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Abstract

This thesis introduces Lazy Linear Generation (LLG), a novel conflict analysis and learning framework

for Constraint Programming (CP) that incorporates cutting planes reasoning. By leveraging cutting

planes, our approach learns potentially stronger linear constraints than traditional clausal learning,

allowing for more pruning of the search space while benefiting from strong CP propagation.

LLG generates linear explanations for both propagations and conflicts, which are then used in linear

inequality-based conflict analysis. When cutting planes reasoning fails to derive a linear constraint,

we employ Lazy Clause Generation (LCG) as a fallback mechanism. We present linear explanations

for various arithmetic constraints, including less-than-or-equal, not-equal, absolute value, maximum,

integer multiplication, truncating division, element, and reified constraints. Additionally, we introduce

techniques for dynamically generating auxiliary Boolean variables to encode conditions within linear

explanations.

We evaluate an LLG prototype on 952 benchmark instances, demonstrating a median conflict reduction

of 10%, increasing to 60% for the 25th percentile. Our results confirm that linear inequalities enable

stronger reasoning than clauses and show that integrating CP propagators with linear conflict analysis

outperforms employing a fully linear model. Furthermore, we show that a clausal fallback mechanism

is crucial when linear analysis fails.

While further research and engineering efforts are required for full integration into CP solvers, our

findings underscore the potential of linear learning in CP, paving the way for more effective conflict

analysis and solving.
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1
Introduction

Nowadays, optimization problems are ubiquitous, arising in a wide range of application domains

including scheduling [29, 32, 28, 6, 37, 51], network design [34, 30, 27] and circuit verification [9, 3].

Various solver technologies have been developed to solve these problems, such as (Mixed) (Integer)

Linear Programming ((M)(I)LP), Boolean satisfiability (SAT) and Constraint Programming (CP). Each

of these approaches has its own advantages and disadvantages. This thesis focuses on Constraint

Programming, a powerful combinatorial optimization technique for solving the Constraint Satisfaction

Problem (CSP). CP is a widely used paradigm in domains such as scheduling [11, 48, 51, 26], resource

allocation [25, 18, 45, 52] and verification [4, 41].

CP solvers explore the search space defined by the model’s variables to find solutions to the problem

stated by the model. Given the vastness of the search space, fully exploring it is often not feasible.

Therefore, it is crucial for CP solvers to identify when the current state will not lead to a solution and

backtrack accordingly. The two key methods employed by CP solvers to achieve this are: (1) inference,

or propagation, which identifies infeasible child trees based on the solver’s current state and model

constraints, and (2) conflict analysis, which helps prevent revisiting infeasible sub-trees by learning new

constraints during the search. This thesis specifically focuses on conflict analysis.

Significant advancements have been made in conflict analysis, both in CP and in related fields. For

example, the Boolean satisfiability problem (SAT) can be efficiently solved using the Conflict-Driven

Clause-Learning (CDCL) algorithm [33]. The success of conflict analysis and learning in SAT has

inspired conflict learning in CP, leading to various advancements over the last few decades, such as

learning (generalized) nogoods [15, 20], Signed Clause Learning [49], General Constraint Learning [31],

and Lazy Clause Generation (LCG) [38, 39, 47, 46]. LCG remains a cornerstone of modern solvers, such

as OR-Tools [40] and Chuffed [12].

Some of these CP conflict analysis techniques are based on the principles of CDCL, wherein a conflicting

clause is resolved iteratively with the reason clause that triggered a propagation. Similarly, techniques

in (Mixed) Integer Linear Programming (ILP), such as CutSat [24, 10], IntSat [36], and Achterberg’s MIP

conflict analysis [2] algorithm, also take inspiration from CDCL. Pseudo-Boolean solving, which involves

linear inequalities consisting of binary variables, also greatly benefits from CDCL-based conflict analysis

techniques [17, 22, 23]. All these techniques focus on learning linear inequalities using cutting-plane

reasoning, while the current state-of-the-art in CP, LCG, is limited to clausal resolution. Since linear

inequalities potentially offer stronger reasoning than clauses, learning linear inequalities in CP could

enhance the solver’s performance.

This work builds on two prior approaches. Both of these approaches incorporate techniques similar to

CDCL: they iteratively combine constraints to construct new learned constraints. The first approach,

IntSat [36], a conflict analysis algorithm for ILP, combines linear constraints to infer new constraints,

which can be added to the constraint database. If this combination fails, IntSat falls back to clausal

resolution and attempts to convert the learned clause into a linear constraint. Their experimental

results demonstrate competitiveness with state-of-the-art MIP solvers, despite a relatively compact

1



1.1. Research aim 2

implementation. A similar approach is proposed by HaifaCSP [31], a conflict analysis algorithm for CP,

where a set of combination rules (including linear combinations) are used to infer learned constraints

from existing CP constraints. When no combination rule is applicable, the algorithm falls back to clausal

resolution. However, its applicability is limited as it can only combine constraints that are specified by

the predefined combination rules, and cannot handle combining arbitrary constraints

This gives rise to the question: “How can we incorporate cutting-planes analysis in CP for arbitrary
propagators?". This thesis introduces a novel technique called Lazy Linear Generation (LLG). LLG

explains arbitrary propagations and conflicts in CP using integer linear inequalities, on which cutting-

planes analysis is performed. We adapt the conflict analysis algorithm from IntSat for this purpose,

defining linear explanations for various CP propagators, such as the integer multiplication, truncating

division, absolute-value, maximum, element, linear not equals, linear less or equals and reified

propagators. We can derive new learned linear constraints using these explanations.

We present an extensive experimental evaluation, demonstrating that LLG reduces conflicts by at

least 60% in a quarter of the instances within a representative dataset. Our results indicate that the

propagation strength of the learned linear constraints is significantly stronger than that of learned

clauses. We also show that LLG, using CP propagators, outperforms the linear formulation of the

same problems. Lastly, we highlight the need for a clausal fallback in case a linear inequality cannot be

learned.

1.1. Research aim
In addition to answering the main research question, we aim to answer several sub-questions:

• How can arbitrary CP propagations be explained using linear constraints? How can existing

conflict analysis algorithms be adapted to integrate these linear explanations effectively?

• What is the effect of linear learning on the search in terms of the number of encountered conflicts?

• How do learned linear constraints compare to learned clauses in terms of propagation strength?

• Does learning clauses alongside linear inequalities affect the linear learning capabilities?

• How important is learning clauses in case linear learning fails?

• What is the advantage of linear learning in CP over solving the linear decomposition of the

problem?

1.2. Structure
This thesis first presents the necessary background information in Section 2. It then explores related

algorithms and existing approaches in Section 3. The contribution, Lazy Linear Generation, is detailed

in Section 4, followed by an experimental analysis in Section 5. Finally, the thesis concludes with a

summary of findings and a discussion of future research directions in Section 6.

This thesis is an extended version of a conference paper that is under review at the time of writing. For

completeness, the preprint version of the conference paper is included in Appendix B.



2
Background

This section explores various optimization principles and the connections between them. It starts with

an introduction to Constraint Programming (CP), the cornerstone of optimization, in Section 2.1. Next,

Boolean satisfiability (SAT) and its conflict analysis algorithm are examined in Section 2.2. Lastly, key

prerequisites for Integer Linear Programming (ILP) are presented in Section 2.3.

2.1. Constraint Programming
Constraint Programming (CP) is a well-established paradigm for solving combinatorial problems. This

section first provides a formal definition of the Constraint Satisfaction Problem (CSP), which CP solvers

aim to solve, and then outlines the operational principles of CP solvers.

2.1.1. Constraint Satisfaction Problem
A Constraint Satisfaction Problem (CSP) 𝒫 is formally defined as a tuple (𝒳 ,𝒟 ,𝒞), where:

• Each 𝑥𝑖 ∈ 𝒳 represents an integer decision variable,

• 𝒟(𝑥𝑖) ∈ 𝒟 specifies the domain of 𝑥𝑖 ∈ 𝒳 defining the set of permissible integer values for 𝑥𝑖 , and

• Each 𝐶(𝑋) ∈ 𝒞 is a constraint that restricts the solution space over a subset 𝑋 ⊆ 𝒳 of variables.

Formally, a constraint is defined as a subset of the Cartesian product of the domains of the involved

variables, 𝐶(𝑋) ⊆ 𝒟(𝑥1) × 𝒟(𝑥2) × · · · × 𝒟(𝑥𝑛).
An assignment 𝜃(𝑋) is a total mapping between variables 𝑥𝑖 ∈ 𝒳 to a set of elements 𝑉 within

their respective domains, i.e. 𝑉 ⊆ 𝒟(𝑥𝑖). If any variable is still assigned multiple values, i.e.,

∃𝑥𝑖 ∈ 𝒳 : |𝜃(𝑥𝑖)| > 1, the assignment is referred to as a partial assignment. A solution to a CSP is an

assignment 𝜃𝑠 that satisfies all constraints 𝐶(𝑋) ∈ 𝒞 for every subset 𝑋 ⊆ 𝒳 :

∀𝑥𝑖 ∈ 𝒳 : |𝜃𝑠(𝑥𝑖)| = 1 ∧ ∀𝐶(𝑋) ∈ 𝒞 : 𝜃𝑠(𝑋) ∈ 𝐶(𝑋)
Example 2.1.1 This example illustrates how a Sudoku puzzle can be formulated as a CSP. The CSP representation

is constructed as follows:

1. Variable definition: The Sudoku grid consists of a 9×9 arrangement of cells, each represented as a variable:

𝒳 = {𝑥(1,1) , . . . , 𝑥(9,9)}
2. Initial domains: Each variable has an initial domain of possible values: ∀𝑥𝑖 ∈ 𝒳 : 𝒟(𝑥𝑖) = 1 . . . 9. The

problem specification generally also contains several fixed cells, which can be incorporated in the initial

domains of these cells, e.g. 𝒟(𝑥(2,1)) = {3}.
3. Constraints: We must ensure that each row, column, and 3 × 3 subgrid contains distinct values. This is

3



2.1. Constraint Programming 4

enforced using the alldifferent(𝑋) constraint, ensuring that all variables in 𝑋 assume unique values:

𝒞 = {alldifferent(𝑥(1,1) , . . . , 𝑥(9,1)),
alldifferent(𝑥(1,1) , . . . , 𝑥(1,9)),
alldifferent(𝑥(1,1) , . . . , 𝑥(3,3)),
. . . }

2.1.2. Solving a CSP
Constraint Programming (CP) is a method for solving CSPs by exploring the search space defined by

the Cartesian product of the variable domains: 𝒟(𝑥1) × · · · ×𝒟(𝑥𝑛). At each step in the search, inference

is applied to eliminate infeasible domain values based on the constraints. The remaining search space is

then divided into subproblems, making a decision on variable domains and subsequently continuing

the search on a lower level in the search tree. At any point within the search tree, the decision level is

defined as the number of decisions that have been made to reach the current subproblem.

Inference is performed using propagators, which enforce constraints by eliminating values from domains.

A propagator is a function 𝑝 : 𝒟 → 𝒟 that prunes (propagates) values that cannot be part of a valid

solution. Importantly, propagators only remove values, ensuring 𝑝(𝒟(𝑥𝑖)) ⊆ 𝒟(𝑥𝑖). If, at any stage,

a variable’s domain becomes empty, i.e. ∃𝑥𝑖 ∈ 𝒳 : 𝒟(𝑥𝑖) = ∅, we denote that a conflict has occurred,

indicating that the current sub-tree cannot yield a feasible solution. Algorithm 1 presents pseudocode

for the full CP algorithm, inspired by the notation in [5, Algorithm 2.1].

Algorithm 1 solve(𝒫) - Depth-first search CSP solver

Input: A CSP 𝒫 = (𝒞 ,𝒳 ,𝒟)
Output: true if 𝒫 has any solution, false otherwise

1: 𝒫 ′← propagate(𝒫)
2: if any domain in𝒟′ is empty then return false end if ⊲ Conflict, backtrack

3: if any domain in𝒟′ contains more than one value then
4: 𝒫 ′

1
, . . . ,𝒫 ′𝑘 ← subproblems(𝒫 ′) ⊲ Divide into subproblems

5: for 𝑖 = 1, . . . , 𝑘 do
6: if solve(𝒫 ′𝑖 ) = true then return true end if ⊲ Check if any subproblem contains a solution

7: end for
8: return false

9: end if
10: return true

Generating subproblems A CSP solver generates subproblems by making a decision on the domain of

a decision variable. Various value-selection strategies exist, such as generating a subproblem for every

possible domain value or splitting the domain of a variable into two subproblems. Similarly, numerous

variable-selection strategies exist, such as the first fail strategy [21], which picks the variable with the

smallest domain. Activity-based heuristics similar to VSIDS [35] are also commonly found in CP solvers,

prioritizing frequently encountered variables.

Propagator scheduling The computational complexity of a propagator depends on multiple factors,

such as the number of variables involved in a constraint and the level of consistency enforced by the

propagator. Problem formulations typically involve both low-cost propagators, characterized by a

limited number of variables and simple constraints, and high-cost propagators, which involve numerous

variables and more complex conditions. Since the execution of one propagator may trigger the execution

of others, a proper scheduling strategy is essential. A simple yet effective scheduling approach prioritizes

low-cost propagators, ensuring that all inexpensive domain updates are completed before executing

higher-cost propagators.
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2.2. Boolean Satisfiability
The Boolean Satisfiability (SAT) problem is the problem of finding a satisfactory assignment of Boolean

variables for a set of clauses. It can be viewed as a restricted form of a CSP, where the set of variables is

defined as 𝒳 = {𝑥1 , 𝑥2 , . . . , 𝑥𝑛}, with domains constrained to binary values ∀𝑥𝑖 ∈ 𝒳 : 𝒟(𝑥𝑖) = {0, 1}.
For each variable 𝑥𝑖 ∈ 𝒳 , we define its corresponding literals 𝑙𝑖 and ¬𝑙𝑖 representing 𝑥𝑖 or its negation

1 − 𝑥𝑖 . The constraints in a SAT problem are expressed as clauses which are disjunctions of literals, such

as 𝑙1 ∨ · · · ∨ 𝑙𝑛 . The goal of SAT solving is to find an assignment of variables that satisfies the conjunction

of all clauses.

Key to solving a SAT problem is the propagation of literals, called unit propagation. For every clause

𝐶 : 𝑙1 ∨ · · · ∨ 𝑙𝑛 , we examine the number of fixed literals. Unit clauses (or asserting clauses) are clauses

for which all literals except one, say 𝑙𝑛 , have been assigned to false and the clause is not yet satisfied,

i.e. ∀𝑙𝑖 ∈ 𝐶 \ {𝑙𝑛} : 𝜃(𝑙𝑖) = 0. In this case, the remaining unassigned literal must be set to true to satisfy

the clause: 𝑙𝑛 → 1. Similar to CP, conflicts may arise during propagation. If a conflict is detected,

backtracking is performed. These operations form the foundation of the DPLL algorithm [14], which

serves as the basis for modern SAT solvers.

