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Summary 
In recent years, the advances in additive manufacturing techniques as well as 

the interest in the unusual properties of mechanical metamaterials have ignited a 

spike of attention to these architected materials whose unprecedented properties 

originate from their designs at the micro-scale. The unusual properties of these 

materials make them a suitable choice for numerous applications in high-tech 

industries, such as soft robotics and biomedical engineering. However, for the real-

world applications of such designer materials, their mechanical properties should be 

tuned for the intended application. The common approach to designing mechanical 

metamaterials is to create specific geometric patterns at the micro-scale, which are 

repeated in a highly ordered manner. However, it is not always possible to find the 

right geometries for unit cells to achieve the desired combinations of mechanical 

properties. Furthermore, the purposely designed materials with extreme Poisson's 

ratios tend to have low elastic moduli, making it difficult to independently control 

the elastic properties of the designed structures. Moreover, there are additional 

design requirements besides mechanical properties, such as spatial dimensions and 

uniform stress distribution within the designed structure, that should also be 

considered. The main objective of this thesis is to rationally design mechanical 

metamaterials with various combinations of mechanical properties (including rare-

event designs) while satisfying additional design requirements. To achieve this goal, 

we have leveraged the advantages of randomness to broaden the range of design 

possibilities. We have introduced two sources of randomness, including randomness 

in the material choice by spatially distributing materials with different properties 

within lattice structures (Chapters 2 and 3), and randomness in the geometry by 

designing disordered micro-architectures (Chapter 4). The integration of randomness 

into the rational design of mechanical metamaterials is a less explored approach, 

despite its potential benefits, such as robustness against the presence of 

(manufacturing) imperfections in the structure of the material. Our results show that 
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both approaches could be used to obtain a wide range of elastic properties as well as 

rare-event properties, such as double-auxetic yet stiff structures. 

Advanced additive manufacturing techniques allow for the creation of 

metamaterials with intricate shapes and a variety of material properties. However, 

finding rare designs that result in unusual material properties, such as double-

auxeticity and high stiffness, remains a challenging task. Towards this aim, we have 

employed machine learning techniques to not only predict the mechanical properties 

of the designed structures much faster than computational models but also to 

inversely design structures with predefined mechanical properties, including rare-

event elastic properties. In the research presented in Chapter 5, deep learning (DL) 

algorithms were utilized to investigate the correlation between the mechanical 

properties and random combinations of hard and soft phases in three types of planar 

lattices, and to pinpoint unusual designs. By developing the correlations between the 

design parameters and mechanical properties, the time required for evaluating each 

design was significantly reduced to ≈  2.4 × 10	
 s, and the process of evaluating 

different designs was made highly parallelizable. In the next step, we leveraged the 

abilities of DL algorithms to predict the elastic properties of multi-material 

mechanical metamaterials and to generate new designs, while also considering other 

design requirements beyond mechanical properties, to create a modular approach 

titled “Deep-DRAM” for solving this complex, multi-objective inverse design 

problem (Chapter 6). Deep-DRAM, which stands for Deep learning for the Design 

of RAndom-network Metamaterials, is composed of four separate modules, 

including two deep learning models (DLM), a deep generative model (DGM), and 

finite element (FE) simulations. The approach receives the desired elastic properties 

and specimen dimensions, generates candidate designs, filters them based on the 

closeness of the generated properties to the desired ones, and uses FE simulations to 

identify the designs with minimal peak stresses within the lattice structure. It allows 

for the creation of metamaterials with specific elastic properties that correspond to 
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the specific dimensions provided to Deep-DRAM and can be used for a wide range 

of applications. 

Taken together, this work explores a new frontier in the design of mechanical 

metamaterials by introducing randomness in the material choice as well as 

randomness in the geometry. DL techniques were then utilized to accelerate the 

material discovery within the broad design space. The approach proposed in this 

study paves ways for extracting mechanical metamaterials with defined elastic 

properties (including rare properties) that are independent of the overall dimension 

of the metamaterial and are suitable for various applications. 
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Samenvatting 
In de afgelopen jaren hebben de ontwikkelingen in additive manufacturing-

technieken en de interesse in de ongebruikelijke eigenschappen van mechanische 

metamaterialen geleid tot een piek in de aandacht voor deze ontworpen materialen 

met ongekende eigenschappen die voortkomen uit hun ontwerpen op microschaal. 

De ongebruikelijke eigenschappen van deze materialen maken ze geschikt voor tal 

van toepassingen in hightechindustrieën, zoals zachte robotica en biomedische 

technologie. Voor de reële toepassingen van dergelijke ontworpen materialen 

moeten hun mechanische eigenschappen echter worden afgestemd op de beoogde 

toepassing. De gebruikelijke benadering voor het ontwerpen van mechanische 

metamaterialen is het creëren van specifieke geometrische patronen op microschaal, 

die op een zeer geordende manier worden herhaald. Het is echter niet altijd mogelijk 

om de juiste geometrieën voor eenheidscellen te vinden om de gewenste combinaties 

van mechanische eigenschappen te bereiken. Bovendien hebben de gericht 

ontworpen materialen met extreme Poisson-factoren vaak lage elasticiteitsmoduli, 

waardoor het moeilijk wordt om de elastische eigenschappen van de ontworpen 

structuren onafhankelijk te regelen. Naast de mechanische eigenschappen zijn er ook 

aanvullende ontwerpeisen, zoals bijvoorbeeld ruimtelijke afmetingen en uniforme 

spanningsverdelingen binnen de ontworpen constructie. Het hoofddoel van dit 

proefschrift is het rationeel ontwerpen van mechanische metamaterialen met 

verschillende combinaties van mechanische eigenschappen (waaronder “rare-event” 

ontwerpen) en tegelijkertijd te voldoen aan aanvullende ontwerpeisen. Om dit doel 

te bereiken, hebben we gebruik gemaakt van de voordelen van willekeur om het scala 

aan ontwerpmogelijkheden te verbreden. We hebben twee bronnen van willekeur 

geïntroduceerd, waaronder willekeur in de materiaalkeuze door materialen met 

verschillende eigenschappen ruimtelijk te verdelen binnen roosterstructuren 

(Hoofdstuk 2 en 3), en willekeur in de geometrie door ongeordende micro-

architecturen te ontwerpen (Hoofdstuk 4). De integratie van willekeur in het 
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rationele ontwerp van mechanische metamaterialen is een minder onderzochte 

benadering, ondanks de potentiële voordelen ervan, zoals robuustheid tegen de 

aanwezigheid van (fabricage) imperfecties in de structuur van het materiaal. Onze 

resultaten laten zien dat beide benaderingen kunnen worden gebruikt om een breed 

scala aan elastische eigenschappen te verkrijgen, evenals ongebruikelijke 

eigenschappen, zoals dubbel-auxetische maar toch stijve structuren. 

Geavanceerde additive manufacturing-technieken maken het creëren van 

metamaterialen met ingewikkelde vormen en een verscheidenheid aan 

materiaaleigenschappen mogelijk. Het vinden van zeldzame ontwerpen die 

resulteren in ongebruikelijke materiaaleigenschappen, zoals dubbele auxeticiteit met 

hoge stijfheid, blijft echter een uitdagende taak. Vandaar hebben we machine 

learning-technieken gebruikt om niet alleen de mechanische eigenschappen van de 

ontworpen structuren veel sneller te voorspellen dan computationele modellen, maar 

ook om omgekeerde structuren te ontwerpen met vooraf gedefinieerde mechanische 

eigenschappen, waaronder ongebruikelijke elastische eigenschappen. In het 

onderzoek in Hoofdstuk 5 werden de deep learning (DL) -algoritmen gebruikt om 

de correlatie tussen de mechanische eigenschappen en willekeurige combinaties van 

harde en zachte fasen in drie soorten vlakke roosters te onderzoeken en om 

ongebruikelijke ontwerpen te bepalen. Door de correlaties tussen de 

ontwerpparameters en mechanische eigenschappen te ontwikkelen, werd de tijd die 

nodig is voor het evalueren van elk ontwerp aanzienlijk verlaagd tot ≈  2,4 × 10	
 s, 

en het evaluatieproces werd zeer parallel uitvoerbaar gemaakt. In de volgende stap 

hebben we gebruik gemaakt van de mogelijkheden van DL algoritmen om de 

elastische eigenschappen van mechanische metamaterialen met meerdere materialen 

te voorspellen en nieuwe ontwerpen te genereren, terwijl we ook andere 

ontwerpeisen buiten mechanische eigenschappen hebben meegewogen, om een 

modulaire benadering te creëren, getiteld “Deep-DRAM”, voor het oplossen van dit 

complexe multi-doel omgekeerde ontwerpprobleem (Hoofdstuk 6). Deep-DRAM, 

dat staat voor “Deep learning for the Design of RAndom-network Metamaterials”, 
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bestaat uit vier afzonderlijke modules, waaronder twee deep learning modellen 

(DLM), een diep generatief model (DGM) en eindige element (FE) simulaties. Deze 

aanpak krijgt de gewenste elastische eigenschappen en specimenafmetingen, 

genereert kandidaatontwerpen, filtert ze op basis van de nabijheid van de 

gegenereerde eigenschappen voor de gewenste en gebruikte FE-simulaties om de 

ontwerpen te identificeren met minimale piekspanningen binnen de roosterstructuur. 

Het voorziet in de creatie van metamaterialen met specifieke elastische 

eigenschappen die overeenkomen met de specifieke afmetingen die aan Deep-

DRAM worden verstrekt en die voor een breed scala aan toepassingen kunnen 

worden gebruikt. 

Alles bij elkaar verkent dit werk een nieuwe opkomst in het ontwerp van 

mechanische metamaterialen door zowel willekeur in de materiaalkeuze als 

willekeur in de geometrie te introduceren. DL-technieken werden gebruikt om de 

materiaalontdekking binnen de brede ontwerpruimte te versnellen. De benadering 

die in deze studie wordt voorgesteld, baant de weg voor het creëren van mechanische 

metamaterialen met gedefinieerde elastische eigenschappen (inclusief 

ongebruikelijke eigenschappen) die onafhankelijk zijn van de algehele dimensie van 

het metamateriaal en geschikt zijn voor verschillende toepassingen. 
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1.1. Background 

Mechanical metamaterials are a class of advanced engineered materials whose 

unprecedented properties originate from their rational design at smaller scales1–3. 

Some of the examples of these unusual properties include a negative Poisson’s ratio 

(i.e., auxetic metamaterials)4–8, shape morphing9,10, negative compressibility11–13, 

negative stiffness14, and tunable negative thermal expansion15. Because of their 

unusual properties, these artificial materials are being increasingly used in various 

areas of application, including biomedical engineering16–18, soft robotics19–21, 

automobile and aerospace industries22, and other advanced technologies23–25. 

Mechanical metamaterials can be produced either by 3D printing them directly6,26,27 

or by applying the crumpling28, origami29,30, or mechanism-based31 approach. 

An important aim in the design of mechanical metamaterials is independent 

tailoring of their elastic properties, including the elastic modulus and Poisson’s 

ratio32. Adjusting the Poisson’s ratio of mechanical metamaterials over a wide range 

of negative and positive values allows for devising a rich set of new functionalities. 

For example, negative values of Poisson’s ratios (i.e., auxetic mechanical 

metamaterials33) can be combined with positive values (i.e., conventional 

mechanical metamaterials) to design orthopedic implants with improved longevity34 

and to enable complex local actuations in soft robotics using a single far-field force35. 

At the same time, tailoring the stiffness values of mechanical metamaterials allows 

for the adjustment of their load-bearing capability and compliance. For example, 

mechanical metamaterials with extremely high negative or positive values of the 

Poisson’s ratio often lack high elastic moduli. Rational design approaches are, 

therefore, required to increase (or decrease) the elastic modulus of architected 

materials regardless of their Poisson’s ratio.  

The common approach to the rational design of mechanical metamaterials has 

been to create specific geometric patterns (i.e., unit cells) at the micro-level which 

are repeated in a highly ordered manner to achieve desired macro-level properties. 
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However, it is difficult and challenging to find out what unit cell geometry must be 

used in order to attain a specific combination of mechanical properties. Furthermore, 

designs with extremely high or low values of the Poisson's ratio typically exhibit low 

elastic moduli. It is, therefore, important to independently tune the elastic properties 

of mechanical metamaterials. Incorporating randomness in the design of mechanical 

metamaterials is an alternative approach to tackle some of these challenges36–39. For 

instance, the spatial distribution of materials with different material properties within 

lattice structures (i.e., randomness in material distribution), random-network (RN) 

unit cells consisting of stretch- and bending-dominated beamlike structures (i.e., 

randomness in geometry), or a combination of both approaches can be used to 

achieve the desired set of elastic properties. In addition, randomness allows designers 

to achieve a continuous range of elastic properties while also affording the designed 

architected materials with a certain degree of robustness against manufacturing 

imperfections40,41.  

Advanced 3D printing techniques that allow for the creation of micro-

architectures with intricate structures have recently been developed. Moreover, these 

structures can be made from multiple materials that possess differing mechanical 

properties. However, due to the “curse of dimensionality”42 caused by the different 

ways of incorporating randomness in the distribution of material properties and 

geometrical designs, the number of possible designs is extremely large. Therefore, 

optimizing the designs and especially discovering designs with rare-event 

mechanical properties are exceedingly challenging and are associated with 

formidably high computational costs. Given the inadequacy of conventional 

computational models for dealing with such a vast design space, alternative 

approaches based on machine learning (ML) techniques are needed to 

comprehensively explore the design space and uncover the most appropriate designs.  

In general, the applications of ML in the field of material and architected 

structures can be categorized into three major categories: (i) prediction of structure 

performance, (ii) discovering of new materials, and (iii) design of materials with 
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target properties43,44. Supervised ML techniques have received more attention than 

unsupervised ML approaches when dealing with types of research problems44. 

Regression methods are commonly employed in the first category to forecast the 

mechanical properties of lattice structures with complex micro-architectures45,46. 

Probabilistic methods are often employed to tackle problems of the second kind in 

which one seeks to identify micro-architectures that result in a particular set of 

mechanical properties47,48. The third category involves utilizing a combination of 

regression and probabilistic algorithms to find the materials that exhibit optimal 

performance49–51.  

Deep learning (DL) as one of the most advanced ML techniques has garnered 

substantial interest in the field of materials science45. DL employs the notion of 

artificial neural networks with several hidden layers to progressively extract higher-

level characteristics from raw data. Different variants of DL models (e.g., 

convolutional neural networks (CNN) and fully-connected artificial neural networks 

(ANN)) can be used to predict the mechanical response of metamaterials without the 

need for time-consuming tests or iterative numerical simulations45,52–54. The ultra-

fast prediction of mechanical properties can then be used to find designs with rare 

mechanical properties45,55. 

Considering the real-world applications of mechanical metamaterials, the 

inverse design of architected materials with predefined properties, especially rare-

event properties, is of particular interest. Additionally, and given the limited 

resolution of available additive manufacturing (AM) techniques, we need to solve 

such inverse problems for specific dimensions of architected structures. The primary 

challenge, therefore, lies in the inverse design of mechanical metamaterials with 

predefined mechanical properties as well as specific dimensions. It should be also 

noted that such design problems typically have multiple solutions. This set of 

requirements makes probabilistic generative models (e.g., generative adversarial 

networks (GAN)56 and variational autoencoders (VAE)57) particularly interesting for 

tackling such complex, multi-faceted, and multi-objective design problems49,50,54,58. 
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An advantage of such probabilistic generative models is that they can find several 

solutions to the above-mentioned inverse design problem. The availability of several 

solutions makes it possible to apply additional design requirements and select the 

most well-performing design. For instance, resistance to fatigue and fracture is a 

crucial design requirement for architected metamaterials, which rational design 

approaches have rarely considered. Stress concentration can lead to premature failure 

by initiating and growing cracks. It is, therefore, important to select designs with as 

uniform of a stress distribution and as small a stress peak as possible. To enable the 

selection of such structurally superior designs from a pool of possible designs, one 

can complement the ML techniques with direct finite element simulations. 

1.2. Objective of the thesis 

The background information provided in the previous section highlights the 

importance of finding designs for mechanical metamaterials with independently 

tailored elastic properties.  The main objective of this thesis, therefore, is to rationally 

design mechanical metamaterials with desired elastic properties (including rare-

event designs) while satisfying additional design requirements. We first made use of 

the benefits of randomness in the expansion of the design possibilities by 

incorporating it into both the material distribution and the geometrical design of 

lattice structures. We then employed computational models, machine learning, and 

advanced AM techniques to determine the elastic properties of the designed lattices 

and optimize their performance. Finally, we developed a modular platform titled 

“Deep-DRAM” which uses deep learning techniques for the inverse design of 

mechanical metamaterials with predefined elastic properties and spatial dimensions 

while also minimizing the peak stress within the structure. The main objectives and 

achievements of this thesis are discussed as follows: The first three chapters of the 

thesis (i.e., Chapters 2-4) focus on the role of randomness in the design of architected 

metamaterials. While the first two of those chapters deal with the multi-material 

aspect of random designs, the third one is dedicated to the effects of random 
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geometries. These three chapters are followed by two chapters which apply ML 

techniques in general and DL methods in particular to design architected materials 

with rare combinations of elastic properties (Chapter 5) and to solve multi-objective 

inverse design problems pertaining to the multi-objective design of RN mechanical 

metamaterials with a desired set of elastic properties and specific dimensions 

(Chapter 6). A more detailed description of these chapters is presented in the 

following section. 

1.3. Thesis outline 

This thesis consists of seven chapters including this introductory chapter. The 

outlined research objective is reflected in the following chapters. 

Chapter 2. In this chapter, computational models and an advanced multi-

material 3D printing technique were employed to rationally design multi-material 

mechanical metamaterials using the spatial distribution of a hard phase within an 

originally soft lattice structure. The main objective of the study is to independently 

tailor the Poisson’s ratio and elastic modulus of these multi-material mechanical 

metamaterials. Towards this aim, three types of unit cells (i.e., auxetic, zero 

Poisson’s ratio, and conventional), different levels of the elastic modulus of the hard 

phase to that of the soft phase (�
/��), and different levels of the ratio of the volume 

of the hard phase to that of the soft phase (�
) were considered to explore the 

achievable envelope of elastic properties (i.e., Poisson’s ratio and elastic modulus). 

In addition, several specimens with designed patterns of hard phase were fabricated 

and mechanically tested to validate the computational results. 

Chapter 3 uses computational models and mechanical tests to study the degree 

of non-affinity in the dual-phase multi-material mechanical metamaterial presented 

in Chapter 2. In multi-material mechanical metamaterials, the presence of hard and 

soft phases resulted in an additional non-affinity of deformations that had not been 

studied before. To decouple the non-affinity caused by the presence of different 

material phases from that of geometrical design, we determined the degree of non-
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affinity by comparing the deformations taking place in the designed multi-material 

mechanical metamaterials with those taking place in the same lattice structure but 

made from one single material (i.e., with properties corresponding to a mixture of 

hard and soft phases). In addition, this chapter extensively discusses the correlation 

between the degree of non-affinity and elastic properties (i.e., Poisson’s ratio and 

elastic modulus) as well as design parameters (i.e., type of unit cell, �
/��, and �
). 

Chapter 4 uses computational models and advanced 3D printing techniques to 

explore the elastic properties of two general types of disordered networks, namely 

lattice-restricted and unrestricted networks. These networks were composed of nodal 

points and beam-like elements where the nodes can be randomly connected to their 

adjacent nodes using beam-like elements with a mean nodal connectivity ranging 

between 2.5 and 7. In the case of lattice-restricted networks, the locations of the 

nodal points were restricted in space while the nodal points were chosen randomly 

in unrestricted networks, but only within predetermined boundaries. Finally, several 

representative networks were selected, and 3D printed to corroborate the results of 

our computational models.  

Chapter 5. The objective of this chapter is to use computational models and 

DL algorithms to predict the elastic properties of multi-material mechanical 

metamaterials and identify the rare-event designs that exhibit highly desirable 

combinations of elastic properties (e.g., high stiffness and highly negative values of 

the Poisson’s ratio). We used planar lattices (also called “tiled design”) based on the 

re-entrant, cubic, and honeycomb unit cells and various ranges of �
 and studied the 

relationship between the random distributions of the hard and soft phases in these 

structures and the resulting values of the elastic properties. We also studied various 

combinations of tiled designs (e.g., four-tile and nine-tile structures) to learn how 

combining multiple instances of these random lattices into a hybrid, tiled lattice can 

expand the range of achievable elastic properties.  
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Moreover, this chapter discusses the training of two DL models (i.e., single unit 

cell model, and four-tile model) that can accurately predict the elastic properties of 

the tiled designs and the combinations of four tiles. To validate the results of the 

prediction models, several specimens were fabricated using a multi-material 3D 

printer based on the Polyjet technology to be mechanically tested. We also used 

digital image correlation (DIC) to measure the full-field strain patterns during the 

mechanical testing of the fabricated specimens. 

Chapter 6. This chapter presents a modular approach titled “Deep-DRAM” that 

aims to find many solutions to the multi-objective inverse design problem of finding 

RN mechanical metamaterials that give rise to a desired set of elastic properties while 

satisfying certain dimension requirements. Deep-DRAM (deep learning for the 

design of RN metamaterials) incorporates four decoupled models, including two 

deep learning models (DLM), a deep generative model (DGM) based on conditional 

variational autoencoders (CVAE), and direct finite element (FE) simulations. Deep-

DRAM receives the desired elastic properties and dimensions and returns a set of 

candidate designs. After a filtering step based on the closeness of the actual 

properties of the generated designs to the initial desired properties, the last step uses 

direct FE simulations to identify the designs with the minimum peak stresses. The 

approach proposed in this chapter paves the way for the development of mechanical 

metamaterials with well-defined elastic properties (including rare-event properties) 

that can be found regardless of the overall dimensions of the metamaterial and are 

suitable for a broad range of applications. 

Chapter 7. This chapter provides a summary of the main findings of this thesis. 

Moreover, a number of recommendations for future research directions are made. 
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Abstract 

Up until recently, the rational design of mechanical metamaterials has usually 

involved devising geometrical arrangements of micro-architectures that deliver 

unusual properties on the macro-scale. A less explored route to rational design is 

spatially distributing materials with different properties within lattice structures to 

achieve the desired mechanical properties. Here, we used computational models and 

advanced multi-material 3D printing techniques to rationally design and additively 

manufacture multi-material cellular solids for which the elastic modulus and 

Poisson’s ratio could be independently tailored in different (anisotropic) directions. 

