the clinician.

2. An objective asynchrony definition for all asynchronies
within pressure support ventilation must be found.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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3. The detection approach must be able to detect all different
asynchrony types in PSV.

4. The detection approach should only use currently available
non-invasive measured ventilator signals.

In recent years, substantial research has been conducted to
develop algorithms that can detect and classify different types of
asynchronies. In Adams et al. (2017) and Blanch et al. (2012), an
algorithm based on bedside clinical rules is proposed that is able
to detect only one asynchrony type, and hence conflicts with re-
quirement 3. In Mulqueeny et al. (2009), a naive Bayes algorithm
based on 21 features from the pressure and flow waveforms is
proposed. This algorithm is able to distinguish ineffective efforts
from normal breaths. In Gholami et al. (2018), a random forest
network is used that is able to automatically detect premature
cycling and delayed cycling asynchronies from extracted features
of the pressure and flow curves. The above two methods conflict
with requirements 1 and 3. In Ng et al. (2021), Rehm et al.
(2020), advances are made towards real-time monitoring of PVA
in practical applications; however, not all different asynchrony
types are detected. Additional advances are necessary to fulfill
requirement 3.

In Zhang et al. (2020), a long-short term memory network
is used that is able to classify double trigger and ineffective
efforts also based on the pressure and flow curves. Although near
real-time detection is possible, not all asynchrony types can be
detected, which conflicts with requirement 3. In Bakkes, Montree,
Mischi, Mojoli, and Turco (2020), a convolutional neural network
is used that is able to identify the inspiration and expiration start
times of the patient and the ventilator. Subsequently, these tim-
ings are translated to a specific asynchrony type. In van Diepen
et al. (2021), the performance of the algorithm of Bakkes et al.
(2020) is evaluated on simulated PVA data. In Pan et al. (2021), a
convolutional neural network is proposed that classifies a breath
based on the corresponding PVA type and it gives an indication
which part of the breath is important for the classification pro-
cess. The last two methods opt for a convolutional network where
an entire breath is needed as an input. This makes near real-time
detection during a breath impossible. As a result, requirement 1
is not satisfied.

Although existing literature shows that rule-based algorithms
and machine learning algorithms are promising solutions to de-
tect and classify PVA, the presented approaches do not satisfy
the requirements as specified above. Additionally, the labeling
process using expert knowledge is challenging, which results in
poor data quality (Colombo et al., 2011). The aim of this paper is
to develop a detection and classification framework that can de-
tect all types of asynchrony in PSV using the real-time measured
data that is typically available in commercial ventilators. This is
achieved by first presenting an objective characterization of PVA.
Subsequently, this definition is used to generate labeled ventila-
tion data based on patient and ventilator timings. Thereafter, a
recurrent neural network is designed and trained enabling us to
recognize these asynchronies in real-time. Finally, performance of
this algorithm is analyzed using clinical data.

The main contribution of this paper is formulated as follows:

• the design of a framework to automatically detect and clas-
sify different types of patient-ventilator asynchrony for real-
time bedside monitoring.

Besides the main contribution, this paper contains several sub-
contributions:

• a new objective characterization of many relevant patient-
ventilator asynchrony types;

• a performance analysis of the developed algorithm, using
clinical data;
2

• an analysis of how much data is required to train a highly
performing detection network.

The outline of this paper is as follows. In Section 2, the main
components of the PVA detection and classification framework
are described. Thereafter, in Section 3, the relevant types of PVA
are characterized. In Section 4, the clinical data is introduced
and the overall recurrent neural network structure is presented.
Subsequently, in Section 5, the performance of the network is
evaluated using a clinical dataset and the generalization capa-
bility is analyzed. Finally, in Section 6, the main conclusions and
recommendations for future work are formulated.

2. PVA detection and classification framework

To develop the Patient-Ventilator Asynchrony (PVA) detection
and classification algorithm, a framework is designed that can
utilize different supervised learning algorithms. In supervised
learning, a mapping from the available input (measured data) to
the output (PVA type) is learned based on a known set of input–
output pairs (Murphy, 2012). To achieve this, a dataset, a model
structure, and a fit criterion are required. The dataset is used to
train and eventually validate the algorithm. The model structure
is a function that can describe the relationship between the input
and the output data. Finally, the fit criterion is used to obtain the
optimal parameters of the model structure.

A supervised learning approach is used, because the avail-
able clinical dataset offers annotated pressure, flow, and volume
curves making it possible to obtain a highly accurate labeled
dataset. Furthermore, supervised learning approaches have been
successfully used in literature to classify PVA, as shown in the
introduction. Next, the three different components of the frame-
work, i.e., the data, the model structure, and the fit criterion, are
described.