2.2.1. CDCL
Resolving conflicts solely through backtracking is a sound approach; however, it contains a major

limitation. Since DPLL only undoes the previous decision and therefore backtracks a single decision

level, it may encounter the same conflict repeatedly, leading to redundant computations. To address

these inefficiencies, Conflict-Driven Clause Learning (CDCL) [33] was introduced. When a conflict

occurs, CDCL analyzes its underlying cause and derives an asserting clause that represents the partial

assignment that lead to the conflict. This clause is then incorporated into the model, ensuring that the

same partial assignment does not reoccur. The solver can also backtrack to the decision level at which

the clause became unit or unsatisfied, rather than merely the most recent one. This non-chronological

backtracking allows for skipping irrelevant decision levels and directly addressing the root cause of the

conflict.

Iterative resolution. Given two clauses (𝑙𝑖 ∨𝑌) and (¬𝑙𝑖 ∨ 𝑍), we can apply resolution on 𝑙𝑖 to obtain a

new learned clause (𝑌 ∨ 𝑍):

𝑙𝑖 ∨ 𝑌, ¬𝑙𝑖 ∨ 𝑍

𝑌 ∨ 𝑍
(2.1)

We can use resolution to construct learned asserting clauses. First, we initialize conflict analysis by

taking the conflicting clause 𝐶conf, containing literal 𝑙𝑖 . This clause became conflicting because the

previous propagation of clause 𝐶reason set the inverse literal ¬𝑙𝑖 to true. We subsequently iterate over

the previous propagations and apply resolution until we reach the previous decision:

𝐶conf ← (𝐶conf \ {𝑙𝑖}) ∨ (𝐶reason \ {¬𝑙𝑖}) (2.2)

Finally, we add the obtained 𝐶conf to the model, and backtrack to the highest decision level of all literals

in 𝐶conf.

2.2.2. 1UIP
A straightforward approach to clause learning is to apply resolution until the previous decision is

reached. This can, however, lead to large, non-general learned clauses. To address this, GRASP [33]

introduced the concept of Unit Implication Points (UIPs). If a clause contains exactly one literal from the

current decision level, we refer to this literal as the UIP.

When a UIP is encountered, backtracking can already occur before the previous decision is encountered.

Specifically, we backtrack to the highest decision level of the variables in the clause, excluding the UIP

itself. After backtracking, we can immediately propagate the UIP, as that is the only unfixed variable.

Chaff [35] demonstrated that the most effective strategy is to stop at the first UIP, a method known as

1UIP.
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In practice, this means that we apply resolution iteratively until the conflict clause 𝐶conf consists of at

most one literal 𝑙𝑡𝑜𝑝 ∈ 𝐶conf such that its negation ¬𝑙𝑡𝑜𝑝 corresponds to either the previous decision or to

a variable propagated after the previous decision. To put it differently, 𝑙𝑡𝑜𝑝 is the only literal in 𝐶conf

that is assigned at the current decision level. Subsequently, all assignments are discarded until the

assignment of a literal 𝑙 ∈ 𝐶conf ≠ 𝑙𝑡𝑜𝑝 is reached, or until we have discarded all decisions. Finally, we

add 𝐶conf to the clause database, enabling the immediate propagation of 𝑙𝑡𝑜𝑝 → 1. Algorithm 2 shows

the complete pseudocode of CDCL’s algorithm with 1UIP, for which an example execution is shown in

Example 2.2.1.

Algorithm 2 CDCL

Input: a set of clauses 𝒞 and a trail 𝑇 containing tuples (𝑙 , 𝐶reason) representing a propagation of literal

𝑙 by clause 𝐶reason

Output: a learned clause and corresponding backtrack level

1: 𝐶conf ← currently conflicting clause in 𝒞
2: while there is more than one literal in 𝐶conf that was assigned in the current decision level do
3: (𝑙 , 𝐶reason) ← PopTrail() ⊲ Remove the previous trail entry.

4: if ¬𝑙 ∉ 𝐶conf then continue end if ⊲ Literal propagation not relevant.

5: 𝐶conf ← (𝐶conf \ {¬𝑙}) ∨ (𝐶reason \ {𝑙}) ⊲ Perform resolution.

6: end while
7: 𝑙𝑡𝑜𝑝 ← the only literal in 𝐶conf that was assigned in the current decision level

8: return 𝐶conf , decision-level(𝐶conf \ {𝑙𝑡𝑜𝑝}) ⊲ Find highest decision level all literals except 𝑙𝑡𝑜𝑝

Example 2.2.1 Consider the following set of clauses:

𝐶1 : (¬𝑥1 ∨ 𝑥3 ∨ ¬𝑥5)
𝐶2 : (𝑥4 ∨ ¬𝑥5)
𝐶3 : (¬𝑥1 ∨ ¬𝑥3 ∨ ¬𝑥4)
𝐶4 : (¬𝑥1 ∨ ¬𝑥2 ∨ 𝑥5)

We execute the following steps:

1. Decide: 𝑥1 → 1

2. Decide: 𝑥2 → 1

⇒ Propagate 𝐶4 : 𝑥5 → 1

⇒ Propagate 𝐶2 : 𝑥4 → 1

⇒ Propagate 𝐶1 : 𝑥3 → 1

⇒ Conflict in 𝐶3

2. Conflict analysis, 𝐶conf = 𝐶3 = (¬𝑥1 ∨ ¬𝑥3 ∨ ¬𝑥4)
⇒ 𝐶reason = 𝐶1 = (¬𝑥1 ∨ 𝑥3 ∨ ¬𝑥5)

Applying resolution eliminating 𝑥3

𝐶conf = (¬𝑥1 ∨ ¬𝑥4 ∨ ¬𝑥5)
⇒ 𝐶reason = 𝐶2 = (𝑥4 ∨ ¬𝑥5)

Applying resolution eliminating 𝑥4

𝐶conf = (¬𝑥1 ∨ ¬𝑥5)
⇒ 1UIP found, only 𝑙𝑡𝑜𝑝 = ¬𝑥5 was assigned on decision level 2.

Backtracking to decision-level(¬𝑥1) = 1

1. Adding 𝐶5 : (¬𝑥1 ∨ ¬𝑥5) to clause database

⇒ Propagate 𝐶5 : 𝑥5 → 0

⇒ etc...
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Here, we learned a new clause 𝐶5 allowing us to backtrack to decision level 1 and propagate the variable 𝑥5.

2.3. Integer Linear Programming
Integer Linear Programming (ILP) is another restricted CSP formulation, in which an objective function 𝑐

is optimized with respect to a set of linear constraints. These constraints are of the form

∑𝑛

𝑖=1

𝑎𝑖𝑥𝑖 ≤ 𝑎0,

with 𝑎𝑖 , 𝑥𝑖 ∈ Z. The objective function is also a linear expression to be minimized or maximized, i.e.∑𝑛

𝑖=1

𝑐𝑖𝑥𝑖 with 𝑐𝑖 ∈ Z.

2.3.1. Linear combinations
The linear counterpart of clausal resolution is the combination rule. This rule specifies that we can

combine two linear inequalities 𝐶1 :

∑
𝑖
𝑎𝑖𝑥𝑖 ≤ 𝑎0 and 𝐶2 :

∑
𝑖
𝑏𝑖𝑥𝑖 ≤ 𝑏0 to eliminate variable 𝑥 𝑗 . Given

𝑔 = greatest-common-denominator(𝑎 𝑗 , 𝑏 𝑗), we can define multipliers 𝛼 = |𝑏 𝑗|/𝑔 and 𝛽 = |𝑎 𝑗|/𝑔 to obtain

the combined linear inequality 𝐶3:

𝐶3 :

∑
𝑖

(𝑎𝑖𝛽 + 𝛼𝑏𝑖)𝑥𝑖 ≤ 𝑎0𝛽 + 𝛼𝑏0 (2.3)

This combination eliminates variable 𝑥 𝑗 when 𝑎 𝑗 and 𝑏 𝑗 have opposite signs, i.e., when 𝑎 𝑗𝑏 𝑗 < 0.

2.3.2. Conflict analysis
The most common method of solving an ILP is to relax it into a real-valued formulation (LP) and

disposing of non-integer solutions. However, conflict analysis for ILP can also be approached using

techniques inspired by CDCL[33] in SAT.

Unlike in CDCL, where Boolean variables are decided and propagated, ILP deals with integer variables.

We therefore propagate bounds instead of Boolean truth assignments. A bound ⟨𝑙𝑏 ≤ 𝑥⟩ or ⟨𝑥 ≤
𝑢𝑏⟩ represents a propagation of a lower or upper bound of variable 𝑥. Given a linear inequality

𝑎1𝑥1 + · · · + 𝑎𝑛𝑥𝑛 ≤ 𝑎0, we can propagate the upper bound of 𝑥1 using the lower bounds of 𝑥2 , . . . , 𝑥𝑛
(assuming 𝑎𝑖 > 0):

𝑥1 ≤
⌊ 𝑎0 −

∑
2≤𝑖≤𝑛 min(𝑎𝑖𝑥𝑖)

𝑎1

⌋
(2.4)

A direct adaptation of CDCL to ILP would involve performing the combination rule (Section 2.3.1) between

the conflicting constraint and the reason constraint. Similar to CDCL, the newly derived constraint

should also be conflicting with the current assignment and trigger a propagation when added to the

constraint database.

However, applying the combination rule introduces a problem: the derived constraints may not

necessarily be conflicting under the current partial assignment, despite being generated from a

constraint that was conflicting under the current partial assignment. We call this the rounding problem.

Example 2.3.1, adapted from [36, Example 3.1], illustrates this issue.

Example 2.3.1 Consider constraints 𝑐1 : 𝑥+2𝑦 ≤ 2 and 𝑐2 : 𝑥−2𝑦 ≤ 0, with𝒟(𝑥) = [1, 3] and𝒟(𝑦) = [−5, 5].
𝑥’s lower bound causes 𝑐1 to propagate 2𝑦 ≤ 1, which after rounding becomes 𝑦 ≤ 0. This leads to a conflict with

𝑐2. Combining 𝑐2 and 𝑐1, eliminating 𝑦, produces 2𝑥 ≤ 2, or 𝑥 ≤ 1. This new constraint is not conflicting with

the current assignment, as 1 ∈ 𝒟(𝑥).
Section 3.1 explores several methods from literature that address the rounding problem in ILP conflict

analysis.

2.3.3. Pseudo-Boolean solving
Many ILP problems involve only binary variables, i.e., variables restricted to values of either 0 or 1.

Such instances are referred to as pseudo-Boolean (PB) problems. Pseudo-Boolean formulations can

express certain types of constraints more compactly than traditional SAT formulations. For instance, the
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cardinality constraint "at least three variables must be true" can be concisely represented in PB form as∑𝑛

𝑖=1

𝑥𝑖 ≥ 3, whereas encoding this constraint in SAT typically requires a significantly more complex

formulation.

The restricted formulation of a PB problem allows for employing an alternative conflict analysis technique

compared to the standard ILP formulation. While PB problems remain vulnerable to the rounding

problem outlined in Section 2.3.2, PB solvers can employ cutting-plane reductions in order to mitigate

this problem. Chai [17] proposed using saturation to implement this reduction. Later Elffers et al. [22]

introduced an alternative approach based on the division rule [13] instead of saturation. Using these

cutting-plane reductions is guaranteed to produce asserting linear inequalities, unlike in the general ILP

setting where such guarantees do not apply.



3
Related work

This section examines several methods of implementing conflict analysis in both ILP and CP. It covers a

broad range of approaches to showcase the progress made over time. Firstly, adaptations of CDCL for

ILP are discussed in Section 3.1. Following that, several conflict analysis and learning approaches in CP

are discussed in Section 3.2.

3.1. CDCL in ILP
This section explores prior works that solve the ILP problem and implement conflict analysis analogous

to CDCL, and demonstrates how they address the rounding problem (Section 2.3.2).

3.1.1. CutSat(++)
One of the first contributions that addressed the rounding problem for ILP was CutSat [16], which

introduced several modifications to the standard CDCL algorithm. Firstly, variable decisions are

restricted to assigning a variable to either its current lower or upper bound, rather than allowing

decisions for arbitrary bounds. When a bound is propagated, a tightly-propagating reason inequality

for that bound is computed. A tightly-propagating inequality is an inequality for which the variable’s

coefficient in the propagated bound is −1 or 1. Conflict analysis is then performed on the tightly-

propagated reason constraints, which, by definition, do not suffer from the rounding problem as no

divisions are necessary. This now always results in a learned constraint that propagates a new bound.

There are several limitations to this, however. First, the iterative combination step is performed until a

decision is reached, which is significantly less efficient than 1UIP. Another downside of CutSat is that it

might not terminate for instances with unbounded variables. To address these limitations, Bromberger

et al. introduced CutSat++ [10] to refine the underlying calculus to ensure soundness, completeness, and

guaranteed termination. However, the authors note that an efficient implementation of the CutSat++

calculus is not available and thus no no experimental results are included in their work.

3.1.2. IntSat
Shortly after the initial introduction of CutSat [16], IntSat [42, 36] was introduced. IntSat acknowledges

that the rounding problem arises in integer conflict analysis and instead incorporates mechanisms to

mitigate its effects. Consequently, IntSat overcomes the limitations associated with CutSat. Its conflict

analysis consists of two distinct components, which together define the IntSat algorithm. These two

components make up the complete IntSat algorithm as outlined in Algorithm 3.

Linear Combinations. Just like propositional CDCL, the trail gets traversed backwards. For every

entry, it is checked whether reason constraint 𝑅𝐶 can be combined with the conflicting constraint 𝐶𝐶 to

eliminate propagated variable 𝑉 (lines 5 and 6). This elimination is feasible only if 𝑉 ∈ 𝐶𝐶 and the

signs of the coefficients of 𝑉 in 𝐶𝐶 and 𝑅𝐶 are opposite. If these conditions are met, the combination

rule is applied to 𝐶𝐶 and 𝑅𝐶 to eliminate variable 𝑉 . While the resulting learned constraint can always

9
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be incorporated into the constraint database, its added value depends on whether it suffers from the

rounding problem. To determine its effectiveness, it is checked whether the learned constraint can

propagate a new bound at any previous decision level. If so, an early backjump is performed to the decision

level at which the learned constraint is asserting. If the currently constructed conflicting constraint

𝐶𝐶 is not conflicting at the current decision level, it will not become conflicting when combined with

additional reason constraints and the analysis will fail. Therefore, the algorithm maintains the invariant

that 𝐶𝐶 must always be conflicting with the current partial assignment, and a violation of this invariant

indicates failure.

Resolution. If an invariant violation occurs or a decision is reached after performing combinations, a

resolution-based technique is applied. This method operates on bounds analogously to resolution on

literals and is guaranteed to succeed. It constructs an asserting disjunction of bounds, referred to as a

clause in the context of this section. However, since IntSat’s constraint database is constrained to an ILP

formulation, it cannot directly store and propagate clauses. These learned clauses are only integrated

into the constraint database if they can be converted into a linear inequality—specifically, if at most one

variable within the clause is non-binary. Otherwise, such clauses are used solely for propagation after

backtracking and are discarded thereafter.