The random assignment of a hard phase to originally soft cellular structures with an 

auxetic, zero Poisson’s ratio, and conventional designs allowed us to cover broad 

regions of the elastic modulus-Poisson’s ratio plane. Patterned designs of the hard 

phase were also used and were found to be effective in the independent tuning of the 

elastic properties. Close inspection of the strain distributions associated with 

different types of materials distributions suggests that locally deflected patterns of 

deformation flow and strain localizations are the main underlying mechanisms 

driving the above-mentioned adjustments in the mechanical properties.  
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2.1. Introduction 

The vast majority of the mechanical metamaterials1–3 presented to date have 

used various types of geometrical designs to achieve their unusual properties such as 

negative Poisson’s ratios4 and bistability5, shape-morphing mechanical 

metamaterials6, negative compressibility7, negative stiffness8, crumpled 

metamaterials9, and tunable negative thermal expansion10. However, the rational 

design of mechanical metamaterials is not limited to their small-scale geometry and 

includes rationally designing the spatial distribution of the mechanical properties as 

well as a combination with geometrical design and spatial distribution of mechanical 

properties. The research into both latter rational design approaches has just started, 

as the multi-material 3D printing (= AM) techniques required for achieving complex 

spatial distributions of mechanical properties and combining that with complex 

geometries are just emerging. A few recent studies on 3D lattices with high Poisson’s 

ratio properties11, topology optimization of multi-material mechanical metamaterials 

with negative Poisson’s ratio12 or multifunctionality13, and controlling instabilities14 

are examples of the applications of dual-phase materials15,16 for achieving new 

ranges of properties and new types of functionalities in mechanical metamaterials. 

Here, we used complex spatial distributions of the mechanical properties 

realized through advanced multi-material 3D printing processes and combined that 

with architected geometrical designs to independently tailor the Poisson’s ratio and 

elastic modulus of dual-phase (i.e., soft-hard) mechanical metamaterials. We used 

computational models for the rational design of the mechanical metamaterials. A 

large number of the designed specimens were then fabricated and were subjected to 

mechanical loading to characterize their mechanical behavior. 

2.2. Materials and methods 

In our designs, we used three unit cells, representing lattice structures with 

negative (� = 60°), intermediate (i.e., zero) (� = 90°) and positive (� = 120°) 

Poisson’s ratios (Figure 1a). The unit cells had a similar height (�) and width (�) 
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while differing in ℎ  and � (Figure 1a). Keeping a specific set of design parameters 

constant, allowed us to design lattice structures with an equal overall width (�) and 

length (�). The in-plane ( ) and out-of-plane thicknesses (!) of the unit cells with 

different angles were similar as well. All design parameters are listed in 

Supplementary Table 1. 

2.2.1. Computational modeling 

To create the computational models, the geometry of each lattice structure was 

created as an input file in MATLAB (R2011b) and later was handled with the finite 

element modeling software (Abaqus 6.14). In-plane Timoshenko beam elements 

(B21, Abaqus) with a rectangular cross-section were used to model the lattice 

structures. A hyperelastic material model (Neo Hookean, "#$ = 0.106 MPa, (# =
0.03 MPa	#) was applied as the constitutive equation of the soft phase. Three levels 

of the elastic modulus of the hard phase were selected with one, two, or three orders 

of magnitude higher elastic moduli as compared to the soft phase (i.e., �
/��= 10, 

100, or 1000). Furthermore, two levels of the fraction of the hard phase with respect 

overal volume (i.e., �
= 25% and 50%) were chosen when spatially distributing both 

phases in the lattice strucutres. 

A large number of finite element models of the lattice structures were created 

in which the hard phase replaced the soft elements of the lattice structures at random 

locations. The replacement of the soft phase with the hard phase continued until the 

intended fraction of the hard phase was achieved. To adequately sample the 

stochastic space of possible designs, one thousand simulations were performed for 

each combination of the hard phase fraction and �
/��, resulting in a total of 18000 

simulations. 

Moreover, the simulations were performed in two directions, i.e., 1 and 2, in 

order to investigate the anisotropic behavior of these metamaterials. A displacement 

boundary condition equal to 10% longitudinal/transverse strain was applied to 

simulate a tensile test. The boundary conditions were applied to a reference point, 
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which was kinematically coupled to the corresponding nodes of the lattice structures. 

For instance, for the simulation in the 1-direction (Figure 1a), a displacement was 

applied on a top reference point. Another reference node was created at the bottom 

of the structure, which was clamped. A non-linear static simulation was performed. 

The stresses (*##, *++) and strains (,##, ,++) in both directions were respectively 

calculated based on the ratio of the reaction force to the cross section area and the 

ratio of the displacement to the free length of the structure in the longitudinal 

(transverse) direction. The elastic stiffnesses (�##, �++) of the structure was 

calculated as the slope of the stress-strain curve at 1% strain. 

The Poisson’s ratio in direction 1 was calculated as -#+ = − /00
/11

, where ,## is 

the applied strain in direction 1, and ,++ is the sum of the transverse deformation of 

the structure under this displacement at every ith node (2++,3) with ,++ = ∑ 500,67681
9  

and : =total number of lateral nodes along direction 2. Likewise, the Poisson’s ratio 

in direction 2 was defined as -+# = − /11
/00

 where ,++ is the applied strain in direction 

2 and ,## = ∑ 511,6;
681

<  with = is equal to the total number of the lateral nodes in 

direction 1. The Poisson’s ratios in both directions were measured at 1% longitudinal 

(transverse) strain. 

2.2.2. Fabrication and experimental testing 

For the experimental study, fifteen specimens were directly fabricated using a 

multi-material 3D printer (Object500 Connex3 3D printer, Stratasys) working on the 

basis of material jetting (the Polyjet technology). Of those specimens, 6 and 9 

samples were tested in directions 1 and 2, respectively. Among the specimens 

mentioned above, 5 were purely soft while the rest were multi-material. The hard 

and soft phases were respectively printed with VeroCyan (RGD841, shore hardness 

(D) 83-86) and Agilus30 Black (FLX985, shore hardness (A) 30-35). These 

materials were selected to achieve �
/�� values up to ≈1000. 
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The specimens tested in direction 1 had an extra hard part to make it possible to 

attach it to the gripper while the ones tested in direction 2 were directly attached to 

the gripper via pins. Two gripping systems and their pins were designed and 

additively manufactured using a fused deposition modeling (FDM) 3D printer 

(Ultimaker 2+, Geldermalsen, The Netherlands) from polylactic acid (PLA) 

filaments (MakerPoint PLA 750 gr Natural).  

Tensile mechanical testing was performed under displacement control using an 

LLOYD instrument (LR5K) mechanical testing machine with a 100 N load cell and 

a stroke rate of 2 mm/min. The time, force, and displacement were recorded at a 

sampling rate of 20 Hz. The force and displacement were used to calculate the stress 

and strain with respect to the initial cross-section area and the initial free length of 

the specimens. The stiffness of the structure was determined using the measured 

stress and strain values. The deformation of the specimens was also captured by a 

digital camera that was later used to calculate the Poisson’s ratios in both directions 

using image analysis (see the supplementary document, Supplementary Figure 1). 

We validated the accuracy of our numerical simulations for the purely soft 

lattice structures by comparing them with the experimental and theoretical models 

(Figure 1b). Equation 1 shows the existing theoretical relations for the calculation of 

the elastic properties of homogenized lattice structures17. 

�## = >?@
 AB CDEF GH
I JKDL G ,      �++ = >? JKD G

I@
 AB CDEF GH DEF G                                                        (1) 

-#+ = sin � Pℎ �B + sin �R
cos+ � ,      -+# = cos+ �

sin � Pℎ �B + sin �R
 

where UV = �I!P �B RW
 is the flexure force constant and �I is the elastic 

modulus of the solid constituent. The elastic modulus, ��, of our soft materials is 0.6 

MPa.  
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Figure 1. (a) Three unit cell geometries (� = 60°, 90°, 120°) used for the fabrication of lattice 

structures. A comparison of the numerical results, experimental obervations, and theoretical predictions 

for the lattice structures made from a uniform (soft) material and tested in directions 1 (b) and 2 (c). 

The regions covered by the mechanical porperties of multi-material mechanical metamaterials with 

three geometries and random assigment of a hard phase to the elements of the lattice structure until two 

fractions of the hard material, �
=  25% and 50, were achieved. Moreover, three different values of 

�
/�� were used to calculate the elastic modulus and Poisson’s ratio in directions 1 (d) and 2 (e). The 

specific elastic stiffnesses (i.e., normalized by the mass, X, of the sample are presented in (d) and (e). 
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We found that the elastic properties obtained from our computational models 

for the homogenously soft materials are within the range of those calculated using 

Equation 1 (Theo.) and experimental observations (Exp.) (Figure 1b-c).  

2.3. Results and discussion 

The random assignment of the hard phase to the elements of the lattice 

structures considered here resulted in drastic changes in both the Poisson’s ratio and 

elastic modulus (Figure 1d-e).  Specific regions, therefore, emerged within the elastic 

modulus-Poisson’s ratio plane within which the Poisson’s ratio and elastic modulus 

could be independently adjusted (Figure 1d-e). Generally speaking, the changes in 

both Poisson’s ratio and elastic modulus were larger in direction 2 as compared to 

direction 1 (Figure 1d-e, and Figure 2). Moreover, the elastic properties of lattice 

structures with � = 60° and � = 120° were much more sensitive to the presence of 

a second, harder phase, as compared to the lattice strucutres with � = 90° (Figure 

1d-e). This trend was particularly clear for the Poisson’s ratio in direction 1 and 

elastic modulus in direction 2 (Figure 1d-e). Random assignment of a hard phase 

(�
/��=10-1000) to up to 50% of the elements of the considered lattice strucutres 

resulted in up to ≈ 2 orders of magnitude increase in elastic modulus (Figure 1d-e). 

Combining the hard and soft phases shifted the Poisson’s ratio of the lattice 

strucutres towards higher values in the case of � = 60° and towards lower values in 

the case of � = 120° (Figure 1d-e, Figure 2a-d). The distribution of the Poisson’s 

ratio of the original value (i.e., the Poisson’s ratio of a single-material lattice 

strucutre) was more or less symmetric in the case of � = 90° (Figure 1d-e).  

As expected, the effects of a second phase on the Poisson’s ratio was amplified 

for higher values of �
/�� (Figure 2a-d). The same held for the fraction of the hard 

phase (Figure 2a-d). Stress and strain localizations were clearly present in the case 

of multi-material designs (Figure 2a-d). In addition, the stress and strain localizations 

were clearly intensified in the case of a higher fraction of the hard phase (i.e., �
 =
50%) (Figure 2a-d). Assignig a hard phase to a random place within a soft lattice 
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structure could also affect the global deformation of the lattice structure and lead to 

an asymmetric deformation pattern (Figure 2), as the harder elements of the lattice 

structure deflect or block the deformation flow. 

 

Figure 2. The Poisson’s ratios of the random multi-material lattice structures made with three 

unit cell geometries, three values of �
/��, and two fractions of the hard material (�
). The values 

were calculated for directions 1 (a, c), and 2 (b, d). The strain distributions presented at the top of the 

Poisson’s ratio contours show the principal strains obtained from the numerical simulations at 10% 

applied strain and for the data points indicated with boxes. 
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In addition to randomly assigning the second (i.e., hard) phase material to a 

number of the elements of the lattice structure, we rationally designed the placement 

of the hard phase such that the elements to which the hard phase were assigned 

collectively created either a re-entrant (i.e., auxetic) or honeycomb (i.e., 

conventional) shape (Figure 3). All designs were both 3D printed and analyzed using 

our computational models. Such rational placements of the second phase resulted in 

drastic changes in the elastic properties of the mechanical metamaterials (Figure 3a-

b). For example, when we started from an auxetic lattice structure (legend: △) and 

assigned the hard phase to specific elements of the structure in such a way that they 

created a global re-entrant shape, the Poisson’s ratio remained largely unchanged 

while the stiffness was increased by > 10 times in direction 1 (Figure 3). Choosing a 

honeycomb shape for the hard elements assigned to the same type of the lattice 

structure (i.e., auxetic, legend: O) pushed the Poisson’s ratio towards 0, while not 

significantly changing the stiffness in direction 1 and substantially increasing the 

stiffness in direction 2 (Figure 3). Various types of drastic evolutions in the stiffness 

and Poisson’s ratio in both directions were observed for the other types of lattice 

structures and using different types of designs of the hard phase elements (see the 

arrows in Figure 3a-b).  

Interestingly, in the case of the lattice structures with a zero Poisson’s ratio 

(legend: □), introducing hard unit cells with a global re-entrant or honeycomb shape 

resulted in lattice structures with relatively large (negative or positive) values of the 

Poisson’s ratio (Figure 3). This shows that, in addition to the geometrical design, one 

could benefit from the spatial distribution of the mechanical properties as an 

effective tool to independently tailor the elastic properties of mechanical 

metamaterials. 
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Figure 3. The numerical (hollow markers) and experimental (solid markers) results for the elastic 

properties of multi-material lattice structures with rationally designed hard phases and tested in 

directions 1 (a) and 2 (b). The arrows compare the results of a corresponding lattice structure with a 

single soft material with those of the multi-material designs. The experimental and numerical 

deformation patterns are also compared with each other in directions 1 (c) and 2 (d). The strain 

distributions show the principal strains obtained using the computational models. 
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Here, we assumed constant thickness for the beam elements of the lattice 

structures and increased the rigidity of each beam only by increasing individual 

stiffnesses. Since the rigidity of each beam in these lattice structures is defined as 

�[, where � is the elastic stiffness and [ is the second moment of inertia, one could 

increase beam’s rigidity by changing the second moment of inertia. In this case, it 

means using various beam thicknesses for each element. This is again mapping the 

elastic properties by manipulating the geometrical features of the lattice structures, 

although there is a limitation on the maximum thickness considered for such designs. 

We also used the dual-material for the construction of these metamaterials. However, 

different hard-soft elastic ratios or even a gradient in the mechanical properties can 

be taken into account for the construction of these materials. 

The results of this study clearly show that both random and rational distributions 

of a hard phase could be used for independent tailoring of the elastic modulus and 

Poisson’s ratio of a soft mechanical metamaterial. The spatial distribution of the 

mechanical properties could also be used for independent tailoring of the elastic 

properties in different directions, thereby allowing for the rational design of 

anisotropic mechanical metamaterials. Our computational models clearly show that, 

at the micro-scale, nonhomogeneous strain distributions and localized deformations 

are responsible for the observed behavior on the macro-scale including not only the 

effective elastic properties but also such phenomena as asymmetric deformations. 

From the mechanistic viewpoint, the assignment of a hard phase to random elements 

within the lattice structure locally deflects the flow of deformation, thereby 

disrupting the uniform deformation flow resulting from the geometrical design of the 

lattice structure. As the stiffness of the hard phase or its fraction increases, this effect 

will be stronger. For lattice structures whose Poisson’s ratio is already largely 

positive or negative, this random disruption of the deformation is unlikely to increase 

the Poisson’s ratio further, which is why the absolute value of the Poisson’s ratio 

tends to decrease when a hard phase is randomly assigned to lattice structure with 

� = 60° or � = 120°. In the case of � = 90°, the Poisson’s ratio is already perfectly 
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zero, meaning that any random defelctions of the deformation flow will likely 

increase the Poisson’s ratio. However, there is an equal chance that this random 

disruption of the deformation flow results in a positive or negative Poisson’s ratio. 

That explains the more or less symmetric region of the elastic modulus-Poisson’s 

ratio covered by random multi-material lattice strucutres with � = 90°. When the 

assignment of the hard phase is rationally designed (e.g., in the global shape of a re-

entrant structure of a honeycomb), very big jumps in the values of the Poisson’s ratio 

are possible. Regarding the elastic modulus, an addition of a hard phase clearly 

increases the resistance to deformation, thereby resulting in a higher elastic modulus. 

The level of the increase in the elastic modulus is, however, dependent on how 

effectively the hard phase is used for increasing the load-bearing capacity of the 

lattice strucutre in a specific direction. Adjusting the effectiveness of the hard phase 

in a specific direction could, therefore, be used for tuning the elastic modulus of the 

lattice strucutre with the upper bound given by the most efficient distribution of the 

hard phase. Together, all above-mentioned mechanisms allow for independent 

tailoring of the elastic modulus and Poisson’s ratio of the lattice strucutre regardless 

of the geometrical design. Keeping the geometrical design intact might be 

particularly useful when designing multiphysics metamaterials, for which the 

geometrical design also determines other physical properties of the material (e.g., 

thermal expansion or mass transport properties). 

2.4. Conclusion 

Here, we showed that spatial distribution of materials with different mechanical 

properties (i.e., soft and hard phases) could be used to tailor the elastic properties of 

cellular structures. However, the trade-off for the use of such combinations is the 

creation of local stress concentrations in the resulting lattices. The level of the stress 

concentrations can significantly increase with a higher mismatch between the hard 

and soft phases. Moreover, the presence of these stress riser regions can result in the 

formation of local buckling or local damage. Those can eventually facilitate crack 
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initiation and propagation in the cellular structure, leading to pre-mature failure 

particularly under repetitive loading. One way to address this challenge would be to 

introduce intermediate phases with specific gradients in their mechanical properties 

to decrease the severity of the stress concentrations. Here, we performed monotonic 

quasi-static tensile tests, as we were primarily interested in the elastic properties of 

these structures. Systematic study of the failure and fatigue mechanisms would, 

however, require extensive fatigue tests that are suggested to be pursued in future 

research. 
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2.5. Supplementary document 

Supplementary Table 1. Design parameters of lattice structures. 

� [°] �[mm] �[mm] �[mm] ℎ[mm] �[mm] �[mm]  [mm] ![mm] 
60 112.5 124.3 11.25 9.17 6.50 11.85 0.75 7.5 
90 112.5 124.3 11.25 5.92 5.63 11.85 0.75 7.5 

120 112.5 124.3 11.25 2.67 6.50 11.85 0.75 7.5 
 

 

Supplementary Figure 1. (a) Image analysis steps during tensile testing at different longitudinal 

strain levels. The lateral strains (,##) were calculated with respect to the intact condition. The evolution 

of lateral strain under progressive longitudinal strain (,++) is shown in (b). 

  



Chapter 2-Multi-material 3D printed mechanical metamaterials  

28 

 

References 

1. Alderson, A. & Alderson, K. L. Auxetic materials. Proc. Inst. Mech. Eng. Part 

G J. Aerosp. Eng. 221, 565–575 (2007). 

2. Evans, K. E. & Alderson, A. Auxetic materials: functional materials and 

structures from lateral thinking! Adv. Mater. 12, 617–628 (2000). 

3. Ren, X., Das, R., Tran, P., Ngo, T. D. & Xie, Y. M. Auxetic metamaterials and 

structures: a review. Smart Mater. Struct. 27, 23001 (2018). 

4. Lakes, R. Negative Poisson’s ratio materials: response. Sci. 238, 551 (1987). 

5. Yasuda, H. & Yang, J. Reentrant origami-based metamaterials with negative 

Poisson’s ratio and bistability. Phys. Rev. Lett. 114, 185502 (2015). 

6. Mirzaali, M. J., Janbaz, S., Strano, M., Vergani, L. & Zadpoor, A. A. Shape-

matching soft mechanical metamaterials. Sci. Rep. 8, 1–7 (2018). 

7. Nicolaou, Z. G. & Motter, A. E. Mechanical metamaterials with negative 

compressibility transitions. Nat. Mater. 11, 608–613 (2012). 

8. Dudek, K. K., Gatt, R., Dudek, M. R. & Grima, J. N. Negative and positive 

stiffness in auxetic magneto-mechanical metamaterials. Proc. R. Soc. A Math. 

Phys. Eng. Sci. 474, 20180003 (2018). 

9. Mirzaali, M. J., Habibi, M., Janbaz, S., Vergani, L. & Zadpoor, A. A. 

Crumpling-based soft metamaterials: the effects of sheet pore size and porosity. 

Sci. Rep. 7, 13028 (2017). 

10. Wang, Q. et al. Lightweight mechanical metamaterials with tunable negative 

thermal expansion. Phys. Rev. Lett. 117, (2016). 

11. Chen, D. & Zheng, X. Multi-material additive manufacturing of metamaterials 

with giant, tailorable negative Poisson’s ratios. Sci. Rep. 8, (2018). 

12. Vogiatzis, P., Chen, S., Wang, X., Li, T. & Wang, L. Topology optimization of 

multi-material negative Poisson’s ratio metamaterials using a reconciled level 

set method. Comput. Des. 83, 15–32 (2017). 

13. Wang, Y., Gao, J., Luo, Z., Brown, T. & Zhang, N. Level-set topology 

optimization for multimaterial and multifunctional mechanical metamaterials. 

Eng. Optim. 49, 22–42 (2017). 

14. Janbaz, S., McGuinness, M. & Zadpoor, A. A. Multimaterial control of 

instability in soft mechanical metamaterials. Phys. Rev. Appl. 9, 64013 (2018). 

15. Mirzaali, M. J. et al. Length-scale dependency of biomimetic hard-soft 

composites. Sci. Rep. 8, 12052 (2018). 



References 

29 

 

16. Wang, K., Chang, Y.-H., Chen, Y., Zhang, C. & Wang, B. Designable dual-

material auxetic metamaterials using three-dimensional printing. Mater. Des. 

67, 159–164 (2015). 

17. Masters, I. G. & Evans, K. E. Models for the elastic deformation of 

honeycombs. Compos. Struct. 35, 403–422 (1996). 

  



Chapter 2-Multi-material 3D printed mechanical metamaterials  

30 

 

 



 

31 

 

3   

Non-affinity in multi-

material mechanical 

metamaterials 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Published as: 

Mirzaali, M. J., Pahlavani, H., Yarali, E., & Zadpoor, A. A. Non-affinity in multi-material 

mechanical metamaterials. Scientific Reports, 10(1), 1-10 (2020). 