The data used in this PVA detection and classification problem
is labeled ventilation data. The inputs of the detection and classi-
fication model are the measured airway pressure paw , the patient
flow Qpat , and the patient’s lung volume Vpat . These signals are
available in commercial ventilation systems, see Fig. 1 . The de-
sired output of the algorithm is the type of PVA that is occurring
in every breath. The data used to construct the model could be
either measured data that is labeled by an expert or synthetic
data from a simulation environment. In this paper, we opt to
use clinical patient data. Labeling clinical data based on already
available ventilator data is a labor intensive and error-prone task.
Therefore, the data is annotated using an additional invasive mea-
surement, the oesophagus pressure, resulting in more accurate
labels.

The model structure is used to obtain a function, or mapping,
from the input data (measured data) to the output data (PVA
type). Different model structures can be used in the proposed
framework for PVA detection and classification. In this paper, a
Recurrent Neural Network (RNN) structure (Goodfellow, Bengio,
& Courville, 2016) is considered, because RNNs can use their
internal state to process input sequences of variable length. This
makes them particularly suitable for time-series classification
problems. Furthermore, the RNN model structure has proven to
successfully classify PVA, see Zhang et al. (2020), and has proven
to be useful in many other medical time-series classification
problems, such as Drumond, Marques, Vasconcelos, and Clua
(2018) and Andersen, Peimankar, and Puthusserypady (2019).

The fit criterion is used to obtain the optimal model structure
and parameters, i.e., weights and biases of the RNN, such that the
model optimally describes the relation between the input and
output data. A suitable choice for the fit criterion is the cross-
entropy loss function, as defined in Bishop (1995). According
to Simard, Steinkraus, and Platt (2003), this loss function results



L. van de Kamp, J. Reinders, B. Hunnekens et al. IFAC Journal of Systems and Control 27 (2024) 100236

f
m
i
e
T
b
a
p
l
a
t
s
p
p
p
t
t
t
v
m
d

3

a
r
a
p
s

Fig. 1. A schematic overview of a ventilator connected to the patient with a
dual-hose system. The airway pressure, paw , Qpat , and the patient effort ppat are
important signals for detection of patient-ventilator asynchrony.

in faster training and improved generalization compared to the
other fit criteria in classification problems. Of course, alternative
criteria directly fit in the proposed framework, which can easily
be adapted to this end. Minimizing the loss function of choice
with respect to the model structure parameters is referred to as
the training process.

3. Characterizing patient-ventilator asynchrony

In this section, a new objective characterization of many rele-
vant patient-ventilator asynchrony types is defined, which is the
first sub-contribution of this paper. First, in Section 3.1, Pressure
Controlled Ventilation (PSV) is explained in detail. Thereafter,
in Section 3.2, patient-ventilator asynchrony is explained and
defined. Note that the proposed PVA definitions are not exclusive
to PSV, they can be applied to all modes of mechanical ventilation
with minor adjustments.

3.1. Pressure support ventilation

A mechanical ventilation system as in Fig. 1 contain a hose
set-up that connects the patient to the ventilator. Signals that
are important during ventilation are the airway pressure, paw , the
low into the patient Qpat , and the patient effort ppat . A ventilation
ode typically used when patients are spontaneously breath-

ng (ppat (t) ̸= 0) is pressure support ventilation. A schematic
xample of PSV pressure and flow curves is depicted in Fig. 2.
he figure shows that the patient starts an inspiration at the
lack asterisk. During its inspiration, the patient is generating
negative pressure in its lungs, resulting in a small positive
atient flow. When this patient flow exceeds a predefined trigger
evel indicated by the black cross, the ventilator increases the
irway pressure, i.e., the pressure near the patient’s airway, to
he Inspiratory Positive Airway Pressure (IPAP) level. Then, after
ome time the patient starts its expiration, indicated by the black
lus sign. During its expiration, the patient is increasing the lung
ressure again. Then, when the patient flow is under a certain
reset percentage of its peak flow, indicated by the black dot,
he ventilator expiration starts. The airway pressure is lowered
o the Positive End-Expiratory Pressure (PEEP) level to allow
he expiration. After such breathing sequence is completed the
entilator waits until it detects the next patient inspiration. A
ismatch in these timings results in PVA which is explained and
efined in the next section.

.2. Patient-ventilator asynchrony

PVA can be divided into two main categories, namely timing
synchronies and severe asynchronies. The timing asynchronies are
elated to a pair of a patient and ventilator breath that have
mismatch in timing. The severe asynchronies are related to
atient breaths that are not clearly linked to a single ventilator
troke or vice versa. In the remainder of this section, the different
3

Fig. 2. A schematic PSV breathing cycle with a spontaneously breathing patient,
showing the patient’s spontaneous breathing effort ppat ( ), the target pres-
sure ptarget ( ), the patient flow Qpat ( ), and airway pressure paw ( ).
Furthermore, the ventilator inspiration trigger ( ), the ventilator expiration
trigger ( ), the patient’s inspiration start ( ), and the patient’s expiration start
( ), and their respective timings (Tvi, Tve, Tpi, and Tpe) are depicted.

asynchrony types are described physically and defined math-
ematically. For the mathematical PVA definitions, the patient’s
inspiration Tpi(j) and expiration Tpe(j) timing and the ventilators
inspiration Tvi(k) and expiration timing Tve(k) are used, which are
visualized in Fig. 2. The start times of the patient’s inspiration and
expiration can be derived from the oesophageal pressure or EAdi
monitoring. The variable for the patient breath counter is denoted
by j ∈ {1, 2, . . . , n}, with n the number of patient breaths, and the
ventilator stroke counter is denoted by k ∈ {1, 2, . . . ,m}, with m
the number of ventilator strokes.

