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A B S T R A C T   

This paper investigates a dynamic and stochastic shipment matching problem, in which a plat-
form aims to provide online decisions on accepting or rejecting newly received shipment requests 
and decisions on shipment-to-service matches in global synchromodal transportation. The prob-
lem is considered dynamic since the platform receives requests and travel times continuously in 
real time. The problem is considered stochastic since the information of requests and travel times 
is not known with certainty. To solve the problem, we develop a rolling horizon framework to 
handle dynamic events, a hybrid stochastic approach to address uncertainties, and a 
preprocessing-based heuristic algorithm to generate timely solutions at each decision epoch. The 
experimental results indicate that for instances with above 50% degrees of dynamism, the hybrid 
stochastic approach that considers shipment request and travel time uncertainties simultaneously 
outperforms the approaches that do not consider any uncertainty or just consider one type of 
uncertainties in terms of total profits, the number of infeasible transshipments, and delay in 
deliveries.   

1. Introduction 

Global container transportation is the movement of containers between inland terminals located in different continents by using 
ships, barges, trains, trucks or any combination of them (Yang et al., 2018). With the increasing volume of global trade, container 
transportation becomes more and more important in improving the efficiency of global supply chains. As the fastest-growing cargo 
segment, global containerized trade reached 152 million twenty-foot equivalent units (TEUs) in 2018 (UNCTAD, 2019). Traditionally, 
global container transportation is organized by multiple operators. For example, an inland operator in Asia transports containers from 
Chongqing Terminal to Shanghai Port; a shipping liner company manages the container transport from Shanghai Port to Rotterdam 
Port; an inland operator in Europe further transports containers from Rotterdam Port to Duisburg Terminal. 

In the past decade, horizontal collaboration between shipping lines has been very popular by forming an alliance to improve the 
utilization of resources and increase service frequency and capacity (Lee and Song, 2017). Recently, port operators and shipping lines 
appear to be focusing more attention on vertical integration by expanding service networks to inland terminals, such as Maersk and 
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COSCO shipping Lines (UNCTAD, 2019). The vertical and horizontal collaboration among players in global container transport brings 
new challenges to global operators because of integrated planning in larger and more complex networks, as in Fig. 1. In such a global 
network, we define the global operator as the integrator that collaborates with inland carriers, ocean carriers, and terminal operators. 

Apart from integrated transportation, amodal booking and differentiated fare classes have also been introduced in container 
transportation (van Riessen et al., 2015). Amodal booking implies that shippers do not select modes and routes for their shipments and 
leave the choices to a global operator. This increases the flexibility of the global operator to optimize the available capacities and to 
react effectively to disruptions by dynamically updating transport plans (Giusti et al., 2019). Differentiated fare classes have been 
proposed as incentives to promote the concept of amodal booking (van Riessen et al., 2017). For each origin–destination (OD) pair, the 
global operator offers multiple fare classes to shippers. A fare class is characterized by a specific price, lead time, and delay cost. Once a 
booking request associated with a fare class is accepted by the global operator, the transport plan that assigns specific transport 
services to accepted requests needs to be created. 

Furthermore, digitalization and online booking platforms enabled by advanced information technologies are being increasingly 
used by the container industry. For example, Maersk launched an online booking platform called Maersk Spot in 2018 that allows 
customers to check the real-time freight rates, book ship slots online, and track their bookings (Meng et al., 2019). With Maersk Spot, 
the shipping company can instantly confirm whether to accept or reject a booking request and react dynamically to disturbances (e.g., 
service delays) by adjusting the transport plan. 

The combined trend towards vertical and horizontal collaboration, amodal booking, differentiated fare classes, and digitalization 
gives rise to the concept of synchromodality in the container industry (van Riessen et al., 2015). Synchromodality aims to reduce 
transport costs, delays, and carbon emissions while improving the utilization of resources based on real-time information (Giusti et al., 
2019). However, implementing synchromodality in practice is still challenging from several aspects, including pricing strategies and 
collaboration contracts at the strategical level, integrated service network design at the tactic level, and the allocation of resources to 
demands under a dynamic and stochastic environment at the operational level (Giusti et al., 2019). 

In this paper, we investigate a dynamic and stochastic global shipment matching problem (DSGSM) under synchromodality. We 
consider a platform owned by a global operator that receives contractual and spot shipment requests from shippers and receives 
multimodal services from carriers. While the contractual requests are received before the planning horizon, the spot requests appear in 
the platform dynamically. The platform creates online decisions for shipment requests including acceptance and matching decisions in 
a global synchromodal network, as shown in Fig. 2. A match between a shipment and a service represents that the shipment will be 
transported by the service from the service’s origin to the service’s destination. The platform combines the matched services into 
shipments’ itineraries. Due to spot request uncertainty and service capacity limitations, the decisions made for current requests might 
become suboptimal upon receiving new requests. Due to travel time uncertainty and the utilization of multimodal services, the 
matches made for accepted requests might become infeasible at transshipment terminals. The objective of the platform is to maximize 
the total profits over a given planning horizon taking into account transport costs, delays, and carbon emissions. 

Thanks to the development in data analytics, probability distributions of uncertainties are often available to online platforms. 
While dynamic and stochastic approaches that incorporate stochastic information of random variables in online decision-making 
processes have been well investigated in vehicle routing problems (e.g., Ritzinger et al., 2015), resource allocation problems (e.g., 
Wang et al., 2017), and hinterland synchromodal transport planning problems (e.g., Guo et al., 2020a), the dynamic and stochastic 
approach that handles shipment request and travel time uncertainties simultaneously in global synchromodal transportation is still 
missing in the literature. 

Fig. 1. Map of the integrated global network representing our vision.  
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This paper contributes to the literature in the following ways:  

• We introduce the DSGSM problem for global synchromodal transport networks that integrates online acceptance and matching 
decisions, and considers stochastic spot requests and travel times simultaneously.  

• To solve the problem, we develop a rolling horizon framework to handle dynamic events and a hybrid stochastic approach to 
address uncertainties. The hybrid stochastic approach consists of a sample average approximation method addressing spot request 
uncertainty and a chance-constrained programming method addressing travel time uncertainty. Besides, we design a 
preprocessing-based heuristic algorithm to generate timely solutions at each decision epoch. The methodological framework for the 
DSGSM problem is shown in Fig. 3. 

• We evaluate the performance of the hybrid stochastic approach in comparison to the approaches that do not consider any un-
certainty or only consider one type of uncertainties under a comprehensive set of experiments. The experimental results highlight 
the benefits of incorporating stochastic information in dynamic shipment matching processes in terms of total profits, the number 
of infeasible transshipments, and delay in deliveries. 

Fig. 2. Illustration of a global synchromodal matching platform.  

Fig. 3. Proposed methodological framework for the DSGSM problem.  
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Table 1 
The formulation characteristics and methodologies in related literature.  

Articles Formulation characteristics Methodologies 

Network Decisions Time 
windows 

Time 
schedules 

Transshipment Synchronization Objectives Dynamic events Uncertainties Dynamic 
approach1 

Stochastic 
approach2 

Optimization 
algorithm3 

Dynamic and stochastic container booking models 

Lee et al. 
(2009) 

Maritime 
(single leg) 

Acceptance of bookings - - - - Maximize 
revenues 

Booking request Container volume FCFS BL HA 

Wang (2017) Single leg Acceptance of bookings - - - - Maximize 
profits 

Booking request Container volume, 
service capacity 

FCFS BL HA 

Zurheide and 
Fischer 
(2012) 

Maritime Acceptance of bookings - - Y - Maximize 
profits 

- Container volume - BL MILP solver 

Zurheide and 
Fischer 
(2014) 

Maritime Acceptance of bookings - - Y - Maximize 
profits 

- Container volume - BP MILP solver 

Wang (2016) General 
network 

Acceptance of bookings - - Y - Maximize 
profits 

- Container volume, 
service capacity 

- SAA, PAA IP solver 

van Riessen 
et al. 
(2017) 

Inland Acceptance of bookings - - Y - Maximize 
revenues 

- Container volume - BL MIP solver 

Bilegan et al. 
(2014) 

Railway Acceptance of bookings 
and container routing 

Hard Fixed Y Y Maximize 
revenues 

Booking request Container volume FCFS SPR MIP solver 

Wang et al. 
(2016) 

Waterway Acceptance of bookings 
and container routing 

Hard Fixed Y Y Maximize 
revenues 

Booking request Container volume FCFS SPR MIP solver 

Wang et al. 
(2017) 

Inland Acceptance of bookings - - Y - Maximize 
revenues 

Booking request Container volume BC VFA MIP solver  

Dynamic and stochastic container routing models 
Dong et al. 

(2015) 
Maritime Service capacity 

planning and shipment 
routing 

Hard Fixed Y Y Minimize 
costs 

- Container volume - SAA, PHA, 
APHA 

MILP solver 

(continued on next page) 
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Table 1 (continued ) 

Articles Formulation characteristics Methodologies 

Network Decisions Time 
windows 

Time 
schedules 

Transshipment Synchronization Objectives Dynamic events Uncertainties Dynamic 
approach1 

Stochastic 
approach2 

Optimization 
algorithm3 

Dynamic and stochastic container booking models 

Demir et al. 
(2016) 

Inland Service schedule and 
shipment routing 

Soft Flexible Y Y Minimize 
costs 

- Container volume, 
travel time 

- SAA MILP solver 

Li et al. (2015) Inland Container flow control - Fixed, 
flexible 

Y Y Minimize 
costs 

Container flow, 
travel time 

- RHF - HA 

Qu et al. 
(2019) 

Inland Service schedule, 
shipment routing 

Soft Flexible Y Y Minimize 
costs 

Release time, 
container volume, 
travel time 

- RPP - MILP solver 

Guo et al. 
(2020b) 

Inland Shipment matching Soft Fixed, 
flexible 

Y Y Minimize 
costs 

Shipment request - RHF - HA 

van Riessen 
et al. 
(2016) 

Inland Container routing Soft Fixed, 
flexible 

- Y Minimize 
costs 

Container request Container volume FCFS DT MILP solver 

Rivera and 
Mes 
(2017) 

Inland Assignment of freights 
to modes and vehicle 
routing 

Hard - - Y Minimize 
costs 

Shipment request Shipment request RP VFA MILP solver 

Guo et al. 
(2020a) 

Inland Shipment matching Soft Fixed, 
flexible 

Y Y Minimize 
costs 

Shipment request Shipment request RHF SAA HA 

Guo et al. 
(2020c) 

Global Acceptance of bookings 
and shipment matching 

Soft Fixed, 
flexible 

Y Y Maximize 
profits 

Travel time Travel time RHF CCP MILP solver 

This paper Global Acceptance of bookings 
and shipment matching 

Soft Fixed, 
flexible 

Y Y Maximize 
profits 

Shipment request, 
travel time 

Shipment request, 
travel time 

RHF HSP HA  

1 FCFS: First-come-first-serve strategy; BC: Booking control strategy; RHF: Rolling horizon framework; RPP: Re-planning procedure; RP: Rollout procedures. 
2 BL: Booking limit strategy; BP: Bid-price strategy; SAA: Sample average approximation method; PAA: Progressive augmentation algorithm; SPR: Stochastic programming model with recourse; VFA: 

Value function approximation; PHA: Progressive hedging algorithm; APHA: Adapted progressive hedging algorithm; DT: Decision trees; CCP: Chance-constrained programming; HSA: Hybrid stochastic 
approach. 

