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1 Introduction

Achieving and maintaining laminar flow on large swept lifting surfaces of sub-
sonic aircraft poses a considerable challenge. Surface roughness, such as imper-
fect joints introducing sharp surface distortions, is a source of significant laminar
flow deterioration that promotes laminar-turbulent transition.

The present work considers a laminar-turbulent transition route initiated by
primary (stationary crossflow) eigenmode amplification, which is the prevalent
scenario in low-disturbance environments as in free-flight [9]. This instability
kind manifests in the developed flow field as stationary co-rotating vortices whose
axes of rotation are practically aligned with the direction of the streamlines in the
outer-flow region. Under Decomposition (1), the developed flow q = [u v w p]T

is conceived as the superposition of the laminar unperturbed base flow, qB, with
steady, q′, and unsteady, q′′, perturbation fields:

q(x, y, z, t) = qB(x, y) + q′(x, y, z) + q′′(x, y, z, t). (1)

In stationary-crossflow-dominated flows, forward-facing steps significantly
altering the laminar-turbulent transition path may be classified as critical or
supercritical. Critical steps advance the transition front upstream, as compared
to a reference clean (i.e. no step present) case. Supercritical steps trip the flow
immediately and have been found to drastically move the transition front to
the vicinity of the step. The main goal of the present work is to investigate the
step-flow mechanisms responsible for inducing a supercritical transition scenario.
To this end, we carry out Direct Numerical Simulations (DNS) and perform a
modal analysis of the steady and unsteady perturbation fields.

2 Flow Problem and DNS Setup

The incompressible swept-wing flow is modeled as flat-plate flow with an imposed
airfoil-like pressure gradient in the chordwise direction at the free-stream. The
main coordinate system reads x = [x y z]T , where x, y, z indicate the chord-
wise (i.e. normal to the virtual leading edge), wall-normal, and spanwise (i.e.
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parallel to the virtual leading edge) directions, respectively. The coordinate
xst = x − 177.62 δ0 is additionally introduced to express the relative chordwise
distance to the step. The inlet free-stream velocity is decomposed into a chord-
wise component, u∞, and a spanwise component, w∞ = −1.24u∞, to model the
effect of sweep angle. Pressure measurements from wind-tunnel experiments on
a 45◦ swept wing [7] are used to guide the DNS setup. The inflow boundary layer
thickness, δ0 = 7.71 × 10−4 m, and free-stream velocity, u∞ = 15.10 m/s, are
chosen as global characteristic quantities.

A stationary crossflow mode, computed as solution to a local linear Orr-
Sommerfeld analysis on the base flow profile, is prescribed at the inflow. The
step height, h = 0.97δ0, corresponds to approximately 50% of the undisturbed
boundary layer thickness at the virtual step location. The spanwise domain
length (i.e. fundamental spanwise wavelength) is set to λz = 7.5 mm. This
wavelength yields the integrally most amplified perturbation at the end of the
computational domain in reference no-step conditions.

In Sects. 3 and 4, we will analyze steady and unsteady perturbation effects.
The steady perturbation field, q′, is decomposed in spanwise Fourier modes, i.e.

q′(x, y, z) =
N∑

j=−N

q̃j(x, y)eijβ0z, (2)

where N is the number of modes considered, q̃j is the Fourier coefficients of
mode j, β0 = 2π/λz, and i2 = −1.

The DNS of the incompressible Navier-Stokes equations are performed with
INCA, a conservative finite-volume solver. The Navier-Stokes equations are
marched in time with a third-order Runge-Kutta method. A fifth-order upwind
scheme is used to discretize the convective terms. The Selective Frequency Damp-
ing (SFD) technique [1] is applied to numerically compute the stationary isolated
form of q′ following a recently proposed methodology to compute the control
parameters [3].

The computational domain encompasses 0 ≤ x/δ0 ≤ 517 and y/δ0 ≤ 26 and
the grid contains Nx = 6760, Ny = 1008, and Nz = 144 points in the chordwise,
wall-normal, and spanwise directions, respectively. These values yield Δx+ = 1.8,
Δy+ = 0.9, and Δz+ = 9 in the steady perturbed flow (i.e. qB + q′) near the
step. Numerical computations of the unperturbed base flow, qB, and the steady
perturbed flow, q′, are performed independently for a similar numerical setup.
In the former, the equations are converged in time up to a threshold value of
10−8 based on an L2-norm of the temporal derivatives. In the latter, unsteady
perturbation content is triggered by a multi-modal harmonic forcing of the wall-
normal velocity at the wall near the inflow (20 ≤ x/δ0 ≤ 32) as follows:

v(x, 0, z, t) = fs(x)
M∑

k=1

ABS
k cos(β0z + 2πkf0t + φk), (3)

with f0 representing a fundamental temporal frequency, ABS
k indicates the initial

amplitude of a temporal component k, φk is a random phase, and fs modulates
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smoothly the response in x. Unsteady forcing is applied ranging from 3 kHz to
14 kHz in intervals of 1 kHz. For the present setup, the DNS results reproduce
the transitional-flow scenario observed in experiments in a low-disturbance wind
tunnel [7].

3 Steady Perturbation Evolution

To elucidate on the modification of the transition path by the step, the evolu-
tion of the steady perturbation field (q′) is first addressed. An overview of the
subsequent unsteady flow evolution and the ultimate transition mechanisms will
be discussed in the next section.