It should be noted that these timings cannot be defined ran-
domly; they obey two important physical assumptions. Firstly,
the patient and the ventilator are always switching between an
inspiration and expiration. For example, it is not allowed to have
two patient inspirations without a patient expiration in between.
Secondly, the timings are ordered in chronological order. This
means that the patient and ventilator timings obey the following
inequalities:

Tpi(j) < Tpe(j) < Tpi(j + 1), ∀j ∈ {1, 2, . . . , n} (1)
and

Tvi(k) < Tve(k) < Tvi(k + 1), ∀k ∈ {1, 2, . . . ,m}. (2)

In the remainder of this section, the timing asynchronies and the
severe asynchronies are described separately.

3.2.1. Timing asynchronies
Timing asynchronies are defined for breaths consisting of a

single spontaneous breath by the patient and a related single
ventilator stroke, as depicted in Fig. 2. To validate that a patient
breath j and a ventilator stroke k are related and should be ana-
lyzed for a timing asynchrony, the following inequalities should
be satisfied for a pair (j, k):

Tpe(j − 1) < Tvi(k) < Tpe(j)
and (3)
Tve(k − 1) < Tpi(j) < Tve(k).
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Fig. 3. Visualizations of the different timing asynchronies during PSV. The figure shows the spontaneous breathing effort ppat ( ), the target pressure ptarget ( ),
and the airway pressure paw ( ).
If these inequalities hold for a pair (j, k), then the pair (j, k) is as-
ociated to either a synchronized breath or a timing asynchrony.
he first inequality in (3) ensures that the start of a ventilator
troke k happens between the start of the patient’s expiration
− 1 and j. The second inequality in (3) ensures that the patient
nspiration j has to start after ventilator expiration k − 1 and
efore ventilator expiration k.
A pair of (j, k) that satisfies (3) can either be a synchronized

reath or it can contain a so-called inspiration asynchrony, a cy-
ling asynchrony, or both asynchronies. The different inspiration
nd cycling asynchronies are visualized in Fig. 3. The inspiration
nd cycling asynchronies are defined using the inspiration delay
tinsp := Tvi(k)−Tpi(j) and expiration delay ∆texp := Tve(k)−Tpe(j),
espectively. Using the inspiration and expiration delay, the fol-
owing (a)synchronies are defined for a pair (j, k) that satisfy (3)
the timing asynchrony definitions, including the specific values,
re based on Bakkes et al. (2020)):

• Synchronized Inspiration (SI): 0 ≤ ∆tinsp ≤ 0.3 s, the
ventilator’s inspiration ( ) does not start before or 0.3 s after
the patient’s inspiration ( ), i.e., the ventilator’s inspiration
is synchronized with the patient’s inspiration;

• Premature Trigger (PT): ∆tinsp < 0.0 s, the ventilator’s
inspiration ( ) starts before the patient’s inspiration ( ),
i.e., the ventilator is triggered before the start of the patient’s
inspiration;

• Delayed Trigger (DT): ∆tinsp > 0.3 s, the ventilator’s inspira-
tion ( ) starts more than 0.3 s after the patient’s inspiration
( ) start, i.e., the ventilator is triggered too late;

• Synchronized Cycling (SC): −0.2 ≤ ∆texp ≤ 0.2 s, the
ventilator’s expiration ( ) starts within 0.2 s before or after
the patient’s expiration ( ), i.e., the ventilator’s expiration is
synchronized with the patient’s expiration;

• Premature Cycling (PC): ∆texp < −0.2 s, the ventilator’s
expiration ( ) starts more than 0.2 s before the patient’s
expiration ( ), i.e., the ventilator cycles off prematurely;

• Delayed Cycling (DC): ∆texp > 0.2 s, the ventilator’s expira-
tion ( ) starts more than 0.2 s after the patient’s expiration
( ), i.e., the ventilator cycles off too late.

If a pair (j, k) satisfies the inequalities in (3), its PVA type is de-
ined by a single ∆tinsp and ∆texp. Hence, every pair (j, k) that sat-
sfies (3) can be classified as one of these timing (a)synchronies.

.2.2. Severe asynchronies
In case a single patient breath is not clearly related to a

ingle ventilator stroke or vice versa, a severe asynchrony is
ccurring. Three different types of severe asynchrony are consid-
red: auto triggers, double triggers, and ineffective efforts. These
synchronies are visualized in Fig. 4. The auto trigger shows a
entilator stroke in absence of a patient breath. The double trigger
4

consists of two ventilator strokes in the presence of only one
patient breath. An ineffective effort is defined as a patient breath
without a ventilator stroke, which can be subdivided into an
inspiratory and an expiratory ineffective effort.