3 HA: Heuristic algorithm; MILP: Mixed integer linear programming; MIP: Mixed integer programming; MINLP: Mixed integer non-linear programming. 
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• Although we focus on the application in global synchromodal transportation, the developed methodologies can also be applied to 
the more specific fields of inland and maritime transportation. 

The remainder of this paper is structured as follows. We briefly review the relevant literature in Section 2. In Section 3, we provide a 
detailed problem description, followed by the methodology in Section 4. In Section 5, we present the experimental results. Finally, in 
Section 6, we provide concluding remarks and directions for future research. 

2. Literature review 

Global transportation consists of intercontinental transportation and inland transportation (Yang et al., 2018). In intercontinental 
transportation, containers are transported from export terminals to import terminals. In inland transportation, export containers are 
transported from inland origins to export terminals; import containers are transported from import terminals to inland destinations. 
While extensive studies investigated maritime transportation (Meng et al., 2014) and inland transportation (SteadieSeifi et al., 2014) 
in the literature, only a few studies investigated global transportation (Lee and Song, 2017). Furthermore, most of the existing global 
transport planning models (e.g., Meng et al., 2012; Liu et al., 2014; Tran et al., 2017; Yang et al., 2018; Wei and Dong, 2019) assumed 
that all the input information is static and deterministic. However, in reality, multiple dynamic events and uncertainties exist in global 
synchromodal transportation which highly affect the feasibility and profitability of transport plans. 

In container transportation, the dynamic and stochastic models related to the DSGSM problem mainly include container booking 
and container routing problems. While the former considers the acceptance of booking requests to maximize revenue, the latter 
emphasizes the decisions on routing containers to minimize costs (Meng et al., 2014). The formulation characteristics and method-
ologies of dynamic and stochastic container booking and routing models are summarized in Table 1. 

2.1. Dynamic and stochastic container booking models 

Container booking control, also called slot allocation and capacity control, is one of the primary research topics in revenue 
management and is widely adopted by the airline industry (Meng et al., 2019). Container booking control aims to maximize revenue in 
a stochastic environment by effectively deciding on the acceptance of booking requests. According to the network structure, studies on 
container booking control can be divided into two groups: single-leg level and network level. While the single-leg level models (e.g., 
Lee et al., 2009; Wang, 2017) consider services operating on a single corridor, the network level models study services that operate on a 
network with the possibility of transshipments (Meng et al., 2019). 

Most network container booking control models study static environments with the main strategies of booking limits and bid-price. 
A booking limit represents the maximum number of containers that should be allocated to a service. For example, Zurheide and Fischer 
(2012) proposed a slot allocation model for a liner shipping network to determine the booking limits for different booking classes (e.g. 
OD pair, container type, and service segment). van Riessen et al. (2017) investigated a cargo fare class mix problem in an intermodal 
network to maximize revenue by determining the booking limits on each fare class. Under a bid-price strategy, the decision of whether 
to accept or reject a booking is made based on the lowest acceptable profit value or the marginal costs for the next unit of capacity. 
Zurheide and Fischer (2014) developed a slot allocation model for a liner shipping company to decide the opportunity cost of a 
container slot as the bid-price and proved that the bid-price strategy outperforms the booking limit strategy due to the better utilization 
of capacity for profitable requests. 

With the development of information technologies and digitalization in the container industry, researchers and industries have 
increasingly shifted their attention to dynamic models (Meng et al., 2019). These models can better reflect the online container 
booking processes and therefore better manage resource capacity. Bilegan et al. (2014) designed a load acceptance management 
system for rail container transport planning to dynamically accept requests or reject them in favor of future requests with potentially 
higher profit. Wang et al. (2016) developed a probabilistic mixed integer programming optimization model to make acceptance de-
cisions with the objective to maximize the expected revenue of a barge carrier over a given planning horizon. Wang et al. (2017) 
investigated a dynamic resource allocation problem, in which an intermodal operator attempts to determine the policy that charac-
terizes the optimal quantities of each service product allowed to be sold during each time interval within a finite selling horizon. 

In comparison to the DSGSM problem proposed in this paper, the above-mentioned container booking models focus on the 
acceptance decisions of requests before the transport process by setting booking limits or bid-price to maximize revenue. However, we 
take into account the synchronization of shipments with specific time windows and services with specific time schedules during the 
transport process. Besides, our work considers the dynamic and stochastic information of shipment requests and travel times in a global 
synchromodal network, and re-optimizes the transport plan when disturbances (i.e., infeasible transshipments) happen. 

2.2. Dynamic and stochastic container routing models 

In the literature, container routing models have been well investigated at the strategic and tactical levels under a static context 
(Meng et al., 2014). Most of the studies integrate the container routing decision with other decisions such as empty container repo-
sitioning (e.g., Song and Dong, 2012) and service network design (e.g., Dong et al., 2015; Demir et al., 2016). Recently, with the 
increasing interest towards synchromodality, several dynamic container routing models in synchromodal transportation have been 
proposed. Li et al. (2015) proposed a rolling horizon approach to control and reassign container flows in an inland synchromodal 
freight transport network with dynamic transport demand and traffic conditions. Qu et al. (2019) proposed a mixed-integer 

W. Guo et al.                                                                                                                                                                                                           
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Table 2 
Notation.  

Sets: 
N Terminals N 
K Container types, K = {dry, reefer}
R Shipment requests, R = R0 ∪ R1… ∪ RT  

R0  Contractual requests received before the planning horizon 

R0k  Contractual requests received before the planning horizon with container type k ∈ K  

Rt  Spot requests received during time interval (t − 1, t], t > 0  

Rtk  Spot requests received during time interval (t − 1, t], t > 0 with container type k ∈ K  

Rt  Accepted requests that require reoptimization at decision epoch t due to infeasible transshipments, t > 0  

Rtk  Accepted requests that require reoptimization at decision epoch t due to infeasible transshipments, t > 0 with container type k ∈ K  

ωγh  Sampled requests under scenario γ ∈ {1,…,Γ} at stage h ∈ H  

H  Prediction stages after decision epoch t,H = {t + 1,…,max{t + H,T}}
M Modes, M = {ship, barge, train, truck}
V Set of vehicles V = Vship ∪ Vbarge ∪ Vtrain ∪ Vtruck  

Vm  Vehicles with mode m ∈ M  
S Services, S = Sship ∪ Sbarge ∪ Strain ∪ Struck  

Sm  Services with mode m ∈ M  

S+
i  Services departing at terminal i ∈ N,S+

i = S+ship
i ∪ S+barge

i ∪ S+train
i ∪ S+truck

i  

S+m
i  Services departing at terminal i ∈ N with mode m ∈ M  

S−
i  Services arriving at terminal i ∈ N, S−

i = S− ship
i ∪ S− barge

i ∪ S− train
i ∪ S− truck

i  

S− m
i  Services arriving at terminal i ∈ N with mode m ∈ M  

S+t  Services departing at origin terminals during time interval (t − 1, t]

S− t  Services arriving at destination terminals during time interval (t − 1, t]

Deterministic parameters 
T Length of the planning horizon 
α  Confidence level 
H Length of the prediction horizon 
Γ  Number of scenarios 
kr  Container type of request r ∈ R,kr ∈ K  
or  Origin terminal of request r ∈ R,or ∈ N  
dr  Destination terminal of request r ∈ R,dr ∈ N  
ur  Container volume of request r ∈ R  
ar  Announce time of request r ∈ R  
er  Release time of request r ∈ R  
lr  Due time of request r ∈ R  
pr  Freight rate of request r ∈ R  
Lr  Lead time of request r ∈ R,Lr = lr − er  

cD
r  Delay cost of request r ∈ R per container per hour overdue  

ms  Mode of service s ∈ S,ms ∈ M  
os  Origin terminal of service s ∈ S,os ∈ N  
ds  Destination terminal of service s ∈ S,ds ∈ N  

Ut
s  Free capacity of service s ∈ S at decision epoch t  

Utk
s  Free capacity of service s ∈ S at decision epoch t for container type k ∈ K  

cs  Travel cost of service s ∈ S per container  

εk
s  Carbon emissions of service s ∈ S per container with type k ∈ K  

m′

v  Mode of vehicle v ∈ V  

Iv  Itinerary of vehicle v ∈ V⧹Vtruck  

Inv  The nth service of vehicle v ∈ V⧹Vtruck , Inv ∈ S⧹Struck  

Ds  Scheduled departure time of service s ∈ S⧹Struck  

As  Scheduled arrival time of service s ∈ S⧹Struck  

Ds  Actual departure time of service s ∈ S⧹Struck  

As  Actual arrival time of service s ∈ S⧹Struck  

ts  Estimated travel time of service s ∈ S  

ts  Actual travel time of service s ∈ S  

ξsq  A binary variable equal to 0 if service s is the preceding service of service q, otherwise 1 
cm

i  Loading/unloading cost per container at terminal i ∈ N with mode m ∈ M  

(continued on next page) 
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programming model to reschedule services and reroute shipment flows under the framework of synchromodality when unexpected 
dynamic events cause deviations from original plans. Guo et al. (2020b) investigated a dynamic shipment matching problem in which a 
platform provides online matches between shipment requests and transport services in an inland synchromodal network. 

The recent developments in information technologies and data analytics have facilitated the utilization of stochastic information in 
online decision-making processes (Ritzinger et al., 2015). With regards to dynamic and stochastic container routing problems, van 
Riessen et al. (2016) proposed a decision tree to instantaneously allocate incoming containers to inland services by analyzing the 
solution structure of an optimization model on historical data of transport demand. Rivera and Mes (2017) proposed an adaptive 
approximate dynamic programming algorithm to assign the newly arrived shipment requests to a barge or trucks incorporating the 
probability distributions of future requests, to achieve cost minimization over a multi-period horizon. Guo et al. (2020a) proposed an 
anticipatory optimization approach to create online matches between shipment requests and transport services in an inland syn-
chromodal network by incorporating the probability distributions of future requests. Guo et al. (2020c) developed a chance- 
constrained programming model to address travel time uncertainty in a global synchromodal shipment matching problem. 

Compared with the DSGSM problem proposed in this paper, the majority of the dynamic and stochastic container routing models 
focus on the routing/matching decisions for booking requests in inland networks to minimize total costs without the consideration of 
acceptance decisions. Furthermore, none of them consider the dynamic and stochastic shipment requests and travel times simulta-
neously in global synchromodal transportation. 

