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Determination of Collar’s Triangle of Forces on a Flexible Wing
based on Particle Tracking Velocimetry Measurements

Christoph Mertens∗, Tomás de Rojas Cordero†, Jurij Sodja‡, Andrea Sciacchitano§ and Bas W. van Oudheusden¶

Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands

The three components in Collar’s triangle of forces (aerodynamic, elastic and inertial)
acting on a flexible wing are determined, based on integrated optical measurements of the
structural and the aerodynamic response to steady and unsteady periodic inflow conditions.
The measurement device is a coaxial volumetric velocimeter mounted on a robotic arm, which
is used to perform optical measurements of fiducial markers on the wing surface and simulta-
neously of helium-filled soap bubbles that are used as flow tracers. The optical measurements
of the structural markers and the flow tracers are both processed with the Lagrangian particle
tracking algorithm Shake-The-Box. Subsequently, physical models are used to determine the
inertial and the elastic force of the aeroelastic interaction from themarker tracking results, and
to determine the unsteady aerodynamic lift force from the flow velocity fields. The results of
this integrated aeroelastic characterization approach are in physical agreement with each other
according to the equilibrium of forces in Collar’s triangle and good agreement with external
reference measurements.

I. Nomenclature

2 = Chord length
5 = Frequency
8 = imaginary unit
: = Reduced frequency
@ = External load on the beam
B = Span width
F = Beam deflection
G = Streamwise coordinate
H = Crossflow coordinate
I = Spanwise coordinate
� = Aerodynamic force
� = Elastic force
�� = Flexural rigidity
� = Inertial force
! = Lift force
" = Bending moment in the beam
& = Shear force in the beam
*∞ = Freestream velocity
K = Stiffness matrix
M = Mass matrix
f = Finite element external force vector
/ = Finite element model degrees of freedom of the beam
U = Geometric angle of incidence of the wing
V = Angle of the gust vanes
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W = Vortex sheet strength
Γ = Circulation
` = Mass per unit span
d = Fluid density
f = Standard deviation
i = Phase lag
l = Angular frequency
CVV = Coaxial volumetric velocimetry probe
HFSB = Helium-filled soap bubbles
OJF = Open jet facility wind tunnel
PTV = Particle tracking velocimetry
RMS = Root mean square value

II. Introduction

Aeroelasticity is a highly relevant field in aeronautics research, which has to be considered to ensure the desired
operation and performance characteristics, as well as the safety of an aircraft design. There are several aeroelastic

phenomena, such as flutter, divergence and control reversal, which can cause catastrophic failures on aircraft and
consequently have been studied for around one century now [1]. A popular concept to depict the field of aeroelasticity
and categorize the problems that occur within it is Collar’s triangle of forces (see Fig. 1), introduced by A. R. Collar [2].

A

IE

Static 
Aero-

elasticity

Dynamic 
Aero-

elasticity

A: aerodynamic forces
E: elastic forces
I: inertial forces

Fig. 1 Collar’s triangle of forces, reproduced from [2]

The schematic represents graphically the interaction of the three forces involved in aeroelasticity, which are the
aerodynamic, elastic and inertial forces. The different nature of these forces makes it difficult to analyze the dynamic
aeroelastic response of aircraft structures; analytical models exist to predict the occurrence of certain aeroelastic
phenomena like flutter [3], but the multidisciplinary nature makes wind tunnel experiments for investigating aeroelastic
phenomena and validating the model predictions challenging to perform. A variety of measurement instruments for
the determination of the individual forces is available (e.g. pressure transducers, accelerometers, load cells), but their
coordinated use results in complex and expensive experimental setups. Additionally, installed sensors are invasive to the
experimental model, locally changing its shape and/or mass, while providing only discrete information, typically with
a relatively low spatial resolution. As a result, experimental reference data from wind tunnel measurements that can
be used for the comparison with theoretical results and for calibrating computational models are typically limited to
only a few quantities that are relatively easy to obtain, such as the wingtip deflection or the frequency of the dynamic
motion [4].

Modern optical measurement techniques, such as particle image or tracking velocimetry (PIV/PTV, [5]) for
aerodynamics and digital image correlation (DIC, [6]) for structural dynamics, provide non-invasive field measurements
and hence overcome many of the particular limitations associated with the use of installed sensors. The potential of
the combined use of these techniques in aeroelasticity experiments is demonstrated in [7], where PIV and DIC were
used to simultaneously determine the deformation of a flexible wing and the resulting unsteady position of the wingtip
vortex. Similarly, the deformation and aerodynamic loads on a flexible plate were investigated in [8] using DIC and PIV,
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respectively. These existing studies indicate the capabilities of optical measurement techniques for the non-intrusive
characterization of aeroelastic phenomena, but they do not overcome the complication of the coordinated use of several
measurement and data processing systems, which would be a requirement for simple and fast production of aeroelastic
reference data. This problem was approached for example in [9], where the aerodynamic force in terms of the surface
pressure and the deformation of a flexible wing in transonic flow were determined in an integrated approach from
pressure-sensitive paint images by using fiducial markers placed on the wing in a photogrammetric approach. However,
while this approach facilitates the combined measurement of the aerodynamic and structural behavior with only one
optical data acquisition system, it requires two separate system calibrations and data processing methods to obtain these
measurements.

The current study proposes the use of PTV to determine all three forces in Collar’s triangle with a non-intrusive,
integrated measurement approach, using only one measurement system that requires minimal instrumentation of the
experimental model. The experimental model that is investigated in this study is a flexible wing, that is subjected
to steady and unsteady periodic inflow conditions. The unsteady periodic inflow is produced with a gust generator
that performs a continuous sinusoidal motion upstream of the flexible wing. Optical measurements of the unsteady
flow field and the structural motion are performed in an integrated manner, using the same PTV data acquisition and
processing system. Particle tracking velocimetry via the Lagrangian particle tracking algorithm Shake-The-Box [10]
using helium-filled soap bubbles as flow tracers [11] is a technique that is suitable for the measurement of large-scale
unsteady flow fields [12–14] and can also be used to perform photogrammetric tracking of fiducial markers on moving
objects in the flow [15]. After the PTV measurements of the flow and the structural motion are obtained, physical
models need to be applied to determine the unsteady interaction of the forces of different nature on the wing. The
identification of suitable procedures to determine the loads based on experimental measurements of the flow velocity
and the structural deformation by using physical models is the subject of ongoing research, see e.g. [16, 17] and [18],
respectively. In this study, relatively simple physical models are used to demonstrate the experimental determination of
Collar’s triangle of forces for the investigated static and dynamic aeroelasticity test cases.