  



Chapter 3-Non-affinity in multi-material mechanical metamaterials  

32 

 

Abstract  

Non-affine deformations enable mechanical metamaterials to achieve their 

unusual properties while imposing implications for their structural integrity. The 

presence of multiple phases with different mechanical properties results in additional 

non-affinity of the deformations, a phenomenon that has never been studied before 

in the area of extremal mechanical metamaterials. Here, we studied the degree of 

non-affinity, `, resulting from the random substitution of a fraction of the struts, �
, 

that made up a lattice structure and were printed using a soft material (elastic 

modulus = ��) by those printed using a hard material (�
). Depending on the unit 

cell angle (i.e., � = 60°, 90°, or 120°), the lattice structures exhibited negative, near-

zero, or positive values of the Poisson’s ratio, respectively. We found that the auxetic 

structures exhibit the highest levels of non-affinity, followed by the structures with 

positive and near-zero values of the Poisson’s ratio. We also observed an increase in 

` with �
/�� and �
 until �
/�� = 10a  and �
= 75%-90%, after which ̀  saturated. 

The dependency of ` upon �
  was, therefore, found to be highly asymmetric. The 

positive and negative values of the Poisson’s ratio were strongly correlated with `. 

Interestingly, achieving extremely high or extremely low values of the Poisson’s 

ratio required highly affine deformations. In conclusion, our results clearly show the 

importance of considering non-affinity when trying to achieve a specific set of 

mechanical properties and underscore the structural integrity implications in multi-

material mechanical metamaterials. 
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3.1. Introduction 

A simple mechanical load (e.g., uniaxial compression, tension, or shear) applied 

to a geometrically simple (e.g., square-shaped) piece of what is traditionally 

considered a material (e.g., metals, polymers) leads to a simple deformation that is 

highly predictable at large enough length scales and is homogeneously distributed 

within the material. Such a homogenous deformation is formally called an ‘affine’ 

deformation and can be fully described using an affine transformation (i.e., a linear 

transformation plus a rigid body translation) applied to the coordinates of the points 

constituting the material1,2. 

All this simplicity, predictability, and homogeneity may be lost when a simple 

mechanical load is applied to an architected material3. Architected materials, which 

are sometimes referred to as mechanical metamaterials4–6, possess complex small-

scale geometries that are engineered to give rise to unusual mechanical properties at 

the macroscale. In a way, the whole point of rationally designing7 the small-scale 

geometry of architected materials, may be to break the affinity of the deformations 

in an exact way so as to achieve unusual macroscale properties. Non-affine 

deformations can, for example, be exploited to achieve negative values of the 

Poisson’s ratio8,9, action-at-a-distance actuation behaviors10, and independent 

tailoring of the elastic properties11. Some other functionalities of mechanical 

metamaterials such as shape morphing12,13 are ‘per definition’ dependent on the non-

affinity of the induced deformation. Non-affine deformations can also be observed 

in other systems. For example, random networks14–17 that are found in biological 

systems such as the filamentous proteins that make up the cytoskeleton and 

extracellular matrix18–22, as well as flexible polymer networks23 and polymer 

hydrogels24 exhibit highly non-affine deformations. 

From the structural integrity viewpoint, however, non-affine deformations 

could be troublesome, as they may give rise to stress concentrations and, thus, 

decreased fatigue lives and premature failures. It is, therefore, crucial to understand 
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the non-affinity of deformations in architected materials because both advanced 

functionalities and structural performance of these materials are dependent on the 

proper management of non-affine deformations. Even though non-affine 

deformations can be studied at different length scales15,25–27, the most relevant scale 

in the case of mechanical metamaterials is the length scale of the constituting 

structural elements (i.e., struts)28. We will, therefore, be focusing on this length scale. 

Non-affine deformation can be characterized in terms of a degree of non-affinity 

(`) or non-affine correlation functions14,29,30. The degree of non-affinity is a scalar 

parameter that depends on the length scale31 and applied strain15,19,21. There are also 

other metrics of non-affinity that are based on strain energy15,19,31,32 or a comparison 

of the local deformations with affine deformations14,29,30,33–39. 

The degree of non-affinity is an important determinant of the inhomogeneous 

deformation of metamaterials. However, its relationship with the elastic properties 

(e.g., elastic modulus and Poisson’s ratio) of mechanical metamaterials remains 

elusive. Recent advances in multi-material additive manufacturing (also called 3D 

printing) techniques have enabled the fabrication of ‘multi-material’ mechanical 

metamaterials40–42 whose unusual properties and advanced functionalities are as 

much dependent on the spatial distribution of multiple phases with different 

mechanical properties as they are on the small-scale geometrical design of the 

constituting unit cells. Essentially, the complex distributions of the multiple phases 

are alternative ways of creating non-affine deformations so as to expand the range 

of achievable macroscale properties41. From the structural integrity viewpoint, the 

presence of multiple phases with highly different mechanical properties creates 

stress concentrations that underscore the importance of studying the non-affinity of 

the deformations even more. However, non-affine deformations in multi-material 

mechanical metamaterials have never been studied before. 

Here, using computational models and experimental tests, we studied the non-

affinity of the deformations taking place in a special class of multi-material 
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mechanical metamaterials that are made from two distinct phases, namely a hard 

phase and a soft phase. We aimed to separate the non-affinity caused by the presence 

of multiple materials from that of geometrical design. 

Towards this aim, the degree of non-affinity was determined by comparing the 

deformations taking place in the multi-material mechanical metamaterials (i.e., 

heterogeneous structures) with those of reference materials with monolithic 

properties (i.e., homogeneous structures) using computational models. The 

properties of the homogeneous structure equivalent to each heterogeneous structure 

were calculated using the rule-of-mixture, the properties of the soft and hard phases, 

and their ratios. Moreover, three different structures with cell angles of 60b, 90b, 

and 120b and with different mechanical properties were fabricated using an 

advanced multi-material 3D printing technique. Finally, the elastic properties of 

multi-material mechanical metamaterials and the degree of non-affinity were 

quantified and discussed in both quantitative and qualitative terms. 

3.2. Materials and methods 

3.2.1. Design and computational modeling 

We used already existing geometrical designs8,43 to create our mechanical 

metamaterials. The specimens were fabricated based on three types of unit cells with 

negative (� = 60°), near-zero (� = 90°), and positive (� = 120°) values of the 

Poisson’s ratio (Figure 1a). The dimensions of the unit cells (�, �) and the overall 

dimensions of the structures (�, ") were kept constant in all designs. The angle (�) 

changed the height (ℎ) and length (�) of the unit cells. Similar in-plane ( ) and out-

of-plane (c) thicknesses were considered for the unit cells with different angles. The 

design parameters are listed in Supplementary Table 1. 

The geometry of each lattice structures was created in MATLAB (R2017b) and 

was then used as an input file for numerical simulations in a nonlinear finite element 

solver (Abaqus Standard 6. 14). We used the linear Timoshenko beam elements 



Chapter 3-Non-affinity in multi-material mechanical metamaterials  

36 

 

(B21) with a rectangular cross-section because these elements can capture axial 

deformations, bending, and shear. We assumed a plane stress condition in our 

computational models. The constitutive behavior of the soft phase was described 

using a hyperelastic material model (Neo-Hookean, "#$ = 0.106 MPa, (# = 0.03 

MPa-1). We also used a hyperelastic material model for the hard phase and adjusted 

the parameters of the model correspondingly. For example, for the hard phase with 

100 times stiffer elastic properties the Neo-Hookean material parameters were 

adjusted assuming the following parameters: 100 × "#$ = 10.6 MPa, (#/100 =
0.0003 MPa-1. 

The multi-material lattice structures were created by considering multiple levels 

of the elastic modulus of the hard phase, �
, to that of the soft phase, �� (i.e., 

�
/�� = 10, 100, and 1000). To spatially distribute the hard phase in the lattice 

structures, we chose three levels of the ratio of the volume of the hard phase (i.e., 

�
 = 25%, 50%, and 75%). A random process was then used to assign the hard 

phase to randomly select struts of the unit cells constituting the lattice structures. 

First, a vector containing the random permutation of numbers from 1 to the total 

number of struts of the structure was generated. Then, a percentage of the first 

elements of the vector, equaling �
, were selected. The selected elements specified 

to which struts the hard phase was to be assigned. 

For the special case of �
/�� = 10W, we extended our simulations by 

considering a wider range of �
 values (i.e., �
 = 1%, 5%, 25%, 50%, 75%, 90%, 

95%, and 99%). We also performed further numerical simulations for �
/�� values 

of 10a, 10d, and 10
, while keeping �
 constant at 50%. For every above-mentioned 

combination of the design parameters, we performed 1000 simulations, resulting in 

a total of 51000 simulations. This means that, for each batch of 1000 simulations, 

the geometry, �
 and �
/�� were kept constant among the specimens while the 

distribution of the hard phase within the structure was modified. 
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A uniaxial displacement-controlled stretch test in the direction 2 (Figure 1a) 

was simulated in all models. Two reference points were defined on the right and left 

sides of the lattice structure, which were kinematically coupled with the 

corresponding nodes of the structure (Supplementary Figure 3). A displacement 

boundary condition (corresponding to 10% strain) was applied to one reference 

point, while constraining all the degrees of freedom of the other reference point 

(Supplementary Figure 3). 

The normal stress, * = e/f, was defined as the ratio of the reaction force, e, 

to the initial cross-section area, f = � × c. The longitudinal strain, ,++ = g9
9 , was 

calculated as the ratio of the displacement along the direction 2, h�, to the initial 

length of the structure in that direction, �. The elastic modulus, �, was computed 

as the instantaneous slope of the stress-strain curve. The Poisson’s ratio was 

calculated as - = − /11
/00

, where ,## is the lateral strain measured by the average of 

the displacements taking place in the direction 1 (23#) with respect to the transverse 

length of the structure (") (i.e., ,## = ∑ 5617681
i , where : is the total number of nodes 

at the lateral side of the structure along the direction 1). 

The degree of non-affinity was defined as ` = #
/000j ∑ (k3

lbl	mVV3ln −j3o#

k3
mVV3ln)+ where p is the total number of nodes in the structure, k3

lbl	mVV3ln
 is the 

local displacement of the ith node of the multi-material structure, and k3
mVV3ln

 is the 

corresponding displacement of the ith node of a corresponding single-material lattice 

structure (Figure 1d). The elastic modulus of that single material was determined as 

the rule-of-mixture combination of the elastic moduli of the phases constituting the 

corresponding multi-material lattice structure (i.e., �q = rs×tsCru×tu
rsCru

). 

3.2.2. Fabrication and experimental testing 

For our experimental study, we selected three representative cases for each 

angle of the unit cells. We manually segmented their geometry in Solidworks to 
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create different hard and soft phases, which were later converted into STL (standard 

tessellation language) files. The STL files were then inputted into a multi-material 

3D printer (Object500 Connex3, Stratasys), which works on the basis of material 

jetting (the Polyjet technology) and were directly 3D printed using commercially 

available materials, namely VeroCyan (hard phase, RGD841, shore hardness (D) = 

83–86) and Agilus30 Black (soft phase, FLX985, shore hardness (A) = 30–35) 

(Figure 1c). The Young’s modulus of the hard and soft phases were respectively 

726.36 ± 59.77 MPa and 0.60 ± 0.05 MPa44,45. The selection of the materials was 

made to achieve �
/�� ≈ 1000 (see Figure 1 and Supplementary Table 2). 

 To attach the specimens to the mechanical testing machine, a gripping system 

and pins were designed and additively manufactured using a fused deposition 

modeling (FDM) 3D printer (Ultimaker 2+, Geldermalsen, The Netherlands) from 

polylactic acid (PLA) filaments (MakerPoint PLA 750 gr Natural). Monotonic 

uniaxial tensile tests were performed under displacement control (stroke rate = 2 

mm/min) using a LLOYD instrument (LR5K, load cell = 100 N) mechanical 

testbench. The time, force, and displacement were recorded at a sampling rate of 20 

Hz. The stress and strain were obtained correspondingly by dividing the force to the 

initial cross-section area and dividing the displacement to the initial free length of 

the specimens. The stiffness of the structure was measured from the stiffest slope of 

the stress-strain curve. Using a digital camera, the deformations of the specimens 

were captured, which were then used to calculate the Poisson’s ratio. We manually 

positioned a couple of points at the borders of the specimens in the digital images. 

We manually positioned 20 points around the periphery of the specimens captured 

in the digital images. We developed a MATLAB code to trace the movement of 

individual points in those images. The Poisson’s ratio was calculated based on the 

changes in the coordinates of those points during the deformation. We repeated the 

mechanical tests for each specimen three times. 



3.3. Results and discussion 

39 

 

3.3. Results and discussion 

A wide range of the elastic moduli (i.e., 0.1 − 10 MPa) and Poisson’s ratios 

(i.e., −1.6 to 1.4) could be obtained using the multi-material design approach, 

followed in the current study (Figure 1b). The duos of the elastic modulus and 

Poisson’s ratio (at 1% strain) corresponding to the auxetic (i.e., � = 60°) and 

honeycomb (i.e., � = 120°) structures approached the values resulting from the 

orthogonal unit cells (i.e., � = 90°) as �
 increased (Figure 1b). A similar trend was 

observed for the higher values of the applied strain (i.e., 10%) (Figure 1b). 

The deformation patterns and the elastic properties predicted using our 

numerical simulations agreed with the experimentally observed deformation patterns 

and experimentally determined values of the elastic modulus and Poisson’s ratio 

(Figure 1c, and Supplementary Table 2). The small differences between the 

numerical and experimental results could be due to the imperfections induced during 

the manufacturing process as well as the pre-stretching of the soft ligaments when 

attaching the specimens to the clamps. We also performed a mesh sensitivity analysis 

for the models shown in Figure 1c. Each strut in our reference computational models 

consisted of one element. For the mesh sensitivity analysis, we doubled the number 

of elements per strut. Then, we compared the values of elastic modulus and Poisson's 

ratio obtained from the models with finer mesh and reference models. That 

comparison resulted in less than 3% difference. We also used higher-order 2D 

elements (B22) in our computational models. That resulted in less than 4% 

difference in the values of the elastic modulus and Poisson's ratios, as compared to 

our reference model. A number of unit cells showed very clear non-affine 

deformations, as compared to geometrically identical lattice structures made from a 

single material (Figure 1c, right side). Similar non-affine deformations were 

observed in our experiments and captured by our simulations (Figure 1c-d). 
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Figure 1. The three types of unit cells used in this study (a). The duos of the elastic modulus and 

Poisson’s ratio calculated from the numerical simulations at two levels of the applied strain (i.e., 1% 

and 10%) (b). The multi-material 3D printed specimens were mechanically tested under tensile loading 

and were compared with the finite element simulations (c). The quantitative data pertaining to this 

comparison are presented in Supplementary Table 2. For the specimen with � = 60°, the applied strain 

was 10%, while it was 7% for the specimens with � = 90°, 120°. The insets in subfigure (c) show the 

maximum strain distribution. Subfigure (d) shows the deformation of a homogenous lattice with an 

elastic modulus equal to the rule-of-mixture combination of the elastic moduli of the hard and soft 

phases. |k3| in (d) stands for the difference between the deformation of the ith node of a homogeneous 

lattice structure and the deformation of the exact same node in a multi-material specimen. 
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For the same values of �
 and �
/��, the auxetic structures (i.e., � = 60°) 

always showed the maximum mean values of `, which were up to several times 

higher than those corresponding to the honeycomb (i.e., � = 120°) and orthogonal 

(i.e., � = 90°) lattice structures (Figure 2a, Supplementary Table 3, and 

Supplementary Figure 1a). Except for the case where the hard phase was not much 

stiffer than the soft phase (i.e., �
/�� = 10), the honeycomb lattice structures 

exhibited a higher degree of non-affinity as compared to the orthogonal ones (Figure 

2a, Supplementary Table 3 and Supplementary Figure 1a). There were significant 

overlaps between the range of the ` values found for the lattice structures with 

different values of �
 (Figure 2b, Supplementary Table 4 and Supplementary Figure 

1b). This observation suggests that the degree of non-affinity is more dependent on 

how the hard phase is distributed in the lattice than on the amount of the hard phase 

(Figure 2b, Supplementary Table 4 and Supplementary Figure 1b). Inspecting the 

deformations exhibited by the different types of the lattice structures clearly showed 

that those based on the re-entrant unit cell were more susceptible to the 

inhomogeneous deformations that result from the presence of high-stiffness struts 

(Figure 2c). This is expected given the fact that the deformation of the re-entrant unit 

cell is dominated by the high stresses concentrated around its sharp corners, whereas 

stresses are generally more homogeneously distributed in the honeycomb and 

particularly orthogonal unit cells where the stress gradients within one single unit 

cell are relatively low (see Supplementary Figure 4). Moreover, performing 

thousands of simulations with the random distribution of the hard phase within the 

lattice structure allows for determining the envelope within which the degree of non-

affinity could change for a given value of �
. Therefore, this envelope shows the 

possible range within which degree of non-affinity can change by the different 

spatial distribution of the hard phases in the lattices. 

The degree of non-affinity initially increased with �
/��  regardless of the type 

of the unit cell until �
/�� = 10a after which it saturated (Figure 3a-top). A hard 

phase with a higher stiffness value disrupts the stress flow to a greater extent than a 
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hard phase with a lower level of stiffness, which explains the initial increasing trend. 

For large enough values of �
/��, however, the hard phase is so much stiffer than 

the soft phase so that it practically behaves as a rigid material. Therefore, a further 

increase in �
 does not noticeably affect the stress flow in the lattice structure and 

eventually, the degree of non-affinity saturates. In other words, up to a certain value 

of �
/��, the deformation experienced by heterogeneous structures increasingly 

deviates from the one experienced by equivalent homogeneous structures. 

The degree of non-affinity increased with �
 until a maximum value was 

reached for �
 = 75% − 90% (Figure 3b-top). For the larger values of �
, the 

degree of non-affinity is decreased such that it reaches ` =  0 for �
 = 100% (i.e., 

a monolithically hard material), (Figure 3b-top). The maximum value of ` occurred 

around the same �
 value regardless of the type of the unit cell and the level of the 

applied strain (Figure 3b-top). The same general trends were also valid for the higher 

levels of applied strain (e.g., 10%) (Figure 3b-bottom). The plot of ` vs. �
 was, 

therefore, highly asymmetric in all cases considered here (Figure 3b). The initial 

increase in ` as �
 increased is expected, given that a higher �
 value translates into 

a larger number of highly stiff struts that block the deformation of their surrounding 

low-stiffness struts. Moreover, the high stiffness struts can more effectively affect 

the stress flow in the lattice structures made from mostly low stiffness struts than the 

other way around. This explains the asymmetry in the plot of ` vs. �
. 
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Figure 2. The Gaussian (solid lines) and gamma distributions (dashed lines) describing the 

change in the degree of non-affinity as functions of �
/�� with pooled data (i.e., �
 =25%, 50% and 

75%) (a) and �
 with pooled data (�
/�� =10, 100, and 1000) (b). The parameters of these distributions 

are listed in Supplementary Table 3 and Supplementary Table 4. The degree of non-affinity for the 

representative cases shown in (c) is equal to the mean value of the corresponding group with �
/�� =
1000 at 10% strain. The design parameters for each of the specimens presented in (c) are listed in 

Supplementary Table 5. The color bars in subfigure (c) show the maximum strain distribution. 
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Figure 3. (a) The changes in the degree of non-affinity for different values of  �
/�� and for the 

three different types of the unit cell geometries (i.e., � = 60°, 90°, 120°) but the same value of �
 = 

50%. (b) The change in the degree of non-affinity for different hard volume fractions and for three types 

of unit cell geometries (i.e., � = 60°, 90°, 120° with �
/�� = 1000). 

For both auxetic and honeycomb unit cells, there was a very clear (power-law) 

relationship between the Poisson’s ratio and the degree of non-affinity of the lattice 

structures (Supplementary Figure 2). In general, the degree of non-affinity was up to 
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2 orders of magnitude lower for the lattice structures with the extreme absolute 

values of the Poisson’s ratio (Figure 4a-left). This relationship was even stronger 

(i.e., less scatter around the power-law trend line) for the higher levels of applied 

strain (Figure 4a-right, and Supplementary Figure 2). No such relationship was, 

however, observed for the lattice structures with near-zero Poisson’s ratios (i.e., � =
90°) (Figure 4a). These observations explain that achieving highly negative and 

highly positive values of the Poisson’s ratio requires that all or most of the struts 

contribute towards the targeted type of deformation. A homogenous (i.e., highly 

affine) distribution of the deformations among the different unit cells of the lattice 

structure is particularly efficient in achieving large lateral deformations that are 

needed for large absolute values of the Poisson’s ratio. That is because similar 

deformations exhibited by all unit cells add up instead of (partially) canceling each 

other out (Figure 4c). 

The relationship between the elastic modulus and the degree of non-affinity was 

less clear (Figure 4b). For each type of the unit cells, the degree of non-affinity was 

generally higher for the stiffer lattice structures (Figure 4b). This is, however, 

attributed to the fact that a higher value of �
 both increases the degree of non-

affinity and the stiffness of the lattice structure. 

In the present study, we excluded the geometrical and topological complexities 

that are relevant to the design of mechanical metamaterials. Those parameters have 

shown to influence the degree of non-affinity33. In addition, we used a limited 

number of unit cells (i.e., 10 × 10) to minimize the effects of boundary conditions on 

our computational models. We believe that increasing the number of unit cells will 

not change the trend of non-affinity that we found here. However, the effects of 

geometrical and topological parameters on non-affinity need to be further studied. 
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Figure 4. The changes in the degree of non-affinity as functions of the Poisson’s ratio (a) and the 

elastic modulus (b) at two levels of the applied strain (1% and 10%). A selected number of cases are 

depicted in (c), representing the lattice structures with the minimum and maximum values of ` with 

�
/�� = 1000. The design parameters for each of the specimens presented in (c) are listed in 

Supplementary Table 6. The color bars in subfigure (c) show the maximum strain distribution. 