Based on inspiration and expiration start times of the pa-
tient and ventilator, these severe asynchronies can be defined
mathematically as well:

• Auto Trigger (AT): If there exists a combination of k and j
such that
Tpe(j − 1) < Tvi(k) < Tpe(j)

and
Tve(k) ≤ Tpi(j)

(4)

hold, then the ventilator stroke k is an auto trigger. The
combination of these conditions ensures that there are no
patient breaths during ventilator stroke k. In Fig. 4(a) with
j = 1 and k = 1 the inequalities are satisfied and k = 1 is
identified as an auto trigger.

• Double Trigger (DbT): If there exists a combination of k and
j such that

Tpe(j − 1) < Tvi(k) < Tpe(j)
and

Tve(k−1) ≥ Tpi(j)
(5)

hold, then the ventilator stroke k is a double trigger during
the jth patient breath. The combination of these conditions
ensures that the start of ventilator stroke k is the second
ventilator stroke during patient breath j. In Fig. 4(b) with
j = 1 and k = 3 the inequalities are satisfied and k = 3 is
identified as a double trigger during patient breath j = 1.

• Expiratory Ineffective Effort (IEe): If there exists a combi-
nation of k and j such that

Tvi(k) ≥ Tpe(j)
and

Tve(k − 1) < Tpi(j) < Tvi(k)
(6)

hold, then the patient breath j is an expiratory ineffective
effort. The combination of these conditions ensures that no
ventilator stroke occurs during patient breath j. In Fig. 4(c),
the inequalities are satisfied with j = 2 and k = 2. The
patient breath j = 2 is identified as an expiratory ineffective
effort.

• Inspiratory Ineffective Effort (IEi): If there exists a combi-
nation of k and j such that

Tpe(j − 1) ≥Tvi(k) < Tpe(j)
and (7)
Tve(k − 1) < Tpi(j) < Tve(k)
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Fig. 4. Visualizations of the different types of severe asynchronies during PSV. The figure shows the spontaneous breathing effort ppat ( ), the target pressure
ptarget ( ), and the airway pressure paw ( ).
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hold, then the patient breath j is an inspiratory ineffective
effort. The combination of these conditions ensures that the
second patient breath j occurs during an inspiration cycle of
the ventilator. In Fig. 4(d), the inequalities are satisfied with
j = 2 and k = 1. The patient breath j = 2 is identified as an
inspiratory ineffective effort.

The defined combinations of the timing asynchronies and the
severe asynchronies, describe the clinically relevant asynchrony
types mathematically.

4. Detection and classification model

In this section, the presented framework is used to develop
n algorithm to detect and classify PVA from ventilation data.
irst, the clinical data set with its statistics is introduced in
ection 4.1. Subsequently, the overall model structure is defined
n Section 4.2. Then, the loss function is explained in Section 4.3.
hereafter, the training of the network is explained in Section 4.4.
inally, in Section 4.5, the performance evaluation criteria are
iscussed.

.1. Introduction to the clinical data

The clinical data consists of 15 patients from the Fondazione
.R.C.C.S. Policlinco San Matteo (Pavia, Italy) (Mojoli et al., 2022).
he patients are subjected to different levels of pressure support
entilation and were connected to either a GE healthcare En-
strom (Madison(WI), USA) or a Hamilton G5 ventilator (Bonaduz,
witzerland). The airway pressure, patient flow, and volume are
easured over time, together with the esophageal pressure to
btain a more accurate measurement of the patient respiratory
ffort. Experts in the field labeled the data by indicating the in-
piration and expiration start times of the patient according to the
ethod explained in Mojoli et al. (2022). Leveraging the objective
synchrony definitions introduced in Section 3, we construct a
ulti-variate time-series that contain the asynchrony labels. This

abeling approach overcomes the drawbacks of original human
abeling since more information is available and exact rules are
everaged. In Fig. 5, a preview of the clinical data with the labels
n the form of a multi-variate time-series is shown.

In Table 1, the incidence of each asynchrony type is shown.
he majority of the labels are synchronous, namely, 51.8%. The
ost prevalent asynchrony types in this data set are delayed
ycling, expiratory ineffective efforts, and delayed triggers, re-
pectively. The timing (a)synchronies are defined based on in-
piratory and expiratory timings with the objective rules defined
n Section 3.2. The distribution of the timing asynchronies in the
pace of the inspiration and expiration delays is shown in Fig. 6.
ere, it can be seen that a lot of asynchronies are located at the
oundaries, which might make it challenging to distinguish them
uring detection.
5

Table 1
Incidence of the different asynchrony types in the
clinical dataset.
(A)synchrony type Amount

Premature triggering (PT) 1
Synchronized inspiration (SI) 2623
Delayed triggering (DT) 682
Premature cycling (PC) 492
Synchronized expiration (SE) 1306
Delayed cycling (DC) 1495
Auto triggering (AT) 5
Double triggering (DbT) 0
Expiratory ineffective effort (IEe) 965
Inspiratory ineffective effort (IEi) 13

4.2. Overall model structure

The overall model structure is defined by the inputs, outputs,
and the model structure itself, which is schematically visualized
in Fig. 7.