III. Physical models for the Determination of the Forces

A. Determination of the Aerodynamic Force
The component of the aerodynamic force that predominantly determines the aeroelastic response of a flexible wing

is the normal force, which acts perpendicular to the airfoil chord. The geometric angle of attack U = 5° of the wing in
this study can be considered sufficiently small, such that cosU ≈ 1, while at the same time the drag force is considerably
smaller than the lift. As a consequence, the lift force !, which acts perpendicular to the direction of the undisturbed
inflow G, and the normal force are treated as equivalent in this study, while the drag force is not further taken into
account. The lift per unit span ! ′ of a thin airfoil in steady flow can be determined from the Kutta-Joukowsky theorem,
based on the assumption of inviscid, incompressible and irrotational flow [19]:

! ′ = d*∞Γ. (1)

The circulation Γ is be obtained from the measured flow velocity field ®D with a line integral over a closed path �
around the airfoil:

Γ = −
∮
�

®D · 3®B . (2)

While the Kutta-Joukowsky theorem was originally derived for steady and irrotational flow, previous studies have
observed that it is well-suited to determine the lift force from experimental measurements also in flow conditions where
relatively small regions of the flow are not irrotational due to viscous boundary layer effects [20, 21]. As no large flow
separation effects occur in the measured flow fields, it can be expected that the Kutta-Joukowsky theorem is a suitable
approach to determine the lift force in the current study for the case of steady inflow.

In unsteady inflow conditions, the flow acceleration effects on the unsteady lift have to be considered in addition to
the quasi-steady lift due to the circulation that is given by Eq. 1. Following the unsteady potential flow theory [22], the
unsteady lift ! ′(C) on a thin airfoil is given as

! ′(C) = d*∞Γ(C) + d
∫ 2

0

(
m

mC

∫ G

0
W(G̃, C)3G̃

)
3G . (3)
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The evaluation of the unsteady flow acceleration term, given as the second term in Eq. 3, requires knowledge of the
temporal behavior of the distribution of the strength of the bound vortex sheet W along the camber line, that represents
the airfoil in the unsteady potential flow model. This expression can be simplified by using Stokes’ theorem to replace
the integral of the bound vortex sheet with the distribution of the circulation Γ along the chord:

! ′(C) = d*∞Γ(C) + d
∫ 2

0

(
m

mC
Γ(G, C)

)
3G . (4)

The circulation distribution along the chord Γ(G, C) is obtained similarly to the overall circulation around the wing
Γ(C), by line integrals of the measured flow velocity. The value of the circulation at a given chord position G8 is obtained
by performing a line integral of the velocity along a contour that encloses the chord of the wing from the leading edge
until G8 , at which point the line integration path begins and ends on the airfoil surface.

B. Determination of the Inertial Force
The dominant motion degree of freedom of the considered aeroelastic interaction is the deflection F, in the

H-direction perpendicular to the chord line of the flexible wing. Therefore, a simplified model of the wing is considered,
where the other motion degrees of freedom are not taken into account. It follows that the inertial force per unit span � ′
on the wing can be determined as the product of mass density and acceleration along the spanwise direction I:

� ′(I, C) = −`(I) ¥F(I, C) , (5)

where `(I) is the linear density, and ¥F is the second temporal derivative of the wing deflection. In the case of steady
inflow, ¥F = 0 and thus � ′(I) = 0. For the case of unsteady inflow, the periodic inflow conditions in this study, produced
by the sinusoidal operation of the gust generator at a frequency of l6 as described in Sec. IV, justify the assumption
that the resulting aerodynamic loading on the wing is sinusoidal. Assuming that the structural response of the wing is
linear, it follows that the dynamic response of the wing is sinusoidal as well, with the same frequency as the excitation
l6. This means that the stationary part of the dynamic response of the wing can be written as

F(I, C) = F0 (I) + F0 (I)4 (8l6C+i) , (6)

where F0 (I) is the mean deflection, which is identical to the wing deflection in response to the steady inflow, and
F0 (I) is the dynamic deflection amplitude. The second temporal derivative of Eq. 6 is

¥F(I, C) = −l2
6F0 (I)4 (8l6C+i) . (7)

The inertial load � ′(I) as given in Eq. 5 is determined in this study by performing a sinusoidal curve-fitting to the
PTV-based marker displacements from their respective mean values over the period, to determine F0 (I) as well as the
phase lag i, and thus ¥F(I) according to Eq. 7.

C. Determination of the Elastic Force
For the determination of the elastic force in this study, the flexible wing is modeled as an Euler-Bernoulli beam

along the wingspan, where the analysis is restricted to the bending deflection F(I) across the span. The wing is clamped
at the root so that F(I = 0) = 0 and F′(I = 0) = 0 are used as Dirichlet boundary conditions in the beam model. The
Euler-Bernoulli equation that establishes a relation between the deflection and the external load on the wing @(I) in the
static case is

d2

dI2

(
�� (I) d

2F(I)
dI2

)
= @(I) , (8)

while the shear force &(I) and the bending moment " (I) in the beam are

&(I) = − d
dI

(
�� (I) d

2F(I)
dI2

)
(9)

" (I) = −�� (I) d
2F(I)
dI2

. (10)
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The effective flexural rigidity �� (I) is assumed to be known for this study, by using the values of the Timoshenko
beam model for the same wing that is used in [23], where it was observed to yield results that are in good agreement with
experimental data obtained from wind tunnels tests. The effective flexural rigidity varies along the span so that a finite
element beam model is used to solve Eq. 8. In the static case, the governing equation of the finite element beam model is

K/ = Df , (11)

where K is the stiffness matrix, D is the loading matrix, f is the external force vector, and the vector / contains the
values of the degrees of freedom per node of the beam, which are the deflection and the rotation at the nodes. The
continuous beam deflection F(I) is calculated from the discrete values of the degrees of freedom by using Hermite
splines, and f is determined by sampling the distribution of the external load @(I) at the nodes of the finite element
model. More details on the finite element method that was used in this study can be found in Sec. 3.5.3 in [24].