IntSat has shown to be very promising, solving several benchmark instances faster than state-of-the-art

commercial MIP solvers. It was, therefore, suggested that IntSat be included as part of a solver’s toolbox.

To our knowledge, this has not happened yet, and it is interesting to research why.

Algorithm 3 IntSat Conflict Analysis

Input: a set of linear constraints 𝒞 and a trail 𝑇 containing tuples (𝑉, 𝑅𝐶) representing a propagation

of variable 𝑉 by linear constraint 𝑅𝐶
Output: a learned linear or clausal constraint and corresponding backtrack level

1: 𝐶𝐶 ← currently conflicting constraint in 𝒞
2: ⊲ Invariant: 𝐶𝐶 is conflicting with the current assignment

3: while top of trail is not a decision do
4: (𝑉, 𝑅𝐶) ← PopTrail() ⊲ Remove the last trail entry.

5: if 𝑉 ∉ 𝐶𝐶 then continue end if ⊲ Variable not relevant

6: if 𝐶𝐶[𝑉] · 𝑅𝐶[𝑉] ≥ 0 then continue end if ⊲ Signs equal, bound not relevant

7: 𝐶𝐶 ← combination of 𝐶𝐶 and 𝑅𝐶 eliminating V

8: for backtrack level ∈ 0..current decision level − 1 do
9: if 𝐶𝐶 propagates a new bound at backtrack level then

10: return 𝐶𝐶, backtrack level ⊲ Early Backjump

11: end if
12: end for
13: end while
14: return Resolution-fallback(𝒞 , 𝑇)

3.2. Conflict analysis and learning in CP
When solving a CSP, duplicate sub-trees likely exist within the search tree. Thrashing occurs when we

encounter an identical sub-tree multiple times, only to repeatedly discover that this sub-tree leads to a

conflict. This issue also arises in the context of SAT solving, where learning and conflict analysis have

proven to be highly effective in pruning the search space. This section provides an overview of existing

conflict analysis techniques for CP.

3.2.1. Nogood learning
Dechter [15] first introduced nogood learning. During the search process, nogood learning identifies

sets of partial assignments that cannot be extended into a complete solution. If the current partial

assignment matches a known nogood, it is guaranteed that this branch will not lead to a solution and

can therefore be pruned from the search space.

However, the effectiveness of this basic form of nogood learning has been somewhat limited. Katsirelos



3.2. Conflict analysis and learning in CP 11

et al. [20] demonstrated that performance can be significantly improved by employing generalized

nogoods. Unlike traditional nogoods, generalized nogoods capture not only infeasible combinations

of assignments but also non-assignments. These non-assignments allow for additional pruning by

eliminating search branches where a particular value has not been selected. For example, a generalized

nogood {𝑥 ↚ 1, 𝑦 ← 2} ensures that if 𝑥 is assigned to 0, then 2 is pruned from𝒟(𝑦).

3.2.2. Signed clause learning
A more general representation of learned knowledge in constraint solving is through signed clauses,

which are disjunctions of signed literals of the form 𝑥 ∈ 𝐷 or 𝑥 ∉ 𝐷. These literals specify whether a

variable 𝑥 is or is not part of domain 𝐷. Veksler and Strichman’s algorithm [49] learns and propagates

these signed clauses during the search by employing a dedicated propagator for signed clauses. They

make use of Beckert’s signed binary resolution [7] around a pivot variable 𝑥:

((𝑥 ∈ 𝐴) ∨ 𝑌) ((𝑥 ∈ 𝐵) ∨ 𝑍)
(𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑌 ∨ 𝑍) (3.1)

This is a generalization of the resolution found in SAT.

Signed clauses are derived from explanations generated by the propagators. An explanation clause must

satisfy two key conditions: (1) it must be logically implied by a constraint, and (2) it must be sufficiently

strong to lead to the same propagation as the constraint did. For instance, the constraint 𝑥 ≤ 𝑦 can

generate the explanation 𝑥 ∈ (−∞, 𝑚] ∨ 𝑦 ∈ [𝑚 + 1,∞) for any value 𝑚. This explanation satisfies the

first condition and, depending on the choice of 𝑚, will also satisfy the second. By iteratively performing

signed resolution on the explanations of propagators, one can find an asserting conflicting clause that

propagates variable domains. This approach mirrors the propositional resolution found in CDCL.

3.2.3. General constraint learning
Veksler and Strichman [31] have improved their signed clause learning scheme described in section

3.2.2 by extending signed clause resolution with non-clausal combinations of conflicting and reason

constraints. The rationale behind this new approach is that this produces stronger learned constraints

compared to their clausal counterparts. Experimental analysis shows that this new learning scheme

was competitive with other solvers at the time this work was introduced.

Their approach defines combination rules for constraints 𝑐1 and 𝑐2 to derive an output constraint 𝑐∗ that

satisfies two key requirements. First, the output constraint must be logically inferred from the input

constraints. Secondly, the output constraint must remain conflicting with the current partial assignment.

However, due to the rounding problem, not all combination rules satisfy this second condition. In this

case, the signed clause learning scheme is applied as a fallback.

The clausal fallback is also applied when no combination rule is defined between the conflicting and

reason constraints. This approach can be viewed as the CP implementation of IntSat (Section 3.1.2),

enhanced with additional combination rules. Since constraint combination in this approach is restricted

to a limited set of predefined rules, it does not generalize to arbitrary, non-linear constraints. Our

contribution addresses this limitation.

3.2.4. Lazy Clause Generation
Lastly, instead of employing a conflict analysis algorithm native to CP, we can leverage the mature

conflict analysis techniques from SAT to aid our CP search. We lazily generate Boolean clauses, called

explanations, that represent domain propagations of the variables in the CP model. This we call Lazy

Clause Generation [38, 47]. With these Boolean clauses, we can perform conflict analysis and unit

propagation using standard CDCL.

Ohrimenko et al. [38] proposed using a SAT engine to control the search, with CP propagators acting

as clause generators. These propagators do not update the CP domains directly but instead generate

clausal explanations for domain changes. To facilitate this, a mapping is defined between the SAT

engine and CP, encoding the domains of CP variables as literals that describe a part of a variable’s

domain, such as ⟨𝑥 ≤ 0⟩, ⟨𝑥 ≤ 1⟩, . . . , ⟨𝑥 ≤ 10⟩ for 𝑥 ∈ [0, 10]. The SAT engine does not interpret the
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meaning of these Boolean variables; therefore, inconsistencies can arise, such as ⟨𝑥 = 2⟩ ∧ ⟨𝑥 ≤ 1⟩ being

true simultaneously. These inconsistencies can be addressed by adding additional constraints to define

the relationships between the variables.

As the SAT engine controls the search, we first apply unit propagation there. Once completed, the

Boolean domain encoding is translated back into a concrete domain. The CP propagators are then

queried for a clause that explains their intended domain changes. This clause is subsequently added

to the SAT engine, and unit propagation is executed again. This process continues until a fixpoint is

reached.

Feydy and Stuckey [47] proposed an alternative approach, flipping the roles such that the CP solver

controls the search, and the SAT engine becomes the highest priority global propagator. In this scheme,

after a CP propagation, the CP propagator generates an explanation clause that describes the reason for

the domain change. This in turn triggers the SAT propagator. For example, an explanation might look

like ⟨𝑥1 ≤ 10⟩ ∧ ⟨𝑥2 ≤ 5⟩ → ⟨𝑥3 ≤ 5⟩, with the intent to propagate ⟨𝑥3 ≤ 5⟩ in the SAT model. Since

there can be multiple explanations for the same propagation, the goal is to find the strongest explanation,

which is the most general explanation (i.e., the one with the fewest terms) that restricts the search space

the most. This version of LCG is still considered state-of-the-art.



4
Lazy Linear Generation

We propose the Lazy Linear Generation (LLG) algorithm, an extension of LCG that learns asserting

linear inequalities alongside clauses. LLG enhances LCG conflict analysis by incorporating cutting

planes analysis, allowing learned constraints to capture linear relationships between variables—which

is not possible when learning a single clause, as illustrated by Example 4.0.1.

Example 4.0.1 Take for instance the constraint 𝑥 + 𝑦 ≤ 4, with 𝒟(𝑥) = 𝒟(𝑦) = {0, 4}. Representing this

simple problem requires four clauses:

⟨𝑥 ≤ 0⟩ ∨ ⟨𝑦 ≤ 3⟩
⟨𝑥 ≤ 1⟩ ∨ ⟨𝑦 ≤ 2⟩
⟨𝑥 ≤ 2⟩ ∨ ⟨𝑦 ≤ 1⟩
⟨𝑥 ≤ 3⟩ ∨ ⟨𝑦 ≤ 0⟩

Extending LCG to perform conflict analysis using linear inequalities aligns closely with the challenges

addressed by IntSat [36] and HaifaCSP [50]. Similar to IntSat, LLG adapts the CDCL resolution

algorithm to iteratively apply linear combinations to the explanations for conflicts or propagations,

deriving asserting linear constraints that are added to the model. Additionally, LLG also employs

resolution—specifically LCG—when the derived conflicting constraint does not conflict with the current

assignment any longer.

The key distinction between our LLG approach and previous works lies in LLG’s ability to linearly

explain propagations and conflicts originating from arbitrary propagators, rather than being restricted

solely to linear propagators. Our method leverages the advantages of both CP and a linear formulation

of the problem, combining the propagation strength of CP propagators with more powerful linear

conflict analysis. An example of a stronger CP propagator compared to its linear decomposition is

shown in Example 4.0.2.

Example 4.0.2 Consider the multiplication 𝑎 · 𝑏 = 𝑐 constraint, with initial domains 𝑎 ∈ {2, 3}, 𝑏 ∈ {1, 4}, 𝑐 ∈
{2, 7}. The MiniZinc linear decomposition introduces auxiliary binary variables 𝑝𝑎2, 𝑝𝑎3 and represents the

constraint using the following constraints (normally expressed linearly using the big-M formulation):

𝑝𝑎2 + 𝑝𝑎3 = 1 ∧ 𝑎 = 2 · 𝑝𝑎2 + 3 · 𝑝𝑎3 ∧ 𝑝𝑎2 → 2𝑏 = 𝑐 ∧ 𝑝𝑎3 → 3𝑏 = 𝑐

Under the current partial assignment, a CP propagator can infer, based on the upper bounds of 𝑎 and 𝑐, that 𝑏 ≤ 3.

However, since the auxiliary variables 𝑝𝑎2 and 𝑝𝑎3 remain unfixed, no further propagation can be achieved using

the linear decomposition. The CP propagation can be explained using the expression ⟨𝑎 ≥ 2⟩ ∧ ⟨𝑐 ≥ 0⟩ → 2𝑏 ≤ 𝑐,
which can be transformed into a linear inequality by introducing auxiliary variables for the conditions and

employing the big-M formulation.

This new analysis, however, introduces additional challenges. First, it requires defining explanations for

every propagation and conflict. Second, these explanations may require the dynamic introduction of

13
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auxiliary variables to accurately capture certain propagations or conflicts. Finally, the learning procedure

may generate new constraints that are not conflicting with the current assignment. This issue, which

was previously caused only by rounding problems, can now also arise in cases where propagations or

conflicts cannot be directly expressed as linear inequalities or when weak explanations are encountered.

The remainder of this section will outline LLG in more detail. Section 4.1 provides a concise overview

of the algorithm, while Section 4.2 discusses methods for constructing explanations. Implementation

details are presented in Section 4.3, and Section 4.4 describes examples of linear explanations.

4.1. Conflict Analysis algorithm
The conflict analysis algorithm employed by LLG closely resembles the one presented in Algorithm 3,

with several key modifications introduced in this section. The most notable distinction is that constraints

are no longer exclusively linear. While the conflicting constraint 𝐶𝐶 and the reason constraint 𝑅𝐶 were

previously guaranteed to be linear, conflicts and propagations must now be explained linearly for them

to participate in conflict analysis. Unlike IntSat, there is no guarantee that 𝐶𝐶 or 𝑅𝐶 can actually be

explained linearly, as certain linear explanations for propagations and conflicts may either be impractical

or too expensive to create.

This leads to two modifications. First, rather than directly retrieving the currently conflicting constraint

from 𝒞 , we attempt to derive a linear explanation for the conflict. If this is not feasible, we fall back to

resolution. Similarly, rather than directly using 𝑅𝐶, we now attempt to linearly explain each propagation.

This requires a modification to the preconditions in lines 5 and 6 of Algorithm 3. In addition to these

two conditions, we introduce an additional requirement: the combination step cannot proceed if 𝑅𝐶
cannot be linearly explained.

Finally, the resolution fallback is updated. In IntSat, the effectiveness of resolution is limited due to the

absence of a clausal propagator. However, in CP, we can leverage LCG as a fallback, enabling native

storage and propagation of learned clauses. When the solver fails to learn a linear constraint, it resorts

to LCG, proceeding as though LLG were not present.

4.2. Linear explanations
A fundamental aspect of LLG is constructing linear inequality explanations for propagations. This

section elaborates several key aspects to constructing these explanations.

4.2.1. Inferred constraints
Firstly, it is important to highlight that the asserting inequality derived from LLG is added to the model

as a constraint. Consequently, all linear explanations that lead to the construction of this inequality, must

also be inequalities inferred from the model. Put differently, a linear explanation introduces (a part of) a

linear decomposition of a constraint. This approach differs fundamentally from clausal explanations.

In LCG, explanations describe the partial assignment responsible for a propagation or conflict. In

contrast, LLG explanations are constraints that encapsulate both the conditions for propagation and the

underlying linear relationship responsible for it. This is demonstrated in Example 4.2.1.

Example 4.2.1 Consider a constraint max(𝑎, 𝑏) = 𝑐 that propagates ⟨𝑏 ≤ 3⟩ when ⟨𝑐 ≤ 3⟩. Then, ⟨𝑐 ≤ 3⟩ is

a clausal explanation for this propagation as at any point in the search tree, the constraint max(𝑎, 𝑏) = 𝑐 and

partial assignment ⟨𝑐 ≤ 3⟩ will trigger the propagation ⟨𝑏 ≤ 3⟩.
There are many correct alternative explanations, such as ⟨𝑎 ≤ 3⟩ ∧ ⟨𝑐 ≤ 3⟩. Given the partial assignment

(𝑎 = 3, 𝑐 = 3), the same propagation will occur. However, this explanation is weaker than the previous explanation,

as it enables propagation in fewer assignments than ⟨𝑐 ≤ 3⟩ because of the inclusion of the ⟨𝑎 ≤ 3⟩ term.

For LLG, the explanation is an integer linear inequality directly implied from the original model. Ideally, this

explanation would propagate given the current partial assignment. A valid LLG explanation for the propagation

of ⟨𝑏 ≤ 3⟩ would be 𝑏 ≤ 𝑐.
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4.2.2. Explanation signs
Additionally, it is noteworthy that for a linear explanation to accurately capture a propagation, it must

constrain the propagated variable in the same direction as the propagation being explained. The

direction in which a linear constraint constrains a variable is determined by the sign of this variable in

the inequality. More specifically, a linear constraint 5𝑎 − 4𝑦 ≤ 0 constrains the upper bound of 𝑎, and the

lower bound of 𝑦. Example 4.2.2 provides an intuitive justification for this condition. From a technical

perspective, this requirement arises directly from the properties of linear constraint elimination: to

eliminate a variable by combining two inequalities, the variable must appear with opposite signs in

both. If the propagated variable in the explanation has the same sign as in the conflicting constraint, it

did not contribute to the conflict and is therefore not taken into account.