Fig. 1. Evolution of the fundamental perturbation Fourier mode at the step (a). Spatial
evolution of linear energy production for β = β0 in the no-step (b) and step (c) cases.

Around the step, two major flow regimes are identified. Far from the wall,
the pre-existing crossflow perturbation lifts off and passes over the step. Close
to the wall, chordwise-velocity (u′) perturbation streaks of alternating sign in
z are induced at the step apex (Fig. 1(a)). This scenario develops analogously
for each Fourier mode, implying that a near-wall streak system contained in a
particular Fourier mode has adopted the spanwise wavelength of the incoming
crossflow component that induces it.

The origin and evolution of such new streaky structures induced at the step
is scrutinised next by formulating energy-balance equations of the spanwise-
harmonic perturbation modes [5]. They read

0 = Pnβ0 + Tnβ0 + Dnβ0 + Wnβ0 + Nnβ0 , n = 0, 1, . . . , N, (4)

where Pnβ0 denotes linear energy production, Tnβ0 is the advection of pertur-
bation kinetic energy by the base flow, and Dnβ0 , Wnβ0 , Nnβ0 express the work
done by viscous forces, pressure forces, and non-linear perturbation interactions,
respectively.
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In essence, Eq. (4) expresses a balance between different perturbation mecha-
nisms which remain in temporal equilibrium. The balance is harmonic, implying
that it accounts for perturbation mechanisms acting on a particular perturbation
Fourier space nβ, solely. Equation (4) reduces to the well-known Reynolds-Orr
equation under certain flow conditions.

When the budget analysis based on Eq. (4) is applied to the fundamental per-
turbation field, β = β0, it is found that linear production (Pβ0) is the dominant
perturbation mechanism in both the near- and far-wall regimes. Similar results
have been reported recently by use of stability tools applied on the step flow
[4]. In particular, the spatial evolution of the dominant term Pβ0 is portrayed
in Fig. 1(b,c). The enhanced blue region with Pβ0 > 0 around the step is associ-
ated to the mechanism responsible for inducing streaks; essentially, it expresses
that kinetic energy is transferred from the base flow to the perturbation field.
At the same time, in the region further from the wall, an algebraic instability
associated to the lift-up effect is proposed as a main mechanism responsible for
the (linearly-dominated) alteration of the fundamental crossflow perturbation at
the step. This is elaborated upon in an article in preparation [6].

When the initial amplitude of the pre-existing crossflow instability is suf-
ficiently small, the near-wall streaks vanish rapidly downstream of the step
(Fig. 1(a)). This is observed for a choice of amplitude of the pre-existing insta-
bility that yields linear behaviour until the virtual step location in reference
conditions (i.e. without the step). By the increase of the amplitude of the incom-
ing instability, it is observed that, eventually, the perturbation streaks originally
induced at the step apex are sustained in space and amplified in x. By evaluating
the relative contribution of the terms of Eq. (4), this is ascribed to the work of
non-linear interactions between perturbation streaks among all harmonic spaces,
i.e. for β = β0 as well as for β > β0. This (non-linear) growth of perturbation
streaks close downstream of the step plays a main role in significantly deform-
ing both, the shear layer close to the wall and the topology of the incoming
stationary crossflow vortex.

4 Unsteady Perturbation Evolution

For the presently investigated step height, laminar-turbulent transition is cap-
tured shortly downstream of the step. This is line with observations of recent
experimental investigations [7] under similar flow conditions and step geometry.
The results of our DNS indicate that the shear layer significantly deformed by the
step is prone to unsteady perturbation amplification. The explosive chordwise
growth of unsteady perturbation structures downstream of the step initiates the
breakdown of the laminar flow. Following the discussion in the previous section,
the occurrence of supercritical transition appears to be exclusive to cases with
a sufficiently large pre-existing stationary crossflow perturbation.

Figure 2 depicts an instantaneous isosurface of the Q-criterion for the
unsteady developed flow. Close downstream of the step, wedges of unsteady
contamination approximately aligned with the crossflow-vortex direction are the
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Fig. 2. Instantaneous Q-criterion isosurface colored by wall distance (white indicates
close to the wall) and x-y plane of instantaneous chordwise-velocity. The xst-axis is
expressed in units of δ0.

precursor of turbulence. Even though the unsteady fluctuations arise rather close
to the wall, they manifest at significantly larger frequencies than those associ-
ated typically to the type-III secondary crossflow instability. The latter has been
reported as well in corresponding experimental investigations [8] for a similar
setdup. This finding suggests that a new transition mechanism is introduced
by the step; it would effectively by-pass the growth of the secondary crossflow
instabilities, which induce typically the breakdown of the stationary crossflow
vortices in reference no-step conditions.

It is noted that the unsteady fluctuations initiating the laminar breakdown
process develop in the shear layers embedding the stationary streaks induced at
the step apex. In particular, two main families of large-scale hairpin vortices are
captured in the DNS driving the unsteady wedges. The origin of both families
of hairpin vortices is found at the upper part of regions of low-speed streaks.
Accordingly, in future work it will be investigated whether the unsteady struc-
tures responsible for inducing supercritical transition by a forward-facing step
are related to the so-called varicose and sinuous instabilities [2]; these develop
typically in streaky boundary-layer flows subject to high levels of free-stream
turbulence in scenarios of classic by-pass transition.
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