In this study, it is not feasible to determine the elastic force directly with Eq. 11 by using the optical deformation
measurements for determining /, because the deformation measurements are not available along the entire span and
they are affected by measurement noise. Instead, the elastic force is determined by performing an optimization, in
which the beam deflection F(I) is calculated from the result for / = K−1Df in response to a given external load on the
beam @(I). The difference of the beam deflection to the wing displacement measurements with PTV at the respective
spanwise location is then minimized numerically, by performing an optimization of the load @(I). Due to the relatively
small spanwise region where measurements are available and the presence of the measurement noise in the PTV
measurements, it is necessary to make an assumption of the behavior of the external load across the span to achieve
sensible results with this approach. In this study, it is assumed that the external load on the beam is constant across the
span with @(I) = @0 so that @0 is the only optimization variable. This assumption can be justified when considering that
the wing is not tapered and that the external load is equivalent to the aerodynamic lift, while the lift reduction effects
due to downwash near the wingtip are neglected based on the relatively large aspect ratio of the wing.

Following the optimization procedure for @0 in the static case, the shear force and the bending moment in the beam
are determined with Eq. 9 and 10, which can be solved analytically in the case of a given constant external load in the
static case, when considering the Neumann boundary conditions &(I = B) = 0 and " (I = B) = 0 at the free end:

&(I) = −
∫

@0 3I = −@0 (I − B) (12)

" (I) =
∫

&(I) 3I = −@0
2
(I2 − 2IB + B2) . (13)

In the case that the wing is moving dynamically, the governing equation for the Euler-Bernoulli beam is

m2

mI2

(
�� (I) m

2F(I, C)
mI2

)
+ `(I) m

2F(I, C)
mC2

= @(I, C) , (14)

and for the finite element model of the beam

K/ (C) +M ¥/ (C) = Df (C) , (15)

where M is the mass matrix, as determined from the mass distribution properties of the experimental model. In this
case, the finite element equation can generally be solved for / (C) and hence F(I, C) in response to a given, arbitrary
loading @(I, C) only numerically, under the condition that the initial conditions for / (C = 0) and ¤/ (C = 0) are known.

In the assumed case of a loading given by f (C) = f0 + f048l6C , the response is / (C) = /0 + /048l6C , where the mean
value of the dynamic response is equal to the static response to the mean forcing, K/0 = f0, which can be assumed to be
identical to the external load in the case of steady inflow, corresponding to @0. It follows that Eq. 15 can be used to
relate the external load amplitude f0 to the dynamic wing response amplitude /0 in a form that that does not depend on
the time explicitly: (

K − l2
6M

)
/0 = Df0 . (16)

Similar to the steady case, Eq. 16 is used in this study to optimize for the amplitude @0 of a sinusoidal, spanwise
constant external load by fitting the finite element model beam deflection due to a given load to the wing deformation
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amplitude, that is obtained from the experimental measurements. In this case, it is not trivial to derive analytical
expressions for the shear force and the bending moment in the beam so that in the test case with unsteady inflow, these
quantities are computed from second-order accurate finite differences, based on Eq. 9 and 10.

IV. Experimental Setup

A. Wind Tunnel Setup
The experiments were conducted in TU Delft’s Open Jet Facility (OJF), which is a closed-loop, open test section

wind tunnel with an octagonal exit of 2.85 m × 2.85 m. The wind tunnel is powered by a 500 kW electric motor which
drives a fan that can provide freestream velocities of up to 35 m s−1 in the test section. In this study, the freestream
velocity was set to*∞ = 14 m s−1, which corresponds to a Reynolds number of around 230 000 based on the chord of
the flexible wing. The wind tunnel setup is shown in Fig. 2.

Fig. 2 Photo of the wind tunnel setup. 1: Gust generator mounted at the wind tunnel nozzle exit, 2: Flexible
wing model, 3: Ground plate, 4: Six-component balance, 5: Helium-filled soap bubbles seeding generator (not
visible in the photo, placed in the wind tunnel settling chamber)

For this study, a gust generator is mounted at the wind tunnel nozzle exit, which can generate various types of
unsteady inflow to the model in the test section [25]. Two experimental test cases are considered in this study: one
test case with steady inflow, where the gust generator is not operated, and a second test case with periodic unsteady
inflow, where the gust generator is operated continuously with a sinusoidal variation of the gust vanes angle V according
to V(C) = 5° × sin(l6C), where l6 = 2c 56 is the angular frequency of the gust vane motion. The selected frequency
of 56 = 2 Hz corresponds to a reduced frequency of : = (c × 2)/*∞ = 0.11 and is expected to cause considerable
unsteady aerodynamic effects on the flexible wing model [26].