3.4. Conclusion 

47 

 

3.4. Conclusion 

We studied here, for the first time in the area of extremal mechanical 

metamaterials, the non-affinity of the deformations experienced by multi-material 

mechanical metamaterials with random distributions of a hard phase within a lattice 

structure made of a soft material. We isolated the effects of multi-material design 

from those of geometry by comparing the deformation observed in our lattice 

structures with those of geometrically identical lattice structures that were made from 

one single material. Our results clearly show that a multi-material design approach 

could lead to both a wide range of elastic properties, and a wide range of non-affine 

deformations. We found that the degree of non-affinity is strongly correlated with 

the design parameters including �, �
, and �
/��. In addition, the degree of non-

affinity is highly correlated to the mechanical properties particularly the Poisson’s 

ratio. Interestingly, achieving extremely high levels of auxeticity (or highly positive 

Poisson’s ratios) seems to require highly affine deformations in multi-material 

mechanical metamaterials. On the other hand, achieving high values of the elastic 

modulus with multi-material mechanical metamaterials is associated with high levels 

of non-affine deformations. This is a new type of incompatibility between the very 

high values of the elastic modulus and very high absolute values of the Poisson’s 

ratio. It is important to realize that this incompatibility is different from the other 

types of such incompatibilities observed in the past (e.g., see46), as this 

incompatibility pertains to the spatial distribution of the mechanical properties 

within the lattice structure but not to the geometrical design of the unit cells (i.e., 

bending-dominated vs. stretch-dominated unit cells). The high levels of non-affinity 

observed here for multi-material mechanical metamaterials are expected to have 

clear implications for the structural integrity of the lattice structures. That is due to 

the high level of stress concentrations that are created as a result of such non-affine 

deformations. The high-stress concentration zones could accelerate crack initiation 

and propagation and ultimately lead to premature structural failure. The use of 
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functional gradients may, therefore, be required to mitigate the structural effects of 

non-affine deformations. 
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3.5. Supplementary document 

 

Supplementary Figure 1. The changes in the degree of non-affinity with �
/�� (a) and the 

volume fraction of the hard material, �
, (b) for the three different types of unit cell geometries and two 

levels of the applied strain (i.e., 1% and 10%). Pooled data (i.e., �
 =25%, 50% and 75%, and 

�
/�� =10, 100, and 1000) are shown in this figure. 
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Supplementary Figure 2. Both for the auxetic and honeycomb types of the unit cells, the degree 

of non-affinity and the Poisson’s ratio were related to each other through a power law (i.e., ` = wxI +
�). The parameters of the fits for both types of the geometries are presented as well. The pooled data 

(i.e., �
 =25%, 50% and 75%, and �
/�� =10, 100, and 1000) are presented in this figure. 

 

 
 

Supplementary Figure 3. A schematic of applied kinematic coupling constraints (a) and 

boundary conditions (b) in our computational models.  
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Supplementary Figure 4. The distribution of the von-Mises stress in the selected designs 

presented in Figure 2c. The hard-soft stiffness ratio was set to 1000. The presented results correspond 

to an applied strain of 10%. 

 

Supplementary Table 1. The design parameters of the lattice structures. 

� [°] �[mm] �[mm] �[mm] ℎ[mm] �[mm] �[mm]  [mm] ![mm] 
60 112.5 124.3 11.25 9.17 6.50 11.85 0.75 7.5 
90 112.5 124.3 11.25 5.92 5.63 11.85 0.75 7.5 

120 112.5 124.3 11.25 2.67 6.50 11.85 0.75 7.5 
 

 

Supplementary Table 2. A comparison between the experimentally measured (Exp) and 

computationally determined (FEA) values of the elastic properties (i.e., elastic modulus and Poisson’s 

ratio) with �
/�� = 1000. The data are reported at 1% strain. 

� [°] �
  [%] �tyz [MPa] �{t| [MPa] -tyz [−] -{t|[−] ` [mm+] 
60 25 0.03 ±  0.002 0.01 −1.31 ±  0.08 −1.61 400.41 
90 75 0.77 ±  0.13 1.14 0.01 ±  0.06 −0.06 402.36 

120 50 0.10 ±  0.01 0.09 0.89 ±  0.05 0.99 395.00 
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Supplementary Table 3. The parameters of the Gaussian distributions (i.e., mean and standard 

deviation (SD)) and the gamma distributions (i.e., shape, rate, and skewness) of the non-affinity 

parameter, ` [mm+] presented in Figure 2a and Supplementary Figure 1a. The pooled data (i.e., 

�
 =25%, 50% and 75%) are presented in this table. 

  , [%] =1 , [%] =10 

� [°] �
/�� Mean SD Shape Rate Skewness Mean SD Shape Rate Skewness 

60 10 86.6 34.6 6.0 0.1 0.8 145.6 52.3 8.3 0.1 0.7 
90 10 47.0 29.0 2.4 0.1 1.3 42.9 26.6 2.4 0.1 1.3 

120 10 44.0 19.1 4.6 0.1 0.9 41.4 21.7 3.0 0.1 1.2 
60 100 411.3 200.9 3.2 0.0 1.1 585.2 291.2 3.2 0.0 1.1 
90 100 133.6 115.5 1.2 0.0 1.8 104.0 92.4 1.2 0.0 1.8 

120 100 256.7 167.7 1.9 0.0 1.5 276.1 176.1 1.7 0.0 1.5 
60 1000 1075.9 666.0 1.9 0.0 1.4 1218.7 693.7 2.2 0.0 1.4 
90 1000 244.7 247.9 0.9 0.0 2.1 179.3 178.4 0.9 0.0 2.1 

120 1000 586.8 443.0 1.3 0.0 1.7 534.2 376.6 1.3 0.0 1.7 
 

 

Supplementary Table 4. The parameters of the Gaussian distributions (i.e., mean and standard 

deviation (SD)) and the gamma distributions (i.e., shape, rate, and skewness) of the non-affinity metric 

` [mm+] presented in Figure 2b and Supplementary Figure 1b. The pooled data (�
/�� =10, 100, and 

1000) are presented in this table. 

  , [%] =1 , [%] =10 

� [°] �
  [%] Mean SD Shape Rate Skewness Mean SD Shape Rate Skewness 

60 25 162.9 135.8 1.8 0.0 1.5 247.1 148.0 3.4 0.0 1.1 
90 25 24.0 10.8 6.7 0.3 0.8 18.8 5.8 11.7 0.6 0.6 

120 25 65.3 43.7 2.2 0.0 1.3 58.3 41.6 1.8 0.0 1.5 
60 50 485.9 363.8 1.5 0.0 1.6 590.5 406.6 1.6 0.0 1.6 
90 50 95.3 58.6 3.2 0.0 1.1 69.5 35.7 4.6 0.1 0.9 

120 50 286.0 225.3 1.3 0.0 1.7 306.5 230.1 1.3 0.0 1.8 
60 75 853.0 745.8 1.0 0.0 2.0 1034.1 774.7 1.2 0.0 1.8 
90 75 306.1 220.7 1.8 0.0 1.5 237.8 151.1 2.3 0.0 1.3 

120 75 533.6 458.8 1.0 0.0 2.0 485.1 383.7 1.1 0.0 1.9 
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Supplementary Table 5. The specifications of the sample finite element models depicted in 

Figure 2c. The hard-soft stiffness ratio (i.e., �
/��) was 1000. 

 

 

 

 

 

 

 

Supplementary Table 6. The specifications of the sample finite element models depicted in 

Figure 4c. The hard-soft stiffness ratio (i.e., �
/��) was 1000. 

� [°] �
 [%] ` [mm+] - [−] �[MPa] 
60 25 81.24 −1.65 0.03 

75 2639.14 −0.11 0.67 
90 25 10.52 0.04 0.10 

75 816.69 0.25 1.83 
120 25 21.24 1.44 0.04 

75 1596.61 0.30 1.11 
  

� [°] �
  [%] ` [mm+] - [−] �[MPa] 

60 
25 345.57 −1.31 0.03 
50 1087.50 −0.75 0.08 
75 2014.10 −0.31 0.47 

90 
25 22.30 0.03 0.11 
50 102.49 0.06 0.20 
75 412.77 0.28 2.57 

120 
25 94.60 1.24 0.04 
50 575.24 0.75 0.12 
75 954.31 0.51 1.10 
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Abstract 

The emergence of advanced 3D printing techniques and the recent interest in 

architected materials have sparked a surge of interest in mechanical metamaterials 

whose unusual properties are defined by their highly ordered micro-architectures. 

Mechanical metamaterials with disordered micro-architectures have, however, not 

received as much attention despite their inherent advantages, such as robustness 

against the precise arrangement and design parameters of individual unit cells. Here, 

we computationally studied the elastic properties of two general types of disordered 

networks, namely lattice-restricted and unrestricted networks that were made of 

beam-like elements and possessed mean connectivity values, ~, ranging between 2.5 

and 7. We also additively manufactured a number of representative networks using 

selective laser sintering and showed that their deformations are consistent with our 

computational predictions. Unrestricted networks exhibited several advantages over 

the lattice-restricted ones including a broader range of achievable elastic modulus-

Poisson’s ratio duos as well as a higher probability of exhibiting auxetic and double-

auxetic (i.e., auxetic behavior in both orthogonal directions) behaviors. Most 

interestingly, we could find unrestricted auxetic networks for high connectivity 

levels of up to 4.5, while no lattice-restricted auxetic networks were found for any 

connectivity level beyond 3.5. Given the fact that, according to the Maxwell’s 

criterion, 3.5 is the highest ~ for which both of our lattice-restricted and unrestricted 

networks are bending-dominated, we concluded that unrestricted networks exhibit 

auxetic behavior well into their stretch-dominated domain. This is a promising 

observation that underlines the potential of unrestricted networks for the challenging 

task of designing stiff auxetic metamaterials in the stretch-dominated domain (i.e., 

~ =  4 − 4.5). 
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4.1. Introduction 

Mechanical metamaterials are often composed of repeating unit cells that are 

rationally arranged in a highly ordered manner. The local and/or global interactions 

of these unit cells define the anomalous properties of metamaterials at the 

macroscale1–3. Such building blocks of engineered cellular metamaterials are often 

made of beam-like structural elements, and, depending on their level of connectivity, 

may be stretch-dominated, bending-dominated, or a mixture of both4,5. The proper 

positioning of stretch- or bending-dominated unit cells can create heterogeneous 

stress and strain distributions in these structures with asymmetric deformations that 

can eventually lead to novel properties6. Therefore, devising the geometrical and 

topological design of these unit cells is essential in developing metamaterials with 

advanced functionalities and properties. 

In addition to the regular arrangement of unit cells in space, the geometry of 

cellular metamaterials can be created using random processes. Nature uses irregular 

micro-architectures such as disordered networks in the design of architected 

materials, such as trabecular bone and wood7–9, polymer gels10,11, protein networks12, 

cytoskeletal structures13, and collagenous extracellular matrix14,15. The advantage of 

such random tessellation is that a wide range of possible properties can be created 

without any need for precise and centralized control over the micro-architecture. 

This allows for spatial and temporal changes in properties, as a living organism may 

require high levels of such variations to fulfill its functions. Moreover, unlike 

mechanical metamaterials with regular unit cells, the mechanical properties of 

disordered mechanical metamaterials are less sensitive to the precise arrangement of 

the individual building blocks and their geometric cell parameters2,16–19. Random 

networks can be also tuned or created so as to achieve specific properties. Examples 

of such tunings include the pruning of random networks to achieve auxetic 

behavior20, controlling brittle-ductile transitions21, and controlling the mechanical 

properties of random metamaterials16,22. 
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Random networks also have potential applications in the design of porous 

(bio)materials23,24. One of the critical aspects in the design of such materials is 

independent tailoring of the elastic properties (e.g., the elastic modulus and Poisson’s 

ratio)18 through a random or disordered arrangement of beam-like elements. Here, 

we studied the elastic properties of mechanical metamaterials based on random 

networks through a computational study of half a million arrangements as well as 

experiments on 3D printed models of a number of selected designs. Our networks 

covered a wide range of connectivity values, ~, ranging between 2.5 and 7.  

4.2. Materials and methods 

Two types of networks were considered, namely lattice-restricted and 

unrestricted. In the case of lattice-restricted structures, the nodal points of the beam-

like elements were restricted to a pre-determined square lattice, while the nodes of 

unrestricted networks were randomly picked within box-restricted limits (Figure 1). 

The geometrical parameters of each type of network are presented in Figure 1a-b and 

Supplementary Table 1. The total size of the networks (�, �) and the total number 

of nodes (: =  21 × 21) were the same for both types of structures. In both cases, 

the nodes could be randomly connected to their adjacent nodes, if their normal 

distances were below an upper limit (i.e., 12 mm). The upper limit was chosen such 

that, in the case of lattice-restricted networks, diagonal connections were admissible. 

The network connectivity was defined as the ratio of the sum of the connectivity 

of all nodes to the total number of the nodes in the structure. The minimum 

connectivity for each node was set to 2. Moreover, if the random positioning of the 

elements resulted in islands (i.e., isolated or disconnected sub-structures), the 

corresponding designs were discarded. Ten levels of connectivity were considered 

between 2.5 and 7. The in-plane and out-of-plane thicknesses of both lattice-

restricted and unrestricted networks were similar and were respectively 1 mm and 

10 mm. Detailed information on the numerical simulations and statistical analyses 

are given in the supplementary document. 
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4.2.1. Numerical simulations 

The geometry of each network was created as an input file in MATLAB 

(R2017b), which was later imported into a finite element modeling software package 

(Abaqus 6.14) to perform computational modeling using a nonlinear implicit solver. 

In-plane beam elements (B21, Abaqus) based on the Timoshenko beam theory with 

a rectangular cross-section were used. This allowed us to take the effects of axial 

deformation, bending, and shear into account. A hyperelastic material model (Neo-

Hookean, "#$  =  0.106 MPa, (#  =  0.03 MPa	#) was used for all simulations. The 

models, therefore, included both geometrical and material nonlinearities. For each 

level of connectivity, 10,000 finite element simulations were performed. The number 

of simulations was increased to 100,000 (per connectivity) in the case of unrestricted 

networks with low connectivity (i.e., ~ =  2.5, 3, and 3.5). In order to investigate 

the effects of the network size on the elastic properties, we simulated larger (i.e., 

300 mm ×  300 mm) and smaller (i.e., 75 mm ×  75 mm) networks and compared 

their properties with the reference networks (i.e., 150 mm ×  150 mm) 

(Supplementary Table 1). 

Moreover, the networks were loaded in both orthogonal directions (i.e., 1 and 

2) to investigate their anisotropic behavior. These two effects (i.e., the size effect and 

anisotropy) were analyzed by running 1,000 additional simulations for both lattice-

restricted and unrestricted networks (~ =  2.5, 3.5, 4.5, 5.5, and 6.5). Additional 

vertical (horizontal) elements were added to the upper and lower (left and right) sides 

of the networks to uniformly apply the loads (Figure 1 and Supplementary Figure 2). 

To simulate a tensile test, a displacement boundary condition equal to 10% 

longitudinal (transverse) strain was applied to a reference point. The reference point 

was kinematically coupled with the corresponding nodes of the networks. For 

example, to apply a displacement in the direction 2 (Figure 1), the displacement was 

applied to a reference point defined at the top of the network while a clamp boundary 

condition was applied to another reference point placed at the bottom of the network. 
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The stresses (*##, *++) were defined as the ratio of the reaction force to the 

initial cross-section area. The strains (,##, ,++) were calculated as the ratio of the 

deformation to the free lengths of the networks in the lateral (longitudinal) directions. 

The elastic modulus (�##, �++) of the networks was calculated as the slope of the 

stress-strain curve at 1% strain. 

The Poisson’s ratio in the direction 1 was calculated as -#+ = − /11
/00

, where ,## 

is the strain at the direction of the applied load (i.e., direction 1), while ,++ is the 

lateral strain calculated by summing up the deformations (2++) at every ith node as 

,++ = ∑ 500,6�681
< , and X = total number of side nodes along the direction 2. Likewise, 

the Poisson’s ratio in the direction 2 was defined as -+# = − /00
/11

, where ,++ is the 

strain along the loading direction (i.e., direction 2) and ,## = ∑ 511,6�681
9 , where 2##,3 

is the deformation at the ith node along the direction 1. The Poisson’s ratios in both 

directions were measured at 1% longitudinal (transverse) strain. 

4.2.2. Statistical analyses  

We performed statistical analyses in R25. The fitdistrplus package26 was used 

for fitting normal and gamma distributions to the simulation results and for 

calculating the corresponding statistical parameters of the fits. The statistical 

significance of the differences between various groups was analyzed using either 

parametric (i.e., Student’s t-test) or non-parametric (i.e., Wilcoxon27) tests depending 

on the results of a Shapiro–Wilk normality test28. A p-value below 0.05 was assumed 

to indicate a statistically significant difference. 

4.2.3. Fabrication and experimental testing 

We also 3D printed 8 specimens of selected networks using selective laser 

sintering (SLS, EOS Formiga P100). We used commercially available materials (i.e., 

Oceanz Flexible, PrimePart® ST PEBA 2301 from EOS GmbH) for fabrication of 

these specimens. To be able to attach the specimens to the testing machine, they 
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included two additional parts that were designed and 3D printed together with the 

networks. The specimens were then attached to a mechanical testing machine via 

grippers and pins. The gripping systems and their pins were designed and additively 

manufactured using a fused deposition modeling (FDM) 3D printer (Ultimaker 2+, 

Geldermalsen, The Netherlands) from polylactic acid (PLA) (MakerPoint PLA 750 

gr Natural). Displacement-controlled mechanical testing (stroke rate: 2 mm/min) 

was performed under tension using a LLOYD instrument (LR5K) machine equipped 

with a 100 N load cell. The deformations of the specimens at strain levels equivalent 

to those applied in the numerical models were captured using a digital camera. 

4.3. Results and discussion 

The distributions of the elastic modulus-Poisson’s ratio duos exhibited similar 

trends for both lattice-restricted and unrestricted networks (Figure 1, Supplementary 

Figures 1 and 2). However, the variations in the elastic properties were much larger 

for the unrestricted networks as compared to the lattice-restricted networks (Figure 

1a). Instead, lattice-restricted networks reached higher values of the elastic modulus 

as compared to unrestricted networks (Figure 1b). In both groups, the variations in 

the elastic properties were higher for the lower values of connectivity (Figure 1). 

Auxetic behavior could be only observed for the smaller values of connectivity 

(Figure 1). The maximum level of connectivity for which auxetic behavior could be 

observed was higher (i.e., ~ =  4.5, Figure 1b, and Figure 3d) for the unrestricted 

networks as compared to the lattice-restricted networks (i.e., ~ =  3.5, Figure 1a and 

Figure 3c). For both lattice-restricted and unrestricted networks, the deformation 

observed in the networks appeared to be highly non-affine with high levels of 

localized strain concentrations in certain regions of the network, while some other 

regions hardly deformed (Figure 1). 

The Maxwell stability number, �,5,29 is defined as � = 2! − � + 3, where ! 

and � are respectively the numbers of the struts and joints in a 2D frame. The 

Maxwell number can be used as a criterion to determine whether a network is stretch-
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dominated (for � ≥ 0) or bending-dominated (for � < 0). For each connectivity 

value, the Maxwell number was exactly the same for lattice-restricted and 

unrestricted networks (Supplementary Table 1). The maximum connectivity for 

which the networks were still bending-dominated was ~ =  3.5 (Supplementary 

Table 1). In the case of lattice-restricted networks, that Z value was coincident with 

the highest connectivity for which auxetic structures could be still found. In the case 

of unrestricted networks, however, auxetic structures could be found for networks 

with much higher connectivity values (i.e., up to ~ =  4.5) and highly positive 

Maxwell numbers (Supplementary Table 1), indicating that they were stretch-

dominated. Given that stretch-dominated networks exhibit higher stiffness values, 

this clearly shows the utility of unrestricted random networks for expanding the 

range of the elastic properties that could be achieved including stiffer auxetics. 
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Figure 1. Schematic drawings of lattice-restricted (a) and unrestricted (b) networks. The 

placement of the nodes for lattice-restricted networks is pre-determined (∆� = ∆� = 7.5 mm, � =
� = 150 mm), while in the case of unrestricted networks nodes can be placed randomly within a box 

shown in (b). The elastic modulus-Poisson’s ratio duos calculated for lattice-restricted (c) and 

unrestricted (d). The strain distributions below each graph (A-C) belong to some representative cases 

with low connectivity values (i.e., ~ =  2.5, 3, and 3.5). For each level of connectivity, 10,000 

simulations were performed. In the case of unrestricted random networks, 100,000 simulations were 

performed for the lower connectivity values (i.e., 2.5, 3, and 3.5). These simulations are presented as 

an inset in sub-figure (d). More representative cases are presented in Supplementary Figures 1 and 2. 
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The level of anisotropy was highly dependent on the size of the networks 

(Figure 2 and Supplementary Table 2). In all cases, the level of anisotropy decreased 

as the size of the networks increased (Figure 2 and Supplementary Table 2). This is 

expected, given the random nature of the networks that increases the directional 

similarity for the larger sizes of networks. As far as the anisotropy of the stiffness 

values is concerned, the lattice-restricted and unrestricted networks showed different 

types of dependency on the connectivity value (Figure 2- left sub-figures). In the 

case of lattice-restricted networks, the maximum level of anisotropy in the stiffness 

values was observed for the intermediate values of connectivity (i.e., ~ =  4.5, 5.5). 

In contrast, the level of anisotropy appeared to increase with connectivity in the case 

of unrestricted networks up to a certain point (i.e., ~ =  5.5), after which it remained 

more or less constant (Figure 2). The change in the level of anisotropy was the 

opposite in the case of the Poisson’s ratio: it decreased with connectivity both for 

lattice-restricted and unrestricted networks (Figure 2- right sub-figures). For all sizes 

of networks, the probability of finding auxetic networks was higher in the case of 

unrestricted networks as compared to lattice-restricted networks (Figure 2). 

Moreover, the probability of exhibiting an auxetic behavior was lower for the 

networks with larger sizes as compared to the smaller networks, as the Poisson’s 

ratio in both directions converged to 0.33 for the largest networks (Figure 2, 

Supplementary Tables 2 and 3). The probability of finding networks with double-

auxetic behavior (i.e., auxetic behavior in both directions) was small (ranging 

between 0.4% and 1.62%) and decreased with the size of the networks (Figure 2- 

right sub-figures). 
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Figure 2. The effects of the network size on the (anisotropic) elastic properties of lattice-restricted 

and unrestricted networks. Three different sizes were considered for the simulations, namely 

75 mm ×  75 mm (lattice-restricted (a) and unrestricted (b)), 150 mm ×  150 mm (lattice-restricted 

(c) and unrestricted (d)), and 300 mm ×  300 mm (lattice-restricted (e) and unrestricted (f)). The 

anisotropic properties were tested in the directions 1 and 2. The numerical simulations were performed 

for networks with 5 different levels of connectivity (i.e., 2.5, 3.5, 4.5, 5.5, and 6.5). The 95% 

confidence ellipses are added to each cluster of data. The principal radii of the confidence ellipses are 

listed in Supplementary Table 2. 