Example 4.2.2 Consider a conflict analysis with current conflicting constraint 𝐶𝐶 : −6𝑥 + 3𝑦 ≤ 10. We aim to

derive a 𝐶𝐶 that is asserting earlier in the search. This requires maximizing its left-hand side—achievable by

minimizing 𝑥 or maximizing 𝑦. Now, given the trail entry (𝑉, 𝑅𝐶) = (𝑥,−3𝑥 − 6𝑦 ≤ 10), we aim to eliminate 𝑥.

However, since 𝑥 has a negative coefficient in 𝑅𝐶, it constrains 𝑥’s lower bound, not contributing to the goal of

minimizing 𝑥.

4.2.3. Conditional explanations
An explanation may incorporate a conditional component to specify the conditions under which the

explanation holds. Such conditional statements can be represented using Boolean auxiliary variables,

which are binary variables indicating the truth value of a condition. For example, consider the

conditional explanation ⟨𝑎 ≤ 2⟩ → 𝑏 ≥ 3. We can encode the condition by introducing a Boolean

auxiliary variable 𝑝1, defined as:

𝑝1 =

{
1 if 𝑎 ≤ 2

0 if 𝑎 > 2

(4.1)

By ensuring consistent propagation of 𝑝1 (discussed further in Section 4.3), the conditional explanation

can be reformulated into a linear inequality: 𝑏 ≥ 3 − 𝑀(1 − 𝑝1). This formulation uses the “Big M”

transformation to model the cases of 𝑎 ≤ 2 and 𝑎 > 2 within a single explanation. Similar linearization

techniques are described in more detail by [8].

4.3. Implementing auxiliary variables
The auxiliary variables associated with conditional explanations (see Section 4.2.3) cannot be constructed

before starting the search procedure, as it is unknown which auxiliary variables will be necessary. Thus,

they must be introduced and propagated during the search. A key challenge is maintaining a consistent

solver state at decision levels where these variables did not exist yet.

4.3.1. Adding auxiliary variables
When a new auxiliary variable is introduced, it often could have propagated at an earlier decision level,

had it existed earlier. While we can propagate the auxiliary variable immediately upon its creation,

this propagation is discarded upon backtracking. Ideally, we would retroactively introduce auxiliary

variables at the start of the search, allowing them to propagate at the correct decision level. However, we

argue that this retroactive introduction is not strictly necessary, as solver correctness does not require

propagation at the earliest possible decision level.

Instead, we ensure that auxiliary variables are propagated as soon as possible. Upon backtracking,

propagation normally starts by propagating the newly learned constraint, which may then trigger other

propagators. LLG, however, prioritizes auxiliary variable propagation at this stage. This approach

seeks to update the auxiliary variables—and, by extension, the variables that depend on them—so that

they are identical to the state that would have been achieved had the auxiliary variables been present

from the beginning of the search. If the solver backtracks further and discards this propagation, the

auxiliary variable can again be re-propagated at the earlier level, ensuring correctness without complex

trail manipulations. Example 4.3.1 illustrates this principle.

Example 4.3.1 At decision level 10, an explanation introduces an auxiliary variable 𝑝, defined as 𝑝 ⇐⇒
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6𝑎 + 7𝑏 > 3. We can immediately propagate 𝑝 ≥ 1. Had 𝑝 existed earlier, this propagation would have already

occurred at level 3. If the solver now backtracks to decision level 5, the propagation 𝑝 ≥ 1 is discarded. We

immediately re-propagate 𝑝 ≥ 1 at level 5 and subsequently reach the same state as if 𝑝 had been propagated at

decision level 3.

4.3.2. Evaluating auxiliary variables during conflict analysis
A critical aspect of LLG’s conflict analysis algorithm is verifying whether a newly learned constraint is

asserting at any earlier decision level. The learned constraint may, however, contain auxiliary variables

that did not yet exist at a previous decision level. Even though these auxiliary variables are properly

propagated once a backtrack is executed, they might not be propagated on the trail when conflict

analysis considers them. This can result in incorrectly classifying the learned constraint as non-asserting.

To resolve this, we explicitly evaluate the conditions of auxiliary variables rather the auxiliary variable’s

own bounds when checking for assertivity at any previous decision level. Although the auxiliary

variables may not have been propagated yet at this previous decision level, it is still possible to infer the

truth value of the condition.

4.4. Examples of explanations
We have formulated linear explanations for several global constraints. This section provides a detailed

exposition of some of these explanations. A comprehensive overview of all explanations is presented in

Appendix A.

Example 4.4.1 (Explanation of ⟨𝑥𝑖 ≠ 𝑣𝑎𝑙⟩ for 𝐴𝑥 ≠ 𝑏) The propagation of 𝑥𝑖 ≠ 𝑣𝑎𝑙 implies that ⟨𝑥𝑖 <
𝑣𝑎𝑙⟩ ⊕ ⟨𝑥𝑖 > 𝑣𝑎𝑙⟩ must hold. This can be captured by introducing an auxiliary variable 𝑝 defined by

𝑝 ⇐⇒ 𝐴𝑥 < 𝑏, leading to two possible explanations: (1) 𝐴𝑥 < 𝑏 +𝑀(1 − 𝑝), (2) 𝐴𝑥 > 𝑏 −𝑀𝑝.

Which explanation is chosen depends on whether the propagation of 𝑥𝑖 ≠ 𝑣𝑎𝑙 decreases the upper bound of

𝑥𝑖 (explanation 1), increases its lower bound (explanation 2), or introduces a hole in its domain (pick either

explanation).

Example 4.4.2 (Explaining ⟨𝑖𝑑𝑥 = 𝑖⟩ → 𝐴[𝑖] ≤ 𝑟ℎ𝑠 for 𝐴[𝑖𝑑𝑥] = 𝑟ℎ𝑠) The element constraint enforces𝐴[𝑖𝑑𝑥] =
𝑟ℎ𝑠, where 𝐴 is an array of variables and 𝑖𝑑𝑥 is a variable representing the selected index. In explaining the

propagation of 𝐴[𝑖] ≤ 𝑟ℎ𝑠, it is necessary to include the condition 𝑖𝑑𝑥 = 𝑖, which we encode using an auxiliary

variable 𝑝𝑖 . This leads to the following explanation:

𝐴[𝑖] ≤ 𝑟ℎ𝑠 +𝑀(1 − 𝑝𝑖) (4.2)

We can encode the auxiliary variable 𝑝𝑖 in two ways.

Direct explanation. We can define the auxiliary variables as follows:

𝑝 𝑙𝑡𝑖 ⇐⇒ 𝑖𝑑𝑥 ≤ 𝑖 , 𝑝
𝑔𝑡

𝑖
⇐⇒ 𝑖𝑑𝑥 ≥ 𝑖 , 𝑝𝑖 ⇐⇒ 𝑝 𝑙𝑡𝑖 + 𝑝

𝑔𝑡

𝑖
≥ 2 (4.3)

MiniZinc linear explanation. Alternatively, we can follow a formulation similar to the MiniZinc linear

decomposition [8]. In this approach, we introduce 𝑛 Boolean auxiliary variables corresponding to the 𝑛 elements

of the array and enforce the following constraints:

1. Exactly one auxiliary variable must be true:

∑
𝑖
𝑝𝑖 = 1

2. Set idx to the selected auxiliary variable:

∑
𝑖
𝑖 · 𝑝𝑖 = 𝑖𝑑𝑥

Do note that this explanation method necessitates bi-directional propagation of 𝑝𝑖 and 𝑖𝑑𝑥 to ensure domain

changes of one variable, are reflected in the other.

Due to engineering constraints that limit the number of auxiliary variables that should be created, LLG implements

𝑝𝑖 using the MiniZinc method as this only requires the addition of 𝑛 auxiliary variables, whereas the direct

explanation might create 3𝑛 auxiliary variables.
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Example 4.4.3 (Explanation of ⟨𝑏 ≥ 5⟩ ∧ ⟨𝑐 ≥ 0⟩ → 𝑎 ≤ ⌊𝑢𝑏(𝑐)/𝑙𝑏(𝑏)⌋ for 𝑎 × 𝑏 = 𝑐) To express this prop-

agation linearly, we fix 𝑏 to its current lower bound. Assuming a lower bound of 𝑏min = 5, the explanation is given

by ⟨𝑏 ≥ 5⟩ ∧ ⟨𝑐 ≥ 0⟩ → 5𝑎 ≤ 𝑐. We introduce auxiliary variables (1) 𝑝1 ⇐⇒ 𝑏 ≥ 5 and (2) 𝑝2 ⇐⇒ 𝑐 ≥ 0

to represent the conditions. This leads to the linear explanation:

5𝑎 ≤ 𝑐 +𝑀(1 − 𝑝1) +𝑀(1 − 𝑝2). (4.4)

Example 4.4.4 (Explanation of ¬𝑐 → 𝑟 ≤ 0 for 𝑟 → 𝑐) A noteworthy constraint is the reified constraint,

which defines the implication 𝑟 → 𝑐 for Boolean variable 𝑟 and an arbitrary CP constraint 𝑐. This constraint

ensures that 𝑐 must hold whenever 𝑟 = 1. If 𝑐 is conflicting under the current assignment, we can propagate

𝑟 ≤ 0. Since 𝑐 is a CP constraint, we can explain its conflict with a linear inequality of the form 𝐴𝑥 ≤ 𝑏. However,

directly using 𝐴𝑥 ≤ 𝑏 to explain the propagation of 𝑟 ≤ 0 would incorrectly assert that 𝐴𝑥 ≤ 𝑏 (and hence

constraint 𝑐) must always be enforced. Instead, they are only enforced when 𝑟 = 1. Consequently, we incorporate 𝑟
into the explanation to capture this conditional enforcement:

𝐴𝑥 ≤ 𝑏 +𝑀(1 − 𝑟). (4.5)



5
Experiments

We implemented our LLG approach in Pumpkin
1

. The initial version of Pumpkin serves as the baseline

LCG solver. We consider the number of conflicts as the main metric. This allows us to draw conclusions

that are independent of the runtime and engineering issues. We believe this fairly shows the potential

of our LLG approach. With this in mind, we leave optimizing the implementation as future work. To

further ensure that the results are because of the differences in the conflict analysis procedure, and not

other factors, we only consider instances for which the branching strategies of LLG and LCG are fixed

according to the strategy provided in the instances. Our results demonstrate that:

1. LLG encounters significantly fewer conflicts than LCG (Section 5.2.1).

2. Learned inequalities indeed provide stronger reasoning than clauses (Section 5.2.2).

3. While the success rate of LLG analysis is relatively low and decreases with time (Section 5.2.3), the

learned constraints are highly effective.

4. LLG is generally more effective compared to a linear decomposition (Section 5.3).

5. The presence of clausal propagation is instrumental for LLG, underscoring the benefits of utilizing

LCG as a fallback (Section 5.4).

These experiments provide a deeper insight into cutting planes conflict analysis in the context of

constraint programming.

5.1. Experimental setup
Dataset selection The representative dataset used for the experiments is constructed by combining all

models from the MiniZinc Challenges [44, 43] and Benchmarks
2

libraries. Each model is subjected to

the following criteria and transformations:

• Model selection: For models obtained from the Minizinc Challenges, only problems that at least

one finite domain solver has successfully solved within the 20-minute time limit are included. This

is because the experimental analysis excludes instances that reach their timeout, as many metrics

become incomparable in such cases. Furthermore, models containing floating-point numbers

or unbounded integers are excluded. To maximize dataset diversity, no more than 10 instances

per model are included. If a model exceeds this limit, 10 instances are randomly sampled from

the available data files. Finally, only problems utilizing fixed-search branching are considered,

ensuring that any variation in the number of conflicts is solely due to differences in learning.

• Constraint decomposition: Problems are decomposed into fundamental global constraints,

namely, multiplication (𝑎 × 𝑏 = 𝑐), truncating division (𝑎/𝑏 = 𝑐), absolute value (𝑎 = |𝑏|),
1https://github.com/ConSol-Lab/Pumpkin
2https://github.com/MiniZinc/minizinc-benchmarks
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maximum (𝑚𝑎𝑥(𝐴) = 𝑏), not equals (𝐴𝑥 ≠ 𝑏), linear less-than-or-equal-to (𝐴𝑥 ≤ 𝑏), reified

(𝑟 → constraint), element (𝐴[𝑖𝑑𝑥] = 𝑏) and clauses.

This results in a dataset of 952 instances based on 223 unique models. These instances result in roughly

50.5M linear inequalities, 18.4M reified constraints, 3.7M not-equals constraints, 1.3M multiplication

constraints, 654k element constraints, 417k maximum constraints, only 4.5k absolute and only 1.4k
division constraints.

Hardware All experiments were conducted on the DelftBlue[1] compute cluster, using 8GB of memory

and a 1-hour timeout per instance.

Implementation correctness Developing a CP solver requires careful implementation. To detect

as many potential implementation errors as possible, several tests were conducted. All tests were

successfully passed. While this does not guarantee a completely bug-free implementation, it increases

confidence in the correctness and reliability of the results. The following tests have been executed:

• Solution Enumeration: Verifying that the complete set of solutions from Pumpkin matches

the one generated by Gecode[19]. The test was conducted on all satisfiability problems in the

dataset, as well as on optimization problems that were transformed into satisfiability problems by

enumerating all solutions whose objective value matched the optimal value (if Gecode was able to

compute the optimal value within 10 seconds).

• Explanation Validation: Verifying that adding the negation of a generated explanation to a fresh

model results in unsatisfiability. Since an explanation is generated for every propagation and

conflict, performing this verification for every explanation in the full dataset was computationally

infeasible. Therefore, a representative subset of 5000 explanations—uniformly sampled across

different explanation types—was selected for this test.

• Unit Tests and Assertions: Incorporating numerous unit tests and assertions throughout the

implementation.

5.2. LLG compared to LCG
5.2.1. Reduction of conflicts
This experiment evaluates the ratio of conflicts that are encountered in LLG compared to LCG across

the instances that, (1) have been solved within the time-limit for both LLG and LCG, and, (2) have

been able to learn at least one linear inequality. Of the 952 instances, LLG can solve 624 instances

within the time-limit, whereas LCG can solve 663 instances within the time-limit. This difference can

be attributed to the significantly higher number of out-of-memory errors for LLG, given its inefficient

implementation. Additionally, in the case of LLG, approximately 70%, or 443 of successful instances

succeeded in learning any inequality. This shows that, with the current state of LLG, not all instances

benefit from its linear conflict analysis.