To perform the PTV measurements of the flow, the freestream is seeded with helium-filled soap bubble (HFSB)
flow tracers with a diameter of about 0.5 mm. The HFSB are generated by a seeding generator, that consists of 200
bubble-producing nozzles over an area of 0.5 m × 1 m. The working principle of the bubble-producing nozzles is
described in [27]. To improve the seeding concentration and to minimize the influence of the seeding generator on
the turbulence intensity of the freestream, the seeding generator is placed in the settling chamber of the wind tunnel,
upstream of the contraction of the wind tunnel nozzle.
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B. Flexible Wing Model
The experimental model is a rectangular wing with a chord length of 2 = 0.25 m, a span width of B = 1.75 m and

a NACA 0010 profile, that is oriented at a geometric angle of attack of U = 5° with respect to the freestream. The
wing was made in-house out of carbon fiber reinforced epoxy unidirectional tailored laminates. Its inner structure is
formed by two spars and thirteen ribs, and the outer skin is divided into three spanwise regions of equal length, where
each has different laminate properties in terms of orientation and thickness. The properties of those laminates were
determined through an optimization process, that was driven by an objective function to minimize the weight of the
wing and to maximize the wing tip displacement under the flow conditions achievable in the OJF. The design and
manufacturing procedure of the flexible wing model is described in detail in [23]. To enable the PTV measurements of
the wing displacement, a rectangular grid of white circular markers is spray-painted on the surface of the wing model,
using a laser-cut template. The markers have a diameter of 1.5 mm and the grid spacing is 30 mm. A sketch of the wing
dimensions with the marker grid is shown in Fig. 3.

Fig. 3 a) Illustration of the wing model geometry with the fiducial marker grid, b) Chordwise positions of the
fiducial markers on the wing surface

The flexible wing model is mounted on a six-component balance with a clamp arrangement that consists of an
aluminum block that is glued to the bottom of the wing. The mass of the wing without the aluminum block is 1.44 kg.
The dynamic motion amplitude of the flexible wing in response to the unsteady inflow generated by the gust vanes
is increased by inserting a wingtip mass of 0.40 kg, which brings the natural frequencies of the wing closer to the
excitation frequency achievable with the gust generator, thus generating larger dynamic wing deformations. With the
experimental parameters employed in this study, the maximum wingtip deflection is around 40 mm, corresponding to
around 2% of the span.

The measurements of the six-component balance on which the wing is mounted are used for validation purposes of
the loads at the root of the wing, as determined with the beam model based on the PTV measurements. Additionally, the
wing model is equipped with a LUNA HD6 fiber optic strain sensor, that is mounted at mid-chord on the inside of the
pressure side of the wing, from the root until I = 1.65 m. The strain measurements from the optical fiber installed in the
wing are obtained with a LUNA ODiSI data acquisition system and are used for validating the strains that are obtained
from fitting the Euler-Bernoulli beam model to the PTV marker measurements.
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C. Particle Tracking Velocimetry System
The primary measurement component that is used for the PTV measurements is a LaVision MiniShaker Aero

coaxial volumetric velocimetry probe (CVV, [28]). The CVV features four CMOS cameras for image acquisition, that
are mounted in a compact housing (dimensions 130 mm × 90 mm × 80 mm) together with the coaxial illumination
component, which consists of an optical fiber with a diverging lens at the end to illuminate the particles in the field of
view of the cameras. As illumination source, a Quantronix Darwin-Duo Nd:YLF laser (25mJ pulse energy at 1 kHz,
wavelength of 527 nm) is connected to the other end of the optical fiber. The compactness of the CVV probe allows it
to be mounted on a Universal Robots UR5 robotic arm, which has six motion degrees of freedom and a maximum
reach of 0.85 m. The controlled positioning in space of the CVV with the robotic arm enables the measurement of
several adjacent volumes with the CVV without performing repeated calibrations and allows a simple combination
of the measurement volumes in post-processing, which facilitates the measurement of flow fields around objects on a
cubic meter scale [29]. The small tomographic aperture angle of the four CVV cameras causes relatively large random
measurement errors along the viewing direction of the probe, which are around one order of magnitude larger than those
in the vertical and horizontal directions in the image space, as described in [28].

V. Integrated Measurement Approach

A. PTV Data Acquisition
The setup for conducting the integrated aerodynamic and structural measurement is illustrated in Fig. 4. The stream

of HSFB flow seeding, illuminated by the green laser light, is visible in between the CVV probe and the surface
of the wing. The structural markers in the illuminated region are visible on the surface of the wing as well. The
CVV is positioned in space with the robotic arm such that it is oriented at an angle of about 30% with respect to the
cross-sectional G-H plane of the wing, so that direction of motion of neither the structural markers nor of the flow tracers
is identical to the viewing axis of the CVV, where the random measurement error is the largest. For the chosen position
and orientation of the CVV, that is shown in Fig. 4, measurements of the flow and the structure are obtained within the
spanwise region of approximately 0.85 < I/B < 0.9.

Fig. 4 Conducting of an integrated PTV measurement in the wind tunnel

The optical measurements of the flow and the structure are conducted with the maximum acquisition frequency of
the CVV of 5B = 821 Hz and with the maximum camera sensor size for that acquisition frequency, which is 704 × 540
pixel. Six different positions of the CVV with respect to the wing are used to obtain measurements of the flow around
the investigated wing section, see Fig. 5. To achieve this, the optical measurement setup is installed successively on both
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sides of the wing, with three measurement volumes along the chord on the suction side (s) and three on the pressure side
(p) of the wing. The combined size of the measurement volumes of this procedure is around 15 liters. For the case of
steady inflow, 15,000 images are acquired per individual measurement volume. For the case of dynamic inflow, 98,520
images are acquired over 240 motion periods per measurement volume.

Fig. 5 Measurement volumes on the suction (s) and pressure (p) side of the wing

The processing procedure for the acquired data begins with the separation of the flow tracer information in the images
from the structural marker information, as illustrated in Fig. 6. This step improves the performance of the PTV algorithm
Shake-The-Box because the appearance of the structural markers and the flow tracers in the images is not identical (see
Fig. 6); after the separation is performed, a non-uniform optical transfer function [30] can be generated for the structural
markers and the flow tracers separately. The removal of the structural information from the integrated measurement
images is achieved with a temporal high-pass filter [31], exploiting the different time scales of the structural motion and
that of the flow. In principle, the reverse operation can be applied to obtain the image data of the structural markers
without the flow tracer information using a temporal low-pass filter, as it was done in [15], however, in this study this
step is not directly necessary, because the observed phenomena are either steady or periodic and thus repeatable over
time. This means that the isolated structural marker information can be simply obtained by acquiring images without
operating the HFSB seeding generator. This approach is advantageous because it allows the modification of the camera
sensor size to the maximum of 704 × 636 pixel, which permits the simultaneous measurement of all markers along the
chord with just one acquisition at a sampling frequency of 5B = 500 Hz. These additional measurements of only the
structural motion are conducted only on one side of the wing, using the position of the CVV that corresponds to V2p in
Fig. 5. It is presumed that the measurements from the other side of the wing do not provide any additional information,
given the relatively low density of the marker grid, the small deformation of the investigated spanwise region and the low
fidelity of the physical model that is used to analyze these measurements, which does not consider shear deformations.