As the connectivity increased, the mean value of the stiffness increased in both 

lattice-restricted and unrestricted networks (Figure 3- left sub-figures). The highest 

amount of variation in the stiffness values was observed for the intermediate values 

of connectivity (i.e., ~ =  4.5 − 5.5) in the cases of both lattice-restricted and 

unrestricted networks (Figure 3- left sub-figures). The mean value of the Poisson’s 
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ratio initially increased with connectivity until a maximum was reached at ~ =  4.5 

for lattice-restricted networks (Supplementary Table 4) and at ~ =  4.5 − 5.5 for 

unrestricted networks (Supplementary Table 5). Further increase in connectivity 

reduced the Poisson’s ratio with a mean converging to 0.33 − 0.34 for both lattice-

restricted and unrestricted networks (Supplementary Tables 4 and 5). Comparing the 

Poisson’s ratio of lattice-restricted and unrestricted networks showed that lattice-

restricted structures converge faster than unrestricted networks (Supplementary 

Figure 3a-j, right sub-figures). The stiffness values exhibited significant positive-

skewness in the case of low connectivity values (i.e., ~ =  2.5), which gradually 

decreased as connectivity increased (Supplementary Figure 3a-b, left sub-figures, 

Supplementary Tables 4 and 5). There was no significant skewness in the values of 

the Poisson’s ratio regardless of the connectivity value (Supplementary Figure 3a-j, 

right sub-figures). The mean value of the Poisson’s ratio was positive for all 

connectivity values (Supplementary Tables 4 and 5). The probability of finding an 

auxetic network was = =  26% for unrestricted and = =  20% for restricted 

networks in the case of ~ =  2.5 and gradually decreased to zero for the higher 

values of connectivity (Supplementary Table 3). 

The changes in the elastic modulus with the relative density, �, followed a 

similar nonlinear trend for both lattice-restricted and unrestricted networks. The 

range of the elastic moduli achieved here is within the theoretical limits given by the 

Hashin–Shtrikman bounds1,30–32 for the positive values of the Poisson’s ratio (Fig 3a, 

b): 

0 < �(-) < −2"#x + 2"#, 0 < �(-) < 2"+x + 2"+, 

"# = �I
2(1 − xI) + �I(1 − �)

�(1 − xI+) − 2(1 − xI), 

"+ = �I
2(1 + xI) + 1 − �

�
2 (3 − -) − 2(1 + xI)

�I
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where the bulk properties of the material, from which beam-like structural 

elements are made, are given as �I = 0.6 MPa and xI = 0.3. 

The local values of connectivity in unrestricted lattices varied between 2 and 

10, while the maximum local connectivity at each node was limited to 8 in the case 

of lattice-restricted networks (Figure 3c, d). We divided the range of the Poisson’s 

ratios into four regions (i.e., x < −0.5, −0.5 < x < 0, 0 ≤ x < 0.5 and x > 0.5) 

and compared the statistical distributions of the local connectivity values for both 

types of networks. We found no statistically significant differences between the local 

connectivity values of those four groups (Figure 3c, d). This suggests that the 

statistical distribution of the local connectivity values does not control the level of 

auxeticity. 

We performed further statistical analyses to study the statistical distributions of 

the (bond) angles in lattice-unrestricted networks (Supplementary Figures 4 and 5). 

We calculated the angles of all the ligaments reaching individual nodes (with respect 

to the horizontal direction, x). In a different definition, we defined the bond angle as 

the angle between the highest and lowest ligaments connected to each node. All the 

specimens with connectivity values between 2.5 and 4.5 were pooled and were 

divided into four groups according to the value of their Poisson’s ratio (i.e., x <
−0.5, −0.5 < x < 0, 0 ≤ x < 0.5, and x > 0.5). We used a non-parametric test 

(Wilcoxon test) to compare whether the statistical distributions of these four groups 

were significantly different from each other. We also used a Benjamini–Hochberg 

method to adjust the p-value. For both definitions of the bond angle in unrestricted 

networks, we found significant differences between the statistical distributions 

corresponding to the negative and positive ranges of the Poisson’s ratio. 
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Figure 3. The change in the elastic modulus and relative density for lattice-restricted (a, right) 

and unrestricted (b, right) networks. The solid lines in the right sub-figures (a, and b) show the Hashin–

Shtrikman bounds for three values of the relative density. The Poisson’s ratios of lattice-restricted (a, 

left) and unrestricted (b, left) networks as functions of the connectivity values. The trend lines show 

95% confidence intervals in the left sub-figures (a and b). The histograms of the local connectivity 

values for restricted (c) and unrestricted (d) networks with different levels of the Poisson’s ratio. 
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We performed numerical simulations for regular (i.e., non-random, unit cells= 

re-entrant) lattices with values of negative Poisson’s ratio that were comparable with 

those calculated for unrestricted networks. We compared the specific elastic moduli 

of the ordered lattices with those of the unrestricted networks presented here 

(Supplementary Table 6). We could clearly see that the mean ratio of the elastic 

modulus of the unrestricted random networks to that of ordered lattices always 

exceeded unity and increased with the degree of connectivity (Supplementary Table 

6). That is due to the fact that unrestricted networks exhibit auxetic behavior also for 

higher degrees of connectivity, which is well into the stretch-dominated range of 

deformations, whereas the deformation of regular auxetic lattices is dominated by 

bending. 

Some of the most negative values of the Poisson’s ratio were observed for the 

networks that exhibited large lateral openings due to limited connectivity on their 

sides (Figure 4). Plotting the time history of the position of the nodes that moved the 

most in such networks showed that very diverse movement trajectories could be 

achieved using random network designs (Figure 4). Comparing the results of 

computational simulations with experimental observations indicated a good 

agreement between them, confirming that the applied 3D printing technique is 

capable of fabricating the studied random networks and that the behavior exhibited 

by the actual specimens is comparable with computational predictions even in the 

case of the very large deformations observed here (Figure 4). For this particular type 

of networks (i.e., those with large lateral openings), the boundary between 

mechanical metamaterials and complaint mechanisms33–35 whose displacements are 

driven by the elastic deformation of their constituting linkages (but not their rigid 

body movements) is blurred. The random networks studied here could, therefore, be 

also seen as some type of complaint mechanisms particularly when multiple 

networks are combined with each other to create more complex movement patterns 

than those observed in Figure 4. 
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Figure 4. The trajectories of the lateral node that exhibited the maximum displacement in 

unrestricted random networks (~ =  2.5 − 3.5). The deformation trajectories for eight representative 

cases are highlighted with different colors in the graph. The corresponding deformation patterns 

obtained from numerical simulations and experiments are presented for three levels of applied strain 

(i.e., 0, 5%, and 10%). A comparison between the finite element simulations and experimental data is 

presented in Supplementary Table 7. The test setup is shown in Supplementary Figure 6. 
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4.4. Conclusion 

In summary, we studied the elastic properties of lattice-restricted and 

unrestricted random networks with different levels of connectivity to gain a better 

understanding that could aid us in the design of disordered mechanical 

metamaterials. Our results show that unrestricted networks have a number of clear 

advantages over lattice-restricted networks, which make them particularly attractive 

for that purpose. That includes a much wider range of elastic modulus-Poisson’s 

ratio duos as well as a higher probability of exhibiting auxetic and double-auxetic 

behaviors. Interestingly, as opposed to lattice-restricted networks that do not exhibit 

any auxetic behavior in their stretch-dominated range (i.e., positive values of the 

Maxwell metric), unrestricted networks could exhibit auxetic behavior also when in 

the stretch-dominated domain. This is another advantage of unrestricted networks 

that makes them particularly useful for the design of stiff auxetic metamaterials. 
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4.5. Supplementary document 

 

Supplementary Figure 1. The plane of the elastic modulus and Poisson’s ratio values for lattice-

restricted (a) and unrestricted (b) networks. The strain distributions below each graph (A-F) belong to 

some representative cases with connectivity values of 2.5, 3, and 3.5. 
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Supplementary Figure 2. The plane of the elastic modulus and Poisson’s ratio values for lattice-

restricted (a) and unrestricted (b) networks. The strain distributions of representative cases with 

connectivity values of 4.5, 5.5, and 6.5 are presented for both cases as well. 
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Supplementary Figure 3. The distribution of the elastic modulus and Poisson’s ratio for the 

networks with connectivity levels of 2.5 (lattice-restricted (a), unrestricted (b)), 3.5 (lattice-restricted 

(c), unrestricted (d)), 4.5 (lattice-restricted (e), unrestricted (f)) 5.5 (lattice-restricted (g), unrestricted 

(h)), and 6.5 (lattice-restricted (i), unrestricted (j)) are presented. Gaussian distributions were fit to the 

elastic modulus and Poisson’s ratio data (solid lines). We also fit gamma distributions to the elastic 

modulus data (dash-lines). The parameters of the probability distributions are listed in Supplementary 

Tables 4 and 5. 
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Supplementary Figure 4. The density distribution of the bond angles for unrestricted networks 

with (a) x < −0.5, (b) − 0.5 < x < 0, (c)  0 ≤ x < 0.5, and (d) x > 0.5. 
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Supplementary Figure 5. The density distribution of the bond angles for unrestricted networks 

with (a) x < −0.5, (b) − 0.5 < x < 0, (c)  0 ≤ x < 0.5 and (d) x > 0.5. 

 
Supplementary Figure 6. The test setup for the monotonic tensile testing of the 3D printed 

networks. 
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Supplementary Table 1.  The number of nodes (n), elements (NE), and Maxwell number (M) 

for lattice-restricted and unrestricted networks with different sizes. 

Z 

The size of lattice-restricted or unrestricted networks 

75 × 75 150 × 150 300 × 300 

n NE M n NE M n NE M 

2.5 121 151 -89 441 551 -329 1681 2101 -1259 

3 121 181 -59 441 661 -219 1681 2521 -839 

3.5 121 211 -29 441 771 -109 1681 2941 -419 

4 121 242 2 441 882 2 1681 3362 2 

4.5 121 272 32 441 992 112 1681 3782 422 

5 121 302 62 441 1102 222 1681 4202 842 

5.5 121 332 92 441 1212 332 1681 4622 1262 

6 121 363 123 441 1323 443 1681 5043 1683 

6.5 121 393 153 441 1433 553 1681 5463 2103 

7 121 423 183 441 1543 663 1681 5883 2523 

 
Supplementary Table 2.  The principal radii of the confidence ellipses presented in Figure 2. 

Size Z 

Lattice-restricted Unrestricted 

�++ [MPa] -+#[−] �++ [MPa] -+#[−] 
�# �+ �# �+ �# �+ �# �+ 

75 × 75 

2.5 0.0004 0.0004 0.5768 0.4795 0.0005 0.0005 0.6738 0.5965 

3.5 0.0054 0.0052 0.4634 0.3519 0.0055 0.0049 0.5613 0.4881 

4.5 0.0120 0.0110 0.3015 0.1875 0.0137 0.0114 0.4513 0.3423 

5.5 0.0101 0.0096 0.1360 0.0743 0.0162 0.0130 0.2771 0.2026 

6.5 0.0058 0.0053 0.0427 0.0245 0.0143 0.0125 0.1631 0.1180 

150 × 150 

2.5 0.0001 0.0001 0.3783 0.2992 0.0001 0.0001 0.4220 0.3657 

3.5 0.0021 0.0019 0.2701 0.1876 0.0021 0.0019 0.3213 0.2509 

4.5 0.0061 0.0058 0.1721 0.1166 0.0074 0.0061 0.2416 0.1727 

5.5 0.0065 0.0063 0.0831 0.0532 0.0099 0.0082 0.1478 0.1026 

6.5 0.0049 0.0044 0.0355 0.0223 0.0105 0.0082 0.1016 0.0742 

300 × 300 

2.5 0.0001 0.0000 0.1206 0.0873 0.0001 0.0000 0.1413 0.1134 

3.5 0.0009 0.0008 0.0777 0.0496 0.0009 0.0008 0.0901 0.0614 

4.5 0.0031 0.0029 0.0490 0.0322 0.0036 0.0030 0.0687 0.0460 

5.5 0.0036 0.0035 0.0239 0.0152 0.0052 0.0046 0.0408 0.0290 

6.5 0.0030 0.0025 0.0111 0.0070 0.0055 0.0048 0.0274 0.0205 
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Supplementary Table 3.  The probability of finding different ranges of the Poisson’s ratio for 

each connectivity value and both types of networks (i.e., lattice-restricted and unrestricted). 

- Z x < −0,5 −0,5 ≤ x < 0 0 ≤ x < 0,5 (x ≥ 0,5) 

Lattice-restricted 

2.5 0.07 20.33 79.24 0.36 

3 0.01 1.12 97.73 1.14 

3.5 0 1.12 91.42 8.55 

4 0 0 82.37 17.63 

4.5 0 0 85.32 14.68 

Unrestricted 

2.5 0.19 26.13 72.53 1.15 

3 0.03 5.93 92.38 1.66 

3.5 0 0.78 95.24 3.98 

4 0 0.11 91.71 8.18 

4.5 0 0.02 91.22 8.76 

 
Supplementary Table 4. The parameters of the Gaussian distributions (i.e., mean and standard 

deviation (SD)) of the elastic modulus and Poisson’s ratio for the lattice-restricted networks (Figure 

3a). In the case of the elastic modulus, the parameters of the gamma distribution (i.e., shape, rate, and 

skewness) are presented as well. 

Z 

Lattice-restricted 
�++ XB  [MPa/tonne] -+#[−] 

Gaussian Gamma Normal 

Mean SD Shape Rate Skewness Mean SD 

2.5 2.09 0.84 5.59 2.67 0.85 0.10 0.14 

3.5 43.18 9.60 20.37 0.47 0.44 0.37 0.09 

4.5 200.38 22.96 74.88 0.37 0.23 0.44 0.06 

5.5 370.91 19.70 351.98 0.95 0.11 0.39 0.03 

6.5 490.91 12.30 1589.17 3.24 0.05 0.34 0.01 
 

Supplementary Table 5. The parameters of the Gaussian distributions (i.e., mean and standard 

deviation (SD)) for the elastic modulus and Poisson’s ratio of the unrestricted networks (Figure 3b). In 

the case of the elastic modulus, the parameters of the gamma distribution (i.e., shape, rate, and 

skewness) are presented. 

Z 

Unrestricted 
�++ XB  [MPa/tonne] -+#[−] 

Gaussian  Gamma Normal 

Mean SD Shape Rate Skewness Mean SD 

2.5 1.73 0.93 3.18 1.84 1.12 0.09 0.16 

3.5 32.85 9.60 11.53 0.35 0.59 0.29 0.12 

4.5 144.19 26.48 28.64 0.20 0.37 0.38 0.09 

5.5 287.31 29.28 94.21 0.33 0.21 0.38 0.05 

6.5 368.62 22.56 263.53 0.71 0.12 0.33 0.04 
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Supplementary Table 6.  The mean ratio of specific stiffness of lattice-unrestricted networks 

(with the values of connectivity between 3.5 and 4.5) to regular (i.e., non-random) lattices. 

Z 
��++

X � k:��� ��� ��/ ��++
X � ������� 

Mean 

3.5 1.41 

4 2.91 

4.5 8.31 

 

Supplementary Table 7.  Comparison of the elastic moduli obtained from numerical simulations 

and experimental results. The elastic modulus of the material used in finite element simulations was set 

to 70 MPa. 

Sample number 
�++ [kPa] 

Error (%) 
Simulation Experiment 

1 16.13 14.80 8.95 

2 9.38 10.30 8.98 

3 9.50 8.50 11.76 

4 3.75 3.76 0.27 

5 0.50 0.46 9.17 

6 69.88 65.00 7.50 

7 5.00 5.45 8.26 

8 70.38 76.20 7.64 
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Abstract 

Emerging multi-material 3D printing techniques enables the rational design of 

metamaterials with not only complex geometries but also arbitrary distributions of 

multiple materials within those geometries, yielding unique combinations of elastic 

properties. However, discovering the rare designs that lead to highly unusual 

combinations of material properties, such as double-auxeticity and high elastic 

moduli, remains a non-trivial crucial task. Here, we use computational models and 

deep learning algorithms to identify rare-event designs. In particular, we study the 

relationship between random distributions of hard and soft phases in three types of 

planar lattices and the resulting mechanical properties of the two-dimensional 

networks. By creating a mapping from the space of design parameters to the space 

of mechanical properties, we are able to reduce the computational time required for 

evaluating each design to ≈  2.4 × 10	
 s, and to make the process of evaluating 

different designs highly parallelizable. We then selected ten designs to be 3D printed, 

mechanically tested them, and characterized their behavior using digital image 

correlation (DIC) to validate the accuracy of our computational models. Our 

simulation results show that our deep learning-based algorithms can accurately 

predict the mechanical behavior of the different designs and that our modeling results 

match experimental observations. 
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5.1. Introduction 

The rational design of architected materials with anisotropic properties enables 

them to offer optimal, multi-functional performance. For example, nature uses 

evolutionarily optimized micro-architectures to combine extremely high stiffness (in 

selected directions) with a light weight (e.g., in wood and bone1–3) or to combine 

ultrahigh stiffness values with ultrahigh toughness (e.g., in nacre4–6). In man-made 

designer materials that are also known as metamaterials, other combinations of 

mechanical properties may be sought, as they allow for devising novel 

functionalities. For example, a combination of auxetic behavior in various 

orthogonal directions and high stiffness is instrumental for the structural applications 

of auxetic materials7–9. 

To achieve a desired combination of material properties, the primary challenge 

is to find the specific micro-architectures that give rise to the desired properties. 

Once the micro-architecture is determined, the metamaterial can be fabricated using 

additive manufacturing (=3D printing) techniques. The recent emergence of 

powerful multi-material 3D printing techniques means that the micro-architecture 

not only consists of rationally designed, complex geometries but can also combine 

multiple materials with different mechanical properties. Many other design features 

found in nature, such as hierarchical micro-architectures10–13, functional gradients (in 

terms of both geometries and material properties)14,15, and soft-hard composites 

(similar to the organic and mineral phases in bone11,16,17) can be also realized to 

expand the range of the achievable properties. 

Given such a wide range of possibilities for the fabrication of metamaterials 

with complex (multi-scale) geometries and complex spatial distributions of material 

properties, the space of possible design parameters is formidably large. Optimizing 

the design parameters is, therefore, challenging and requires an excessively large 

number of computational models to be solved. Such simulations are required not 

only to understand how the design parameters relate to the anisotropic elastic 
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properties but, more importantly, to discover the very rare designs that give rise to 

the desired properties. For example, double-auxeticity (i.e., auxetic properties in two 

orthogonal directions) is very rare (i.e., as little as < 1.6% of the possible designs) 

in two-dimensional lattices18. Combining the double-auxeticity with the additional 

requirement of possessing high stiffness values in (both) directions results in the 

excessive rarity of micro-architectures that satisfy the design requirements. 

Computational models, therefore, need to scan a vast design space to find rare 

events. Due to the “curse of dimensionality”19, the number of designs that need to be 

evaluated is so large (≈ 7.7 × 10aW, see Supplementary Table 1) that extremely fast 

models and highly parallelizable algorithms are required. Computational models, 

such as finite element (FE) models, are not fast enough for that purpose. Here, we 

used deep learning to establish a mapping from the space of design parameters to 

that of the anisotropic elastic properties, thereby decreasing the solution time to ≈
2.4 × 10	
 s while also making the evaluation process extremely parallelizable. 

Recent progress in machine learning has led to significant achievements in different 

scientific fields20, including the design of composites and metamaterials21–28, 

prediction of material properties29–31, the prediction of elasticity distributions to 

circumvent the inverse problem of elasticity imaging32,33, and optimization of 

manufacturing processes34,35. However, the advantages of such artificial intelligence 

approaches have not yet been demonstrated in the case of designing multi-material 

mechanical metamaterials to achieve very rare target properties. 

The main objective of the present research was to use computational models 

and deep learning models to predict the mechanical properties of multi-material 

mechanical metamaterials, allowing us to discover very rare designs that exhibit 

highly desirable combinations of elastic properties (e.g., high stiffness and highly 

negative Poisson’s ratio). We used planar lattices based on the re-entrant, cubic, and 

honeycomb unit cells (corresponding to the cell angles of 60°, 90°, and 120°, 

respectively) with random distributions of hard and soft phases. The ratio of the hard 

phase volume to the soft phase volume was varied as well (i.e., �
(%) =
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5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 95). FE models were then created to 

generate the training dataset required for the training of a deep learning model (i.e., 

the single unit cell model). Moreover, we selected three designs (one from each unit 

cell angles of 60°, 90°, and 120°) to be fabricated using an advanced multi-material 

3D printing technique and applied digital image correlation (DIC) to measure the 

full-field strain patterns during the mechanical testing of the fabricated specimens. 

After training, the deep learning model was used to predict the elastic properties of 

a wide range of lattices (1.5 × 10� different designs), given their design parameters. 

We also studied various combination of tiled designs (e.g., four-tile and nine-tile 

structures) to show how combining multiple instances of these random lattices into 

a hybrid, tiled lattice can boost the possible range of mechanical properties. We also 

trained another deep learning model (i.e., the four-tile model) which predicts the 

mechanical properties resulting from the various combinations of four tiles with 

different mechanical properties. A fabrication and mechanical testing procedure 

similar to the one mentioned above (but without DIC) was applied to experimentally 

characterize seven additional tiled designs (i.e., four four-tile structures and three 

nine-tile structures). 

5.2. Materials and methods 

We considered planar lattices with three groups of unit cell angles representing 

the negative (re-entrant, � = 60°), zero (orthogonal, � = 90°), and positive 

(honeycomb, � = 120°) values of the Poisson’s ratio (Figure 1a). We kept the 

overall dimensions of each design (�, ") as well as the dimensions of the constituent 

unit cells (�, �) unchanged. All three groups of designs were composed of 5 × 5 unit 

cells with similar in-plane ( ) and out-of-plane (c) thicknesses. The geometrical 

parameters of the designed lattice structures are presented in Supplementary Table 

5. The hard and soft phases were randomly assigned to the struts of the structure so 

as to achieve various ratios of the volume of the hard phase to that of the soft phase 

(�
 (%) = 5, 10,20 30, 40, 50, 60, 70, 80, and 95). To further expand the space of 
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possible mechanical properties, we studied the various combination of the unit cells. 