The results in the boxplot in Figure 5.1 reveal several key trends. Firstly, the lower half of the distribution

exhibits significant reductions, with a decrease in conflicts of up to 60% for a quarter of the instances,

even increasing to over 90% when looking at the top 10% of instances. Then, the Q2 to Q3 quartile

indicates that in roughly a quarter of the completed instances, the number of conflicts is reduced only

slightly. For these instances, LLG may learn very few linear constraints, or may learn linear constraints

that propagate similar bounds as learned clauses. Lastly, the upper 75% to 90% percentile range

highlights cases where the number of conflicts increase marginally. This phenomenon can be attributed

to some learned constraints that are weaker compared to the clauses that could have been learned.

Our initial hypothesis asserted that the top-performing instances would be derived from a limited

subset of models that fit LLG especially well. However, upon examining the instances exhibiting at

least a 50% reduction in conflicts, we identify 117 instances originating from 52 models (117/52 ≈ 2.3
instances per model). In comparison, a total of 574 instances from 171 models successfully complete for

both LCG and LLG (574/171 ≈ 3.4 instances per model): the top-performing instances are even more

varied than the full dataset. Consequently, our initial hypothesis is refuted; a wide variety of problems

benefit from LLG.
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The distribution of constraints across these instances also seems highly variable. The successful instances

exhibit a slightly higher percentage of linear-less-or-equals constraints, though the difference is within

only a few percent.

Lastly, although these experiments were conducted using an unoptimized implementation, we observe

that for the top 25% of instances—each achieving at least a 60% reduction in conflicts—runtime

performance already surpasses our baseline LCG, owing to the significant decrease in conflicts of LLG.

Specifically, for this subset of instances (excluding those with execution times below 5 seconds), the

median runtime improvement is 75%.
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Figure 5.1: Boxplot showing the ratio of conflicts in LLG relative to LCG (lower = better). The boxplot displays the Q1, Q2 and Q3

quartiles, with whiskers extending to the 10% and 90% percentiles. A logarithmic scale is used for equal spacing of ratios. Only

instances where both LCG and LLG successfully completed and at least one linear constraint was learned, are considered. LLG

encounters significantly fewer conflicts than LCG for 50% of the instances, slightly fewer conflicts for 25% of the instances while

for the remaining instances, the increase in conflicts is marginal if any.

5.2.2. Strength of learned inequalities
Since LLG was introduced based on the proposition that linear constraints may provide stronger

reasoning than clauses, it is essential to verify whether this assumption is supported by experimental

results. To this end, we compared two program variants: a standard LLG program and an alternative

version in which linear analysis is performed, but instead of adding learned linear constraints, the

fallback clauses are introduced into the model.

For the standard LLG program, we record for each propagation triggered by a learned linear constraint

whether the fallback clause—had it been learned instead—would have resulted in the same propagation.

Similarly, for the alternative program, we record for each propagation triggered by a learned clause that

was generated in cases where a linear constraint could have been learned instead, whether the linear

constraint—had it been learned instead—would have produced the same propagation.

The results (not in figure) indicate that when a linear constraint is learned, it replicates over 91% of the

propagations that the fallback clause would have produced. In contrast, only 37% of the propagations

triggered by learned linear constraints would have been replicated by the clause. This confirms that, in

nearly all cases, the linear constraint is at least as strong as the fallback clause. This further suggests that

neither conflict analysis method strictly dominates the other, yet learned linear constraints tend to be

more general in practice.

Propagation of learned clauses and inequalities We also observe (not in figure) that for a normal

LLG execution, the majority of learned clauses do not propagate more than once. In contrast, the

median number of propagations per learned learned inequality is 90, even increasing to 120 when only

considering instances that finished within the time-out. This demonstrates that when an inequality can

be learned, it generally has a much greater impact on the search compared to a learned clause.

This effect is even more evident when examining the means and standard deviations of the number of

propagations. While learned clauses propagate an average of 16 times (std 680), learned inequalities

propagate 6,710 times (std 103,593). This substantial deviation arises from the fact that there are several

instances that contain learned inequalities with hundreds of thousands to even millions of propagations.

These instances originate from different models, without a clear correlation among them. Figure 5.2

further illustrates this with a histogram depicting the distribution of propagations.
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Figure 5.2: Histogram comparing the number of learned nogoods and inequalities (y-axis) that propagated a certain number of

times (x-axis). Due to the lower number of inequalities relative to learned nogoods, separate y-scales are used. The x-axis is

logarithmic due to the spread in propagation count for learned inequalities. Most learned nogoods propagate only once, with

very few exceeding 10 propagations. In contrast, while many learned inequalities also propagate only once, a significant number

propagate much more frequently.

5.2.3. Analysis success rate
This experiment aims to illustrate the success rate of LLG analyses as the search progresses, and to

identify reasons for failed analyses. Recall that a successful LLG analysis results in learning a linear

constraint, whereas a failed analysis reverts to LCG for reasons such as a violated conflicting invariant.

Here, it is relevant to compare successful instances with less successful instances. Therefore, three

subsets of instances were selected: all instances (Figure 5.3a), those with at least a 50% reduction in

conflicts (Figure 5.3b), and those with at least a 75% reduction in conflicts (Figure 5.3c).

Firstly, Figure 5.3a demonstrates a declining trend in successful analyses over time, accompanied by

an increase in conflicts and propagations that cannot be explained linearly. This trend persists when

results are categorized by the number of conflicts (comparing small and large instances) and by problem

type (satisfaction versus optimization). The only correlation we can observe, is the one between a

decreasing LLG success rate and an increase in failed LLG analyses attributed to encountered clauses.

Approximately 38% of LLG failures can be attributed to these factors. The remaining 62% consist of

failures that occur at a relatively constant rate throughout the search, including invariant violations

(≈ 50%), combinations that fully cancel out (≈ 6%), overflows (≈ 3%), and cases where a decision is

reached before identifying an asserting constraint (≈ 3%).

In contrast, Figures 5.3b and 5.3c exhibit some differences compared to the full dataset. Initially, conflict

analysis is highly successful—significantly more so than for the full dataset. However, as the search

progresses, analysis performance declines sharply. For these instances, we can see an increasing number

of analysis failures due to invariant violations increase substantially throughout the search. Figures

5.3a through 5.3c all illustrate that LLG conflict analysis succeeds in only a relatively small fraction

of instances. This experiment demonstrates that even the relatively small number of learned linear

constraints can significantly decrease the number of conflicts encountered.

Given the decreasing frequency of conflict analyses leading to newly learned linear constraints, it is

worth exploring whether a similar pattern is observed in the propagations of learned constraints. Figure

5.3d plots the density function (area under the curve equals 1) of all propagations triggered by learned

constraints, presented for the same three subsets of instances. The results indicate that, despite the

decline in newly learned linear constraints, propagations of learned constraints increase over time. This

indicates that, as the search progresses, previously learned linear constraints continue to propagate

consistently.

Explanation slacks Finally, we examined the slack of explanations that resulted in a learned inequality

compared to those that did not. In the context of LLG, slack is defined as slack(𝐴𝑥 ≤ 𝑏) = 𝑏 − lb(𝐴𝑥),
where lb computes the current lower bound. Notably, a negative slack indicates a conflict.

First, we found no clear correlation between the slack of a conflict explanation and the proportion of

these explanations that eventually led to a learned constraint, contrary to our expectation that large
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negative slacks are more likely to succeed. The only necessary condition for a conflict explanation is

that is has negative slack. Second, we observed a strong correlation between the slack of a propagation

explanation and its likelihood of resulting in a learned constraint: explanations with lower slack

demonstrate a higher probability of leading to a learned constraint. This result is sensible, as lower

slack values indicate that the explanation is closer to being either asserting or conflicting. In contrast,

explanations with high slack may be overly general or involve large big-M coefficients. These results

suggest the possibility of selecting certain explanations based on their slacks, prioritizing those that are

more likely to contribute to the derivation of a learned constraint.
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(b) Instances with at least 50% conflict reduction over LCG
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(c) Instances with at least 75% conflict reduction over LCG
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(d) Probability density function showing the distribution of

propagations of learned inequalities (y-axis) as a function of search

progress, measured by the percentage of total conflicts (x-axis).

Figure 5.3: Figures (a) through (c) show the success rate of conflict analyses (y-axis), plotted against the percentage of total

conflicts (x-axis). The four most significant outcomes are included. Figure (a) demonstrates a decrease in analysis success as

nogoods encountered increases. Figures (b) and (c) show a strong initial success, followed by an increase in invariant violations.

Figure (d) demonstrates that, although the number of newly learned linear constraints decreases as the search progresses, the tail

end exhibit the highest concentration of constraint propagations. This can be explained by the cumulative effect of both newly

introduced and previously learned constraints.

5.3. LLG compared to linear decomposition
In addition to comparing LLG with LCG, it is also valuable to evaluate Pumpkin’s decomposition as

described in Section 5.1 against a decomposition consisting only of linear inequalities. This evaluation

shows that using CP propagators—even though not all its linear explanations are equally successful—is

still beneficial over a fully linear model. For this experiment, all instances from the test set were

reformulated into a fully linear model using the MiniZinc Linear Library
3

. Among the 952 instances in

the test set, 938 could be transformed into a linear model within a 300-second timeout. The 14 instances

that could not be converted likely experienced excessive model growth when represented fully linearly.

For the 938 successfully converted instances, Figure 5.4a presents the ratio of conflicts between the linear

decomposition (baseline) and LLG. The results indicate a substantial reduction in conflicts when using

LLG. Specifically, at least 25% of the instances exhibit a conflict reduction of 50% or more. Furthermore,

3https://github.com/MiniZinc/libminizinc/tree/master/share/minizinc/linear

https://github.com/MiniZinc/libminizinc/tree/master/share/minizinc/linear
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the first and second quartiles (Q1 to Q2) of the boxplot show a notable decline in conflicts, ranging from

50% to 8%. The second to third quartiles (Q2 to Q3) display a mix of reductions, from an 8% reduction

to an increase of 20%. The remaining instances exhibit a slightly larger increase in conflicts.

These increases in conflicts can be attributed to two primary factors. Firstly, the preprocessing

optimizations performed by the linear decomposition can result in the generation of smaller linear

problem instances compared to those produced by Pumpkin’s decomposition. Secondly, some of

Pumpkin’s propagators perform propagations that cannot be easily linearly explained, such as set or

alldifferent propagations, whereas the linear decomposition provides an alternative formulation that can

be linearly explained more effectively. Nevertheless, LLG continues to exhibit a significant performance

advantage over the linear decomposition.

5.4. LLG without clause learning
Previous experiments have shown that a key reason for failing to learn linear constraints during

LLG conflict analysis is encountering nogoods. Therefore, we investigate the consequences of only

propagating a learned clause once, without storing it in the constraint database. The results, presented

in Figure 5.4b, indicate that omitting clause storage leads to a significant increase in conflicts. This

observation underscores that even though encountering nogoods resulted in learning fewer linear

inequalities, the effectiveness of LLG relies heavily on the ability to store and propagate learned clauses.

We note the clear parallel between this experiment and the standard behavior of IntSat [36]. However, two

key distinctions differentiating the two approaches prevent an accurate comparison. First, IntSat operates

solely on fully linear models, which inherently provide better linear explanations for propagations than

a CP model can, increasing the success rate of IntSat’s conflict analysis. Second, IntSat tries to transform

learned clauses into linear inequalities when at most one bound of the clause is non-binary. Within our

CP problems, such conversions are rarely feasible due to the predominant use of integer variables. This

limitation might change if the CP models were reformulated as linear programs.
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6
Conclusion and Future Work

Constraint analysis and learning in CP have been extensively studied, leading to the highly successful

Lazy Clause Generation [47] algorithm, which performs clause learning. However, linear constraints

offer the potential for more powerful reasoning capabilities than clauses. Previous works [36, 50] have

explored cutting-plane reasoning within Integer Linear Programming (ILP) and CP, but they do not

generalize to arbitrary CP propagators. This thesis therefore aims to investigate how cutting-plane

analysis can be incorporated into Constraint Programming (CP) for arbitrary propagators and to

experimentally investigate its effect on the search process.

For this, we introduce Lazy Linear Generation (LLG), a conflict analysis algorithm that integrates

concepts from these prior studies to formulate a novel learning mechanism for linear constraints. A key

distinction of LLG from prior methods is that it explicitly derives linear explanations for propagations

and conflicts, leveraging these explanations for linear conflict analysis. These explanations, inferred

directly from the original model, linearly describe the corresponding propagation and can be constructed

using techniques such as those outlined in [8]. Furthermore, explanations may incorporate Boolean

auxiliary variables that encode necessary conditions for the explanations to hold. These auxiliary

variables are generated dynamically during the search process and are appropriately propagated by

LLG.

Experimental evaluations of LLG on 952 instances demonstrate that learning linear constraints reduces

the number of conflicts by a median of 10%, reaching up to 60% for the 25th percentile, compared to

learning only clauses. We show that linear explanations provide stronger reasoning than clauses, but

they do not strictly dominate clauses. Although the success rate of linear conflict analysis is relatively

low, the learned linear constraints yield a notable impact on solver performance. When compared to a

linear decomposition using the same conflict analysis, we observe that LLG provides a considerable

reduction in the number of conflicts encountered. Furthermore, our experiments highlight that using

a clausal propagation as a fallback is important, even when using conflict analysis based on cutting

planes. These experiments show that our approach shows potential in obtaining much more effective

constraint solving.

6.1. Future work
There are several promising avenues for further research of the LLG algorithm.

Additional explanations Firstly, it is interesting to consider linear explanations for additional global

constraints, such as the cumulative constraint. These global constraints may have a very large linear

decomposition that can now be effectively incorporated in conflict analysis, whilst benefiting from the

smaller CP formulation of the constraint.

Improving explanations Second, existing linear explanations can be refined by for instance incorporat-

ing additional techniques as proposed in [8]. Specifically, various improvements can be implemented to

24
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minimize the need for auxiliary variables or to simplify explanations when the initial variable domains

permit. Furthermore, a significant opportunity lies in balancing the trade-off between the strength of an

explanation and the use of auxiliary variables.

Lazily generating explanations based on the current conflict analysis state may lead to producing more

useful linear explanations. For instance, it may be possible to selectively include or exclude certain

variables from an explanation depending on their presence in the conflicting constraint.

LLG and LCG integration Next, clausal propagations could also be linearly explained through the

introduction of auxiliary variables for every predicate. It remains unclear whether linear conflict analysis

is useful when applied to these non-linear clauses, and whether the benefits outweigh the overhead

introduced by the additional auxiliary variables required for this approach. Moreover, enabling LCG to

resume from the point where LLG left off—rather than restarting conflict analysis from scratch—could

potentially lead to improved clausal explanations and improved run-time efficiency.

Engineering improvements Finally, several engineering improvements can be implemented to allow

for LLG’s run-time to be evaluated and compared to other solvers. For instance, lazily generating

explanations would ensure that auxiliary variables are introduced only when they are present in a

learned constraint. Avoiding the generation and propagation of auxiliary variables that are never

utilized can significantly reduce their computational overhead and improve runtime performance.

6.2. Closing thoughts
This section provides several comments on the current state of LLG, along with reflections that may

guide its future developments. While these remarks do not constitute explicit contributions, they may

nonetheless prove valuable in guiding further advancements of LLG.

Firstly, the explanations currently provided represent only an initial attempt and can be easily improved.