2.3. Summary 

According to the above literature review, the majority of the dynamic and stochastic container booking and routing studies focus on 
inland networks. In this paper, we investigate global networks that integrate inland and intercontinental transportation. Besides, most 
of the above-mentioned studies only consider container volume uncertainty. This paper considers that all the attributes of a shipment 
request are uncertain, including shipments’ origin, destination, container volume, time window, and fare class. Although Rivera and 
Mes (2017) considered shipment request uncertainty, their model neither considers the time schedules of transport services nor the 
transshipment operations between different modalities. To the best of our knowledge, most related to our work are the papers of Guo 
et al. (2020a) that addressed shipment request uncertainty and Guo et al. (2020c) that addressed travel time uncertainty in syn-
chromodal transportation with the consideration of re-optimization procedures when disturbances happen. However, none of them 
consider stochastic shipment requests and travel times simultaneously. This paper develops a hybrid stochastic approach to address 
shipment request and travel time uncertainties integrally in online decision-making processes under the field of global synchromodal 
transportation. 

3. Problem description 

We consider a platform owned by a global operator that receives contractual and spot shipment requests from shippers, and re-
ceives ship, barge, train, and truck services from carriers, as shown in Fig. 2. We define the global operator as the coordinator that 

Table 2 (continued ) 

fm
i  Loading/unloading time at terminal i ∈ N with mode m ∈ M  

cS
i  Storage cost at terminal i per container per hour 

cE  Activity-based carbon tax charged by institutional authorities 

B A large number used for binary constraints 
Random variables 
t̃s  Travel time of service s ∈ S, t̃s ∼ N(μs,σ2

s )

D̃s  Departure time of service s ∈ S⧹Struck, D̃s ∼ N(μ+
s ,σ+

s
2
)

Ãs  Arrival time of service s ∈ S⧹Struck, Ãs ∼ N(μ−
s ,σ−

s
2)

R̃
t  Future requests received at decision epoch t. The probability distributions  

{πk, πo, πd , πu, πa, πe, πl, πp, πcD } are assumed known.  
Variables 
yt

r  Binary variable; 1 if request r ∈ Rt is accepted at decision epoch t  
xt

rs  Binary variable; 1 if request r ∈ Rt ∪ Rt is matched with service s ∈ S at decision epoch t, 0 otherwise  

ŷγh
r  Binary variable; 1 if sample request r ∈ ωγh is accepted at decision epoch t  

x̂γh
rs  Binary variable; 1 if sample request r ∈ ωγh is matched with service s ∈ S at decision epoch t, 0 otherwise  

zt
rsq  Binary variable; 1 if request r ∈ Rt ∪ Rt is matched with service s ∈ S, xrs = 1 and service q ∈ S,xrq = 1, 0 otherwise  

IR
r  Itinerary of request r ∈ Rt ∪ Rt consists of matched services  

Drs  Departure time of truck service s ∈ Struck with request r ∈ Rt ∪ Rt  

cT
ri  Transshipment cost of request r ∈ Rt ∪ Rt at terminal i ∈ N per container  

w̃ri  Storage time of request r ∈ Rt ∪ Rt at terminal i ∈ N  

t̃D
r  Delay of request r ∈ Rt ∪ Rt at destination terminal dr ∈ N   

W. Guo et al.                                                                                                                                                                                                           
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collaborates with shippers, carriers and terminal operators to provide integrated transport planning in a global synchromodal network. 
The global operator does not typically own any of the transport services used to move a shipment from its origin to its destination or 
any of the terminals used for transshipments. Instead, the global operator enters into contracts for transport services with carriers and 
for loading/unloading and storage operations with terminal operators. The contract with carriers specifies the services that are 
available to the global operator with specific modalities, OD pairs, time schedules, available capacities, and costs. The global operators 
combine these services into itineraries to provide integrated transport for shipments. The global operator publishes the fare classes for 
each OD pair with specified freight rates, lead times, and delay costs. Shippers choose the fare classes for their shipments based on the 
value and urgency of commodities. After that, they initiate requests to the platform with specific OD pairs, container volumes, time 
windows, and fare classes, and leaves the choices of services to the platform. The notation used in this paper is shown in Table 2. 

3.1. Terminals 

Let N be the set of terminals. Each terminal i ∈ N is characterized by its loading/unloading cost cm
i , loading/unloading time fm

i with 
mode m ∈ M = {ship, barge, train, truck}, and storage cost per container per hour cS

i . We assume terminal operators provide unlimited 
loading/unloading and storage capacity to the global operator. 

3.2. Shipment requests 

Let R be the set of requests. Each request r ∈ R is characterized by its container type kr (i.e., dry or reefer), origin terminal or, 
destination terminal dr, container volume ur, announce time ar (i.e., the time when the platform receives the request), release time er (i. 
e., the time when the shipment is available for transport process), and fare class including freight rate pr, lead time Lr, and delay cost cD

r . 
The due time of request r is represented as, lr = er + Lr. Requests R consist of two groups: contractual requests R0 and spot requests Rt . 
For a contractual request r ∈ R0, the global operator has long-term contracts with shippers. Therefore, the announce time of 
contractual request r is ar = 0. All the information {kr, or, dr, ur, er, lr, pr, cD

r } is known in advance. On the contrary, for a spot request 
r ∈ Rt, the platform receives the request from spot markets during time interval (t − 1, t]. The information of the spot request {kr, or,

dr, ur, er, lr, pr, cD
r } is unknown before its announce time ar. However, the probability distributions of spot requests {πk, πo, πd, πu, πa, πe,

πl, πp, πcD} are assumed to be available to the platform. In addition, shippers require their shipments to be transported as a whole, and 
ask to receive the transport plan as soon as possible. Besides, we do not consider cancellation of requests from shippers. The requests 
accepted by the platform will not be rejected in the future. 

3.3. Transport services 

Let S be the set of services. Each ship, barge or train service s ∈ Sship ∪ Sbarge ∪ Strain is characterized by its mode ms ∈ M, origin 
terminal os, destination terminal ds, free capacity Utk

s in terms of container type k ∈ K = {dry, reefer} at decision epoch t, total free 
capacity Ut

s, scheduled departure time Ds, scheduled arrival time As, estimated travel time ts, travel cost cs, and generation of carbon 
emissions εk

s for container type k. Let ts,Ds and As be the actual travel, departure and arrival time of service s which are unknown before 
their realization. Moreover, different services with the same mode might be operated by the same vehicle. For two successive services 
operated by the same vehicle, transshipment is unnecessary at the intermediate terminal. Let ξsq be equal to 0 if services s and q are 
operated by the same vehicle, and service s is the preceding service of service q, 1 otherwise. Each truck service s ∈ Struck is charac-
terized by its origin terminal os, destination terminal ds, free capacity Utk

s in terms of container type k ∈ K at decision epoch t, total free 
capacity Ut

s, estimated travel time ts, travel cost cs, and generation of carbon emissions εk
s for container type k. Let ts be the actual travel 

time of service s which is unknown before its realization. Each truck service consists of a fleet of trucks that have flexible departure 
times. We define Drs as a variable that indicates the departure time of service s ∈ Struck with shipment r ∈ R. We assume the platform 
receives real-time information once a service s ∈ S departs from or arrives to a terminal. 

In practice, travel time uncertainties are quite common resulting from weather conditions and traffic congestions (Demir et al., 
2016). The probability distributions of travel times are assumed to be available to the platform through the analysis of historical data 
and external factors. In the literature, different distributions have been used to characterize travel times, such as normal distributions 
(e.g., Li et al., 2010; Ehmke et al., 2015; Shi et al., 2018) and Gamma distributions (e.g., Taş et al., 2014b; Long et al., 2018). Re-
searches on fitting continuous distributions to travel time variations tend to present inconclusive and inconsistent results due to 
different traffic conditions and different service areas (Rahman et al., 2018). The main objective of this paper is not to find the best fit 
distributions of travel times but rather to investigate the benefits of incorporating travel time uncertainty in online decision-making 
processes under the field of global synchromodal transportation. Thanks to the properties of normal distributions, the sum and dif-
ference between two independent normal random variables are still normal distributed. These properties are critical for checking the 
feasible transshipments between different services. Therefore, we assume the travel times 

[
t̃s
]

∀s∈S are continuous random variables 
following normal distributions, and are statistically independent. Let t̃s ∼ N(μs, σ2

s ), in which μs is the mean travel time between 
terminal os and terminal ds, and σs is the corresponding standard deviation. To avoid the generation of too small or too large values, we 
set fixed lower and upper bounds for the realization of travel times in experimental tests. 

Due to travel time uncertainties, the actual departure and arrival time of service s ∈ S are also uncertain. The distribution of the 
departure time of service s is based on the distribution of the arrival time of its preceding service; the distribution of the arrival time of 
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service s is based on the distributions of the departure and travel time of service s. For vehicle v ∈ V⧹Vtruck, we define the itinerary of 
vehicle v as the sequence of services that the vehicle operated, and define In

v as the nth service of vehicle v. Therefore, the departure time 
of service s = In

v follows normal distribution given by: 

D̃s ∼ N(DI1
v
+

∑

j∈{1…n− 1}

μIj
v
+

∑

j∈{1…n− 1}

2f m′

v
d

Ij
v

,
∑

j∈{1…n− 1}

σ2
Ij
v
),

where m′

v is the mode of vehicle v. We denote D̃s ∼ N(μ+
s ,σ+

s
2
). Similarly, the arrival time of service s = In

v follows normal distribution 
given by: 

Ãs ∼ N(DI1
v
+
∑

j∈{1…n}

μIj
v
+

∑

j∈{1…n− 1}

2f m′

v
d

Ij
v

,
∑

j∈{1…n}

σ2
Ij
v
).

We denote Ãs ∼ N(μ−
s ,σ−

s
2). 

3.4. Objectives and infeasible transshipments 

The objective of the platform is to maximize total profits over the planning horizon T by dynamically optimizing acceptance and 
matching decisions over a global synchromodal network. In practice, the first-come-first-served (FCFS) strategy has been widely 
adopted in the container industry (Meng et al., 2019). Under such a strategy, decisions are made based on deterministic information 
only. An illustrative example of online matching processes under the FCFS strategy is shown in Fig. 4. At decision epoch t = 8, the 
platform accepts request r1, and matches r1 with ship service s1 and barge service s2 which are the cheapest services. At decision epoch 
t = 9, the platform accepts request r2, and matches r2 with rail service s3 and truck service s4. At decision epoch t = 10, the platform 
receives reefer request r3 which is very profitable. However, the platform has to reject request r3 since no capacity is available. To 
make better decisions over the planning horizon, the platform needs to consider the stochastic information of future requests. 