Moreover, we studied the stress distribution within the soft and hard elements of the 

unit cells and used a more uniform distribution of stresses as the criterion for 

selecting the best designs among all the designs with similar elastic properties.  

5.2.1. Computational models 

All FE models were created using MATLAB (MATLAB R2018b, Mathworks, 

USA) codes. The codes were used to design the three groups of lattice structures 

(composed of unit cells with the three different cell angles of 60°, 90°, and 120°), 

to randomly assign the hard and soft phases to the struts of each design, and to 

perform the FE simulations that estimate their mechanical properties (i.e., elastic 

modulus and Poisson’s ratio in two orthogonal directions). Our codes were further 

extended to combine single unit cell designs into four-tile and nine-tile lattice 

structures. In each structure, the adjacent designs were connected using a row of 

struts made of the hard material. 

We used three-node quadratic beam elements (Timoshenko beam elements) 

with rectangular cross-sections and with two translational (i.e., ky, k�) and one 

rotational (i.e., k�) degrees of freedom (DOF) at each node. We assigned elastic 

materials to both soft and hard phases with a similar Poisson's ratio of 0.48 but vastly 

different Young's moduli of 0.6 and 60 MPa (i.e., �
/�� = 100), respectively. To 

estimate the mechanical properties of each structure in both the x- and y-directions, 

a strain of 3% in each direction was separately applied to the structure. Towards this 

aim, in one model, the top nodes were subjected to a strain of 3% in the y-direction 

(ky =  k� = 0 and k� = 3% strain), while all the degrees of freedom of the bottom 

nodes were constrained (ky =  k� =  k� = 0). In the other model, the right nodes 

were subjected to 3% strain in the x-direction (k� =  k� = 0, w:� ky = 3% strain), 

while all the degrees of freedom of the left nodes were constrained (ky =  k� =
 k� = 0). The element stiffness matrix transferred to the global coordinate (�n) was 

calculated as36,37: 
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�n = ����n�, (1) 
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where ��n is the local element stiffness matrix, and �, f, [, and � are the elastic 

modulus, the cross-section area, the moment of inertia ([ = c W ⁄ 12), and the length 

of the element, respectively. � is a dimensionless coefficient that characterizes the 

importance of shear-related parameters including ª (shear modulus) and �� (shear 

correction factor = 0.85). � is the transformation matrix and contains the direction 

cosines: 

:yy̅ = :��§ = y0	 y1
< , :�y̅ = −:y�§ = �0	 �1

< , (5) 

where �#, �#, �+,  and �+ are the element nodal coordinates. 

The element load vector «n is obtained as follows 37: 

«n = ��«A̅n (6) 
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(7) 
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The stiffness matrix and load vectors of all the elements were calculated and 

were assembled into a global stiffness matrix (�) and a global load vector (e). 

Finally, all the forces and displacements were calculated using Hook’s law (e =
��). 

To calculate the Young’s moduli of the structure (�## = *##/,## and �++ =
*++/,++), the normal stresses in the directions 1 and 2 (*## = e#� /f+, *++ = e+§§§/f#, 

where f# and f+ are the cross-section areas of the structure on the 1-3 and 2-3 planes 

(Figure 1a)) were divided by the strain applied along the same direction (,## = ,++ =
3%). In these equations, e§ # and e§+ are, respectively, the mean reaction forces along 

the directions 1 and 2 at the right and top nodes (e#� = ∑ {16
7­681

l­
, e+§§§ = ∑ {06

7®681
l®

, where 

:¯ and :� are the total numbers of the right and top nodes while e#3 and e+3 are the 

reaction forces along the directions 1 and 2 at each of the right and top nodes, 

respectively). To calculate the Poisson’s ratio (-#+ = -+# = − /°±²7u
/²³6²´

), the transverse 

strain was first calculated as the ratio of the mean displacement of the lateral nodes 

to the initial transversal length of the structure. The transverse strain was then 

divided by the applied axial strain (in the case of ,my3mA = ,## = 3%: ,¶·ml� = ,++ =
 ∑ g�6

7®681
<0l®

 , and in the case of ,my3mA = ,++ = 3%: ,¶·ml� = ,## = 
∑ gy6

7­681
<1l­

  where �# 

and �+ are the initial lengths of the structure along the directions 1 and 2). 

5.2.2. Deep learning 

We implemented two artificial neural networks (ANN) using Tensorflow.keras 

neural network library38,39, namely the ‘single unit cell model’ and the ‘four-tile 

model’. The single unit cell model predicts the mechanical properties of the lattice 

structures with three unit cell angles of 60°, 90°, and 120° and a wide range of 

�
 values (i.e., �
 (%) = 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 95). To train the 

single unit cell model, the FE models were first solved for 18,150,000 lattice 

structures (16,500,000 structures as the training dataset and 1,650,000 structures as 
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the testing dataset) with random assignments of the hard phase within the structure. 

The inputs to the single unit cell model included 150 material parameters indicating 

whether each strut was hard or soft (1 = hard, 0 = soft) and one unit cell angle (� =
 60, 90, and 120) (151 inputs in total). The outputs of the model included the elastic 

moduli (�##, �++) and Poisson’s ratios (-#+, -+#) in both directions (4 outputs in 

total) (Figure 1a). The dataset generated for the training of the single unit cell model 

was also used for the training of the four-tile deep learning model. Towards this aim, 

we selected 90 single unit cell tiles with mechanical properties uniformly distributed 

within the achievable range of elastic properties for these single unit cell designs. 

The mechanical properties of these 90 designs were first calculated by performing 

the FE simulations. All possible four-combinations of these single tiles (i.e., 

"(90, 4) = 2,555,190) considering the permutation of these four single tiles (= 4!, 
which is reduced to 6 due to the symmetry of the structure) were generated and were 

used for setting up the deep learning models (:+ = 6 × 2,555,190 =  15,331,140). 

Our FE code was then used to calculate the overall elastic properties of these 

structures (Figure 1b). We randomly selected 90% of the dataset as training dataset 

and the remaining 10% as testing dataset. The four-tile model was then created to 

map the space of the 16 input parameters (i.e., the elastic properties of the individual 

tiles) to the space of 4 output parameters (i.e., the elastic properties of the four-tile 

structures). 

We scaled all the outputs of the single unit cell models and all the inputs and 

outputs of the four-tile model to the range [0-1] (see Table 1 for the scaling method). 

In post-processing, we scaled the relevant outputs back to the original range to 

facilitate the interpretation of the results. 

For the training of both the single unit cell model and four-tile model, we used 

a sequential model composed of a linear stack of fully connected layers based on the 

Tensorflow.keras library. Before training the models, we configured the learning 

process by defining several parameters, including an optimizer (RMSprop), a list of 
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metrics (MSE and MAE), and a loss function (MSE) that was the objective that the 

model would try to minimize. To evaluate the performance of the model with 

different hyperparameter values and also to detect overfitting during the training 

process, we assumed 20% of the training dataset as the validation dataset. This means 

that during each epoch, the model was trained based on the training data, and was 

tuned with the metrics (MSE, MAE) calculated for the validation dataset. In this way, 

we tuned the hyperparameters of the model based on the results of the metrics for 

the validation dataset.  

In the single unit cell model, we systematically studied the effects of different 

hyperparameters (i.e., the number of hidden layers, the number of neurons in each 

hidden layer, learning rate, and activation function). To design the architecture of the 

four-tile model, we started with the optimized hyperparameters determined for the 

single unit cell model. Hyperparameter tuning is discussed in detail in the 

Supplementary methods (Supplementary Figures 4-7 and Supplementary Tables 6-

10). The optimized architecture and hyperparameters of both models together with 

their optimized accuracy, the type of feature scaling, and the optimization algorithm 

are presented in Table 1. 

Table 1. The training parameters of the single unit cell and four-tile deep learning models. 

Parameters Single-tile model Four-tile model 

Hidden layer dimensions 256-128-128-64-32 256-128-64-32-16-8 

Activation function ReLU ReLU 

Learning rate 10	a 10	a 

Number of epochs 200 200 

Feature scaling min-max min-max 

Optimization algorithm RMSprop RMSprop 

 

In order to calculate the training error, the prediction results of the deep learning 

models were compared with the target values (FE simulation results) and MAE as 

well as MSE were calculated for each training epoch. MSE and MAE graphs for single 
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unit cell model and four-tile model are presented in Supplementary Figures 6 and 7, 

respectively. MAE quantifies the magnitude of the prediction error without 

considering the error direction: 

�f� =  1
: ¼ |�3 − �½3|

l

3o#
 (8) 

where : is the number of the training samples, �3 are the predicted values, and 

�½3 are the true values. MSE is the squared mean of the differences between the 

predicated values, �3, and the true values, �½3, and is calculated as: 

�¾� =  1
: ¼(�3 − �½3)+

l

3o#
 (9) 

5.2.3 Experiments 

To validate the results of our computational models used for training the single 

unit cell models, we selected three single unit cell lattice structures (one from each 

of the cell angles of 60°, 90°, and 120°) (Figure 1a). In addition, we designed three 

nine-tile structures and four four-tile structures. These structures represented 

different arrangements of the single unit cell designs (see Section 3.6). The selected 

designs were 3D printed and mechanically tested.  

We used a multi-material 3D printer (Object500 Connex3, Stratasys, US) which 

uses the jetting of multiple UV-curable polymers (Polyjet technology) for printing 

multi-material structures. The commercially available polymers VeroCyanTM (hard 

phase, RGD841) and Agilus30TM white (soft phase, FLX985) were employed (both 

from Stratasys, USA). The hard and soft phases were selected such that the ratio of 

the elastic modulus of the hard phase (�
 ≅  60 MPa) to that of the soft phase (�� ≅
 0.60 MPa) was around 100. We designed a pin and gripper system to attach the 

printed specimens to the mechanical testing machine. These parts were 3D printed 

using a fused deposition modeling (FDM) 3D printer (Ultimaker 2C, Geldermalsen, 

the Netherlands) from polylactic acid (PLA) filaments (MakerPoint PLA, 750 gr, 
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Natural). A mechanical testing machine (LLOYD instrument LR5K, load cell = 100 

N) was used to load the specimens under tension (stroke rate = 1 mm/min). The 

applied displacement and the reaction force were recorded to obtain the stress-strain 

curve by dividing the force by the initial cross-section area and dividing the 

displacement by the initial length of the specimen. The slope of the stress-strain 

curve represents the overall stiffness of the sample. This procedure was repeated for 

a total of ten specimens. In addition, we used a digital camera to capture the lateral 

deformations of the specimens at the different steps of the applied longitudinal 

displacement. We used image analysis (a custom-made MATLAB code) to measure 

the transverse strain for all the lattice structures. The axial strain was directly 

measured from the crosshead displacement of the mechanical testing machine. We, 

then, defined the Poisson’s ratio as - = − /°±²7u
/²³6²´

 (the calculation of ,¶·ml� and ,my3mA 

was the same as computational models). 

We also used the DIC technique to measure the full-field strain distribution 

during the uniaxial tensile tests for the selected single unit cell lattice structures. The 

surface of the specimens was first painted white. A spackle pattern was then applied 

to the surface using an airbrush. We used a DIC system (Q400-3D-12MP, LIMESS 

Messtechnik u. Software GmbH, Germany) equipped with two cameras (DCM 12.0 

Mpixel, digital monochrome high performance GigE camera) to record a series of 

image pairs from two different angles that were later analyzed with the help of the 

associated commercial software (Istra4D, Germany) to establish the correlations in 

the images and calculate the full-field strain maps (Figure 1a).  

5.3. Results and discussion 

5.3.1. Training and performance of the deep learning models 

Using a Workstation (CPU = Intel® Core™ i9-8950HK, RAM = 32.0 GB) and 

one running script, each FE simulation could be performed between 6.2 × 10	+  ±
 2.7 × 10	W s and 6.5 × 10	W  ±  8.2 × 10	a s while each deep learning prediction 
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took between 8.3 × 10	+  ±  2.9 × 10	W s and 1.2 × 10	d ±  1.2 × 10	
 s 

depending on the number of simultaneously run simulations/predictions (a 

comparison between the FE simulation time and the deep learning prediction time 

for the single unit cell model is presented in Supplementary Figure 1). The solution 

time per design also depends on the number of scripts run in parallel. For instance, 

for 105 simultaneously run simulations and 10
 simultaneously run deep learning 

predictions, each FE simulation could be performed within 5.0 × 10	W  ±
 4.9 × 10	a s - 2.5 × 10	W  ±  1.3 × 10	a s while each deep learning prediction took 

between 1.3 × 10	d  ±  1.8 × 10	À s and 2.4 × 10	
  ±  1.2 × 10	À s depending on 

the number of simultaneously run scripts.  

Within 200 epochs of training, the prediction errors (the mean absolute error 

(MAE) as well as the mean squared error (MSE)) of the single unit cell models 

reduced from 6.6 × 10	a and 1.38 × 10	+ to 1.05 × 10	a and 6 × 10	W, 

respectively. Meanwhile, the prediction errors (MSE and MAE) of the validation 

dataset decreased from 4.25 × 10	a and 1.19 × 10	+ to 1.14 × 10	a and 

6.38 × 10	W, respectively. In the case of the four-tile model, the prediction errors 

(MSE and MAE) corresponding to the training and validation datasets reduced within 

200 epochs from (MSE = 3.1 × 10	a, MAE = 1.24 × 10	+) and (MSE = 1.88 ×
10	a, MAE = 1.02 × 10	+) to (MSE = 3.27 × 10	d, MAE = 4.3 × 10	W) and 

(MSE = 3.68 × 10	d, MAE = 4.6 × 10	W). The coefficients of determination of the 

single unit cell and four-tile deep learning models were respectively 9.98 × 10	# 

and 9.98 × 10	# (Supplementary Table 2), indicating that these models were highly 

accurate in predicting the mechanical properties of both types of soft-hard lattices. 

The prediction vs. simulation results and the coefficients of determination for the test 

datasets are respectively presented in Supplementary Figures 2a and 2b for the single 

unit cell and four-tile models. Given this high degree of accuracy, the deep learning 

models were used in the rest of the study for evaluating the mechanical properties of 

the designed structures.  
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5.3.2. Single unit cell deep learning model 

We used the trained ‘single unit cell’ deep learning model to predict the 

mechanical properties of 1.5 × 10� random structures. The predicted ranges of the 

elastic moduli (i.e., �## ∈ 0 to 10.94 MPa and �++ ∈ 0 to 0.55 MPa) and Poisson’s 

ratios (i.e., -#+ ∈ −1.24 to 1.16 and -+# ∈ −0.53 to 0.51) were quite broad (more 

information is provided in Supplementary Table 3 for the specific subset of data 

presented in Figure 1). Along direction 1, a wide range of elastic properties (i.e., �##, 

-#+ duos) were obtained within a conifer cone-like region. In comparison, the range 

of the elastic properties found for direction 2 (i.e., �++, -+# duos) was narrower and 

included several bean-like regions (Figure 1a). High elastic modulus (�##) values 

were achieved when orthogonal unit cells were used, which is expected, given that 

the deformation of orthogonal unit cells under orthogonal loading is primarily 

stretch-dominated. Highly negative and highly positive Poison’s ratios were 

predicted for the lattices based on the re-entrant and honeycomb unit cells, 

respectively. �## and the absolute value of -#+ were inversely correlated for 

�
 values up to 80%, after which they were directly correlated (Figure 1a). 

According to the predictions of the Hashin–Shtrikman theory and the theoretical 

limits established for composite materials40,41, an inverse relationship between the 

elastic modulus and Poisson’s ratio is expected. However, the direct correlation 

observed for the �
 values exceeding 80% is caused by the non-affinity imposed by 

the random distribution of the hard phase within the lattice structures. In another 

study42, we showed that the Poisson’s ratio and the degree of non-affinity (`) are 

related to each other through a power law for both re-entrant and honeycomb unit 

cells.  
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Figure 1. The structures of the optimized deep learning models as well as relevant training 

procedures and the range of attainable mechanical properties for single unit cell model (a) and four-tile 

model (b). The strain distribution and deformation patterns obtained from FEM and DIC for selected 

representative designs are presented in (a) Given the very large number of data points which makes the 

generation of the plots challenging, only the data points for which the FE models were directly solved 

(i.e., 1% of the data points) are plotted in Figure 1. 
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Furthermore, it was concluded that regardless of the type of the unit cell and the 

level of the applied strain, the degree of non-affinity increases with �
  until a 

maximum value is reached at �
 =  75% −  90%  after which it decreases to reach 

` = 0 for the structures only made from the hard phase (i.e., �
 = 100%). These 

statements clearly explain the asymmetry in the plot of �## vs. -#+ for both re-entrant 

and honeycomb types of the unit cells. 

5.3.4. Role of multi-material design  

In the single unit cell model, the ranges of both elastic moduli (�##, �++) 

monotonically increased with �
 regardless of the type of unit cell (Figure 2a). This 

is expected, given that increasing the volume ratio of the hard phase to the soft phase 

simply increases the elastic modulus of the composite lattice structure. The plots of 

the Poisson’s ratios vs. �
 were not monotonic with the absolute values of - initially 

increasing until a global extremum was reached for �
 > 50% (i.e., 60 − 80%), 

followed by a decreasing trend. For all the three types of unit cells, the ranges of the 

attainable Poisson’s ratios were the widest for �
 = 60 − 80%. This is the range 

where the multi-material nature of the designs plays the most important role in 

determining the Poisson’s ratio of the lattice structure, given that both phases have 

comparable effects. For smaller or larger values of �
 , either the soft or the hard 

phase dominates the mechanical response of the lattice structure, respectively. For a 

fixed value of the Poisson’s ratio (i.e., -#+ = −1 ± 0.01, -#+ = 0 ± 0.01, and -#+ =
1 ± 0.01), a wide range of elastic moduli were achieved, depending on the type of 

unit cell and �
  (Figure  2b). For fixed values of - and �
 , the largest range of the 

elastic moduli was achieved for the larger �
 . For example, for the designs with 

orthogonal unit cells and with a �
 value of 80%, the elastic modulus can change by 

up to 10.7 folds, depending on how the hard and soft phases are assigned to the 

lattice structure and without any noticeable change in the Poisson’s ratio (i.e.,  -#+ =
0 ± 0.01). This highlights the importance of multi-material design aspect in the 

tunability of the elastic properties of mechanical metamaterials. 
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5.3.5. Stiff double-auxetic structures 

We also studied how the assignment of hard and soft phases in multi-material 

lattices as well as combining different types of unit cells in a four-tile structure could 

be used to achieve double-auxetic, yet stiff structures. When combining different 

types of unit cells, one of the chosen unit cell types should always be the re-entrant 

unit cell, leading to four possible combinations. To study the probability of finding 

double-auxetic structures with high stiffness values, we defined a characteristic 

number (i.e., Â = �§# × �§+ × -̅#+ × -̅+#) that sums up the effects of both the 

Poisson’s ratios and stiffness in a single number. The overline refers to the fact that 

all the properties (i.e., �#, �+, -#+, and -+#) were normalized between 0 and 1. We 

calculated Â for all the double-auxetic single unit cell and four-tile model structures 

(Supplementary Table 4 and Supplementary Figure 3). Among all the single unit cell 

and four-tile lattice structures plotted in Figure 1, 0.08% and 0.58% (respectively) 

had Â values that were 5 standard deviations higher than their corresponding mean 

values. Furthermore, the results indicated that a four-tile combination of unit cells 

enables us to achieve double-auxetic, yet stiff lattice structures (Figure  2c). Double-

auxeticity is a rare event on its own 18, let alone combined with high stiffness, further 

underscoring the importance of the implemented design strategies. Furthermore, the 

presented combinations of different unit cell types enable a better coverage of the 

(�##, �++) and (-#+, -+#) planes. 
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Figure 2. The elastic properties of studied lattice structures with a focus on double-auxetic 

lattices. (a) the elastic properties (�##, -#+, �++,  and -+#) of the different types of unit cells for the 

different values of �
. (b) the achievable range of the elastic moduli for some specific values of the 

Poisson’s ratio (i.e., -#+ = −1 ± 0.01, -#+ = 0 ± 0.01, and -#+ = 1 ± 0.01) considering the different 

values of  �
 . (c) the elastic properties corresponding to the single unit cell and four-tile designs with 

a focus on double-auxetic lattices. The magnified view shows the distribution of double-auxetic 

structures by types of unit cells of constituent designs. Given the very large number of data points which 

makes the generation of the plots challenging, only the data points for which the FE models were 

directly solved (i.e., 1% of the data points) are plotted in Figure 2. 
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5.3.6. Tiled and transformed structures 

We selected the following single unit cells designs for a more in-depth study: a 

design with the highest values of �## and �++ from the orthogonal unit cell group 

(�## = 9.67 MPa, �++ = 0.31 MPa, -#+ = −0.04, and -+# = 0.00), a design with 

the most negative value of the Poisson’s ratio and almost the highest elastic modulus 

from the re-entrant unit cell group (�## = 0.93 MPa, �++ = 0.26 MPa, -#+ =
−1.17, and -+# = −0.45), and a design with the most positive value of the Poisson’s 

ratio and an almost highest elastic modulus from the honeycomb unit cell group 

(�## = 1.31 MPa, �++ = 0.52 MPa, -#+ = 1.05, and -+# = 0.47). We then arranged 

these designs into four-tile (Figure 3) and nine-tile (Figure 4) structures and obtained 

their mechanical properties and deformation patterns both computationally and 

experimentally. Moreover, we studied how a 90-degree rotation of a design would 

affect the mechanical properties of the combined structures (Figure 3). We found 

that combining the abovementioned designs further expanded the space of 

achievable elastic properties, filling the gaps in mechanical properties of individual 

unit cells. For instance, in structure 1 (Figure 3) and structure 5 (Figure 4), the 

combination of re-entrant and orthogonal unit cells boosted the elastic modulus (�##) 

of the constituent re-entrant unit cell by 75.6% and 91.4%, respectively, while the 

Poisson’s ratio maintained its extreme negative values (|-#+| reduced by 6.6% and 

9.4%, respectively). In structure 2 (Figure 3) and structure 6 (Figure 4), the 

combination of honeycomb and orthogonal unit cells boosted the elastic modulus 

(�##) of the constituent honeycomb unit cell by 40% and 40.4%, respectively, while 

the extreme positive Poisson’s ratios did not change much (|-#+| reduced only by 

1.4% and 2.8%, respectively). 