4.2.1. Inputs
The input x(t) = [paw(t),Qpat (t), Vpat (t)]⊤ of the classification

network is a multivariate time-series sampled at 50 Hz, which
includes the airway pressure, patient flow, and the volume in
the patient’s lungs. The choice for using these signals is based on
practical implications, as they are readily available on almost all
mechanical ventilators.

4.2.2. Outputs
The output of the network ŷ(t) should predict the ground-

truth labels y(t), as closely as possible. The output is also a mul-
ivariate time-series that contains eleven separate time-series,
ne for each PVA type and one for the zero-label, i.e., ŷ(t) =

ŷ1(t), . . . , ŷnc (t)]⊤ with nc the number of classes in the vector. If
particular PVA type occurs, the value of that class in the ground-
ruth time-series is one, otherwise the value of the time-series
quals zero, as shown in Fig. 5.

.2.3. Model structure
To obtain a mapping from the inputs to the desired outputs, a

ecurrent Neural Network (RNN) is considered. In this paper an
NN with Long Short-Term Memory (LSTM) cells is used. Note
hat other network structures can be used as well in the pro-
osed framework. However, RNN structures with LSTM cells are
ffective sequence models used in practical applications (Good-
ellow et al., 2016). This model structure allows a mapping that
an handle varying sequence lengths and updates every sample.
herefore, asynchronies can be detected and classified in near
eal-time by feeding new data to the network as it is mea-
ured. Standard RNNs have problems with exploding/vanishing
radients when classifying long time-series (Pascanu, Mikolov,
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T

Fig. 5. A subset of the clinical dataset, where the airway pressure, patient flow, the patient and ventilator timings, and the time-series asynchrony labels are displayed.
t
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Fig. 6. Distribution of the timing asynchronies based on their inspiration and
expiration delays. Each colored area represents a different combination of
inspiration and expiration (a)synchrony.

& Bengio, 2013). The problem of exploding/vanishing gradients
is tackled by using LSTM cells in the RNN. These cells contain
multiplicative gates that are capable of extracting and storing in-
formation over longer periods of time (Graves, Liwicki, Fernández,
Bertolami, Bunke, Schmidhuber, 2009).

The overall model structure is schematically depicted in Fig. 7.
he model consists of an LSTM layer with l cells, a linear layer, and

a softmax layer. The LSTM layer maps the inputs into l different
LSTM outputs q. Those LSTM outputs q are combined by a fully
connected linear layer into an output vector z ∈ Rnc×1, where
nc denotes the number of output classes of the algorithm. These
outputs are re-scaled between zero and one with the softmax
function. The output of the softmax layer ŷp,l(t, θ ) is a vector
with nc values between 0 and 1, which gives an indication of
the probability that a particular class is occurring at time step t .
θ represents the model parameters, e.g., weights and biases. To
determine which PVA type is predicted by the model, ŷp,l(t, θ ) is
transformed to a one-hot output vector as follows:

ŷc(t) :=

{
1 if ŷcp,l(t) ≥ ŷmp,l(t) ∀m ∈ {1, . . . , nc}

0 otherwise , (8)

where c denotes the class number in the vector. In words, ŷ(t)
is a vector with a one at the index where ŷp,l is the highest,
i.e., the PVA type that the algorithm expects to be present and
zero everywhere else.
6

Fig. 7. Definition of the model structure that is used for patient-ventilator
asynchrony detection. Showing the inputs, the overall model structure, and the
desired output. The LSTM layer contains 256 cells.

4.3. Loss function and optimization algorithm

The optimal values of the weights and biases θ are determined
to obtain the optimal mapping from the inputs x to the ground-
truth labels with the proposed model structure. This is achieved
by minimizing a loss function. The loss function, or fit criterion,
considered in this paper is the cross-entropy loss function. Other
loss functions can be used as well in the proposed framework.
However, the cross-entropy loss function leads to faster training
and improved generalization compared to the sum-of-squares in
classification problems (Simard et al., 2003). The cross-entropy
loss function is defined as

LCE(θ ) = −

N∑
i=1

n∑
t=1

yi(t)⊤ · log(ŷip,l(t, θ )), (9)

where N is the number of ventilation use cases, n the sequence
length of the ventilation use case i in samples, yi(t) ∈ Rnc×1

he ground truth one-hot label vector of case i at time t , and
ˆ ip,l(t, θ ) ∈ Rnc×1 the predicted label vector of case i at time
ample t .
To obtain the weights and biases θ that minimize this loss

unction, different optimization algorithms can be used. In this
xample, particularly good results have been obtained with the
dam solver (Kingma & Ba, 2015). Adam is a gradient descent
ptimization algorithm that is widely used in the field of deep
earning (Soydaner, 2020).
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Fig. 8. Training (solid lines) and validation (dashed lines) loss of the training
rocess with slightly different training sets.