On the other hand, travel time uncertainty of services in a global synchromodal network may lead to infeasible transshipments in 
addition to the commonly studied outcome of late or early delivery at destinations (e.g., Li et al., 2010; Taş et al., 2014a; Rodrigues 
et al., 2019). An illustrative example is shown in Fig. 5. A shipment is planned to be transported by a train service from its origin 
terminal to port A, by a ship service from port A to port B, and by two barge services from port B to its destination terminal according to 
fixed time schedules. The outcomes of travel time uncertainty in global synchromodal transportation include late delivery at desti-
nation terminal under realization 1 which causes delayed costs, early delivery at destination terminal under realization 2 which causes 
storage costs, and infeasible transshipment at port B under realization 3 which requires reoptimization. 

4. Methodology 

Methodologies for dynamic and stochastic problems can be divided into two categories: methods based on preprocessed decisions 
which determine the values and policies of decision making before the execution of the transport plan, such as approximate dynamic 

Fig. 4. Illustrative example of online matching processes under the FCFS strategy.  

W. Guo et al.                                                                                                                                                                                                           



Transportation Research Part E 152 (2021) 102404

11

programming; and methods based on online decisions which focus on the computation when a dynamic event occurs with respect to 
the current system state and the available stochastic information, such as rolling horizon approaches (Ritzinger et al., 2015). The 
methodology proposed for the DSGSM problem belongs to the class of online decision methods. The methodology consists of a rolling 
horizon framework (RHF) that handles dynamic events, a hybrid stochastic approach (HSA) that addresses two types of uncertainties 
integrally, and a preprocessing-based heuristic algorithm (P-HA) that generates timely solutions at each optimization run, as shown in 
Fig. 3. Specially, we use the RHF to adapt the matching platform to new states upon receiving new requests or real-time travel times; 
we use a chance-constrained programming method (CCP) to generate chance constraints regarding infeasible transshipments caused 
by travel time uncertainty; we use a sample average approximation method (SAA) to sample requests appearing in the near future. Due 
to the computational complexity, we adopt the P-HA to solve the optimization problem at each decision epoch. 

4.1. Rolling horizon framework 

RHF is known as an efficient periodic reoptimization approach that has been applied in many fields, such as routing problems 
(Arslan et al., 2019) and scheduling problems (Silvente et al., 2015). Compared with the FCFS strategy, the RHF can handle multiple 
dynamic events that appear in a system simultaneously, which is quite common in global synchromodal transport, as illustrated in 

Fig. 5. Possible outcomes of travel time uncertainty in global transport.  

Fig. 6. Illustration of the rolling horizon framework.  
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Fig. 6. The RHF adapts the matching platform to new states by updating input parameters and generating reoptimization requests 
caused by infeasible transshipments. The pseudocode of the RHF is presented in Algorithm 1. 

Algorithm 1. Rolling horizon framework.   
Input: Terminals N; contractual requests R0; services S; free capacity 

[
U0k

s
]

∀s∈S,k∈K; length of planning horizon T; probability distributions of spot requests and travel 
times; confidence level α; length of prediction horizon H, and number of scenarios Γ.  

Output: Acceptance decision 
[
yt

r
]

∀r∈Rt ,t∈{1,…,T}; matching decision 
[
xt

rs
]

∀r∈Rt∪R
t
,s∈S,t∈{0,…,T}; itinerary {IR

r }r∈R; number of infeasible transshipments Ninfeasible; actual 

profits [APt ]t∈{0,…,T}.  

Initialize: Let Rt ← ∅,Rt ← ∅,Ut
s ← 0, IR

r ← ∅,Ninfeasible ← 0,APt ← 0.  
1: for decision epoch t ∈ {0,1,…,T}
2: receive requests Rt , actual departure time Ds of service s ∈ S+t⧹Struck, actual arrival time As of service s ∈ S− t⧹Struck, actual departure time Drs of service 

s ∈ S+t ∩ Struck, and actual arrival time Ars of service s ∈ S− t ∩ Struck  

3: for request r ∈ R0 ∪ … ∪ Rt− 1 do  
4: if IR

r = ∅ then  
5: go to r = r+1 6: else  
7: for terminal i ∈ N do  
8: if request r just arrived terminal i, service s ∈ {S+1 ∪ … ∪ S+t |os = i} has already departed; or request r has already arrived terminal i, service s ∈ {S+t |os 

= i} just departed, but the time for transshipment operations is not enough then  
9: update reoptimization requests Rt ← Rt

∪ {r}
10: update number of infeasible transshipments Ninfeasible ← Ninfeasible + 1  
11: update free capacity Ut

s ← Ut
s +ur for s ∈ {IR

r |Ds > t}
12: if kr = reefer then  
13: update free capacity Utk

s ← Utk
s +ur for s ∈ {IR

r |Ds > t},k = reefer  
14: get optimization model ← HSA  
15: obtain acceptance and matching decision [yt , xt ] ← P-HA  
16: update free capacity Ut+1

s ← Ut
s −
∑

r∈Rt∪R
t urxt

rs for s ∈ S  

17: update free capacity U(t+1)k
s ← Utk

s −
∑

r∈Rtk∪R
tk urxt

rs for s ∈ S,k = reefer  

18: update itinerary {IR
r } for r ∈ R  

19: calculate total actual profits APt generated at decision epoch t  
20: calculate the total profits over the planning horizon T  

We define t as the points in time at which decisions are made under the RHF, referred to as the decision epoch. The planning horizon 
is divided into T consecutive time intervals. At decision epoch t ∈ {0,…,T}, the RHF updates the new information received during time 

interval (t − 1, t], including new requests Rt = {r|t − 1 < ar⩽t}, actual departure times 
[
Ds

]

∀s∈S+t⧹Struck 
and arrival times 

[
As

]

∀s∈S− t⧹Struck 
of 

ship, barge, and train services, and actual departure times 
[
Drs

]

∀s∈S+t∩Struck 
and arrival times 

[
Ars

]

∀s∈S− t∩Struck 
of truck services, where S+t =

{s ∈ S|t − 1 < Ds/Drs⩽t} is the set of services departing their origin terminals during time interval 
(t − 1, t]; S− t = {s ∈ S|t − 1 < As/Ars⩽t} is the set of services arriving their destination terminals during time interval (t − 1, t]. 

We define yt
r as the binary variable which is 1 if request r ∈ Rt is accepted, 0 otherwise. Let xt

rs be the binary variable which is 1 if 
request r ∈ Rt ∪ Rt is matched with service s ∈ S, 0 otherwise. Here, Rt is the set of accepted requests that require reoptimization at 
decision epoch t due to infeasible transshipments. Based on the actual arrival and departure times of matched services {s ∈ S|xrs = 1} of 
accepted request r ∈ {R0 ∪ … ∪ Rt− 1|yr = 1}, the RHF checks which requests need reoptimization due to infeasible transshipments. An 
infeasible transshipment happens in two situations: first, the accepted shipment r has just arrived terminal i, the matched service s ∈
{S+1 ∪ … ∪ S+t |xrs = 1, os = i} has already departed; second, the accepted shipment r has already arrived terminal i, and the matched 
service s ∈ {S+t |xrs = 1, os = i} has just departed from terminal i, but the remaining time is not enough for transshipments. The 
platform thus cancels the capacity bookings on the matched services which depart after decision epoch t for reoptimization request 
r ∈ Rt. The RHF then updates the free capacity regarding dry and reefer slots of these services. 

The optimization model used at each decision epoch is developed based on the HSA (presented in Section 4.2). The RHF uses the P- 
HA (presented in Section 4.3) to generate acceptance and matching decisions based on the input parameters and the optimization 
model. The platform thus books capacities on the matched services based on the matching decisions. After that, the RHF updates free 
capacities of services and itineraries of requests, and calculates the actual profits APt generated at each decision epoch. At the end of 
the planning horizon, the RHF calculates the total actual profit generated over planning horizon T. 

4.2. Hybrid stochastic approach 

In this section, we develop the HSA to address uncertainties, which consists of the CCP that handles travel time uncertainty and the 
SAA that handles shipment request uncertainty. 

4.2.1. Chance-constrained programming model 
In the literature, different stochastic programming models have been developed to handle travel time uncertainty (Gendreau et al., 

2016). In general, stochastic programming can be either formulated as a CCP model or a stochastic programming model with recourse 
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(SPR) (Li et al., 2010). While CCP models ensure the feasibility of stochastic constraints, SPR models define recourse actions to induce 
an expected penalty cost on objective functions. Typically, SPR models define a delay cost for late delivery, a storage cost for early 
delivery, and a large penalty cost for infeasible transshipments without the consideration of reoptimization after disturbances. Since 
the extra costs caused by reoptimization procedures at later stages are hard to estimate, we develop a CCP model to address travel time 
uncertainty. The CCP model does not take into account the correction costs caused by the reoptimization of requests. 

Under CCP, each stochastic constraint will hold at least with probability α, where α is referred to as the confidence level provided by 
the platform. A high α means the matches have a low probability causing infeasible transshipments. The confidence level α also 
controls the problems’ tightness and computational complexity. The objective is to maximize the total profits which consist of the 
planned profits at decision epoch t including freight rates, travel costs, transfer costs, storage costs, delay costs and carbon tax. The 
optimization model under the CCP at decision epoch t is: 

P1 max
yt ,xt

∑

r∈Rt

pruryt
r −

⎛

⎝
∑

r∈Rt∪R
t

∑

s∈S
csxt

rsur+
∑

r∈Rt∪R
t

∑

i∈N
cT

riur+
∑

r∈Rt∪R
t

∑

i∈N
cS

i E(w̃ri)ur+
∑

r∈Rt∪R
t cD

r E
(

t̃D
r

)
ur+

∑

k∈K

∑

r∈Rtk∪R
tk

∑

s∈S
cEεk

s xt
rsur

⎞

⎠

(1)  

subject to 

yt
r⩽
∑

s∈S+or

xt
rs, ∀r ∈ Rt, (2)  

yt
r⩽
∑

s∈S−dr

xt
rs, ∀r ∈ Rt, (3)  

∑

s∈S+or

xt
rs⩽1, ∀r ∈ Rt, (4)  

∑

s∈S−dr

xt
rs⩽1, ∀r ∈ Rt, (5)  

∑

s∈S+or

xt
rs = 1, ∀r ∈ Rt

, (6)  

∑

s∈S−dr

xt
rs = 1, ∀r ∈ Rt

, (7)  

∑

s∈S−or

xt
rs⩽0, ∀r ∈ Rt ∪ Rt

, (8)  

∑

s∈S+dr

xt
rs⩽0, ∀r ∈ Rt ∪ Rt

, (9)  

∑

s∈S−i

xt
rs⩽1, ∀r ∈ Rt ∪ Rt

, i ∈ N⧹{or, dr}, (10)  

∑

s∈S+i

xt
rs⩽1, ∀r ∈ Rt ∪ Rt

, i ∈ N⧹{or, dr}, (11)  

∑

s∈S+i

xt
rs =

∑

s∈S−i

xt
rs, ∀r ∈ Rt ∪ Rt

, i ∈ N⧹{or, dr}, (12)  

∑

r∈Rt∪R
t xt

rsur⩽Ut
s, ∀s ∈ S, (13)  