We also showed that with a 90-degree rotation of a design, we could increase 

the elastic modulus in the weak direction (�++) and create structures with a higher 

level of isotropy. In this way, we could achieve structures with a higher elastic 

modulus (�++) than both types of their constituent designs. For example, the elastic 
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modulus (�++) of structure 3 was 56.2% and 31% higher than the elastic modulus 

(�++) of the constituent re-entrant and orthogonal unit cells, respectively (Figure 3). 

In structure 4 (Figure 3), the elastic modulus (�++) was 4.5% and 75.3% higher than 

the elastic modulus (�++) of the constituent honeycomb and orthogonal unit cells, 

respectively. 

 

Figure 3. Different combinations of designs with extreme mechanical properties which are 

selected from each group of the unit cells (i.e., a re-entrant structure with a highly negative Poisson's 

ratio, a honeycomb structure with a highly positive Poisson's ratio, and an orthogonal structure with a 

high value of the elastic modulus). The mechanical properties of two four-tile structures with non-

rotated and rotated tiles and the distribution of the von Mises stresses in these lattice structures. These 

multi-material 3D printed specimens were mechanically tested in both the 1- and 2-directions under 

3% tensile strain and the experimental results were compared with the FE simulation results (Table 2).  
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Figure 4. Different combinations of designs with extreme mechanical properties which are 

selected from each group of the unit cells (i.e., a re-entrant structure with a highly negative Poisson's 

ratio, a honeycomb structure with a highly positive Poisson's ratio, and an orthogonal structure with a 

high value of the elastic modulus). The mechanical properties of nine-tile combinations and the von 

Mises stress distribution in these combinations. These multi-material 3D printed specimens were 

mechanically tested in both the 1- and 2-directions under 3% tensile strain, and the experimental results 

were compared with the FE simulation results (Table 2). 

 

We also showed how the change of boundary conditions would affect the 

deformation patterns and also contributed to a more uniform stress distribution 

within the lattice structure. In all designs, the experimental observations regarding 

the deformation patterns as well as the experimental values of the mechanical 

properties clearly agreed with our computational results (Table 2), confirming the 

validity of the computational approach used here. 

Furthermore, the combination of structures with different types of unit cells 

allows for different functionalities. For instance, the hybrid combination of negative 

Poisson’s ratios with positive values could be used to design orthopedic implants 

with improved longevity43. Combining different types of unit cells could create 
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action-at-a-distance behavior that enables different patterns of local actuation using 

a single far-field deformation and has various potential applications in soft robotics44. 

Here, we also showed that combining different unit cells allows for shape-morphing 

boundaries as well as for specific values of the Poisson’s ratio. For instance, different 

shape-morphing boundaries were observed in structure 7 (Figure 4) when re-entrant 

and honeycomb unit cells were combined with each other, while the designed 

structure had a zero value of the Poisson’s ratio in both directions. Such properties 

are of high interest in high added value industries, such as the biomedical and 

aeronautical industries, as they exhibit improved damping performance45. 

 

Table 2. Comparisons between the computationally determined and experimentally measured 

elastic properties of the multi-tile designs. 

Type 
Structure 

number 

FE simulation Experimental test 

�## 

[MPa] 
�++ 

[MPa] -#+ -+# 
�## 

[MPa] 
�++ 

[MPa] -#+ -+# 

Four-

tile 

1 1.63 0.22 −1.10 −0.21 1.64 0.38 −0.96 −0.32 
2 1.83 0.28 1.03 0.22 1.77 0.19 0.95 0.27 
3 1.02 0.41 −0.74 −0.31 0.99 0.57 −0.64 −0.25 
4 1.17 0.54 0.76 0.38 1.08 0.35 0.68 0.26 

Nine-

tile 

5 1.78 0.21 −1.06 −0.17 1.13 0.26 −0.91 −0.21 
6 1.84 0.26 1.08 0.21 1.78 0.24 0.96 0.15 
7 0.83 0.24 0.29 0.08 0.77 0.27 0.26 0.11 

 

5.3.7. Uniformity of stress distribution 

To date, most studies on mechanical metamaterials have focused on the elastic 

properties of architected lattices without paying much attention to the structural 

integrity aspects including the risk of failure due to such phenomena as stress 

concentrations. Generally speaking, the presence of stress concentration leads to 

premature failure caused by premature initiation and growth of cracks. It is, 
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therefore, desirable to distribute the stresses as uniformly as possible within the 

lattice structure. An important advantage of having giga-sized databases of possible 

designs with the corresponding elastic properties is the possibility to apply additional 

design criteria, such as the one related to the uniformity of the stress distribution. 

For example, among all the single unit cell designs with the same range of 

elastic properties (i.e., 0.15 < �## < 0.25, −1.1 < -#+ < −1, 0.01 < �++ <
0.08, and −0.45 < -+# < −0.3), we studied the uniformity of the stress distributions 

within the lattice structure. In total, 207 tiles with various �
 values (i.e., 50, 60, 70,  
and 80%) were included (Figure 5a). The maximum values of the von Mises stress 

in the structural elements of these designs were calculated while these designs were 

subjected to two different boundary conditions (i.e., ,## = 3% or ,++ = 3%) (Figure 

5b). Although the elastic properties of these designs were generally very similar, the 

maximum von Mises stresses in their struts varied up to 2.5 and 6.5 times along the 

loading conditions 1 and 2, respectively. This finding indicates the importance of 

applying an additional design rule regarding the stress uniformity within the 

structure. For that reason, two designs with �
 = 70% (one with the minimum and 

one with the maximum Euclidean distance from the origin) were selected for a more 

in-depth analysis (Figure 5b and 5c). A closer study of the stress distributions in 

these two structures showed a clear incident of stress concentration in design 2 while 

design 1 exhibited more uniform stress distributions (Figure 5d). Such types of stress 

risers are the primary zones for crack initiation and will ultimately result in 

premature fracture. It is, therefore, important to consider stress uniformity as an 

additional design requirement in the design of mechanical metamaterials. It should 

also be mentioned that the maximum von Mises stresses in soft and hard struts of 

these selected designs are lower than the tensile strengths of the individual materials 

in the bulk form. 

We also studied the distribution of the compressive or tensile axial stresses (¾##) 

in individual struts of the selected designs under the aforementioned boundary 
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conditions. That included ¾##@/00oW% vs. ¾##@/11oW% values as well as 95% 

confidence ellipses fitted to the stress values of individual struts for the multi-

material designs (Figure 5e). We then compared these results with the axial stresses 

obtained from a lattice structure with �
 = 70% and equivalent homogenous 

material properties (Figure 5e). This comparison highlighted that the lattice design 

with a lower stress riser point (i.e., design 1) was located inside the confidence ellipse 

of the design with the equivalent homogenous material (Figure 5e). Such an 

approach can, therefore, be considered as additional design rule for selecting the 

optimum multi-material design with target properties. 
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Figure 5. Stress distribution within the lattice structure. (a) the selection of a certain range of the 

elastic properties achieved for the unit cells with a cell angle of 60°. In total, the elastic properties of 

207 designs with various �
 values (i.e., 50, 60, 70, and 80) fall within these selected ranges. (b) the 

maximum values of the von Mises stress in the structural elements of the corresponding lattice 

structures when these structures were subjected to two boundary conditions (i.e., ,## = 3% or ,++ =
3%). Two designs were selected, including one with the minimum (node 1) and one (node 3) with the 

maximum Euclidean distance from the origin (b and c). The distribution of the von Mises stresses in 

the selected designs and their deformations under two boundary conditions (i.e., ,## = 3% and ,++ =
3% ) are presented in (d). The axial stresses (¾##) in the struts of each design under two boundary 

conditions (i.e., ,## = 3% or ,++ = 3% ) are calculated and are compared with the axial stresses of the 

corresponding struts when the lattice structure is composed of an equivalent homogenous material (e). 
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5.4. Conclusion 

In conclusion, deep learning models can accurately predict the mechanical 

properties of multi-materials mechanical metamaterials, reduce the speed of 

evaluating each design, and make parallel computing efficient and straightforward 

to the point where evaluating 10#$ − 10+$ designs is within reach. Our results show 

that such unprecedented sizes of the design database enable the rational design of 

multi-material mechanical metamaterials that not only achieve a very wide range of 

elastic properties but also meet additional design requirements. For example, we 

demonstrated that double-auxetic yet stiff designs can be realized using this 

approach. In this study, we examined two essential parameters in the design of multi-

material mechanical metamaterials, namely the ratio of the volume of the hard phase 

to that of the soft phase (�
 ) and the angle of the unit cells. In all simulations, the 

ratio of the elastic modulus of the hard phase to that of the soft phase was assumed 

to be constant and equal to 100. As increasing this ratio can increase the degree of 

non-affinity of the lattice structure42, it can have an influence on their overall 

mechanical properties. Therefore, this parameter can be further studied and 

considered as an input parameter for the training of the model to explore a broader 

range of mechanical properties. Another application demonstrated here is the 

addition of a criterion regarding stress uniformity that can reduce stress 

concentration in such types of mechanical metamaterials, thereby increasing their 

fracture and fatigue resistance. 
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5.5. Supplementary document 

 

Supplementary Figure 1. The solution time per design. The solution time per design depends 

on the number of simultaneously run simulations/predictions as well as the number of scripts run in 

parallel. A comparison between the finite element simulation time (MATLAB) and the deep learning 

prediction time (Python) for the single unit cell model (a) for the different numbers of simultaneously 

run simulations/predictions (without any parallelization) and (b) for the different numbers of in-parallel 

run scripts (105 simultaneously run finite element simulations and 106 simultaneously run deep 

learning predictions per script). The standard deviation of the reported times was calculated by 

repeating each experiment three times. 

 

Supplementary Figure 2. The evaluation of the trained deep learning models. The prediction vs. 

simulation results and the coefficients of determination for the test datasets for (a) the single unit cell 

model and (b) four-tile model. 
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Supplementary Table 1. The total number of possible designs. 

Group 

number 
�
  [%] Number of hard 

elements 

Number of 

possible designs 

Number of possible designs 

considering symmetry 

1 5 8 5.25721 × 10#+  1.31400 × 10#+ 

2 10 15 1.62392 × 10+$ 4.05981 × 10#� 

3 20 30 3.21988 × 10W# 8.04970 × 10W$ 

4 30 45 4.41669 × 10WÄ 1.10417 × 10WÄ 

5 40 60 4.62150 × 10a+ 1.15537 × 10a+ 

6 50 75 9.28261 × 10aW 2.32065 × 10aW 

7 60 90 4.62150 × 10a+ 1.15537 × 10a+ 

8 70 105 4.41660 × 10WÄ 1.10417 × 10WÄ 

9 80 120 3.21988 × 10W# 8.04970 × 10W$ 

10 90 135 1.62392 × 10+$ 4.05981 × 10#� 

11 95 142 5.25721 × 10#+ 1.31430 × 10#+ 

Sum 1.02070 × 10aa 2.55175 × 10aW 

Total number considering three groups of unit cells with 

positive, zero, and negative values of the Poisson’s ratio 
7.65525 × 10aW 

Supplementary Table 2. The coefficients of determination, the mean absolute error (MAE), and 

the mean squared error (MSE) for the outputs of the single unit cell and four-tile deep learning models. 

  Coefficient of 

determination (Å+) 
MSE MAE 

Single unit 

cell model 

Total 9.98 × 10	# 1.14 × 10	a 6.38 × 10	W 
�## 9.99 × 10	# 2.18 × 10	d 2.65 × 10	W 
�++ 9.97 × 10	# 8.96 × 10	d 5.51 × 10	W 
-#+ 9.98 × 10	# 2.34 × 10	a 1.04 × 10	+ 
-+# 9.99 × 10	# 1.11 × 10	a 6.96 × 10	W 

Four-tile 

model 

Total 9.98 × 10	# 3.77 × 10	d 4.58 × 10	W 
�## 9.98 × 10	# 2.96 × 10	d 3.86 × 10	W 
�++ 9.98 × 10	# 4.80 × 10	d 5.30 × 10	W 
-#+ 9.97 × 10	# 4.92 × 10	d 5.46 × 10	W 
-+# 9.98 × 10	# 2.38 × 10	d 3.69 × 10	W 

 
 

 

 



5.5. Supplementary document 

115 

 

Supplementary Table 3. The range of the elastic properties for the single unit cell lattice 

structures corresponding to the data presented in Figure 1. 

Type of unit 

cell 

�## [MPa] �++ [MPa] -#+ [−] -+# [−] 
min max min max min max min max 

� = 60° 0.01 1.02 0.00 0.29 −1.24 −0.31 −0.53 −0.17 
� = 90° 0.11 10.67 0.00 0.34 −0.70 0.78 −0.06 0.09 

� = 120° 0.01 1.39 0.00 0.54 0.31 1.16 0.14 0.51 
Supplementary Table 4. The probability of finding Â values that are one, two, three, four, or 

five standard deviations higher than their corresponding mean value. To calculate Â, we first normalized 

all the properties (i.e., �#, �+, -#+, and -+#) between 0 and 1. 

 Model � + * � + 2* � + 3* � + 4* � + 5* 

Æ(Â >  � + �*) 
Single unit cell  0.111 0.078 0.041 0.007 0.0008 

Four-tile 0.108 0.047 0.022 0.011 0.0058 
 

 

Supplementary Figure 3. The histogram of Â. These histograms are for the double-auxetic 

lattice structurs ploted in Figure 1: (a) single unit cell and (b) four-tile models. 

 

Supplementary Table 5. The geometrical parameters of the designed single unit cell lattices. 

� [°] �[mm] "[mm] �[mm] �[mm] �[mm] ℎ[mm]  [mm] c[mm] 
60 56.25 56.25 11.25 12.5 6.50 9.50 1 10 
90 56.25 56.25 11.25 12.5 5.63 6.25 1 10 

120 56.25 56.25 11.25 12.5 6.50 3.00 1 10 
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5.5.1. Supplementary methods 

Hyperparameter tuning of single unit cell model: 

For the training of the single unit cell model, we used a sequential model 

composed of a linear stack of fully connected layers. Before training the model, we 

configured the learning process by defining several parameters, including an 

optimizer (RMSprop), a list of metrics (Mean Squared Error (MSE) and Mean 

Absolute Error (MAE)), and a loss function (MSE), which is the objective that the 

model will try to minimize.  

In this model, we systematically studied the effects of different hyperparameters 

(i.e., the number of hidden layers, the number of neurons in each hidden layer, 

learning rate, and activation function) on the performance of the deep learning 

model. To evaluate the performance of the model with different hyperparameter 

values and also to detect overfitting during the training process, we created a subset 

of the data known as the validation dataset. Therefore, we generated a dataset of 

165,000 samples, and then we randomly selected 20% of this dataset as a testing 

dataset, 80% as a training dataset, and 20% of the training dataset as a validation 

dataset for hyperparameter tuning. It should be mentioned that for hyperparameter 

tuning, we trained each model until 20 epochs. This means that during each epoch, 

the model was trained based on the training data, and was tuned with the results of 

the metrics (MSE, MAE) for the validation dataset. Therefore, during the training 

process, the model did not see the validation dataset, while the validation dataset 

indirectly affected the model. In this way, we tuned the hyperparameters of the model 

based on the results of metrics for the validation dataset. The following systematic 

approach explains how those hyperparameters were selected in our models. 

Number of hidden layers: At the first step, we studied the effects of the 

number of the hidden layers (i.e., 1, 2, 3, 4, 5, and 6) on reducing the loss function. 

Towards this aim, six models with different numbers of hidden layers were analyzed, 

while the rest of the hyperparameters for these models were kept unchanged. 
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The number of neurons per each hidden layer: 128 (since we had 151 input 

parameters, we assumed the number of neurons in each hidden layer to equal 128). 

Learning rate: 0.0001. 

Activation function: ReLU. 

Each model was trained three times to calculate the average and the standard 

deviation of the loss function (MSE) for each model. Supplementary Table 6 and 

Supplementary Figure 4 present the comparisons between the six models with 

different numbers of hidden layers. 

Supplementary Table 6. The comparison between models with different numbers of hidden 

layers. 

 

 

Supplementary Figure 4. Tuning the number of hidden layers. The comparisons between the 

MSE of six models with different numbers of hidden layers. 

layers 
ÇÈÉ ÇÈÉ 

average 

Standard 

deviation Trial 1 Trial 2 Trial 3 

1 0.0034 0.0053 0.0022 0.003633 1.28 × 10-3 

2 0.002 0.0021 0.0025 0.0022 2.16 × 10-4 

3 0.00049 0.00067 0.00069 0.000616 9.01 × 10-5 

4 0.00052 0.00048 0.00067 0.000558 8.32 × 10-5 

5 0.00046 0.00049 0.00062 0.000524 6.81 × 10-5 

6 0.00046 0.00052 0.00049 0.000494 2.55 × 10-5 
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The results of the comparison between the models with different hidden layers 

showed that the MSE values converged after considering five hidden layers. Also, 

the low standard deviation indicates that the model is not sensitive to the randomly 

selected training dataset. Therefore, we selected five hidden layers as an optimum 

number of hidden layers for our model. 

Number of neurons in each hidden layer: In the second step, we optimized 

the number of neurons in each hidden layer using “Hyperparameter Tuning” with 

the HParams Dashboard of Tensorboard38. Towards this aim, we selected the 

possible number of neurons per layer: 

Layer 1: 256 and 128 neurons 

Layer 2: 128 and 64 neurons 

Layer 3: 128 and 64 neurons 

Layer 4: 64 and 32 neurons 

Layer 5: 32 and 16 neurons 

Since we had five layers and we assumed two possibilities for each layer, there 

were 2d = 32 possible combinations that were studied to find the best combination. 

The model was trained for each combination, and the loss function (MSE) was 

calculated for each trained model. Also, we repeated the training process three times, 

and we compared the average and standard deviation of the loss function (MSE). As 

an example, Supplementary Figure 5 shows the parallel coordinate plot for the results 

of the second trial of the optimization of the number of neurons. Supplementary 

Table 7 summarizes the results of model training for different combinations of 

neurons per hidden layer. The results in this table were sorted based on the average 

and standard deviation of MSE. The best combination with the lowest averages of 

MSE was 256-128-128-64-32. This combination had also the lowest standard 

deviation of MSE among all the 32 combinations, meaning that the results of this 

combination were less sensitive to the selected training dataset 
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Supplementary Table 7. The comparisons between the trained models with different numbers 

of neurons per hidden layer. 

Combination 

number 

Number of neurons in each 

hidden layer 
MSE 

MSE 

average 

MSE 

standard 

deviation 

1 2 3 4 5 Trial 1 Trial 2 Trial 3   

1 256 128 128 64 32 0.000493 0.000506 0.000502 0.0005 5.64 × 10-6 

2 256 128 128 32 32 0.00047 0.00048 0.000444 0.000465 1.52 × 10-5 

3 128 128 128 32 32 0.000562 0.000545 0.000606 0.000571 2.56 × 10-5 

4 128 64 128 32 32 0.000491 0.000504 0.000444 0.00048 2.58 × 10-5 

5 256 128 64 32 32 0.000554 0.000501 0.000486 0.000514 2.91 × 10-5 

6 128 64 128 64 16 0.000662 0.000581 0.000611 0.000618 3.32 × 10-5 

7 128 128 128 64 16 0.00051 0.000587 0.000579 0.000559 3.44 × 10-5 

8 128 64 64 64 16 0.000555 0.000616 0.000533 0.000568 3.50 × 10-5 

8 128 128 64 64 16 0.000618 0.000606 0.000686 0.000637 3.51 × 10-5 

10 128 64 128 32 16 0.000538 0.000605 0.000619 0.000587 3.54 × 10-5 

11 128 128 64 32 16 0.000532 0.000615 0.000619 0.000589 3.99 × 10-5 

12 256 128 128 64 16 0.000587 0.000524 0.000485 0.000532 4.22 × 10-5 

13 128 64 64 64 32 0.000606 0.000565 0.00049 0.000554 4.78 × 10-5 

14 256 64 128 32 32 0.000476 0.00053 0.000595 0.000534 4.84 × 10-5 

15 256 64 64 64 32 0.00046 0.00051 0.000585 0.000519 5.15 × 10-5 

16 256 128 64 32 16 0.000551 0.000448 0.000564 0.000521 5.18 × 10-5 

17 128 128 128 64 32 0.000435 0.000488 0.000572 0.000498 5.66 × 10-5 

18 256 64 64 32 32 0.00048 0.000599 0.000469 0.000516 5.87 × 10-5 

19 256 64 128 64 16 0.000587 0.000744 0.000677 0.000669 6.46 × 10-5 

20 128 128 64 64 32 0.000478 0.000638 0.00058 0.000565 6.59 × 10-5 

21 128 64 64 32 32 0.000659 0.00053 0.000497 0.000562 6.99 × 10-5 

22 128 128 128 32 16 0.000589 0.000639 0.000461 0.000563 7.48 × 10-5 

23 256 128 128 32 16 0.000436 0.000548 0.000637 0.00054 8.24 × 10-5 

24 256 64 128 64 32 0.000546 0.000641 0.000435 0.00054 8.42 × 10-5 

25 128 128 64 32 32 0.00046 0.000518 0.000683 0.000554 9.42 × 10-5 

26 256 128 64 64 16 0.000468 0.000641 0.000707 0.000606 1.01 × 10-4 

27 128 64 64 32 16 0.000773 0.00062 0.000517 0.000637 1.05 × 10-4 

28 256 128 64 64 32 0.000478 0.000565 0.000752 0.000599 1.14 × 10-4 

29 256 64 64 64 16 0.000479 0.000664 0.000763 0.000635 1.18 × 10-4 

30 128 64 128 64 32 0.00076 0.000485 0.000539 0.000595 1.19 × 10-4 

31 256 64 64 32 16 0.000883 0.000507 0.000586 0.000659 1.62 × 10-4 

32 256 64 128 32 16 0.000902 0.000687 0.000474 0.000688 1.75 × 10-4 
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Supplementary Figure 5. Tuning the number of neurons in each hidden layer. The green line 

shows the following combination of neurons : 256-128-128-64-32.  

Learning rate: We analyzed the effects of the learning rate on the accuracy of 

the model. We selected three levels for the learning rate (i.e., 0.01, 0.001, and 

0.0001) while keeping other hyperparameters unchanged: 

 Number of hidden layers: 5. 

 Number of neurons per each hidden layer: 256, 128, 128, 64, 32. 