a) Raw image, structural markers and flow tracers b) High pass filtered image, only flow tracers

Fig. 6 Example for the image filtering procedure for separating flow tracer and structural marker information
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B. PTV Data Processing
The complete data processing procedure that is followed in this study is illustrated in Fig. 7. After separating

the flow and structural information, the next step is to apply the particle tracking algorithm. The used method for
obtaining the PTV measurements consists of three steps, that are performed separately for the flow and the structure:
first, a volume self-calibration [32] is performed, then an optical transfer function is generated, and afterwards the
Shake-The-Box algorithm is applied. The results are obtained in terms of individual particle tracks, with position,
velocity and acceleration of each particle over time, for both the structural markers and the flow tracers in separate files.

Integrated Measurements 
of Flow and Structure

Image data of the 
HFSB flow tracers

Image data of the 
structural markers

Particle tracks of 
the flow tracers

Particle tracks of the 
structural markers

High Pass 
Filter

PTV with 
Shake-The-Box

Low Pass 
Filter

Ensemble-averaging 
of track velocities

Post-processing 
of track positions

Physical model: 
unsteady potential 

flow theory

Physical model: 
Euler-Bernoulli 
beam theory

A

IE

Mathematical 
model: finite 

element method

Physical model: 
Newton’s 

second law

Accelerations of the 
structural markers

Fig. 7 Data processing procedure for the aerodynamic (blue) and structural measurements (orange)

After the track data of the flow tracers are obtained, the velocities of the flow tracer tracks are ensemble-averaged
to a three-dimensional Cartesian grid with a spacing of 2.5 mm, using a top-hat filter approach with cubic bins of
10 mm × 10 mm × 10 mm, as described in [33]. For the measurements obtained in the case of steady inflow, the particle
tracks obtained from all acquired images are combined in the ensemble-averaging procedure. For the measurements
with dynamic periodic inflow, the particle tracks are ensemble-averaged in a phase-averaged sense based on the recorded
signal of the gust generator motion, where the particle tracks are assembled in 100 temporal bins, each spanning 1% of
the gust excitation period.
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The particle tracks of the structural markers are processed in two different post-processing procedures for the cases
of steady and unsteady inflow. In the case of steady inflow, the marker track positions within a radius of 10 mm are
averaged to obtain the mean position of the observed grid of markers in space. The same procedure is then repeated for
a reference measurement of the marker positions without wind tunnel operation. Subsequently, the difference between
the two grids is calculated, to obtain the deflection of the wing. These results are then fitted to the physical model to
determine the elastic forces as explained in Sec. III. For the analysis of the test case with unsteady inflow, only the
amplitude of the deflection around the mean is required in the physical model for the determination of the inertial force
and the elastic force, as the considered linear elastic theory suggests that the mean value of the deflection is given by the
result for the case of steady inflow. The marker position measurements over time are phase-averaged in 100 temporal
bins, which is identical to the processing parameters of the flow field so that the combination of the model position with
the flow fields is coherent. The mean value of these position measurements per marker over the entire period is then
subtracted from the phase-averaged positions to obtain the dynamic displacement of the respective marker over the
cycle. In both test cases, no significant relation was observed between the chordwise position of the marker and the
deflection, allowing the marker information to be averaged along the chord. This also supports the assumption that
measuring on only one side of the wing is sufficient since the cross-section of the wing is not deforming. As shown in
Fig. 7, the physical model for the determination of the elastic force requires the position measurements as input, while
the determination of the inertial force requires measurements of the acceleration, which are computed from a sinusoidal
fit to the phase-averaged position measurements.

C. Closure of Collar’s Triangle
After the aerodynamic, the inertial and the elastic force are determined with the three described methods from

the integrated measurements, the results can be combined in an internal validation procedure, where the physical
agreement of the three different models with each other can be quantified. A free body diagram of a wing segment that
is investigated between the spanwise stations I1 and I2 is shown in Fig. 8.

𝒛

𝒘

𝑸(𝒛𝟏, 𝒕) 𝑸(𝒛𝟐, 𝒕)

𝒘 𝒛, 𝒕 , 𝝁 𝒛

𝒒(𝒛, 𝒕)

𝑴(𝒛𝟏, 𝒕)
𝑴(𝒛𝟐, 𝒕)

Fig. 8 Free body diagram of a wing section

The equilibrium of the forces in the direction of the deflection F in Fig. 8 is as follows:∫ I2

I1

`(I) ¥F(I, C)3I =
∫ I2

I1

@(I, C)3I −&(I1, C) +&(I2, C) . (17)

The three forces �, � , and � in Collar’s triangle, that are involved in a dynamic aeroelastic interaction, can be
recognized in Eq. 17:

� =

∫ I2

I1

! ′(I, C)3I =
∫ I2

I1

@(I, C)3I (18)

� = −&(I1, C) +&(I2, C) (19)

� =

∫ I2

I1

� ′(I, C)3I = −
∫ I2

I1

`(I) ¥F(I, C)3I , (20)

which means that the equilibrium of forces, that is given by Eq. 17, can be stated as � + � + � = 0 for the wing
segment that is investigated in this study. This requirement is verified in this study by calculating a measurement
residual, defined as X = � + � + �, which is then used to quantify the error of the considered approach.
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VI. Results

A. Steady Inflow
For the test case with steady inflow, the aerodynamic force is determined from the measured flow velocity field and

the elastic force is determined from the marker position measurements, while the inertial force is zero. The reaction
force and moment at the root in the finite element model, which is used to determine the elastic force in the investigated
wing section, can be validated against the balance measurements. The strain that results from the application of the
determined external force to the beam model is compared with the optical strain fiber measurements. The elastic force
on the segment is in equilibrium with the aerodynamic force in the absence of inertial forces so that a comparison of the
two forces is performed and the residual of the considered approach is computed.