∑

r∈Rtk∪R
tk xt

rsur⩽Utk
s , ∀s ∈ S, k = reefer, (14)  

er + f ms
or

⩽Drs +B(1 − xt
rs), ∀r ∈ Rt ∪ Rt

, s ∈ S+truck
or

, (15)  

P{er + f ms
or

⩽D̃s +B(1 − xt
rs)}⩾α, ∀r ∈ Rt ∪ Rt

, s ∈ S+
or

⧹S+truck
or

, (16)  

P
{

Ãs + f ms
i + f mq

i ⩽D̃q + B
(
1 − xt

rs

)
+ B

(
1 − xt

rq

)}
⩾α,∀r ∈ Rt ∪ Rt

, i ∈ N⧹
{

or , dr

}
, s ∈ S−

i ⧹S− truck
i , q ∈ S+

i ⧹S+truck
i , ξsq = 1, (17) 
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P
{

Drs + t̃s + f ms
i + f mq

i ⩽D̃q + B
(
1 − xt

rs

)
+ B

(
1 − xt

rq

)}
⩾α, ∀r ∈ Rt ∪ Rt

, i ∈ N⧹
{

or, dr

}
, s ∈ S− truck

i , q ∈ S+
i ⧹S+truck

i , (18)  

P
{

Ãs + f ms
i + f mq

i ⩽Drq + B
(
1 − xt

rs

)
+ B

(
1 − xt

rq

)}
⩾α, ∀r ∈ Rt ∪ Rt

, i ∈ N⧹
{

or, dr

}
, s ∈ S−

i ⧹S− truck
i , q ∈ S+truck

i , (19)  

P
{

Drs + t̃s + f ms
i + f mq

i ⩽Drq + B
(
1 − xt

rs

)
+ B

(
1 − xt

rq

)}
⩾α, ∀r ∈ Rt ∪ Rt

, i ∈ N⧹
{

or , dr

}
, s ∈ S− truck

i , q ∈ S+truck
i , (20)  

cT
ri =

∑

s∈S+i

xt
rsc

ms
i , ∀r ∈ Rt ∪ Rt

, i = or , (21)  

cT
ri =

∑

s∈S−i

xt
rsc

ms
i , ∀r ∈ Rt ∪ Rt

, i = dr , (22)  

cT
ri =

∑

s∈S+i

∑

q∈S−i

(
cms

i + cmq
i
)
zt

rsqξsq, ∀r ∈ Rt ∪ Rt
, i ∈ N⧹{or , dr}, (23)  

zt
rsq⩽xt

rs, ∀r ∈ Rt ∪ Rt
, s ∈ S, q ∈ S, (24)  

zt
rsq⩽xt

rq, ∀r ∈ Rt ∪ Rt
, s ∈ S, q ∈ S, (25)  

zt
rsq⩾xt

rs + xt
rq − 1, ∀r ∈ Rt ∪ Rt

, s ∈ S, q ∈ S, (26)  

E(w̃ror )⩾E(D̃s) − f ms
or
− er +B(xt

rs − 1), ∀r ∈ Rt ∪ Rt
, s ∈ S+

or
⧹S+truck

or
, (27)  

E(w̃ror )⩾Drs − f ms
or
− er +B(xt

rs − 1), ∀r ∈ Rt ∪ Rt
, s ∈ S+truck

or
, (28)  

E(w̃ri)⩾E(D̃q) − E(Ãs) − f ms
i − f mq

i + B(xt
rs − 1) + B(xt

rq − 1),

∀r ∈ Rt ∪ Rt
, i ∈ N⧹{or, dr}, s ∈ S−

i ⧹S− truck
i , q ∈ S+

i ⧹S+truck
i ,

(29)  

E(w̃ri)⩾E
(

D̃q

)
− Drs − E

(
t̃s
)
− f ms

i − f mq
i + B

(
xt

rs − 1
)
+ B

(
xt

rq − 1
)
, ∀r ∈ Rt ∪ Rt

, i ∈ N⧹
{

or, dr

}
, s ∈ S− truck

i , q ∈ S+
i ⧹S+truck

i , (30)  

E(w̃ri)⩾Drq − E
(

Ãs

)
− f ms

i − f mq
i + B

(
xt

rs − 1
)
+ B

(
xt

rq − 1
)
, ∀r ∈ Rt ∪ Rt

, i ∈ N⧹
{

or, dr

}
, s ∈ S−

i ⧹S− truck
i , q ∈ S+truck

i , (31)  

E(w̃ri)⩾Drq − Drs − E
(
t̃s
)
− f ms

i − f mq
i + B

(
xt

rs − 1
)
+ B

(
xt

rq − 1
)
, ∀r ∈ Rt ∪ Rt

, i ∈ N⧹
{

or , dr

}
, s ∈ S− truck

i , q ∈ S+truck
i , (32)  

E(w̃rdr )⩾lr − E(Ãs) − f ms
dr
+B(xt

rs − 1), ∀r ∈ Rt ∪ Rt
, s ∈ S−

dr
⧹S− truck

dr
, (33)  

E(w̃rdr )⩾lr − Drs − E(̃ts) − f ms
dr
+B(xt

rs − 1), ∀r ∈ Rt ∪ Rt
, s ∈ S− truck

dr
, (34)  

E(̃tD
r )⩾E(Ãs)+ f ms

dr
− lr +B(xt

rs − 1), ∀r ∈ Rt ∪ Rt
, s ∈ S−

dr
⧹S− truck

dr
, (35)  

E(̃tD
r )⩾Drs +E(̃ts)+ f ms

dr
− lr +B(xt

rs − 1), ∀r ∈ Rt ∪ Rt
, s ∈ S− truck

dr
, (36)  

where cT
ri is the planned transfer cost of request r at terminal i; E(w̃ri) is the estimated storage time of request r at terminal i; E

(
t̃D
r

)
is 

the estimated delay in delivery of request r at destination terminal dr; P is the probability measure; zt
rsq is a binary variable which 

equals to 1 if request r has to transfer between service s and q, 0 otherwise; E(D̃s) = μ+
s ,E(Ãs) = μ−

s ,E(̃ts) = μs. 
Constraints (2) and (3) ensure that new request r ∈ Rt will not be accepted by the platform if there is no matching possibility. 

Constraints (4,5) ensure that at most one service transports new request r ∈ Rt departing from its origin or arriving to its destination. 
Constraints (6,7) ensure that reoptimization request r ∈ Rt must be transported by one service departing from its origin and by one 
service arriving to its destination. Constraints (8)–(11) are designed to eliminate subtours of shipments’ itineraries. Subtours could be 
formulated when services that arrive at the shipment’s origin and depart from the shipment’s destination are selected or when multiple 
services that depart from or arrive at a transshipment terminal are selected. Constraints (12) ensure flow conservation at transshipment 
terminals. Constraints (13) ensure that the total container volumes of requests matched with service s do not exceed its free capacity at 
decision epoch t. Constraints (14) ensure that the total volumes of reefer containers matched with service s cannot exceed its free 
capacity on reefer slots. In practice, dry containers can use reefer slots, but reefer containers cannot use dry slots (Meng et al., 2019). 
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Constraints (15) ensure that the departure time of service s minus loading time must be earlier than the release time of request r, if 
request r will be transported by service s depart its origin terminal. Here, B is a large enough number which ensures the time 
compatibility between shipment r and service s when binary variable xt

rs equals 1, but leaves the constraints “open” if xt
rs is 0. Con-

straints (16)–(20) ensure that the possibility of feasible transshipment at terminals will be higher than the confidence level α. Con-
straints (21)–(23) calculate the loading costs at origin terminals, the unloading costs at destination terminals, and the loading and 
unloading costs at transshipment terminals. Constraints (24)–(26) ensure that binary variable zt

rsq equals 1 if xt
rs = 1 and xt

rq = 1, 
0 otherwise. Constraints (27)–(34) calculate the storage time at origin, transshipment, and destination terminals. Constraints (35,36) 
calculate delay in deliveries at destination terminals. 

To solve the CCP model, the traditional methods is to convert the chance constraints into their corresponding deterministic 
equations. Based on the properties of normal distributions, constraints (16)–(20) can be linearized as: 

er + f ms
or

+ B
(
xt

rs − 1
)
− μ+

s

σ+
s

⩽ϕ− 1(1 − α), ∀r ∈ Rt ∪ Rt
, s ∈ S+

or
⧹S+truck

or
, (37)  

f ms
i + f mq

i + B(xt
rs − 1) + B(xt

rq − 1) − (μ+
q − μ−

s )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(σ+
q )

2
+ (σ−

s )
2

√ ⩽ϕ− 1(1 − α),

∀r ∈ Rt ∪ Rt
, i ∈ N⧹{or, dr}, s ∈ S−

i ⧹S− truck
i , q ∈ S+

i ⧹S+truck
i , ξsq = 1,

(38)  

Drs + f ms
i + f mq

i + B
(
xt

rs − 1
)
+ B

(
xt

rq − 1
)
−
(

μ+
q − μs

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
σ+

q

)2
+ (σs)

2
√ ⩽ϕ− 1(1 − α), ∀r ∈ Rt ∪ Rt

, i ∈ N⧹

⎧
⎪⎪⎨

⎪⎪⎩

or , dr

⎫
⎪⎪⎬

⎪⎪⎭

, s ∈ S− truck
i , q ∈ S+

i ⧹S+truck
i , (39)  

Drq − f ms
i − f mq

i + B
(
1 − xt

rs

)
+ B

(
1 − xt

rq

)
− μ−

s

σ−
s

⩾ϕ− 1(α), ∀r ∈ Rt ∪ Rt
, i ∈ N⧹

⎧
⎨

⎩
or, dr

⎫
⎬

⎭
, s ∈ S−

i ⧹S− truck
i , q ∈ S+truck

i , (40)  

Drq − Drs − f ms
i − f mq

i + B
(
1 − xt

rs

)
+ B

(
1 − xt

rq

)
− μs

σs
⩾ϕ− 1(α), ∀r ∈ Rt ∪ Rt

, i ∈ N⧹

⎧
⎨

⎩
or , dr

⎫
⎬

⎭
, s ∈ S− truck

i , q ∈ S+truck
i , (41)  

where ϕ− 1(α) is the inverse function of standardized normal distributions. 