.4. Training of the network

For the training of the network we opt to use 14 patient use
ases for training and validation and leave one patient use case
s a test case. Of those 14 use cases, 10% of the time-series and
abels across the 14 patients is used for validation. The training
et is divided into batches of 256 samples and their sequence is
huffled to obtain better training results. The amount of epochs
uring training is around 100, because the validation loss does
ot decrease further after cycling through the full training data
hat many times. In Fig. 8, the training and validation losses for
ifferent training sets are shown.

.5. Performance evaluation metrics

A fair evaluation of the detection performance of the trained
etwork is crucial for future implementation in practice. The
utput of the model is a multi-variate time-series; therefore, it
akes sense to use metrics like accuracy or root mean square
rrors. These metrics are indeed used during the training process.
owever, for the performance evaluation, we convert the time-
eries labels to breath-level labels. Labels on breath-level are
ore intuitive (especially for interpretation by clinicians) and
ive us the opportunity to use typical machine learning metrics:
recision, recall, and F1-score.
To translate the predicted sample-based labels ŷ(t) to breath-

by-breath labels and a breath-by-breath performance evaluation
criterion, the one-hot output vector ŷ(t) of the algorithm is first
filtered to eliminate instances where a certain label is classified
very briefly. This is achieved by counting which class is clas-
sified the most in a predefined window and defining this as
the new output ŷf (t). Thereafter, these filtered labels ŷf (t) are
connected to a breath in the breath-domain based on timing.
Eventually, these predicted breath-domain labels are used to
compute precision, recall, and F1-score for the different asyn-
chronies. The procedure to obtain the breath-domain accuracy
from the predicted time-domain labels ŷ(t) is summarized as
follows.

Procedure.

1. The one-hot output vector of the algorithm ŷ(t) is filtered with
a moving counting filter (MCF) as follows:

a(t) :=

⎛⎝ t+ws/2∑
τ=t−ws/2

ŷ(τ )

⎞⎠ , (10)

where a(t) is the sum of all vectors in the specified window
around sample t with w the window size in samples. The
s

7

output vector of the filter is computed from a(t) with:

ŷcf (t) :=

{
1 if ac(t) ≥ am(t)∀m ∈ {1, . . . , nc},

0 otherwise,

where ŷcf (t) is the output of the filter at index c ∈ {1, 2, . . . ,
nc} and time sample t, such that ŷf (t) =

[
ŷ1f (t) . . . ŷncf (t)

]T .
2. The labels ŷf (t) at a specific time step t are connected to the

closest breath phase, i.e., an inspiration or expiration. This
gives new breath domain labels Ŷ . These labels indicate per
breath phase which PVA type is detected within that breath
phase.

3. Using these new labels on breath level, the precision, recall,
and F1-score are computed for all the asynchrony types within
PSV.

The breath-by-breath labeling enables us to define the fol-
lowing performance metrics. The precision or Positive predictive
value (PPV) of a asynchrony type, reflects how many of the
detected asynchronies of that type are true positives, i.e.,

PPV =
TP

TP + FP
, (11)

where TP are the true positives, and FP the false positives. The
recall or true positive rate (TPR) of an asynchrony type reflects
on the ratio between the amount of detected asynchronies and
the true amount of asynchronies of that type, i.e.,

TPR =
TP

TP + FN
, (12)

here FN are the false negatives. Both of these metrics, highlight
the classification performance for a single perspective. Therefore,
we also introduce the F1-score, which is the harmonic mean of
the recall and precision, i.e.,

F1 =
2 · PPV · TPR
PPV + TPR

. (13)

. Performance evaluation

In this section, the performance of the final algorithm is eval-
ated, which is the third sub-contribution of this paper. First,
he performance on a clinical test set is evaluated in Section 5.1.
hereafter, in Section 5.2, an experiment is conducted to analyze
he amount of training data that is necessary to train a network
ith high detection performance and generalization capabilities.