Due to inefficiencies in the current implementation of LLG, it was necessary to limit the number of

auxiliary variables in explanations. Consequently, some explanations are currently overly general,

reducing their effectiveness in conflict analysis. However, if auxiliary variables are introduced to the

search only when they are part of a learned constraint, they can be incorporated more frequently in

explanations, enabling them to more accurately capture the original propagation.

When developing new explanations, it is useful to categorize propagations into three groups:

1. Propagations also performed by the linear decomposition. These can be easily explained by

outputting the decomposition itself or identifying an equivalent linear explanation.

2. Propagations that can be expressed as linear relationship, but are not performed by the linear
decomposition. In many cases, the linear decomposition of a constraint cannot replicate the full

extent of propagation achieved by a dedicated CP propagator, as doing so would necessitate an

impractically large linear model. However, these propagations often include a linear component

that is valid only under certain conditions. When such conditions are explicitly encoded using

auxiliary variables, linear analysis can yield insights that go beyond those obtainable through

standard linear decomposition

3. Propagations without a discernible linear relationship. There are also propagations that do

not have any linear component. These propagations essentially require clausal explanations that

are subsequently converted into linear inequalities using auxiliary variables. However, this does

not necessarily indicate that linear analysis for these propagations is ineffective; rather, a linear

relationship may still exist between auxiliary variables and other model variables.

It might be helpful to consider these three categories when designing explanations for propagations,

as constructing a meaningful explanation may not always be feasible in the absence of an underlying

linear relationship. Additionally, it is interesting to evaluate the linear analysis capabilities of these

three propagation groups.

Finally, the effectiveness of linear conflict analysis—and consequently, the overall search perfor-

mance—depends not only on the quality of explanations but also on the specific propagations performed.
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The manner in which a constraint is formulated plays a crucial role in the efficacy of linear analysis.

Consider, for example, the alldifferent constraint. It can be represented using a pairwise not-equals

formulation, or through a more involved encoding as in the MiniZinc linear decomposition. While

the former formulation avoids the need for any additional variables in the problem formulation, it is

challenging to provide meaningful linear explanations. In contrast, the latter formulation introduces

additional variables that significantly enhance the linear learning capabilities. This trade-off between

propagation efficiency and learning effectiveness has not been investigated in this thesis and is interesting

to explore further.
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A
All explanations

Table A.1 contains a comprehensive overview of all explanations used for LLG. In case several

explanations are possible for a propagation, the right one is chosen based on whether a lower- or upper

bound is propagated. The explanations have undergone multiple manual reviews but have not been

formally verified for correctness.
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B
Conference Paper

This appendix includes a copy of the preprint version of the conference paper based on this thesis,

submitted to the CP2025 conference. At the time of the submission of this thesis, the paper is still under

review.
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Abstract
This paper introduces a novel constraint learning mechanism for Constraint Programming (CP)
solvers that integrates cutting planes reasoning into the conflict analysis procedure. Drawing
inspiration from Lazy Clause Generation (LCG), our approach, named Lazy Linear Generation
(LLG), can generate linear integer inequalities to prune to search space, rather than propositional
clauses as in LCG. This combines the strengths of constraint programming (strong propagation
through global constraints) with cutting planes reasoning. We present linear constraint explanations
for arithmetic constraints (not-equal, absolute value, maximum, integer multiplication, truncating
division) and the element constraint. An experimental evaluation on 952 MiniZinc Challenge
instances shows that our approach greatly reduces the number of conflicts compared to LCG. The
number of conflicts is also reduced compared to decomposing to linear inequalities, due to the
stronger propagation in the CP solver. While more engineering efforts are needed to fully exploit the
potential, our analysis and prototype implementation shows promising results and are an important
step towards a new paradigm to make constraint programming solvers more effective.
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1 Introduction

Constraint Programming [37] (CP) is an important paradigm for solving combinatorial
optimization problems. It has applications in many domains, including resource allocation [39,
35], scheduling [31, 2], and verification [30, 4]. CP solvers use backtracking search algorithms
to find solutions to models. Key to a good backtracking search algorithm is the ability to
identify areas of the search space that do not contain solutions. Modern CP solvers use a
combination of two types of reasoning to achieve this. The first is propagation, which is the
process of identifying values that, based on the constraints in the problem, can never be
part of a solution. The second is conflict analysis, which adds new constraints to the solver
during the search process, which enables more propagation to occur.

Deriving new constraints is well-known to be beneficial to backtracking search al-
gorithms [10]. Much work has been done to implement constraint learning effectively in CP
solvers [19, 28, 36, 20, 23, 38]. Of the approaches, Lazy Clause Generation (LCG) [28, 36], is
the most wide-spread, implemented by solvers such as OR-Tools [29] and Chuffed [9]. For
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many problems, constraint learning is crucial [36, 1] to the performance of a solver, as the
learned constraints prune large parts of the search space.

All these solvers have in common that they reason over clausal constraints. However, other
types of constraints can also be learned by CP solvers [38]. For paradigms other than CP,
work has also been done exploring the learning of pseudo-Boolean (PB) constraints [12, 16]
and integer linear constraints [26, 18, 3]. These systems have the potential of learning stronger
constraints than clauses, although in practice more scientific and engineering efforts are
needed to make these approaches as mature as the more studied clause-learning algorithms.

An example of conflict analysis on integer linear constraints can be found in the Integer
Linear Programming (ILP) solver IntSat [26], which serves as a starting point of our approach.
It stands out from other ILP solvers because it does not reason using the LP relaxation of the
problem. Instead, it uses cutting planes reasoning and a generalized CDCL [21] algorithm,
which combines integer linear constraints to derive new (implied) integer linear constraints.
The method is promising, as it is already competitive with other state-of-the-art ILP solvers
such as Gurobi [15]. One major difference between IntSat’s conflict analysis procedure and
a clausal conflict analysis procedure, is that in the former the analysis can fail. In that
situation, the analysis cannot derive a new constraint that compactly describes the current
conflict. Yet, the empirical evaluation shows that IntSat is effective despite this fact.

The effectiveness of cutting planes reasoning inspired our work with the question “How
can CP solvers incorporate cutting planes reasoning?”. As IntSat is heavily inspired by
CDCL, this indicates that cutting planes reasoning could be incorporated in constraint
programming similar to how LCG includes propositional CDCL. The major difference would
be how high-level constraint inference is explained to the learning procedure, as the clausal
explanation by LCG solvers are not applicable. We further observe that it may not be
possible to generate a linear constraint as a reason for propagation without introducing new
variables. This is in contrast to clausal explanations, where additional variables are not
required.

A CP solver that would come close to this idea is HaifaCSP [38], as it can do cutting
planes reasoning to derive linear inequalities. However, it cannot explain propagations by
arbitrary constraints as linear inequalities. As a result, as soon as a linear inequality interacts
with another arbitrary constraint, the solver resorts to clausal learning. As we show in our
experiments, the more clauses are present in the solver, the higher the chance that conflict
analysis cannot derive a new linear inequality. To maximize the impact of the more general
learning, we want the learning procedure to deal with linear inequalities as much as possible.

We present lazy linear constraint generation (LLG), an approach to use cutting planes
reasoning within constraint programming. Our approach explains propagations with linear
constraints, allowing propagations by arbitrary propagators to be used in the cutting planes
conflict analysis procedure. To this end, we modify the conflict analysis procedure from
the IntSat solver. We devise explanations for the integer multiplication, absolute value,
truncating division, maximum, linear not equals, and element propagators. Our IntSat-based
conflict analysis procedure combines the explanations to learn new linear constraints.

Our empirical evaluation shows several new insights. First, compared to LCG, our LLG
approach reduces the number of conflicts by at least 60% in a quarter of the instances,
indicating that cutting planes reasoning is promising for constraint programming. Second,
keeping the problem structure in the form of global constraints is useful because of the
stronger propagation, as opposed to decomposing the problem into linear inequalities. Third,
we show that resorting to clausal learning when no linear constraint can be learned remains
essential, as omitting this step increases the number of conflicts by a factor of at least 3 in
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50% of the instances, and by a factor of at least 12 in 25% of the instances.
The rest of this paper is organized as follows: We start out with some background in

Section 2, followed by a discussion of the related work in Section 3. Then, we will describe
our contributions in Section 4. After that, we present our empirical evaluation in Section 5.
Finally, we give our conclusions and outline ideas for future work in Section 6.

2 Background

2.1 Constraint Satisfaction Problem
A constraint satisfaction problem (CSP) is a triple (X ,D, C), where:

x ∈ X is a decision variable,
D(x) ∈ D with x ∈ X is the domain of x, i.e. the set of values x can be assigned to,
and C ∈ C is a constraint: a predicate over the variables that is either satisfied or violated.

We use range notation when the domain is a uninterrupted sequence of integers: [l, u] =
{i|l ≤ i ≤ u}.

An assignment is a total function θ that maps every variable x ∈ X to a set V ⊆ D(x). If
|θ(xi)| > 1, i.e. there is more than one possible value for xi, then the assignment is referred
to as a partial assignment. Otherwise, the assignment is called total. In this paper, unless
we explicitly use the term ‘partial assignment’, we refer to a total assignment. We abuse
notation to say that θ(x) = v with v ∈ Z to mean that θ(x) = {x}. If the assignment θ

satisfies all the constraints in C, then θ is called a solution. In this paper, we restrict ourselves
to integer decision variables, i.e. ∀x ∈ X : D(x) ⊂ Z, and we assume the domains are finite.

2.2 Constraint Programming
Constraint Programming (CP) is a paradigm for solving CSPs. CP solvers combine inference
and search to find solutions to a CSP. The inference prunes the domain based on the
constraints in the problem, and once no more inference can be done, the search splits the
problem into subproblems to be solved independently. A conflict happens when there exists
a variable x ∈ X such that D(x) = ∅.

In a CP solver, constraints are enforced by propagators. A propagator is a function
p : D 7→ D that takes the domain and removes values that do not exist in a solution. This
means that p(D) ⊑ D, where D1 ⊑ D2 denotes that D1 is stronger than D2, i.e. for every
x ∈ X it is the case that D1(x) ⊆ D2(x). We highlight two types of constraints and their
propagators.

A clause, which is a disjunction of Boolean variables. It has the form l1 ∨ · · · ∨ ln, where
every li has a Boolean domain D(li) = {0, 1}. This constraint requires at least one li to
be 1. The propagator for a clause waits until n− 1 variables are fixed to 0, and then sets
the final variable to 1.
A linear inequality (also referred to as linear constraint in this paper) has the form∑

wixi ≤ c, where wi ∈ Z and c ∈ Z are constants, and xi ∈ X are decision variables.
It is satisfied by the assignment θ if and only if

∑
wi · θ(xi) ≤ c is true. The propagator

for this constraint performs bound propagation [6], as shown in Example 1.
▶ Example 1. Let x, y be integer decision variables with domains D(x) = [1, 5] and
D(y) = [0, 2]. The propagator for the constraint x + 2y ≥ 7 can remove the values 1 and
2 from D(x) and the value 0 from D(y).
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2.3 Integer Linear Programs
An Integer Linear Program (ILP) is a CSP in which all constraints are linear inequalities.
Given two linear constraints A : a1x1 + · · · + anxn ≤ a0 and B : b1x1 + · · · + bnxn ≤ b0,
their linear combination results in a new linear constraint C : c1x1 + . . . cnxn ≤ c0 with
ci = αai + βbi that is implied by A ∧B. In the case where ci = 0, we say that xi has been
eliminated. Note that we can always pick an α and β such that ci = 0 when aibi < 0, i.e.,
when the coefficients of the variable to be eliminated xi have opposite signs in A and B.

The combination rule can be used by solvers like IntSat [26], which are inspired by
Conflict-Driven Clause Learning (CDCL) [21]. CDCL is a popular solver paradigm for
propositional solvers. IntSat keeps a trail of bounds in the form ⟨x ⋄ v⟩, with ⋄ ∈ {≤,≥},
that iteratively tighten the domain of the variables.

Algorithm 1 presents the pseudo-code for the conflict analysis procedure. Just like
propositional CDCL, the trail gets traversed backwards. For every entry, it is checked
whether reason constraint RC can be combined with the conflicting constraint CC to
eliminate propagated variable V (lines 5 and 6). This elimination is feasible only if V ∈ CC

and the signs of the coefficients of V in CC and RC are opposite. If these conditions are
met, the reason constraint RC is combined with the conflicting constraint CC (line 7). This
process is repeated until the resulting constraint CC can propagate at an earlier decision
level (asserting), or the previous decision is reached.

A notable difference with propositional CDCL, is that Algorithm 1 may fail to derive a
linear constraint that is asserting at a prior decision level. In such cases, the solver resorts to
performing resolution on bounds as a fallback strategy, similar to LCG conflict analysis (see
next section), which is the clausal counterpart of linear combinations.

Algorithm 1 IntSat Conflict Analysis

Input: a set of linear constraints C and a trail T containing tuples (V, RC) representing a
propagation of variable V by linear constraint RC

Output: a learned linear constraint or learned clause and corresponding backtrack level
1: CC ← currently conflicting constraint in C
2: ▷ Invariant: CC is conflicting with the current assignment
3: while top of trail is not a decision do
4: (V, RC)← PopTrail() ▷ Remove the last trail entry
5: if V /∈ CC then continue end if ▷ Variable not relevant
6: if CC[V ] ·RC[V ] ≥ 0 then continue end if ▷ Signs equal, bound not relevant
7: CC ← combination of CC and RC eliminating V
8: for backtrack level ∈ 0..current decision level− 1 do
9: if CC propagates a new bound at backtrack level then

10: return CC, backtrack level ▷ Early Backjump
11: end if
12: end for
13: end while
14: return Resolution-fallback(C, T )

One reason for the inability to construct an asserting linear constraint is the rounding
problem. Due to this issue, linear conflict analysis can generate implied constraints that
are not conflicting under the current partial assignment, even though the constraint that
identified the conflict initially was conflicting with this assignment. Example 2, adapted from
[26, Example 3.1], illustrates this issue.
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▶ Example 2. Consider constraints c1 : x+2y ≤ 2 and c2 : x−2y ≤ 0, with D(x) = [1, 3] and
D(y) = [−5, 5]. x’s lower bound causes c1 to propagate 2y ≤ 1, which after rounding becomes
y ≤ 0. This leads to a conflict with c2. Combining c2 and c1, eliminating y, produces 2x ≤ 2,
or x ≤ 1. This new constraint is not conflicting with the current assignment, as 1 ∈ D(x).

A CDCL-inspired ILP solver has to deal with the situation from Example 2 in some way. In
Section 3 we highlight different approaches taken by various solvers.

2.4 Lazy Clause Generation
Lazy Clause Generation [27, 36] (LCG) is an approach to solving CSPs within the CP
paradigm. It combines the domain propagation capabilities of CP solvers with the clause
learning capabilities of SAT solvers.

There are two main parts to the integration. The first is the representation of the decision
variables in a propositional formula. This is done by creating literals that map to unary
constraints of the following form: ⟨x ⋄ v⟩, where x ∈ X , ⋄ ∈ {≤,≥, ̸=, =}, and v ∈ Z. Such a
Boolean variable is called an atomic constraint. Every domain reduction in an LCG solver
can be expressed by setting one or more atomic constraints to true.