4.2.2. Sample average approximation method 
Based on model P1, in this section, we present the SAA that samples requests which appear in the near future. At decision epoch t, a 

sample {ω1,ω2,…,ωγ ,…,ωΓ} of Γ scenarios is generated according to the probability distributions {πk, πo, πd, πu, πa, πe, πl, πp, πcD} of 
shipment requests. Each scenario includes a prediction of spot requests arrived between stage t+1 and stage t+ H, ωγ = {ωγ(t+1),

ωγ(t+2),…,ωγ(t+H)}. Here, H is the prediction horizon that is just long enough to obtain good decisions at decision epoch t. The expected 
cost in the future is approximated by the sample average function Γ− 1∑Γ

γ=1. Let ŷγh
r be the binary variable which equals 1 if sample 

request r ∈ ωγh is accepted, and x̂γh
rs be the binary variable which equals 1 if sample request r ∈ ωγh is matched with service s ∈ S under 

scenario γ ∈ {1, ..,Γ} at stage h ∈ H = {t + 1,…,max{T, t + H}}. We define ĉT
ri as the transfer cost and Ê(w̃ri) as the waiting time of 

sample request r ∈ ωγh at terminal i, Ê
(

t̃D
r

)
as the delay in delivery of sample request r. The optimization model of the DSGSM problem 

at decision epoch t changes to:  

subject to constraints (2)–(12), (15), (21)–(41) for r ∈ Rt ∪ Rt
∪ ωγh, γ ∈ {1,…,Γ},h ∈ H, 
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(42)   
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∑

r∈Rt∪R
t xt

rsur +
∑

h∈H

∑

r∈ωγh

x̂γh
rs ur⩽Ut

s, ∀s ∈ S, γ ∈ {1,…,Γ}, (43)  

∑

r∈Rtk∪R
tk xt

rsur +
∑

h∈H

∑

r∈ωγhk

x̂γh
rs ur⩽Utk

s , ∀s ∈ S, k = reefer, γ ∈ {1,…,Γ}. (44) 

Constraints (43,44) ensure that the total container volumes of new requests, reoptimization requests, and sample requests matched 
with service s do not exceed its free capacity at decision epoch t under each scenario. 

4.3. Preprocessing-based heuristic algorithm 

Due to the computational complexity, we design the P-HA to solve model P2 at each decision epoch. The P-HA is adapted from the 
heuristic algorithm designed by Guo et al. (2020b) in which travel times are considered deterministic. The P-HA consists of three steps: 
preprocessing of feasible paths, preprocessing of feasible matches, and binary integer linear programming. 

4.3.1. Preprocessing of feasible paths 
We define a path p as a combination of services in sequence. A path p is feasible only if the services inside a combination satisfy 

time-spatial compatibility. Specifically, for two consecutive services si, si+1 within path p, the destination of service si must be the same 
as the origin of service si+1; the arrival time of service si plus unloading time must be earlier than the departure time of service si+1 

minus loading time at transshipment terminal dsi with confidence level α. We define Npath as the largest number of services in a path. Let 
P denote the set of feasible paths, and Pl

ij represent the set of feasible paths with l services that depart from terminal i and arrive to 
terminal j. 

The pseudocode of preprocessing of feasible paths is shown in Algorithm 2. The algorithm starts with determining the feasible paths 
for each OD pair with just one service, and subsequently combines these paths with a single service to create feasible paths with two 
services, three services, and so on. To examine whether a new path [s1,…, sl− 1, s] ∈ Pl

ij consisting of feasible path p = [s1,…, sl− 1] ∈ Pl− 1
ios 

and service s ∈ S−
j is feasible, we check the transshipment feasibility between service sl− 1 and service s by using constraints (38)–(41) 

with xrsl− 1 = 1,xrs = 1. After that, we check whether feasible path p ∈ P has subtours, and remove paths with subtours. 

Table 3 
The methodological differences among DA, SA1, SA2, and HSA.  

Approaches Components Default parameter settings  

Dynamic 
approaches 

Stochastic 
approaches 

Optimization 
algorithm 

Confidence 
level 

Length of prediction 
horizon 

Number of 
scenarios 

DA RHF - P-HA - - - 
SA1 RHF CCP P-HA 0.7 - - 
SA2 RHF SAA P-HA - 12 10 
HSA RHF CCP + SAA P-HA 0.7 12 10  

Fig. 7. The topology of global synchromodal network G1.  
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Algorithm 2. Feasible path generation algorithm.   
Input: Terminals N, services S, the largest number of services in a path Npath, index l ∈ {1,2,…,Npath}.  
Output: Feasible paths {Pl

ij}i∈N,j∈N,l∈{1,…,Npath}.  
Initialize: Let P ← ∅, l ← 1.  
1: for terminal i ∈ N, terminal j ∈ N do  
2: for service s ∈ S do  
3: if origin os = i and destination ds = j then  
4: Pl

ij ← Pl
ij ∪ {[s]}

5: l ← l + 1  
6: while l⩽Npath do  
7: for terminal i ∈ N, terminal j ∈ N do  
8: for service s ∈ S do  
9: if origin os ∕= i and destination ds = j then  
10: for feasible path p = [s1,…, sl− 1 ] ∈ Pl− 1

ios 
do  

11: if P{feasible transshipment between service sl− 1 and s} ⩾α then  
12: Pl

ij ← Pl
ij ∪ {[s1,…, sl− 1, s]}

13: l ← l + 1  
14: for terminal i ∈ N, terminal j ∈ N, index l ∈ {1,…,Npath} do  
15: for path p ∈ Pl

ij do  
16: for service s ∈ p do  
17: if ds = i or os = j then  
18: Pl

ij ← Pl
ij⧹{p}

19: for service s ∈ p, q ∈ p do  
20: if os = oq then  
21: Pl

ij ← Pl
ij⧹{p}

4.3.2. Preprocessing of feasible matches 
A match between request r ∈ R and path p = [s1,…, sl] ∈ P is feasible if it satisfies time-spatial compatibility. Specifically, the origin 

terminal of shipment request r should be the same as the origin of service s1; the destination of request r should be the same as the 
destination of service sl. The release time of request r should be earlier than the departure time of service s1 minus loading time at 
origin terminal or with confidence level α. We denote Nmatch as the maximum number of feasible matches. Let Φr be the set of feasible 
paths for request r, and crp be the total costs of matching request r with path p including travel costs, transfer costs, storage costs, delay 

Table 4 
Request data of instance G1-6-0.  

Requests Container 
type 

Origin Destination Container volume 
(TEU) 

Announce 
time 

Release 
time 

Lead time 
(h) 

Freight rate 
(€/TEU) 

Delay cost 
(€/TEU-h) 

1 reefer Shanghai Rotterdam 5 0 100 720 4000 20 
2 dry Shanghai Rotterdam 5 0 100 840 3500 17.5 
3 reefer Wuhan Rotterdam 5 0 100 600 4500 22.5 
4 dry Wuhan Rotterdam 5 0 100 960 3000 15 
5 reefer Chongqing Duisburg 5 0 100 480 5000 25 
6 dry Chongqing Duisburg 5 0 100 1080 2500 12.5  

Table 5 
Sensitivity analysis of different policies.  

Cases Subsidies Ice-breaking fee IMO regulations Itineraries 

Request 1 Request 2 Request 3 Request 4 Request 5 Request 6 

Benchmark 0 with with [3,4,17,10] 16 [4,17,14] [2,15] [] [1,2,15,9] 
1 10% with with [3,4,17,10] 16 [4,17,14] [2,15] [] [1,2,15,9] 
2 20% with with [3,4,17,10] [3,4,17,10] [4,17,14] [2,15] [] [1,2,15,9] 
3 30% with with [3,4,17,10] [3,4,17,10] [4,17,14] [2,15] [] [1,2,15,9] 
4 40% with with [3,4,17,10] [3,4,17,10] [4,17,14] [2,15] [] 17 
5 50% with with [3,4,17,10] [3,4,17,10] [4,17,14] [4,17,10] [] 17 
6 60% with with [3,4,17,10] [3,4,17,10] [4,17,14] [4,17,10] [] 17 
7 70% with with [3,4,17,10] [3,4,17,10] [4,17,14] [4,17,10] [] 17 
8 80% with with [3,4,17,10] [3,4,17,10] [4,17,14] [4,17,10] [] 17 
9 90% with with [3,4,17,10] [3,4,17,10] [4,17,14] [4,17,10] 17 17 
10 100% with with [3,4,17,10] [3,4,17,10] [4,17,14] [4,17,10] 17 17 
11 0 without with [3,4,17,10] 16 [4,17,14] [2,16] [] [1,2,16,9] 
12 0 with without 16 16 [4,17,14] [2,15] [] [1,2,15,9]  
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costs, and carbon tax. 
The pseudocode of preprocessing of feasible matches is shown in Algorithm 3. For request r and path p = [s1,…, sl] ∈ Pl

ordr
, the 

transshipment feasibility between r and p is checked by using constraints (15) and (37) with xrs1 = 1. For each request r, if the number 
of feasible matches in Φr exceeds Nmatch,Φr will be replaced by the set of Nmatch cheapest matches. 

Algorithm 3. Feasible match generation algorithm.   

Input: Feasible paths P, requests R = Rt ∪ Rt
∪ {ωγh}∀γ∈{1,…,Γ},h∈H , the largest number of services in a path Npath, maximum matches Nmatch , objective function (42).  

Output: Feasible matches {Φr}∀r∈R, total costs 
[
crp
]

∀r∈R,p∈P .  
Initialize: Let Φ ← ∅, l ← 1.  
1: for request r ∈ R do  
2: for l ∈ {1,2,…,Npath} do  
3: for feasible path p = [s1, s2,…, sl] ∈ Pl

ordr 
do  

4: if P{feasible transshipment at origin terminal or} ⩾α then  
5: Φr ← Φr ∪ {p}
6: crp ← Calculate the objective function  
7: if the number of feasible matches in Φr > Nmatch then  
8: Φr ← the Nmatch cheapest matches in Φr    

4.3.3. Binary integer programming model 
Based on the above preprocessing procedures, the objective function is updated to maximize the total profits for the matching of 

requests with feasible paths. Let zt
rp be a binary variable equal to 1 if request r ∈ Rt ∪ Rt is matched with path p ∈ P, and 0 otherwise. Let 

ẑγh
rp be the binary variable equal to 1 if request r ∈ ωγh, γ ∈ {1,…,Γ}, h ∈ H is matched with path p ∈ P, and 0 otherwise. Model P2 will 

be translated into a binary integer programming (BIP) model: 

P3 max

yt ,zt ,̂y
t
,̂z

t ∑

r∈Rt
pruryt

r −
∑

r∈Rt∪R
t

∑

p∈Φr

crpzt
rp +

1
Γ
∑Γ

γ=1

∑

h∈ℍ

(
∑

r∈ωγh

prur ŷγh
r −

∑

r∈ωγh

∑

p∈Φr

crp ẑγh
rp

)

(45)  

subject to 

yt
r⩽
∑

p∈Φr

zt
rp, ∀r ∈ Rt, (46)  

∑

p∈Φr

zt
rp⩽1, ∀r ∈ Rt, (47)  

∑

p∈Φr

zt
rp = 1, ∀r ∈ Rt

, (48) 

Fig. 8. The topology of global synchromodal network G2.  
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ŷγh
r ⩽
∑

p∈Φr

ẑγh
rp , ∀γ ∈ {1,…,Γ}, h ∈ H, r ∈ ωγh, (49)  

∑

p∈Φr

ẑγh
rp⩽1, ∀γ ∈ {1,…,Γ}, h ∈ H, r ∈ ωγh, (50)  
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ur ẑγh
rp⩽Ut

s, ∀γ ∈ {1,…,Γ}, s ∈ S, (51)  

∑

r∈Rtk∪R
tk

∑

p∈Φrs

urzt
rp +

∑

h∈ℍ

∑

r∈ωγhk

∑

p∈Φrs

ur ẑγh
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⎫
⎬

⎭
, s ∈ S, k = reefer, (52)  

where Φrs = {p ∈ Φr|s ∈ p}. 
Constraints (46,47) ensure that at most one feasible path will be assigned to each new request r ∈ Rt if r is accepted. Constraints 

(48) ensure that one feasible path will be assigned to each reoptimization request r ∈ Rt . Constraints (49,50) ensure that at most one 
feasible path will be assigned to each sample request r ∈ ωγh if r is accepted. Constraints (51,52) ensure that the total container volumes 
of requests assigned to service s ∈ S does not exceed its free capacity regarding total slots and reefer slots. 