1. Elastic Force
The result for the deflection F(I) of the finite element beam model as fitted to the PTV marker displacement

measurements is shown in Fig. 9. The error bars on the measurements indicate the standard deviation f in displacement
for the seven chordwise markers that were used to produce one average displacement per spanwise position, which has
values in the range of 0.28 mm < f < 0.61 mm. The agreement between the beam deflection and the chordwise-averaged
marker displacement is very good, with a root mean square (RMS) value of the difference between measurement and
model of 0.10 mm.
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Fig. 9 Finite element beam model fitted to the static PTV measurements

The result for the deflected shape can be validated against the measurements from the optical strain fiber, that is
installed inside the model surface on the pressure side of the wing. For this purpose, the strains according to the beam
model are computed from the deflection line by using the equation for the strain of an Euler-Bernoulli beam:

Y = −3
2F

3I2
3 , (21)

where 3 is the distance of the optic fiber from the elastic axis of the beam, which is assumed to be on the chord
line of the wing. The comparison between the strain measurement and the model strain is shown in Fig. 10. The
cross-sectional stiffness properties of the wing change at I/B = 1/3 and I/B = 2/3, as described in [23], which results in
a discontinuity of the strain in the beam model at these locations. In contrast, the strain fiber is installed on the inside of
the pressure surface of the wing, where the stiffness properties only change at I/B = 1/3, and therefore the strain that is
measured with the optical fiber is only discontinuous at that location and not at I/B = 2/3. Apart from this difference,
the agreement between the model and the measurement is very good.

The influence of the finite element size on the optimization result @0, the constant external load on the beam, is
shown in Fig. 11. The model discretization of the considered finite element method is exact for a constant external load
so that the sensitivity to the finite element size is very small. Differences are only caused by the interpolation with
Hermite splines between the finite element nodes. This effect becomes negligible for more than six finite elements
across the span (i.e. finite element size < 0.1 m), where the result for the external result is identical within 0.01%.
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Fig. 10 Comparison of the strain from the finite element beam model with optic fiber measurements
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Fig. 11 Influence of the number of finite elements on the optimization result for @0

After the external load @0 is determined, the result can be used to calculate the shear force and the bending moment
at the root of the flexible wing with Eq. 12 and 13. The value for the shear force can be directly compared to the
force measurement of the balance, as shown in Tab. 1. For the comparison of the bending moment with the balance
measurement, the height of the clamp arrangement ℎclamp and the location of the balance center ℎbalance have to be
considered as well. The root bending moment from the balance is determined from the balance measurements of the
shear force and the moment under the assumption that no external bending moment is applied on the wing:

" (I = 0)balance = "balance −&balance × (ℎclamp + ℎbalance) (22)

Two different modeling assumptions are considered as the main sources for the observed differences in shear force
and bending moment in Tab. 1. Firstly, to get reliable elastic forces, the stiffness model of the wing must be calibrated
with measured data, that are obtained for example in a ground vibration test. This step has not been performed for this
study. The second significant modeling assumption is that of a constant external load along the span. The validity of this
assumption can be assessed by calculating the theoretical point of application ' of a resultant force with the magnitude
of the shear force at the wing root so that the bending moment at the root is identical:

' =
" (I = 0)
&(I = 0) . (23)

The result for ' is included in Tab. 1 as well. The balance measurements reveal that the resultant point of application
is located slightly further inwards on the wingspan than in the assumed case of a spanwise-constant load, where
' is located at mid-span, differing by about 5%. This indicates that the constant-load assumption is a reasonable
approximation and not the dominant source of error in the considered approach.
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Table 1 Comparison of model reaction forces at the root clamp with balance measurements

Balance measurement Finite element model Relative error
Root shear force &(I = 0) −15.82 N −17.34 N 9.64%

Root bending moment " (I = 0) −13.20 N m −15.18 N m 14.94%
Point of application ' 0.477 × B 0.5 × B 4.84%

2. Aerodynamic Force
A section of the ensemble-averaged flow field, located at I/B = 0.90, is shown in Fig. 12, together with the position

of the wing section that is determined from the marker position measurements. Furthermore, the black rectangle in
the plot indicates an exemplary rectangular integration contour for the calculation of the circulation around the airfoil.
The shown integration contour is positioned such that a minimum distance of 25 mm, which is equivalent to 0.1 chord
lengths, to the surface of the wing is observed in all directions.

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
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0.1

0.2

y
/c

0.8

0.9

1

1.1

1.2

Fig. 12 Flow field, model position and circulation integration contour for steady inflow at z/s=0.90

The circulation measurement that is obtained from the flow field is used to calculate the section lift with the
Kutta-Joukowsky theorem (Eq. 1), as shown for all spanwise sections where flow measurements were conducted in
Fig. 13. In theory, the result for the lift is independent of the choice of the integration contour around the airfoil,
which is used to determine the circulation. To reduce the sensitivity of the lift to the random error in the flow velocity
measurements, the lift is therefore computed as the average of the lift values that are obtained when varying the distance
of the rectangular integration contour to the wing surface from 0.05 to 0.2 chord lengths in 0.0252 increments, for each
spanwise position. No appreciable trend was observed with the variation of the position of the integration contour. The
error bars in Fig. 13 indicate one standard deviation of these results for the lift.
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Fig. 13 Lift from the Kutta-Joukowsky theorem over the span
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The aerodynamic force that is exerted on the investigated wing segment can be compared with the elastic force,
that is determined from the marker measurements with the finite element model. When considering the wing segment
between I1/B = 0.85 and I2/B = 0.9, the aerodynamic force on the segment can be calculated from the lift distribution
shown in Fig. 13 with a trapezoidal integration:

� =

∫ I2

I1

! ′(I) 3I = 0.7691 N , (24)

while the elastic force on the segment is:

� = −&(I1) +&(I2) = @0 (I1 − I2) = −0.8672 N . (25)

According to the equilibrium of forces in Collar’s triangle for the case of static aeroelasticity, the two forces �
and � on the segment are equivalent in the absence of structural motion and hence inertial forces, which leads to the
quantification of the observed measurement residual as X = � + � = −0.0981 N. The value for the measurement residual
is used to calculate a relative error of the considered approach in the case of steady inflow. As a reference force, the
balance measurement of the shear force at the root is scaled by the fraction of the investigated wing section, which
is (I2 − I1)/B = 0.05. This yields a value for the relative error of n = 12.41% for the case of steady inflow, which is
accredited to the difference between the elastic properties of the wing and the beam model and to the drop in lift towards
the tip due to downwash effects, that is observed in Fig. 13, but not considered in the structural model.

B. Unsteady Periodic Inflow
For the dynamic aeroelastic test case with unsteady periodic inflow, all three forces in Collar’s triangle have to be

considered. The analysis of the dynamic structural motion is based on the assumption of a linear elastic response to a
sinusoidal external forcing. The result of a sinusoidal fit to the marker position measurements can be used to validate
this assumption and to determine the acceleration and hence the inertial force on the investigated wing segment. The
amplitude of the marker displacement measurements is used to determine the amplitude of the dynamic elastic force
with the finite element model. The unsteady aerodynamic force is determined from the measured flow fields and is
subsequently compared to the inertial and elastic forces according to the equilibrium of forces in Collar’s triangle.

1. Inertial Force
For the determination of the inertial force, the acceleration is determined from the phase- and chordwise averaged

marker displacement measurements, by fitting a sinusoidal curve according to Eq. 6 through the measurements. The
result is shown in Fig. 14, for two different marker positions along the span. The sinusoidal fit is a very good
representation of the actual measurements, with an RMS of the difference between the fit and the measurements of
around 0.2 mm, which is less than the typical standard deviation of the measurements during the phase- and chordwise
averaging of the marker measurements, which is around 0.3 mm.
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Fig. 14 Phase-averaged marker displacement from the mean for two spanwise locations
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The spacing of the fiducial markers on the model of 30 mm, which corresponds to 1.7% of the span, is relatively
coarse, and the bottom row of markers that are tracked during the entire motion cycle is at I/B = 0.854, which is within
the region where the flow field is measured. Therefore, it is beneficial to use the discrete amplitude measurements,
which are obtained at the spanwise positions of the fiducial markers as shown in Fig. 15, to estimate the continuous
behavior of the wing motion in the investigated region. Because the measurements are performed near the tip, it can be
assumed that the wing deformations are small and the measured amplitudes can be fitted with a linear curve, as shown
in Fig. 15 as well.
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Fig. 15 Displacement amplitude over the span in the investigated region

With the obtained linear relation between the spanwise position on the investigated wing segment and the amplitudes
of the sinusoidal fit according to Eq. 6, it is possible to determine the inertial forces on the segment between I1 and I2
with Eq. 7. Furthermore, the amplitude value of the linear fit at I/B = 0.875 is used for the determination of the elastic
force in the following.

2. Elastic Force
For the determination of the elastic force in the dynamic case, the amplitude of the sinusoidal forcing @0 is

determined from the observed wing motion amplitude F0. For that, the finite element formulation of the dynamic beam
bending motion in Eq. 16 is solved in an optimization procedure for @0 that minimizes the difference between model
and measurement. The influence of the finite element size on the optimization result is shown in Fig. 16. Similar to the
static case, the effect of the number of finite elements on the result for @0 diminishes already for a small number of
elements and remains constant at 6.544 N m−1.
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Fig. 16 Influence of the number of finite elements on the optimization result for @0

After the amplitude of the dynamic motion of the finite element degrees of freedom /0 is determined from the result
for @0 with Eq. 16, the dynamic behavior of the finite element model degrees of freedom is given as /048l6C+i , where
the phase was aligned with the sinusoidal fit of the marker measurements, as shown in Fig. 14 so that i = 0.

16

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
26

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
1-

02
21

 



From this result for / (C), the continuous time-dependent deflection F(I, C) is calculated with the Hermite spline
interpolation for each time step. Then, the shear force &(I, C) and bending moment " (I, C) along the span are obtained
with Eq. 12 and 13 from the deflection by using a second-order accurate finite difference scheme. With the results of
this procedure, the dynamic component of the shear force and the bending moment for comparison with the dynamic
component of the balance measurements can be computed over the period. The comparison is shown in Fig. 17, where
the mean value has been subtracted from the balance measurements.
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Fig. 17 Comparison of the dynamic component of the root shear force and bending moment from the finite
element model with the balance measurements

The RMS value of the difference between model and measurement is 1.43 N for the shear force and 1.26 N m for
the bending moment, corresponding to a relative error of 17.10% and 15.01%, respectively, using the RMS of the
balance measurements as a reference. The phase alignment between the model and the measurement is very good for
both the force and the moment, with phase differences obtained by cross-correlation of the signals of less than 0.5% of
the period. The difference in amplitude is therefore concluded to be the only considerable source of error in the finite
element model results.

3. Aerodynamic Force
The phase-averaged unsteady flow field and the corresponding wing position as determined from the marker tracks

is shown in Fig. 18, for four phase instants over the period. The effect of the gust generator actuation is evident in the
plots, with a visibly enlarged or reduced region of accelerated flow over the suction surface of the wing at C/) = 0.25
and C/) = 0.75, respectively. The level of random error in the phase-averaged measurements of the unsteady periodic
inflow is increased compared to the steady flow field that was shown in Fig. 12, because the number of particle tracks in
the ensemble-averaging is approximately 15 times smaller, as a result of the data acquisition and processing strategy,
where for the steady case 15,000 images were acquired, whereas in the test case with unsteady periodic inflow, only 985
images are available for a time span of 1% of the period.