.1. Detection performance on clinical data

In this section, the performance of the detection algorithm is
valuated. Unlike traditional time-series metrics, which are not
ractical for clinicians, our focus is on providing insights on a
er-breath basis, as this is more relevant in real-world healthcare
cenarios. Therefore, a breath-by-breath performance measure is
roposed to properly analyze the performance of the algorithm.
pecifically, we examine precision (PPV), recall (TPR), and the F1-
core for various asynchrony types. In the training process, data of
ourteen patients are used for training and validation and the data
f the remaining patient are used as a test set. Rotating the test
et results in fifteen different trained networks. The upcoming
esults show the combined results of all the networks together.
esides the precision, recall and F1-score, we also examine the
onfusion matrix and delay matrix for a more in-depth analysis.
For near real-time detection, it is crucial that the inference

tep has a low computational cost. On the current hardware, Intel
ore i7-9750H CPU, it takes 17.7 ms to predict the asynchrony
abels for 1 s of waveform data. Thus, detection of asynchronies
uring a breath is indeed possible.
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In Table 2, the precision (PPV), the recall (TPR), and the F1-
core are displayed per asynchrony type. On average the F1-score
cross all asynchrony types is 0.87. Synchronized inspiration, pre-
ature cycling, and auto-triggers are even detected with higher
1-scores compared to the average. Combining the (a)synchrony
ypes into two categories, the synchronous breaths and asyn-
hronous breaths, leads to F1-scores of 0.86 and 0.81, respec-
ively. The challenging asynchrony types to detect are premature
riggering, delayed triggering, and both ineffective efforts.

The premature triggering has an F1-score of zero, because in
he entire dataset there is only one incidence of this asynchrony
ype (see the left column of Fig. 6). This incidence is included
n the test set which means that the model had no exposure to
t during training. Additional clinical data is necessary to train
he model on PT asynchronies. The similarity of PT waveforms
ith other asynchrony types is little, hence, it is expected that
raining the model on more PT data does not reduce detection
erformance of other asynchronies.
A more in-depth analysis regarding the delayed triggering

s made based on Fig. 9, where the timing asynchronies are
isplayed based on their inspiration and expiration delays. In
his figure, a breath, represented by a data point, is detected
orrectly if it has the same color as the background of the rect-
ngle it is located in. A hypothesis why detection performance
f certain asynchrony types is lower is that those asynchronies
re located close to the border of two asynchrony types, mak-
ng it harder to distinguish (and hence detect) them. However,
s can be seen in the figure, this is not entirely the case for
he delayed trigger asynchronies (right part in Fig. 9, ∆tinsp >
.3 s). Miss-classifications are located far from the border with
ormal inspiration, from which we can conclude that these miss-
lassifications are not due to the asynchrony definition but due to
pecific patient test cases that are hard to detect for the network.
Additionally, the confusion matrix as presented in Table 3

elps analyzing the miss-classifications further. Delayed triggers
re often miss-classified as synchronized inspiration or expiratory
neffective efforts, which are the asynchrony types that have simi-
ar pressure and flow curves (Fig. 5). This makes detection by the
uman eye very challenging. The detection performance of the
xpiratory ineffective efforts are relatively low due to a lot of false
ositive. These false positives are a result of cardiac oscillations
hat are visible in the flow and are similar to ineffective effort
aveforms. Another factor that is possibly contributing to the
isclassification is the imbalance in the training dataset. Syn-
hronized inspirations (SI) are dominantly present in the training
ata compared to delayed trigger (DT) asynchronies, which might
esult in a model that is biased towards detecting SI over DT.

Overall, the detection performance is an improvement com-
ared to clinical practice, where asynchronies remain undetected.
ompared to other state-of-the-art, the detection performance is
lightly lower for some asynchrony types. On the other hand,
he benefit of the proposed detection method is that all asyn-
hrony types within pressure support ventilation can potentially
e detected because of the objective PVA rules.

.2. Training set size and generalization

In this section, the results regarding the training set size and
he generalization performance are discussed. Implementation
n a ventilator also requires the algorithm to generalize to pa-
ients outside of the training set. Therefore, an experiment is
esigned to test the variation within the dataset together with
he generalization ability of the network. Below, we introduce the
xperimental approach, which is followed by the results and an
nterpretation of the results.

In the experiment, the clinical data is divided into two groups
s shown in Fig. 10. Three use-cases have the same asynchrony
8

Table 2
Detection results of the combined networks, which show the precision recall
and incidence for each of the asynchrony types detected.
Label PPV TPR F1

Premature triggering 0 0 0
Synchronized inspiration 0.87 0.91 0.89
Delayed triggering 0.62 0.44 0.51
Premature cycling 0.96 0.90 0.93
Synchronized expiration 0.77 0.82 0.79
Delayed cycling 0.85 0.82 0.83
Auto triggering 1.00 0.80 0.89
Expiratory ineffective effort 0.69 0.86 0.76
Inspiratory ineffective effort 0.75 0.46 0.57

Fig. 9. Results of the detection performance visualized in the delay matrix. A
breath is detected correctly if the color of the data point corresponds with the
background (background is the true PVA type). The fill and edge of a data
point are colored black if, respectively, the inspiration and expiration remain
undetected.

Fig. 10. Visualization of the dataset split into A, B, C, and Z together with
the experiment design. Adjusting the size and composition of the training set
and using the same test set, results in information about the generalization
capabilities of the network.

types and are similar upon visual inspection. These use cases are
defined as A, B, and C. The remaining use cases are defined into
one use case named Z. The use case C is used as test set while
the other use-cases function as training sets. Two approaches
to research the generalization of the network together with the
amount of necessary training data are defined: training the LSTM
network with and without the Z use-case. In Fig. 10, the different
approaches are visually displayed.