5. Numerical experiments 

In this section, we evaluate the performance of the HSA on the DSGSM problem in comparison to a deterministic approach (DA) 
which does not consider spot request and travel time uncertainties, a stochastic approach (SA1) which only considers travel time 
uncertainty, and a stochastic approach (SA2) which only considers spot request uncertainty. While the DA is similar to the approach 
presented in Guo et al. (2020b), the SA1 is similar to the approach presented in Guo et al. (2020c) and the SA2 is similar to the 
approach of Guo et al. (2020a). All of the above approaches are implemented under the RHF and supported by the P-HA that generates 
timely solutions at each decision epoch. The methodological differences among these approaches are summarized in Table 3. The 
approaches are implemented in MATLAB, and all experiments are executed on 3.70 GHz Intel Xeon processors with 32 GB of RAM. The 
optimization problems are solved with CPLEX 12.6.3. 

Unless otherwise stated, the benchmark values of coefficients are set as follows: planning horizon (unit: hours) T = 1400; the 
length of time intervals is one hour; loading cost (unit: €/TEU) cship

i = 18, cbarge
i = 18, ctrain

i = 12, ctruck
i = 12 for i ∈ N; loading time (unit: 

hours) f ship
i = 12, fbarge

i = 4, f train
i = 2, f truck

i = 1 for i ∈ N; storage cost (unit: €/TEU-h) cS
i = 1 for i ∈ N; carbon tax (unit: €/kg) cE = 0.07; 

Table 6 
Probability distributions of spot requests.  

Parameters Value Probability 

Container type {dry,reefer} {0.9,0.1} 
Origin {Shanghai,Zhengzhou,Wuhan,Chongqing} Uniform distribution 
Destination {Rotterdam,Duisburg,Neuss,Dortmund} Uniform distribution 
Container volume {1,2,…,9} Uniform distribution 
ΔT1  {0,1,2,…} Poisson distribution with mean 24 min 
Announce time ar+1 = ar + ΔT1   
ΔT2  {1,2,…,24} Uniform distribution 
Release time er = ⌈ar⌉ + ΔT2   
Lead time {480,600,720,840,960,1080} {0.15,0.15,0.2,0.2,0.15,0.15} 
Freight rate {5000,4500,4000,3500,3000,2500} 
Delay cost {25,22.5,20,17.5,15,12.5}  

Table 7 
Performance of the preprocessing-based heuristic algorithm.  

Instances Exact approach P-HA (3, 100) P-HA (5, 200) P-HA (Npath=7, Nmatch=unlimited)   

N.var N.con Obj CPU gaps (%) CPU gaps (%) CPU N.var N.con Obj CPU 

G0-5-0 2268 6540 13107 40.44 − 2.06 0.16 0.00 0.24 76 46 13107 0.27 
G0-10-0 3780 10840 26114 181.36 − 2.74 0.17 0.00 0.24 121 52 26114 0.32 
G1-1-0 11466 35994 23127 7417.06 0.00 1.23 0.00 13.03 297 53 23127 190.50 
G1-10-0 114660 362164   − 6.90 1.30 0.00 15.81 34613 192 62090 216.88 
G1-100-0 1146600 3612428   − 8.14 4.29 0.00 56.69 368430 391 545749 549.22 
G1-200-0 2293200 7224988   − 5.67 7.81 0.00 97.58 716098 592 1331016 929.47 
G1-300-0 3439800 10846452   − 4.69 16.33 − 0.01 146.96 1075646 792 1889476 1563.81 
G1-400-0 4586400 14439116   − 2.60 26.27 0.00 212.37 1431162 991 2253709 2291.49  
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Fig. 9. The impact of different confidence levels on instance G2-150-150.  

Table 8 
Impact of different confidence levels on instances with different DODs.  

Instances Degree of dynamism Confidence level Total profits (€) Infeasible transshipments Rejections CPU (seconds) Gaps (%) 

G2-225-75 25% 0.50 1443321 75 4 0.22 0.00 
0.70 1469731 45 9 0.18 1.83 
0.75 1434690 16 15 0.17 − 0.60 
0.90 1334829 9 25 0.13 − 7.52 
0.95 1271550 9 31 0.14 − 11.90 

G2-150-150 50% 0.50 1334025 72 6 0.43 0.00 
0.70 1413988 44 11 0.39 5.99 
0.75 1362974 17 19 0.36 2.17 
0.90 1253208 8 28 0.32 − 6.06 
0.95 1215809 8 35 0.31 − 8.86 

G2-75-225 75% 0.50 1328131 77 6 0.69 0.00 
0.70 1364769 50 12 0.62 2.76 
0.75 1333812 18 22 0.57 0.43 
0.90 1247088 8 31 0.50 − 6.10 
0.95 1214627 9 36 0.50 − 8.55 

G2-0-300 100% 0.50 1256014 75 20 0.96 0.00 
0.70 1276508 52 25 0.86 1.63 
0.75 1275004 19 28 0.86 1.51 
0.90 1263179 10 33 0.75 0.57 
0.95 1205402 10 41 0.73 − 4.03  

Table 9 
Impact of different standard deviations.  

Instances Standard deviation coefficients (*benchmark 
value) 

Total profits (€) Infeasible 
transshipments 

Rejections Delay (TEU-h) Gaps (%) 

G2-225-75 1.0 1469731 45 9 14013 1.83 
1.5 1348739 25 19 13834 17.80 
2.0 895563 39 26 30761 26.96 

G2-150- 
150 

1.0 1413988 44 11 15673 5.99 
1.5 1262171 25 21 16735 19.89 
2.0 866506 35 28 31336 42.04 

G2-75-225 1.0 1364769 50 12 16247 2.76 
1.5 1253172 27 25 16953 26.65 
2.0 866958 35 33 30925 67.85 

G2-0-300 1.0 1276508 52 25 15388 1.63 
1.5 1220973 27 30 17437 28.61 
2.0 852891 34 37 31538 60.61  
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delay cost (unit: €/TEU-h) cD
r = 0.005 ∗ pr for r ∈ R; mean of travel times μs = ts for s ∈ S; standard deviation of travel times σs =

0.1 ∗ ts for s ∈ S⧹Struck, σs = 0.5 ∗ ts for s ∈ Struck. Regarding the P-HA, the default settings are as follows: the largest number of 
services in a path Npath = 7, the maximum number of feasible matches for each request Nmatch = 300. 

5.1. A small network 

To test the impact of different policies in global synchromodal transport, we first consider a small network G1 presented by Guo 
et al. (2020c), as shown in Fig. 7. It consists of two terminals in Europe and three terminals in Asia that are connected by Suez Canal 
Route (SCR), Northern Sea Route (NSR), and Eurasia Land Bridge (ELB). Compared with the SCR, the NSR has a shorter travel time but 
a higher travel cost caused by ice-breaking fees (Lin and Chang, 2018). With the implementation of IMO 2020 regulations, shipping 
liner companies are required to use low-sulfur fuels on the sea, which in turn increases about 60% of travel costs in the SCR and the 
NSR (Lian et al., 2020). As an alternative, the ELB becomes more and more competitive thanks to its shortest travel time. However, 
without subsidies from governments, the ELB is still the most expensive route. 

We use the same service data designed by Guo et al. (2020b) which consists of 18 services: 8 in Asia, 6 in Europe and 4 connecting 
Asia and Europe. We consider 6 contractual requests received by the system before the planning horizon. The detailed request data is 
shown in Table 4. Compared with reefer shipments (requests 1, 3, 5), dry shipments (requests 2, 4, 6) have longer lead times, lower 
freight rates, and lower delay costs. 

The effects of policies are tested under instance G1-6-0 without spot request and travel time uncertainties, i.e., μs = ts,σs = 0, ∀
s ∈ S,Rt = ∅, ∀t ∈ {1,…,T}. Therefore, we set α = 0.5,H = 0,Γ = 0. Under the benchmark case, the travel costs are designed under 
the consideration of ice-breaking fees in the NSR, IMO 2020 regulations in the SCR and the NSR, and without subsidies from gov-
ernments. Table 5 shows that the itineraries of dry shipments (i.e., requests 2, 4, 6) are more sensitive to different policies than reefer 
shipments (i.e., requests 1, 3, 5). Under the same policy, it is obvious that reefer shipments are more likely to be assigned on the ELB 

Fig. 10. Performance of the SA2 in comparison to the DA.  

Table 10 
Performance of the hybrid stochastic approach.  

Instances Approaches Total profits (€) Infeasible transshipments Rejections Delay (TEU-h) Emission (kg) CPU (seconds) Gaps (%) 

G2-225-75 DA 1443321 75 4 18026 5768862 0.22 0.00 
SA1 1469731 45 9 14013 5717070 0.18 1.83 
SA2 1476023 71 6 16824 5680165 43.22 2.27 
HSA 1459075 44 14 13531 5632343 38.24 1.09 

G2-150-150 DA 1334025 72 6 21049 5742178 0.43 0.00 
SA1 1413988 44 11 15673 5637143 0.39 5.99 
SA2 1369395 69 11 19679 5582664 86.58 2.65 
HSA 1424060 43 15 14572 5558380 77.78 6.75 

G2-75-225 DA 1328131 77 6 21277 5681453 0.69 0.00 
SA1 1364769 50 12 16247 5596631 0.62 2.76 
SA2 1385221 70 12 19842 5527160 334.68 4.30 
HSA 1414896 46 15 15192 5536685 175.26 6.53 

G2-0-300 DA 1256014 75 20 19734 5408196 0.96 0.00 
SA1 1276508 52 25 15388 5222779 0.86 1.63 
SA2 1391737 70 14 19599 5455597 454.64 10.81 
HSA 1428613 47 16 15018 5486612 186.35 13.74  
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compared to dry shipments due to the time sensitivity of reefer cargoes. When government subsidies cover above 50% of ELB transport 
costs, all dry shipments will be switched from maritime to railway transportation. With the government subsidies and the IMO 2020 
regulations, the ELB becomes more competitive in the global transport market than the SCR and the NSR. Liner shipping companies 
need to take actions to meet these challenges, such as adjusting sailing routes and adopting low sulfur fuel. Besides, due to the existence 
of the ice-breaking fee, the SCR is still more competitive than the NSR. To attract more demands on the NSR, liner shipping companies 
can adopt smart navigation methodologies to avoid the ice-breaking fee. 