The calculation of the unsteady lift with Eq. 4 requires the determination of the circulation distribution on the airfoil
over the entire period. The circulation distribution Γ(G, C) is obtained by performing line integrals of the measured
velocity, as defined in Sec. III, for each phase instant. Similar to the test case with steady inflow, the position of the
integration path is varied to reduce the effect of the random error in the flow velocity measurements on the result for
the circulation. However, in this case, only the positions of the line segments that are upstream, above and below the
airfoil are varied, while the downstream segment remains fixed at the particular G-location on the airfoil, to determine
the value of Γ(G, C) on that respective location. To determine the overall bound circulation around the airfoil Γ(C),
the downstream segment of the integration path also remains fixed just behind the trailing edge of the airfoil, so that
the varying circulation that is shed into the wake in the unsteady case following Kelvin’s theorem is not affecting the
determined result for the bound circulation Γ(C). The line integrals are performed for all spanwise positions where
the flow field was measured, and afterwards, the circulation is averaged across the span in the region I1 to I2 so that
the average lift per unit span on the investigated wing segment is determined with this approach. To further reduce
the random error in the measurement, the determined time series of Γ(G, C) is fitted with a sinusoidal curve for each
chordwise position. The result is shown for four different phase instants in Fig. 19.
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Fig. 18 Flow field and model position at I/B = 0.875 for four different phase instants
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Fig. 19 Distribution of the circulation on the airfoil, as determined by line integrals of the flow velocity

By using Eq. 1 together with the overall bound circulation around the airfoil Γ(C), as determined from the unsteady
flow fields, the quasi-steady lift is obtained. To determine the unsteady lift, the additional flow acceleration term is
computed from the time series of the circulation distribution with Eq. 4. Both lift curves over the period are shown in
Fig. 20. The unsteady lift curve as determined from the sinusoidal fit is similar to the quasi-steady lift curve. As a result
of including the flow acceleration term in Eq. 4, the amplitude of the unsteady lift is decreased by 0.7% compared
to the quasi-steady lift, and the curve is shifted by −2.70% of the period. Considering the linear elastic theory, it is
expected that the lift, which acts as the external forcing on the wing, is in phase with the dynamic motion. The lag
of the lift with respect to the dynamic motion of the wing is therefore reduced from 3.62% to 0.92% of the period,
which follows from including the flow acceleration term, that leads the quasi-steady lift in phase. Therefore, it is noted
that including the flow acceleration term reduces the error in phase to less than 1% of the period and hence leads to a
significant improvement in the accuracy of the determined lift in the unsteady aeroelastic test case.
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Fig. 20 Quasi-steady and unsteady lift over the period, with steady inflow reference lift

4. Closure of Collar’s Triangle
After the three forces in the dynamic aeroelastic interaction are determined based on the PTV measurements, the

results can be compared with each other to validate the physical models based on the equilibrium of forces. The
aerodynamic and inertial forces on the segment are determined directly with an integration of the obtained results from
I1 to I2. For the determination of the elastic force on the segment, the amplitude of the dynamic motion of the finite
element degrees of freedom /0 is combined with the solution in the case of steady inflow /0 to yield the dynamic result
/ (C) = /0 + /048l6C+i , that is used to calculate the shear forces &(I1, C) and &(I2, C) with finite differences. The results
for the three forces on the investigated wing segment are shown in Fig. 21. Additionally, the value of the residual X is
shown over the period.
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Fig. 21 Collar’s triangle of forces as determined from the PTV measurements

The maximum absolute value of X over the period is 0.158 N at C/) = 0.23, which is near the maximum values of
the elastic and aerodynamic force magnitudes. The RMS value of X over the period is 0.0964 N, which corresponds to
an error of 11.72% of the reference force from the balance, which is the mean value over the period of the measured root
shear force, scaled by the fraction of the investigated wing section. This value of the error in the dynamic aeroelastic
test case is very similar to the value of the error in the static aeroelastic test case. It can therefore be assumed that the
sources of error are the same as in the static case, especially when considering that the result from the static test case has
been used to obtain the result for the dynamic shear force. As a consequence, it is noted that the added complexity of
the dynamic test case, with considerable unsteady aerodynamic and inertial forces, is suitably accounted for with the
applied methods and does not lead to significant additional sources of error.
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VII. Conclusion
This study demonstrated the possibility to fully characterize the aeroelastic response of a flexible wing, in terms of all

three force components in Collar’s triangle, based on non-intrusive PTV measurements with a single measurement and
data processing system. To perform the measurements of the aeroelastic interaction between the flexible wing and the
flow, the freestream was seeded with HFSB and the flexible wing model was painted with a grid of fiducial markers. The
optical measurements of the flow and the structure were conducted with a CVV probe mounted on a robotic arm, and
both data sets were processed with the PTV algorithm Shake-The-Box. This integrated measurement approach requires
minimal instrumentation and therefore provides a strategy that considerably simplifies the simultaneous measurement of
the aerodynamic and structural response in aeroelastic experiments.

After applying custom post-processing procedures for the particle tracks of the flow and structure separately, the three
different forces in the aeroelastic interaction were determined from the results of the PTV measurements using three
different methods. The inertial force was determined as the product of mass and acceleration, while the aerodynamic
force was determined with an unsteady potential flow model, and the elastic force was determined with a finite element
beam model. The physical agreement between the forces from the three models was similar to the agreement between
the elastic force and the reference data from the balance measurements, which supports the results for the aerodynamic
and inertial forces, and indicates that the structural model should be calibrated with additional structural measurements
of the wing, to achieve a better characterization result.

In this demonstration study, physical models of relatively low fidelity were used to determine the forces from the
measurement data. However, the fidelity of the aerodynamic and the structural model that are used to analyze the
measurements, which are obtained with the considered integrated measurement approach could be increased if required.
This would be necessary in particular in the case of non-linear aerodynamic effects due to flow separation, or large
structural deformations that cannot be modeled with the linear theory of small deflections, which were not encountered
in the present study.
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