The second part to the integration allows propagations done by propagators to be used
during conflict analysis. Every propagation is explained by an implication

∧
li =⇒ p,

where li are atomic constraints and p is the propagated atomic constraint.

▶ Example 3. The explanations for the propagations in Example 1 are ⟨x ≤ 5⟩ =⇒ ⟨y ≥ 1⟩
and ⟨y ≤ 2⟩ =⇒ ⟨x ≥ 3⟩.

These explanations can be treated as clauses to integrate into the CDCL procedure, allowing
the solver to learn clauses based on propagations done by propagators.

3 Related Work

It has long been established that learning can be beneficial to backtracking search al-
gorithms [10]. The inclusion into CP solvers became popular when g-nogoods were intro-
duced [19], which are a conjunction or disjunction of ⟨x ̸= v⟩ constraints. LCG [28, 36]
improves the conciseness of the explanations by introducing ⟨x ≤ v⟩, ⟨x ≥ v⟩, and ⟨x = v⟩
constraints, although the expressiveness of the two approaches is the same. G-nogoods are
further generalized to c-nogoods [20, Chapter 5], implemented by Moore [23, Chapter 5]. A
c-nogood can combine arbitrary constraints, not just atomic constraints. Finally, Veksler
and Strichman [38] introduced the HaifaCSP solver, which is capable of learning constraints
that are not clauses or conjunctions.

Of the CP learning approaches, LCG is the most widespread. Since its introduction,
much work has been done to increase the impact that the constraint learning has on the
search. The learned constraints can be minimized taking into account the semantics of atomic
constraint [14], additional Boolean variables can be introduced [8], and explanations can be
fine-tuned to improve the quality of learned constraints [32, 13].

Solvers which are specialized in specific constraint types can also deal with different
forms of conflict analysis. Pseudo-Boolean solvers, which solve ILPs where all variables
are Boolean, use conflict analysis [12, 16] to great effect. In this special case of ILPs, the
rounding problem as described in Subsection 2.3 can be handled systematically. CutSat [17]
and CutSat++ [7], which are CDCL-inspired solvers for general ILPs, restrict the search to
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side-step the rounding problem. Last, the IntSat [25, 26] solver accepts that conflict analysis
can fail and does not always learn a new constraint.

There is an intersting comparison between IntSat and HaifaCSP. In HaifaCSP, constraints
are combined to derive new constraints according to pre-specified rules. The rule for combining
two linear constraints is identical to how IntSat operates. This means that, given a problem
with only linear constraints, HaifaCSP is essentially an extension of IntSat. It is an extension,
because, unlike IntSat, HaifaCSP will fall back to learning a clause if the derived linear
constraint is not propagating.

To make effective use of specialized ILP solvers, much work focuses on translating arbitrary
constraints into linear inequalities. The MiniZinc [24] toolchain can convert CP models to
efficiently solvable ILPs [5]. These translations form a basis of the explanations we introduce
in this paper. Much work has also been done to explain propagations in pseudo-Boolean
equations [22], although the aim there is correctness in a proof, rather than propagation
impact during search.

4 Our Contribution: Lazy Linear Generation (LLG)

We propose the Lazy Linear Generation (LLG) algorithm, an extension of LCG that learns
asserting linear inequalities alongside clauses. LLG enhances LCG conflict analysis by incor-
porating cutting planes analysis, allowing learned constraints to capture linear relationships
between variables—something that cannot be expressed using clauses.

Extending LCG to perform conflict analysis using linear inequalities aligns closely with
the challenges addressed by IntSat [26] and HaifaCSP [38]. Similar to IntSat, LLG adapts the
CDCL resolution algorithm to iteratively apply linear combinations to the explanations for
conflicts or propagations, deriving asserting linear constraints that are added to the model.
Additionally, LLG also employs resolution—specifically LCG—when the derived conflicting
constraint does not conflict with the current assignment any longer.

The key distinction between our LLG approach and previous works lies in LLG’s ability
to linearly explain propagations and conflicts originating from arbitrary propagators, rather
than being restricted solely to linear propagators. Our method leverages the advantages of
both CP and a linear formulation of the problem, combining the propagation strength of
CP propagators with more powerful linear conflict analysis. An example of a stronger CP
propagator compared to its linear decomposition is shown in Example 4.

▶ Example 4. Consider the multiplication a · b = c constraint, with initial domains a ∈
{2, 3}, b ∈ {1, 4}, c ∈ {2, 7}. The MiniZinc linear decomposition introduces auxiliary binary
variables pa2, pa3 and represents the constraint using the following constraints (normally
expressed linearly using the big-M formulation):

pa2 + pa3 = 1 ∧ a = 2 · pa2 + 3 · pa3 ∧ pa2 → 2b = c ∧ pa3 → 3b = c

Under the current partial assignment, a CP propagator can infer, based on the upper
bounds of a and c, that b ≤ 3. However, since the auxiliary variables pa2 and pa3 remain
unfixed, no further propagation can be achieved using the linear decomposition. The CP
propagation can be explained using the expression ⟨a ≥ 2⟩ ∧ ⟨c ≥ 0⟩ → 2b ≤ c, which can be
transformed into a linear inequality by introducing auxiliary variables for the conditions and
employing the big-M formulation.

This new analysis, however, introduces additional challenges. First, it requires defining
explanations for every propagation and conflict. Second, these explanations may require
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the dynamic introduction of auxiliary variables to accurately capture certain propagations
or conflicts. Finally, the learning procedure may generate new constraints that are not
conflicting with the current assignment. This issue, which was previously caused only by
rounding problems, can now also arise in cases where propagations or conflicts cannot be
directly expressed as linear inequalities or when weak explanations are encountered.

The remainder of this section will outline LLG in more detail. Section 4.1 provides
a concise overview of the algorithm, while Section 4.2 discusses methods for constructing
explanations. Implementation details are presented in Section 4.3, and Section 4.4 describes
examples of linear explanations.

4.1 Conflict Analysis algorithm
The conflict analysis algorithm employed by LLG closely resembles the one presented in
Algorithm 1, with several key modifications introduced in this section. The most notable
distinction is that constraints are no longer exclusively linear. While the conflicting constraint
CC and the reason constraint RC were previously guaranteed to be linear, conflicts and
propagations must now be explained linearly for them to participate in conflict analysis.
Unlike IntSat, there is no guarantee that CC or RC can actually be explained linearly, as
certain linear explanations for propagations and conflicts may either be impractical or too
expensive to create.

This leads to two modifications. First, rather than directly retrieving the currently
conflicting constraint from C,we attempt to derive a linear explanation for the conflict. If
this is not feasible, we fallback to resolution. Similarly, rather than directly using RC,
we now attempt to linearly explain each propagation. This requires a modification to the
preconditions in lines 5 and 6 of Algorithm 1. In addition to these two conditions, we
introduce an additional requirement: the combination step cannot proceed if RC cannot be
linearly explained.

Finally, the resolution fallback is updated. In IntSat, the effectiveness of resolution is
limited due to the absence of a clausal propagator. However, in CP, we can leverage LCG as
a fallback, enabling native storage and propagation of learned clauses. When the solver fails
to learn a linear constraint, it resorts to LCG, proceeding as though LLG were not present.

4.2 Linear explanations
A fundamental aspect of LLG is constructing linear inequality explanations for propagations.
This section elaborates several key aspects to constructing these explanations.

Inferred constraints Firstly, it is important to highlight that the asserting inequality derived
from LLG is added to the model as a constraint. Consequently, all linear explanations that lead
to the construction of this inequality, must also be inequalities inferred from the model. Put
differently, a linear explanation introduces (a part of) a linear decomposition of a constraint.
This approach differs fundamentally from clausal explanations. In LCG, explanations describe
the partial assignment responsible for a propagation or conflict. In contrast, LLG explanations
are constraints that encapsulate both the conditions for propagation and the underlying
linear relationship responsible for it.

Explanation signs Additionally, it is noteworthy that for a linear explanation to accurately
capture a propagation, it must constrain the propagated variable in the same direction as
the propagation being explained. The direction in which a linear constraint constrains a
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variable is determined by the sign of this variable in the inequality. More specifically, a linear
constraint 5a− 4y ≤ 0 constrains the upper bound of a, and the lower bound of y. Example
5 provides an intuitive justification for this condition. From a technical perspective, this
requirement arises directly from the properties of linear constraint elimination: to eliminate
a variable by combining two inequalities, the variable must appear with opposite signs in
both. If the propagated variable in the explanation has the same sign as in the conflicting
constraint, it did not contribute to the conflict and is therefore not taken into account.

▶ Example 5. Consider a conflict analysis with current conflicting constraint CC : −6x+3y ≤
10. We aim to derive a CC that is asserting earlier in the search. This requires maximizing
its left-hand side—achievable by minimizing x or maximizing y. Now, given the trail entry
(V, RC) = (x,−3x − 6y ≤ 10), we aim to eliminate x. However, since x has a negative
coefficient in RC, it constrains x’s lower bound, not contributing to the goal of minimizing x.

Conditional explanations An explanation may include a conditional component to specify
the conditions under which the explanation holds. Such conditional statements can be
represented using Boolean auxiliary variables, which are binary variables indicating the truth
value of a condition. For example, given the explanation ⟨a ≤ 2⟩ → b ≥ 3, we can define an
auxiliary variable p1 can be defined as p1 ⇐⇒ ⟨a ≤ 2⟩. We can now rewrite the explanation
linearly as b ≥ 3−M(1− p1). This formulation uses the “Big M” transformation to model
the cases of a ≤ 2 and a > 2 within a single explanation. Similar linearization techniques are
described in more detail by [5].

4.3 Implementing auxiliary variables
Auxiliary variables cannot be constructed at the start of the search procedure, as it is
unknown which auxiliaries will be necessary for the explanations. Thus, they must be
introduced and subsequently propagated during the search. A key challenge is maintaining a
consistent solver state at decision levels where these variables did not yet exist.

Adding auxiliary variables When a new auxiliary variable is introduced, it often could
have propagated at an earlier decision level, had it existed earlier. While we can propagate
the auxiliary variable immediately upon its creation, this propagation is discarded upon
backtracking. Ideally, we would retroactively introduce auxiliary variables at the start of the
search, allowing them to propagate at the correct decision level. However, we argue that this
retroactive introduction is unnecessary, as solver correctness does not require propagation at
the earliest possible decision level.

Instead, we ensure that auxiliary variables are propagated as soon as possible. Upon
backtracking, propagation normally starts by propagating the newly learned constraint, which
may then trigger other propagators. LLG, however, prioritizes auxiliary variable propagation
at this stage. Thereby, we try to reach a state that is identical to the state if the auxiliary
variable had been present from the start of the search. If the solver backtracks further and
discards this propagation, the auxiliary variable can again be re-propagated at the earlier
level, ensuring correctness without complex trail manipulations. Example 6 illustrates this
principle.

▶ Example 6. At decision level 10, an explanation introduces an auxiliary variable p, defined
as p ⇐⇒ 6a + 7b > 3. We can immediately propagate ⟨p ≥ 1⟩. Had p existed earlier, this
propagation would have already occurred at level 3. If the solver now backtracks to decision
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level 5, the propagation ⟨p ≥ 1⟩ is discarded. We immediately re-propagate ⟨p ≥ 1⟩ at level 5
and subsequently reach the same state as if p had been propagated at decision level 3.

Evaluating auxiliary variables during conflict analysis A critical aspect of LLG’s conflict
analysis algorithm is verifying whether a newly learned constraint is asserting at any earlier
decision level. The learned constraint may, however, contain auxiliary variables that did not
yet exist at a previous decision level. Even though these auxiliary variables are properly
propagated once a backtrack is executed, they might not be propagated on the trail when
conflict analysis considers them. This can result in incorrectly classifying the learned
constraint as non-asserting.

To resolve this, we explicitly evaluate the conditions of auxiliary variables rather the
auxiliary variable’s bounds when checking for assertivity at any previous decision level.
Although the auxiliary variables may not have been propagated yet, it is still possible to
infer the truth value of the condition.

4.4 Examples of explanations
We have formulated linear explanations for several global constraints. This section provides
a detailed exposition of some of these explanations. A comprehensive overview of all
explanations is presented in Appendix A.

▶ Example 7 (Explanation of xi ̸= val for Ax ̸= b). The propagation of xi ̸= val implies that
xi < val ⊕ xi > val must hold. This can be captured by introducing an auxiliary variable p

defined by p ⇐⇒ Ax < b, leading to two possible explanations: (1) Ax < b + M(1− p), (2)
Ax > b−Mp.

Which explanation is chosen depends on whether the propagation of xi ̸= val decreases the
upper bound of xi (explanation 1), increases its lower bound (explanation 2), or introduces a
hole in its domain (pick either explanation).

▶ Example 8 (Explanation of b ≥ 1 ∧ c ≥ 0→ a ≤ ⌊ub(c)/lb(b)⌋ for a× b = c). To express
this propagation linearly, we fix b to its current lower bound. Assuming a lower bound
of bmin = 5, the explanation is given by b ≥ 5 ∧ c ≥ 0 → 5a ≤ c. We introduce auxiliary
variables (1) p1 ⇐⇒ b ≥ 5 and (2) p2 ⇐⇒ c ≥ 0 to represent the conditions. This leads to
the linear explanation:

5a ≤ c + M(1− p1) + M(1− p2). (1)

▶ Example 9 (Explanation of ¬cond→ p ≤ 0 for p→ cond). A noteworthy constraint is the
reified constraint, which defines the implication p→ cond. Suppose cond is false (i.e. it is
conflicting). It then follows that p ≤ 0, which is explained by ¬cond. In turn, we can explain
¬cond with a linear constraint of the form Ax ≤ b. However, using this explanation directly
to explain the propagation of p ≤ 0 would erroneously imply that Ax ≤ b must always hold.
Instead, it must hold only when p = 1. Therefore, we incorporate p into the explanation:

Ax ≤ b + M(1− p). (2)

5 Experiments

We implemented our LLG approach in Pumpkin. The initial version of Pumpkin serves as
the baseline LCG solver. We consider the number of conflicts as the main metric. This
allows us to draw conclusions that are independent of the runtime and engineering issues.
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We believe this fairly shows the potential of our LLG approach. With this in mind, we leave
optimizing the implementation as future work. To further ensure that the results are because
of the differences in the conflict analysis procedure, and not other factors, we only consider
instances for which the branching strategies of LLG and LCG are fixed according to the
provided strategy in the instances. Our results demonstrate that:
1. LLG encounters significantly less conflicts than LCG (Section 5.2.1).
2. Learned inequalities indeed provide stronger reasoning than clauses (Section 5.2.2).
3. While the success rate of LLG analysis is relatively low and decreases with time (Section

5.2.3), the learned constraints are highly effective.
4. LLG is generally more effective compared to a linear decomposition (Section 5.3).
5. The presence of clausal propagation is instrumental for LLG, underscoring the benefits of

utilizing LCG as a fallback (Section 5.4).