In Fig. 11, the performance results obtained after training
various networks on the training sets as explained in Fig. 10
are shown. The performance is assessed based on the average
F1-score of these networks.

First, the amount of training data that is required to achieve
a high detection performance is analyzed. In Fig. 11, it can be
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Table 3
Total confusion matrix of the detected asynchronies.

Predicted labels
Labels

0.0 PT SI DT PC SE DC AT DbT IEe IEi

0.0 – 0 118 42 4 35 46 0 0 254 0
PT 0 0 1 0 0 0 0 0 0 0 0
SI 100 0 2378 99 0 0 0 0 0 34 0
DT 83 0 207 296 0 0 0 0 0 93 0
PC 0 0 0 0 445 47 0 0 0 0 0
SE 59 0 0 0 13 1073 159 0 0 0 0
DC 28 0 0 0 0 246 1219 0 0 0 2
AT 1 0 0 0 0 0 0 4 0 0 0
DbT 0 0 0 0 0 0 0 0 – 0 0
IEe 69 0 19 44 0 1 0 0 0 831 0
IEi 0 0 0 0 0 0 7 0 0 0 6
Fig. 11. Average F1-score of the networks trained with different training sizes
and compositions. A single similar data in the training set results in a high
average F1-score over the different asynchrony types.

seen that one similar set in training already results in a high
detection performance, even higher than training on the other
12 cases from the dataset. It is shown that the average F1-score
on the test set is much better when training solely on dataset A
compared to training solely on set B. Hence, the distribution of
set A is more similar to distribution of set C. This highlights that
visual waveform similarities might not be a reliable measure for
similarity in the distributions across different sets.

Secondly, we are able to analyze the generalization ability
of the network. Training the network on dataset Z, results in
a F1-score of 0.80, this is much lower compared to training
solely on dataset A, while set Z contains approximately 12 times
the amount of data points. This shows that the network finds
it challenging to generalize to never seen before patient use
cases. Therefore, increasing the variability of the training set is
important. However, it is crucial to find a balance as exces-
sive variability possibly leads to performance deterioration, as
evidenced by the F1-scores of training set Z and B-Z.

In conclusion, the distribution of the training set emerges as a
critical factor influencing detection performance. Hence, further
research is necessary to determine if multiple networks, one for
each patient group, results in superior detection performance.

6. Conclusions and recommendations

The developed Patient-Ventilator Asynchrony (PVA) detection
and classification framework enables real-time detection and
classification of the relevant types of asynchrony between a
9

patient and the mechanical ventilator using measured data that
is currently available on commercial ventilators. This information
about PVA can be used by the clinician to prevent/mitigate PVA
and therewith reduce ventilation times. With clinical data, it is
shown that the developed algorithm is able to detect the different
asynchrony types with an average F1-score of 0.87 for the given
use cases. The F1-score is a measure of accuracy, where perfect
asynchrony detection is achieved if the F1-score is 1. The highest
performance is obtained for premature cycling asynchronies with
an F1-score of 0.93. The most challenging asynchrony to detect
is delayed triggering with an F1-score of 0.51. Investigation on
the synchrony versus asynchrony level shows that the network
is able to detect asynchronies with an overall F1-score of 0.81.
This shows that the algorithm is able to successfully detect a large
majority of the asynchronies. Therewith, the automatic detection
can support clinicians to improve asynchrony significantly.

It is shown that the algorithm can successfully detect and clas-
sify asynchronies. Several recommendations for future improve-
ments are considered. First, it must be noted that the accuracy of
detection is highly dependent on the objective PVA definitions.
Therefore, further validation is necessary to show objective PVA
definitions are in-line with the PVA definitions in clinical practice.
The framework as presented in this paper is valid if other ob-
jective definitions are used, but requires the model to be trained
from the ground up. Furthermore, the objective PVA definitions
can be extended to other ventilator modes as future work. This
also enables us to extend the PVA detection model to other ven-
tilator modes. Secondly, more knowledge should be used in the
current PVA definition, e.g., if the patient’s spontaneous breathing
effort is small, then it is more important to achieve the desired
tidal volume than to prevent asynchrony. Thirdly, the proposed
network can be further optimized by changing the network struc-
ture to improve the detection performance. Thereafter, as future
work, a quantitative analysis can be done to compare the different
state-of-the-art detection methods. Fourth, the clinical dataset
could be expanded with simulated (synthetic) patient data to
resolve the class imbalance problem; hereby, a detection model
can be trained that maintains impartiality towards different asyn-
chrony types. Fifth, the algorithm should be implemented in an
actual ventilation system, such that it can be used in practice.
Finally, we foresee a future system that alerts the clinician if
a specific type of asynchrony occurs together with an advice
for improved ventilator settings. This is the first step towards
patient-in-the-loop control.
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