5.2. A realistic network 

In this section, we test the behavior of the methodologies under a realistic network G2 with 8 terminals and 106 services. The 
hinterland-related data is adapted from Guo et al. (2020b); the intercontinental-related data is adapted from Guo et al. (2020c). The 
topology of network G2 is shown in Fig. 8. We generate several instances to represent different characteristics of requests under 
network G2. The probability distributions of spot requests are shown in Table 6. To ensure demand and supply balance, the total 
number of shipment requests is set to 300. We use G2 − n1 − n2 to represent an instance under network G2 with n1 contractual requests 
and n2 spot requests. 

5.2.1. Performance of the P-HA 
The performance of the P-HA is tested under 8 instances without dynamic events and uncertainties. The P-HA is based on pre-

processing procedures which may lead to suboptimal solutions. However, when Npath is large enough and Nmatch is unlimited, the P-HA 
generates optimal solutions. We use Npath = 7 and Nmatch=unlimited as the benchmark and vary Npath from 3 to 7 and Nmatch from 100 to 
unlimited. We also report the results generated by an exact approach in which optimization model P2 is solved by CPLEX directly. We 
denote ‘N.var’ as the number of variables, ‘N.con’ as the number of constraints, ‘Obj’ as the total profits, and ‘CPU’ as the computation 
time in seconds. We use ‘gaps’ to represent the gaps in total profits between the P-HA with different settings, i.e., 
gaps=Total profits(Npath ,Nmatch)− Total profits(7,unlimited)

Total profits(7,unlimited) . Table 7 shows that the exact approach can only solve the first three small instances within 
24 h. Increasing the largest number of services in a path to 5 and the maximum number of feasible matches to 200, the P-HA can get 
optimal solutions for these instances within 13.03 s. Under the same setting, the P-HA can generate ‘very good’ solutions within 4 min 
for large instances in which the largest gap is just − 0.01%. By using the P-HA, the system has the flexibility to choose proper Npath and 
Nmatch values to achieve the trade-off between computational complexity and solution quality. 

5.2.2. Performance of the SA1 for travel time uncertainties 
In this section, we aim to investigate the performance of the SA1 in addressing travel time uncertainties under the impact of 

different confidence levels, degrees of dynamism, and travel time deviations. 
To investigate the impact of different confidence levels, we use instance G2-150-150 under 20 realizations of travel times. The 

realizations of travel times are generated based on Monte Carlo Simulation by sampling their probability distributions with a fixed 
lower bound of 0.9 ∗ ts for s ∈ S. Fig. 9 shows that with the same confidence level, different solutions are generated under different 
realizations of travel times. From Fig. 9(a), we can see that on average, the SA1 has the best performance in total profits when α = 0.7. 
Fig. 9(b) shows that in general, the higher the confidence level, the lower the delays in deliveries. Fig. 9(c) indicate that with a higher 
confidence level, the platform will choose ‘suboptimal’ decisions that have lower probability of infeasible transshipments. Fig. 9(d) 
shows that the higher the confidence level, the higher the number of rejections. Although we use profit maximization as the objective 
function, infeasible transshipments, delays, and rejections are also important performance indicators which reflect the platform’s 
service level. By playing with the confidence level, decision makers can decide on how risk-averse they are and manage the trade-off 
between operational efficiency and service level. 

To investigate the influence of confidence level on instances with different degrees of dynamism (DODs), we design the following 
four instances: G2-225-75, G2-150-150, G2-75-225, G2-0-300. We define DOD as the ratio between the number of spot requests and 
the number of total requests. We use confidence level 0.5 as the benchmark and denote ‘gaps’ as the gaps in total actual profits, i.e., 
gaps=Total profits(α)− Total profits(0.5)

Total profits(0.5) . Besides, we present the average results generated under 20 realizations of travel times. Table 8 shows 
that for all the instances, the SA1 has the best performance in total profits with confidence level 0.7. With confidence level 0.7, the SA1 
has the largest improvements in total profits under instance G2-150-150 with 50% DOD. It is also interesting to see that for all the 
instances, the higher the confidence level, the lower the number of infeasible transshipments and the higher the number of rejections. 
Furthermore, the computational complexity decreases with the increasing confidence level and increases with the increasing DOD. 

To test the impact of different standard deviations of travel times, we set α = 0.7 for the SA1 and use average results generated 
based on 20 realizations of actual travel times. Let ‘gaps’ be the gaps in total profits between the SA1 and the DA. Table 9 shows that 
travel time deviations have a large impact on the performance of the SA1 in increasing total profits. The larger the standard deviation, 
the better the performance of the SA1 in comparison to the DA. This is reasonable since with higher standard deviations, the variability 
in travel times is very high and the estimations are not as accurate. In comparison, instance G2-75-225 has the best performance in 
improving the total profits that achieves 67.85% with standard deviations σs = 0.2 ∗ ts for s ∈ S⧹Struck and σs = ts for s ∈ Struck. 
Companies that have the main source of uncertainty as travel time with larger variations may benefit more from the stochastic 
approach SA1. 
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5.2.3. Performance of the SA2 for spot request uncertainties 
In this section, we aim to investigate the performance of the SA2 in addressing spot request uncertainties under the impact of 

different numbers of scenarios (Γ) and lengths of the prediction horizon (H). We use Γ = 0,H = 0 as the benchmark. Let ‘gaps in total 
profits’=Total profits(Γ,H)− Total profits(0,0)

Total profits(0,0) . Here, the total profits are the average total profits generated under 20 realizations of travel times. 
In case of sample requests instability, we replicate the optimization process 10 times for all instances. Fig. 10(a) shows that under 
instance G2-150-150, the performance of the SA2 in total profits increases as the number of scenarios and the length of the prediction 
horizon grow up. We set Γ = 10,H = 12 for the SA2 and use the DA as the benchmark. Fig. 10(b) shows that the SA2 outperforms the 
DA in all the instances, and the gap between the SA2 and the DA grows with the increasing DOD. Companies running on a larger 
percentage of spot requests are expected to benefit more from the stochastic approach SA2. 

5.2.4. Performance of the HSA for travel time and spot request uncertainties 
To investigate the benefits of incorporating the stochastic information of both travel times and spot requests, we compare the 

performance of the HSA with the DA, the SA1, and the SA2 under default settings. We use the DA as the benchmark and report the 
average results under 20 realizations of travel times and 10 samples of spot requests. We use ‘gaps’ to represent the gaps in total profits 
between different approaches, which is given by (objective value-benchmark value)/benchmark value. Table 10 shows that the HSA 
has better performance in total profits than the DA in all the instances and than the SA1 and SA2 in highly dynamic instances, namely 
above 50% DODs. On average, while the SA1 has 3.05% improvements and the SA2 has 5.01% improvements in comparison to the DA, 
the HSA has the largest improvements, namely 7.03%. In addition, for all the instances, the HSA generates lower infeasible trans-
shipments and delays than other approaches. Furthermore, we notice that the number of rejections increases with the increasing DOD 
and achieves the highest under instance G2-0-300 which has no contractual requests. This is reasonable since the system cannot reject 
contractual requests. Moreover, we observe that the HSA has the best performance in instance G2-0-300 as stochastic information pays 
off when it is highly dynamic. Besides, it is obvious that increasing the confidence level, the computational complexity will decrease 
thanks to the chance constraints. However, increasing the number of scenarios and the length of the prediction horizon, the 
computational complexity will increase dramatically caused by the increasing size of sample requests. 

5.2.5. Managerial insights 
In this section, we summarize the key managerial insights derived from the above experimental results.  

• Thanks to the horizontal and vertical collaboration among carriers, global operators have more flexibility to choose different routes 
for shipments which is critical when disturbances happen (e.g., Suez Canal blockage in March 2021). However, the increased 
integration in global transportation gives rise to large instances which generally cannot be solved by commercial software. Heu-
ristic algorithms that can generate timely and high-quality solutions, like the one designed in this paper, are essential to global 
operators.  

• Travel time uncertainty, as the main source of uncertainties in global transportation, not only affects operational efficiency but also 
the feasibility of transport plans. Stochastic approaches that address travel time uncertainties are critical for global operators to 
improve the robustness of transport plans and ensure the on-time delivery of shipments under traffic disruptions.  

• Due to future request uncertainty and service capacity limitations, the capacity assigned to current requests will be unavailable for 
future requests which might be more profitable. Stochastic approaches that evaluate the impact of current decisions on the future 
state and behavior of the system play a key role in increasing the total profits of global companies over a given planning horizon.  

• In practice, travel time uncertainty and shipment request uncertainty always happen simultaneously. Stochastic approaches that 
consider these two types of uncertainties integrally can help global companies achieve better performance in profits, feasible 
transshipments, and on-time deliveries in transport planning. 

6. Conclusions and future research 

In this paper, we investigated a dynamic and stochastic shipment matching problem in global synchromodal transportation. We 
considered a platform that aims to provide online acceptance and matching decisions for contractual and spot shipment requests in a 
global synchromodal transport network. The platform receives requests and travel times dynamically, but the probability distributions 
of dynamic events are available. To solve the problem, we developed a rolling horizon framework to handle dynamic events, a hybrid 
stochastic approach (HSA) to address shipment request and travel time uncertainties, and a preprocessing-based heuristic algorithm to 
generate solutions at each decision epoch. 

We conducted extensive experiments to validate the performance of the HSA in comparison to the approaches that do not consider 
any uncertainty or only consider one type of uncertainties. The experimental results indicate that the HSA is highly effective in 
increasing total profits, reducing infeasible transshipments and delays on instances with a large degree of dynamism. Thanks to the 
flexibility of the HSA, global companies are able to adapt the transport system to their business characteristics by tuning the pa-
rameters accordingly. This way they can manage the trade-off between computational complexity and solution quality, and the trade- 
off between operations efficiency and service level. 

This research can be extended in several directions. First, in this paper, we considered a centralized platform that provides inte-
grated decisions for global shipments. To ensure the fairness among players, profit-sharing mechanism design is a promising research 
direction. Second, in practice, a large number of entities are involved in global container transport and they may not all be willing to 

W. Guo et al.                                                                                                                                                                                                           



Transportation Research Part E 152 (2021) 102404

24

give authority to a centralized platform. The coordination mechanism among them and incentives to stimulate cooperation are part of 
future research. Third, we assumed that the platform publishes fixed fare classes for container bookings. Future research can consider 
dynamic pricing strategies for online platforms to realize the balance between supply and demand. Fourth, in this paper, we assumed 
travel times follow normal distributions, future research will be conducted to relax this restriction. 
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