These experiments provide a deeper insight into cutting planes conflict analysis in the
context of constraint programming.

5.1 Experimental setup

Dataset selection The representative dataset used for the experiments is constructed by
combining all models from the MiniZinc Challenges [34, 33] and Benchmarks1 libraries. Each
model is subjected to the following criteria and transformations:

Model selection: For models obtained from the Minizinc Challenges, only problems
that at least one finite domain solver has successfully solved within the 20-minute time
limit are included. This is because the experiments exclude instances that reach their
timeout, as many metrics become incomparable in such cases. Furthermore, models
containing floating-point numbers or unbounded integers are excluded. To maximize
dataset diversity, no more than 10 instances per model are included. If a model exceeds
this limit, 10 instances are randomly sampled from the available data files. Finally, only
problems utilizing fixed-search branching are considered, ensuring that any variation in
the number of conflicts is solely due to differences in learning.
Constraint decomposition: Problems are decomposed into fundamental global con-
straints, namely, multiplication (a× b = c), truncating division (a/b = c), absolute value
(a = |b|), maximum (max(A) = b), not equals (Ax ̸= b), linear less-than-or-equal-to
(Ax ≤ b), reified (p→ constraint), element (A[idx] = b) and clauses.

This results in a dataset of 952 instances based on 223 unique models. These instances
result in roughly 50.5M linear inequalities, 18.4M reified constraints, 3.7M not-equals
constraints, 1.3M multiplication constraints, 654k element constraints, 417k maximum
constraints, only 4.5k absolute and only 1.4k division constraints.

Hardware All experiments were conducted on the DelftBlue[11] compute cluster, using
8GB of memory and a 1-hour timeout per instance.

1 https://github.com/MiniZinc/minizinc-benchmarks
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5.2 LLG compared to LCG

5.2.1 Reduction of conflicts
This experiment evaluates the ratio of conflicts that are encountered in LLG compared to
LCG across the instances that, (1) have been solved within the time-limit for both LLG and
LCG, and, (2) have been able to learn at least one linear inequality. Of the 952 instances,
LLG can solve 624 instances within the time-limit, whereas LCG can solve 663 instances
within the time-limit. This difference can be attributed to the significantly higher number
of out-of-memory errors for LLG, given its inefficient implementation. Additionally, in the
case of LLG, approximately 70%, or 443 of successful instances succeeded in learning any
inequality. This shows that, with the current state of LLG, not all instances benefit from its
linear conflict analysis.

The results in the boxplot in Figure 1 reveal several key trends. Firstly, the lower half of
the distribution exhibits significant reductions, with a decrease in conflicts of up to 60%
for a quarter of the instances, even increasing to over 90% when looking at the top 10% of
instances. Then, the Q2 to Q3 quartile indicates that in roughly a quarter of the completed
instances, the number of conflicts is reduced only slightly. For these instances, LLG may learn
very few linear constraints, or may learn linear constraints that propagate similar bounds as
learned clauses. Lastly, the upper 75% to 90% percentile range highlights cases where the
number of conflicts increase marginally. This phenomenon can be attributed to some learned
constraints that are weaker compared to the clauses that could have been learned.

Our initial hypothesis asserted that the top-performing instances would be derived from a
limited subset of models that fit LLG especially well. However, upon examining the instances
exhibiting at least a 50% reduction in conflicts, we identify 117 instances originating from 52
models (117/52 ≈ 2.3 instances per model). In comparison, a total of 574 instances from 171
models successfully complete for both LCG and LLG (547/165 ≈ 3.3 instances per model):
the top-performing instances are even more varied than the full dataset. Consequently, our
initial hypothesis is refuted; a wide variety of problems benefit from LLG.

The distribution of constraints across these instances also seems highly variable. The
successful instances exhibit a slightly higher percentage of linear-less-or-equals constraints,
though the difference is within only a few percent.

Lastly, although these experiments were conducted using an unoptimized implementation,
we observe that for the top 25% of instances—each achieving at least a 60% reduction in
conflicts—runtime performance already surpasses our baseline LCG, owing to the significant
decrease in conflicts of LLG. Specifically, for this subset of instances (excluding those with
execution times below 5 seconds), the median runtime improvement is 75%.

5.2.2 Strength of learned inequalities
Since LLG was introduced based on the proposition that linear constraints may provide
stronger reasoning than clauses, it is essential to verify whether this assumption is supported
by experimental results. To this end, we compared two program variants: a standard LLG
program and an alternative version in which linear analysis is performed, but instead of
adding learned linear constraints, the fallback clauses are introduced into the model.

For the standard LLG program, we record for each propagation triggered by a learned
linear constraint whether the fallback clause—had it been learned instead—would have
resulted in the same propagation. Similarly, for the alternative program, we record for
each propagation triggered by a learned clause that was generated in cases where a linear
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Figure 1 Boxplot showing the ratio of conflicts in LLG relative to LCG (lower = better). The
boxplot displays the Q1, Q2 and Q3 quartiles, with whiskers extending to the 10% and 90%
percentiles. A logarithmic scale is used for equal spacing of ratios. Only instances where both LCG
and LLG successfully completed and at least one linear constraint was learned, are considered. LLG
encounters significantly fewer conflicts than LCG for 50% of the instances, slightly fewer conflicts for
25% of the instances while for the remaining instances, the increase in conflicts is marginal if any.

constraint could have been learned instead, whether the linear constraint—had it been
learned instead—would have produced the same propagation.

The results (not in figure) indicate that when a linear constraint is learned, it replicates
over 91% of the propagations that the fallback clause would have produced. In contrast, only
37% of the propagations triggered by learned linear constraints would have been replicated
by the clause. This confirms that, in nearly all cases, the linear constraint is at least as strong
as the fallback clause. This further suggests that neither conflict analysis method strictly
dominates the other, yet learned linear constraints tend to be more general in practice.

We also observe (not in figure) that for a normal LLG execution, the majority of learned
clauses do not propagate more than once. In contrast, the median number of propagations
per learned learned inequality is 90. This demonstrates that when an inequality can be
learned, it generally has a much greater impact on the search compared to a learned clause.

5.2.3 Analysis success rate
This experiment aims to illustrate the success rate of LLG analyses as the search progresses,
and to identify reasons for failed analyses. Recall that a successful LLG analysis results in
learning a linear constraint, whereas a failed analysis reverts to LCG for reasons such as a
violated conflicting invariant. Here, it is relevant to compare successful instances with less
successful instances. Therefore, three subsets of instances were selected: all instances (Figure
2a), those with at least a 50% reduction in conflicts (Figure 2b), and those with at least a
75% reduction in conflicts (Figure 2c).

Firstly, Figure 2a demonstrates a declining trend in successful analyses over time, accom-
panied by an increase in conflicts and explanations that cannot be expressed linearly. This
trend persists when results are categorized by the number of conflicts (comparing small and
large instances) and by problem type (satisfaction versus optimization). The only correlation
we can observe, is the one between a decreasing LLG success rate and an increase in failed
LLG analyses attributed to encountered clauses. Approximately 38% of LLG failures can be
attributed to these factors. The remaining 62% consist of failures that occur at a relatively
constant rate throughout the search, including invariant violations (≈ 50%), combinations
that fully cancel out (≈ 6%), overflows (≈ 3%), and cases where a decision is reached before
identifying an asserting constraint (≈ 3%).

In contrast, Figures 2b and 2c exhibit some differences compared to the full dataset.
Initially, conflict analysis is highly successful—significantly more so than for the full dataset.



R. Baauw, M. Flippo and E. Demirović 13

However, as the search progresses, analysis performance declines sharply. For these instances,
we can see an increasing number of analysis failures due to invariant violations increase
substantially throughout the search. Figures 2a through 2c all illustrate that LLG conflict
analysis succeeds in only a relatively small fraction of instances. This experiment demonstrates
that even the relatively small number of learned linear constraints can significantly decrease
the number of conflicts encountered.

Given the decreasing frequency of conflict analyses leading to newly learned linear
constraints, it is worth exploring whether a similar pattern is observed in the propagations
of learned constraints. Figure 2d plots the density function (area under the curve equals 1)
of all propagations triggered by learned constraints, presented for the same three subsets of
instances. The results indicate that, despite the decline in newly learned linear constraints,
propagations of learned constraints increase over time. This indicates that, as the search
progresses, previously learned linear constraints continue to propagate consistently.

Explanation slacks Finally, we examined the slack of explanations that resulted in a learned
inequality compared to those that did not. In the context of LLG, slack is defined as
slack(Ax ≤ b) = b − lb(Ax), where lb computes the current lower bound. Notably, a
negative slack indicates a conflict.

First, we found no clear correlation between the slack of a conflict explanation and the
proportion of these explanations that eventually led to a learned constraint, contrary to
our expectation that large negative slacks are more likely to succeed. The only necessary
condition for a conflict explanation is that is has negative slack. Second, we observed a strong
correlation between the slack of a propagation explanation and its likelihood of resulting
in a learned constraint: explanations with lower slack demonstrate a higher probability of
leading to a learned constraint. This result is sensible, as lower slack values indicate that the
explanation is closer to being either asserting or conflicting. In contrast, explanations with
high slack may be overly general or involve large big-M coefficients. These results suggest
the possibility of selecting certain explanations based on their slacks, prioritizing those that
are more likely to contribute to the derivation of a learned constraint.

5.3 LLG compared to linear decomposition
In addition to comparing LLG with LCG, it is also valuable to evaluate Pumpkin’s decompos-
ition as described in Section 5.1 against a decomposition consisting only of linear inequalities.
This evaluation shows that using CP propagators—even though not all its linear explanations
are equally successful—is still beneficial over a fully linear model. For this experiment, all
instances from the test set were reformulated into a fully linear model using the MiniZinc
Linear Library 2. Among the 952 instances in the test set, 938 could be transformed into
a linear model within a 300-second timeout. The 14 instances that could not be converted
likely experienced excessive model growth when represented fully linearly.

For the 938 successfully converted instances, Figure 3a presents the ratio of conflicts
between the linear decomposition (baseline) and LLG. The results indicate a substantial
reduction in conflicts when using LLG. Specifically, at least 25% of the instances exhibit a
conflict reduction of 50% or more. Furthermore, the first and second quartiles (Q1 to Q2)
of the boxplot show a notable decline in conflicts, ranging from 50% to 8%. The second to

2 https://github.com/MiniZinc/libminizinc/tree/master/share/minizinc/linear
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(b) Instances with at least 50% conflict reduction
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(c) Instances with at least 75% conflict reduction
over LCG
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(d) Probability density function showing the dis-
tribution of propagations of learned inequalities
(y-axis) as a function of search progress, measured
by the percentage of total conflicts (x-axis).

Figure 2 Figures (a) through (c) show the success rate of conflict analyses (y-axis), plotted
against the percentage of total conflicts (x-axis). The four most significant outcomes are included.
Figure (a) demonstrates a decrease in analysis success as nogoods encountered increases. Figures
(b) and (c) show a strong initial success, followed by an increase in invariant violations. Figure (d)
demonstrates that, although the number of newly learned linear constraints decreases as the search
progresses, the tail end exhibit the highest concentration of constraint propagations. This can be
explained by the cumulative effect of both newly introduced and previously learned constraints.

third quartiles (Q2 to Q3) display a mix of reductions, from an 8% reduction to an increase
of 20%. The remaining instances exhibit a slightly larger increase in conflicts.

These increases in conflicts can be attributed to two primary factors. Firstly, the
preprocessing optimizations performed by the linear decomposition can result in the generation
of smaller linear problem instances compared to those produced by Pumpkin’s decomposition.
Secondly, some of Pumpkin’s propagators perform propagations that cannot be easily linearly
explained, such as set or alldifferent propagations, whereas the linear decomposition provides
alternative propagations that can be linearly explained more effectively. Nevertheless, LLG
continues to exhibit a significant performance advantage over the linear decomposition.

5.4 LLG without clause learning
Previous experiments have shown that a key reason for failing to learn linear constraints during
LLG conflict analysis is encountering nogoods. Therefore, we investigate the consequences of
only propagating a learned clause once, without storing it in the constraint database. The
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results, presented in Figure 3b, indicate that omitting clause storage leads to a significant
increase in conflicts. This observation underscores that even though encountering nogoods
resulted in learning fewer linear inequalities, the effectiveness of LLG relies heavily on the
ability to store and propagate learned clauses.

We note the clear parallel between this experiment and the standard behavior of IntSat
[26]. However, two key distinctions differentiating the two approaches prevent an accurate
comparison. First, IntSat operates solely on fully linear models, which inherently provide
better linear explanations for propagations than a CP model can, increasing the success rate
of IntSat’s conflict analysis. Second, IntSat tries to transform learned clauses into linear
inequalities when at most one bound of the clause is non-binary. Within our CP problems,
such conversions are rarely feasible due to the predominant use of integer variables. This
limitation might change if the CP models were reformulated as linear programs.
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over 50% of the instances. In 25% of instances,
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(b) Evaluation of a variation of LLG where learned
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(note the y-axis labels), highlighting the importance
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Figure 3 Boxplots showing the ratio of conflicts in LLG relative to a variation on LLG. The
boxplots display the Q1, Q2 and Q3 quartiles, with whiskers extending to the 10% and 90%
percentiles. A logarithmic scale is used for equal spacing of ratios. Only instances where both LCG
and the variation successfully completed are considered.

6 Conclusion & Future Work

The effectiveness of constraint learning in Constraint Programming has been extensively
studied, with much of the focus on learning clauses. However, linear constraints have the
potential to provide more powerful reasoning capabilities. In response, we propose Lazy
Linear Generation (LLG), a conflict analysis algorithm that incorporates concepts from
CDCL [21], IntSat [26], HaifaCSP [38], and Lazy Clause Generation [36] to develop a novel
learning mechanism for linear constraints. LLG generates explanations for propagations and
conflicts for arbitrary CP propagators. To achieve this, the algorithm dynamically introduces
new auxiliary variables while maintaining a consistent solver state. Our experimental analysis
of LLG shows that learning linear constraints leads to a substantial reduction in the number
of conflicts over solely learning clauses. Although the success rate of linear conflict analysis
is relatively low, the impact of learned linear constraints on overall solver performance is
significant. When compared to a linear decomposition with the same conflict analysis, we
also observe a considerable reduction in the number of conflicts encountered. Furthermore,
our experiments highlight that clausal propagation is still important, even when using conflict
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analysis based on cutting planes. To conclude, we believe our approach shows potential in
obtaining much more effective constraint solving.

There are several promising avenues for further research of the LLG algorithm. First, it
would be interesting to consider the impact on a wider range of global constraints. Second,
we could improve our linear explanations based on decomposition optimisations [5]. Third,
studying different branching strategies that utilise information from cutting planes conflict
analysis could lead to additional improvements. Lastly, engineering improvements would
be of interest. We believe these research directions offer valuable opportunities to further
enhance the effectiveness and applicability of solvers.
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A List of explanations

Table 1 contains a comprehensive overview of all explanations used for LLG. In case several
explanations are possible for a propagation, the right one is chosen based on whether a lower-
or upper bound is propagated. The explanations have undergone multiple manual reviews
but have not been formally verified for correctness.
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