 Activation function: ReLU. 

 Number of epochs: 20. 

Supplementary Table 8 presents the comparison of models trained with 

different values of the learning rate. This highlights that the learning rate equal to 

0.0001 provided the highest accuracy. It was, therefore, selected in our final model. 

Activation function: We also used different activation functions (i.e., ReLU, 

Sigmoid, and Tanh), while the rest of the hyperparamters were set as follows:  

 Number of hidden layers: 5. 

 Number of neurons per each hidden layer: 256, 128, 128, 64, 32. 

 Learning rate: 0.0001. 

 Number of epochs: 20. 
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Supplementary Table 9 shows the results of the comparison between the models 

trained with different activation functions. Based on these results, we selected the 

activation function ReLU in our single unit cell models. 

Supplementary Table 8. The comparison between the models with different values of learning rates. 

Learning 

rate 
MSE MAE Other parameters 

0.01 

  

Å+  for testing dataset: 

Å+ =  0.958  

(Å+)Ê10 =  0.991 

(Å+)Ê01 =  0.995 

(Å+)Ë1 =  0.882 

(Å+)Ë0 =  0.963 

 

Training time:  

4m, 16s 

0.001 

  

Å+  for testing dataset: 

Å+ =  0.981  

(Å+)Ê10 =  0.992 

(Å+)Ê01 =  0.997 

(Å+)Ë1 =  0.958 

(Å+)Ë0 =  0.975 

 

Training time:  

4m, 18s 

0.0001 

  

Å+  for testing dataset: 

Å+ =  0.986  

(Å+)Ê10 =  0.992 

(Å+)Ê01 =  0.997 

(Å+)Ë1 =  0.969 

(Å+)Ë0 =  0.987 

 

Training time:  

4m, 17s 
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Supplementary Table 9. The results of the comparison between the models trained with different 

activation functions. 

Activation 
function MSE MAE Other parameters 

ReLU 

  

Å+  for testing 
dataset: 
Å+ =  0.986  
(Å+)Ê10 =  0.992 
(Å+)Ê01 =  0.997 
(Å+)Ë1 =  0.969 
(Å+)Ë0 =  0.987 
 
Training time:  
4m, 17s 

Sigmoid 

  

Å+  for testing 
dataset: 
Å+ =  0.982  
(Å+)Ê10 =  0.993 
(Å+)Ê01 =  0.995 
(Å+)Ë1 =  0.964 
(Å+)Ë0 =  0.977 
 
Training time:  
5m, 32s 

Tanh 

  

Å+  for testing 
dataset: 
Å+ =  0.984  
(Å+)Ê10 =  0.994 
(Å+)Ê01 =  0.997 
(Å+)Ë1 =  0.962 
(Å+)Ë0 =  0.985 
 
Training time:  
5m, 1s 

 

We evaluated the performance of the model based on the coefficient of 

determination (Å+), MSE, and MAE values. The above-mentioned systematic 
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analyses were, therefore, used to determine the optimized architecture and 

hyerparameters of the model with the highest accuracy (see Table 2). 

Once the hyperparameters were set, we increased the size of the training dataset 

and the number of epochs to improve the accuracy of our model further. Towards 

this aim, we increased the size of training dataset by 100 times (i.e., a dataset of 

16,500,000 lattice structures) and the number of epochs by 10 times (i.e., 200 

epochs). Also, we assumed 20% of the training dataset as a validation dataset. In 

addition, we generated a dataset of 1,650,000 lattice structures as the testing dataset. 

MSE and MAE graphs for the single unit cell model are presented in Supplementary 

Figure 6. Quantitatively, the final optimized single unit cell model had a low MSE 

value of 1.05 × 10	a and 1.14 × 10	a, and a low MAE value of 6 × 10	W and 

6.38 × 10	W for the training and validation datasets, respectively. Moreover, these 

graphs showed a good agreement between the training and validation datasets, 

confirming that the model was trained without overfitting. 

a. 

 

b. 

 

Supplementary Figure 6. a MSE graph and b MAE graph for the single unit cell model. 

Hyperparameter tuning of four-tile model: 

To design the architecture of the four-tile model, we selected the optimized 

hyperparameters obtained from the single unit cell model, namely five hidden layers 

(the number of neurons: 256-128-128-64-32), ReLU activation function, and a 



Chapter 5-Rare-event multi-material mechanical metamaterials  

124 

 

learning rate equal to 0.0001. Furthermore, we trained another model with six hidden 

layers and the number of neurons was reduced from 256 to 8 (i.e., 256-128-64-32-

16-8) to see if we could further improve the accuracy of the model. For these two 

models, we used a dataset of 250,409 lattice structures, and we randomly selected 

20% of the dataset as a testing dataset, 80% as a training dataset, and 20% of the 

training dataset was randomly selected as a validation dataset. As compared to the 

model with five hidden layers, the model with six hidden layers had a slightly higher 

coefficient of determination for the testing dataset and a lower MSE value for the 

training and validation datasets with 20 epochs (see Supplementary Table 10). Since 

the six-layer model had low values of MSE and MAE and a high coefficient of 

determination, and also the MSE graph of this model showed a good agreement 

between the training and validation datasets to avoid overfitting, we stopped at this 

model and considered it to be our optimized four-tile model. 

Furthermore, we increased the size of the dataset to 15,331,140 lattice structures 

(60× larger) and the number of epochs by 10 times (i.e., 200 epochs). We randomly 

selected 90% of the dataset as the training dataset and the remaining 10% as the 

testing dataset. We also considered 20% of the training dataset for validation. The 

training procedure took 3569 minutes and 36 seconds. All the training parameters of 

the final four-tile model are listed in Table 2 of the manuscript. Quantitatively, the 

four-tile model had a high coefficient of determination of 0.998 and a low MSE value 

of 3.77 × 10	d for the testing dataset, and respectively a low MSE value of 

3.27 × 10	dand 3.68 × 10	d and a low MAE value of 4.3 × 10	W and 4.6 × 10	W 

for the training and validation datasets (see Supplementary Figure 7). Furthermore, 

the MSE and MAE graphs showed a good agreement between the training and 

validation datasets, confirming that the model was trained without overfitting. 
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Supplementary Table 10. The comparison between the four-tile models with five and six hidden 

layers.  

Architecture 5 hidden layers: 
256-128-128-64-32 

6 hidden layers: 
256-128-64-32-16-8 

Size of 
dataset 250,409 250,409 
Epochs 20 20 

Loss function 
(MSE) 

  

Coefficient of 
determinatio
n 

Å+ =  0.982 
(Å+)Ê10 =  0.967 
(Å+)Ê01 =  0.994 
(Å+)Ë1 =  0.984 
(Å+)Ë0 =  0.984 

Å+ =  0.983 
(Å+)Ê10 =  0.966 
(Å+)Ê01 =  0.995 
(Å+)Ë1 =  0.983 
(Å+)Ë0 =  0.990 

Testing 
dataset MSE 

3.21 × 10	a 2.98 × 10	a 
Time 7m, 43s 7m, 21s 

 

 

a. 

 

b. 

 
 

Supplementary Figure 7: (a) MSE graph and (b) MAE graph for the four-tile model. 
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Abstract 

Practical applications of mechanical metamaterials often involve solving 

inverse problems where the objective is to find the (multiple) micro-architectures 

that give rise to a given set of properties. The limited resolution of additive 

manufacturing techniques often requires solving such inverse problems for specific 

sizes. One should, therefore, find multiple micro-architectural designs that exhibit 

the desired properties for a specimen with given dimensions. Moreover, the 

candidate micro-architectures should be resistant to fatigue and fracture, meaning 

that peak stresses should be minimized as well. Such a multi-objective inverse design 

problem is formidably difficult to solve but its solution is the key to real-world 

applications of mechanical metamaterials. Here, we propose a modular approach 

titled “Deep-DRAM” (deep learning for the design of random-network 

metamaterials) that combines four decoupled models, including two deep learning 

models (DLM), a deep generative model (DGM) based on conditional variational 

autoencoders (CVAE), and direct finite element (FE) simulations. The integrated 

framework first introduces the desired elastic properties to the DGM, which returns 

a set of candidate designs. The candidate designs, together with the target specimen 

dimensions are then passed to the DLM which predicts their actual elastic properties 

considering the specimen size. After a filtering step based on the closeness of the 

actual properties to the desired ones, the last step uses direct FE simulations to 

identify the designs with the minimum peak stresses. Using an extensive set of 

simulations as well as experiments performed on 3D printed specimens, we 

demonstrate that: (i) the predictions of the deep learning models are in agreement 

with FE simulations and experimental observations, (ii) an enlarged envelope of 

achievable elastic properties (including such rare combinations as double-auxetic 

behavior and high stiffness) is realized using the proposed approach, and (iii) the 

proposed framework can provide many solutions to the multi-objective inverse 

design problem posed here.  
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6.1. Introduction 

The second and third decades of the 21st century have witnessed the emergence 

of architected materials with bespoke, unusual properties that stem from their small-

scale design. At the nexus of rational design techniques, where computational 

models are used to establish design-property relationships, and additive 

manufacturing (AM, = 3D printing) techniques, which enable the realization of 

arbitrarily complex designs, a highly vibrant sub-discipline has emerged that is 

rapidly pushing such designer materials into applications in medical devices1–3, soft 

robotics4–6, and other advanced areas of research7–9. Depending on the type of the 

properties targeted, these architected materials may be referred to as mechanical 

metamaterials10–14, acoustic metamaterials15–17, or meta-biomaterials3,18, among other 

types. 

Despite their recent academic success, there are two major challenges that 

hinder the real-world applications of metamaterials in general and mechanical 

metamaterials in particular. To put these challenges in perspective, let us consider a 

typical device design scenario where the required elastic properties as well as the 

dimensions of a device are specified by the device designer. The design problem is 

then reduced to the problem of finding the micro-architectures that give rise to the 

required elastic properties while also satisfying the size requirements. The inverse 

problem of finding the micro-architecture(s) resulting in a specific set of elastic 

properties is challenging enough in its own right particularly given that the desired 

combination of properties is often very rare (e.g., high stiffness and highly negative 

values of the Poisson’s ratio 19). The difficulty of such an inverse design problem is 

further exacerbated by the fact that most mechanical metamaterials are usually only 

analyzed in terms of their homogenized or asymptotic properties (i.e., when the 

number of the constituting unit cells approaches infinity). Such homogenized 

solutions are only valid at their convergence limits and may significantly deviate 

from the actual elastic properties when the number of unit cells is not large enough20. 
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Given the limited resolution of AM techniques, it is often impossible to fit a very 

large number of unit cells within a given set of dimensions. Homogenized solutions 

may, therefore, not offer too much help when dealing with real-world design 

problems. The inverse design problem should, therefore, not be solved for the 

asymptotic case of an infinite number of unit cells but for the actual case of a finite 

number of unit cells in each spatial direction. Here, we use deep learning (DL) 

models and deep generative models to tackle such a size-agnostic inverse design 

problem within the context of random-network (RN) mechanical metamaterials.  

Most of the mechanical metamaterials developed to date are composed of 

periodic unit cells. Previous studies have, however, shown that RN units cells, 

consisting of stretch- and bending-dominated beam-like structures, allow for a wide 

range of conventional and auxetic elastic properties21–25, which may go beyond the 

limits achieved by geometrically-ordered mechanical metamaterials, particularly 

when seeking after rare combinations of elastic properties26. We will, therefore, use 

RN designs to increase the chance of finding accurate solutions for the inverse design 

problems targeted here. A facet of such nonlinear inverse problems relevant to 

micro-architecture design of mechanical metamaterials concerns the non-uniqueness 

of the solution. It is important to realize that different solutions to the inverse 

problem posed in the previous paragraph are not equal in many other aspects. That 

is because designs with similar effective properties could have highly different stress 

distributions and, thus, highly different degrees of resistance to fatigue and fracture. 

We are, therefore, interested in finding as many solutions to the posed inverse 

problem as possible so that additional design requirements, such a uniform stress 

distribution or a minimum stress peak, can be applied. This further increases the 

practical utility of the approach presented here.  

The existing DL models used for such inverse design problems are often 

deterministic in nature. Such models are not well equipped to regress a single input 

to multiple outputs and may converge to the average of the solutions instead. We 

will, therefore, model the aforementioned inverse design problem in a probabilistic, 
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generative manner because such approaches have been shown to enable 

investigations of the structure–response relationship and can resolve the one-to-

many mapping problem that deterministic models are unable to cope with27–30. 

Generative adversarial networks (GAN)31 and variational autoencoders (VAE)32, 

which seek to understand the underlying relationship between design features and 

targets/labels and generate new designs from a low-dimensional latent space, are 

popular deep generative models used for the inverse design of materials28,33–36. In 

contrast to VAE, which provides a straightforward mapping from the observed 

dataset to a continuous latent space, a continuous latent space with a meaningful 

structure is intractable for GAN models28. 

To achieve the goals presented above, we take a modular approach, hereafter 

referred to as “Deep-DRAM”. Deep-DRAM (deep learning for the design of 

random-network metamaterials) is composed of a sequence of DL and generative 

models that not only collectively solve the size-agnostic, inverse design problem but 

can also be (individually) used for many other purposes. First, we create a DL-based 

forward predictor model that predicts the anisotropic elastic properties of a specific 

type of RN unit cells. Second, we present a generative model based on conditional 

variational autoencoder (CVAE) that generates the micro-architecture of RN unit 

cells with a given set of anisotropic elastic properties. The third module is a DL-

based forward predictor model that receives the micro-architecture of the RN unit 

cells and the desired dimensions of the specimen (i.e., the number of RN unit cells 

along each spatial direction) and predicts its elastic properties. The developed 

models are then combined to solve the size-agnostic design problem with the 

additional requirement that the maximum stresses are minimized (see 

Supplementary Movies 1,2, and 3). While the data required for training and testing 

the DL models are all generated using finite element (FE) models, we also present 

several experiments in which actual mechanical metamaterials are 3D printed and 

mechanically tested to compare their measured elastic properties and deformation 

patterns with our computational results. 
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6.2. Materials and methods 

We studied restricted RN unit cells in which the nodal points of the beam-like 

elements were fixed at specific locations. The design of these unit cells was inspired 

by our previous research21 that computationally explored the auxeticity and stiffness 

of random networks and demonstrated a wide range of elastic moduli and Poisson's 

ratios for this type of mechanical metamaterials. For this work, we first studied RN 

unit cells composed of different node numbers (i.e., :y = :� = 3, 4, 5, 6, 7, and 8) 

to find out the least number of nodes that corresponds to the broadest range of elastic 

properties. We assumed the internodal distances of ∆� and ∆� in directions 1 and 2, 

respectively. The overall size of a unit cell is, therefore, given by: � × � (� =
:� × ∆� and � = :y × ∆�) (Figure 1a). Also we assumed the in-plane ( = 1 mm) 

and out-of-plane (c = 10 mm) thicknesses for the RN unit cells. The beam-like 

elements were randomly distributed to connect the whole grid. We studied unit cells 

with the network connectivity values of ~ß = 2.5, 3, 3.5, 4, and 4.5 (Figure 1a). We 

further studied combinatorial designs that are composed of different numbers of rows 

and columns of RN unit cells.   

6.2.1. Computational models 

All the FE models were created using MATLAB (MATLAB R2018b, 

MathWorks, USA) codes. Custom codes were used to design the structures by 

randomly connecting each node to its surrounding nodes and to perform the FE 

simulations that estimate the elastic properties of the resulting structures (i.e., the 

elastic moduli and Poisson’s ratios in both orthogonal in-plane directions). The 

random distribution of beams resulted in ‘loose designs’ where some nodes were not 

connected to the overall grid. To exclude such designs, we used a graph-based search 

method (breadth-first search37) for filtering and discarding such invalid unit cell 

designs. The applied graph-based algorithm sped up the process by nearly 900 times 

as compared to an image-based filtering method used previously21 (more information 
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is provided in Supplementary Figure 1). Our codes were further extended to 

incorporate the RN unit cells into the combinatorial designs (Figure 3a). 

We employed three-node quadratic beam elements (Timoshenko beam 

elements) with rectangular cross-sections ( × c) and with two translational (i.e., k## 

and k++) and one rotational (i.e., kWW) degrees of freedom (DOF) at each node. An 

elastic material with a Young's modulus of �I = 0.6 MPa and a Poisson's ratio of 

-I = 0.3 was then assigned to elements. For each structure, two FE models were 

created to separately apply a strain of 5% along 1- and 2-directions. In the first 

model, the top nodes were subjected to a strain of 5% along the 2-direction (k## =
 kWW = 0 and k++ = 0.05 × �) while all the DOF of the bottom nodes were 

constrained (k## =  k++ =  kWW = 0). In the second model, the right nodes were 

subjected to 5% strain along the 1-direction (k++ =  kWW = 0 and k## = 0.05 × �) 

while all the DOF of the left nodes were constrained (k## =  k++ =  kWW = 0). More 

information about the FE equations used for the numerical simulations are provided 

in the supplementary document. 

To calculate the elastic moduli of the structures (�## = *##/,## and �++ =
*++/,++), the normal stresses along directions 1 and 2 (*## = e##§§§§/(� × c), *++ =
e+§§§/(� × c) (Figure 1a)) were divided by the strain applied along the same direction 

(,## = ,++ = 5%). In these equations, e§ ## and e§++ are the mean reaction forces 

along directions 1 and 2 at the right and top nodes, respectively (e##§§§§ =
∑ {11,6

7­681
l­

, e++§§§§ = ∑ {00,6
7®681

l®
, where :¯ and :� are the total numbers of the right and top 

nodes while e##,3 and e++,3 are the reaction forces along directions 1 and 2 at each of 

the right and top nodes, respectively). We then calculated the transverse strain as the 

ratio of the average displacement of the lateral nodes to the initial transversal length 

of the structure (in the case of ,my3mA = ,## = 5%: ,¶·ml� = ,++ = ∑ g�6
7®681
<×l®

, and in 
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the case of ,my3mA = ,++ = 5%: ,¶·ml� = ,## = 
∑ gy6

7­681
9×l­

).  The transverse strain was 

then divided by the applied axial strain to calculate the Poisson’s ratio (- = − /°±²7u
/²³6²´

). 

6.2.2. Deep learning  

Unit cell elastic properties model: We trained a predictor model that we refer 

to as the “unit cell elastic properties model” which aims to learn the mapping from 

the space of RN unit cell designs to that of their elastic properties. This model takes 

as input a binary vector representing the RN unit cells (i.e., a binary vector of 0 and 

1 values, where 1 indicates the presence of an element and 0 indicates its absence) 

and returns the elastic properties (�##, �++, -#+, and -+#) of the unit cells as output. 

Before training the model, we performed an initial data analysis process followed by 

a hyperparameter tuning study. To select the options and parameters for both data 

analysis and hyperparameter tuning, we used a pipeline training technique 

(Supplementary Figure 5) which combined data analysis options and model 

hyperparameters in its search space. Pipeline training automates the training process 

including data analysis and hyperparamater tuning and optimizes the model 

considering different configurations of the parameters of the search space of the 

pipeline. 

We used a workstation (CPU = Intel® Xeon® W-2295, RAM = 256 GB) and a 

Python script (Python 3.9.7) to tune the parameters of the pipeline’s search space. 

Through this, 10,368 combinations of parameters were investigated (Supplementary 

Table 5) and the best pipeline parameters were selected. For data analysis, we 

selected data resampling and data scaling to be investigated since the size and 

distribution of both inputs and outputs are important for the success of the model 

training step. As for the model hyperparamaters, we selected the parameters 

describing the design of the DL models (i.e., the width and depth of the hidden layers 

as well as the trend of the variation of the number of hidden neurons per layer), the 

regularization terms, the type of the optimizer algorithm, the activation functions of 
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the hidden layers and output layer, and the application of batch normalization. We 

used the search methods of cross-validation grid search from scikit-learn (version 

1.1.1) to systematically iterate over the predefined values of the search space 

parameters (see the supplementary document for a more in-depth discussion of the 

methods). 

The overall performance of the model was assessed by characterizing its ability 

to generalize from the training dataset to the test dataset to avoid both under- and 

overfitting. To avoid overfitting, we used k-fold cross validation (CV) that divides 

the training dataset into U smaller sets. We used 3-fold CV, meaning that each set 

equals 33% of the training dataset. Note that 10% of the overall dataset was kept as 

the test dataset for final model evaluation.  

We selected MSE (Equation (1)) as the loss function of the model to ensure that 

the regression line changes only slightly for a modest change in the data point. For 

the evaluation of the model training, we used the coefficient of determination (Å+) 

(Equation (2)) which indicates the amount of target variance explained by the 

model's independent variables. 

 MSE = #
l ∑ (�3 − �âã)+l3o# ,  (1) 

Å+ = 1 − ∑ (�6	�äã )07681
∑ (�6	�§)07681

, (2) 

where n is the size of the dataset, �3 is the ith real target, �âã  is the corresponding 

predicted value, and �§ is the mean value of � (�§ = #
l ∑ �3l3o# ). 

Deep generative model: We trained a deep generative model that allows for 

the inverse design of RN unit cells. This model is based on CVAE and follows a 

similar approach as in a number of previous studies27,38. The key difference between 

CVAE and VAE is that CVAE can incorporate certain conditions into the training 

process38,39. Here, the additional conditions concern the elastic properties of the RN 

unit cells. Two deep neural networks were utilized as the sub-models of the CVAE, 
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each with a structure purposefully built for their specialized roles. More specifically, 

they are a recognition network and a reconstruction network which are coupled in an 

encoder-decoder format (Figure 2a). The recognition model transfers the designs of 

the RN unit cells as well as their corresponding elastic properties into a low-

dimensional, continuous, and ordered latent space28. The reconstruction model uses 

the four elastic properties and the latent variables to recreate the binary vector 

representing the metamaterial design. After the successful training of the CVAE, the 

reconstruction model was separated and used as the deep generative model. The 

input to this deep generative model was the desired elastic properties of the RN unit 

cell as well as a random sampling from a normal distribution with the same 

dimensions as the latent space.  

The loss function that we utilized to train the CVAE (ℒiæ|t) was obtained from the 

loss function of a standard VAE (ℒæ|t) with conditional information included. The 

loss function of VAE consists of two terms, the reconstruction error and the 

Kullback-Leibler (KL) term, and is given as32,38,39: 

ℒæ|t  =  �[�çèÆ(�|é)] − (¥<[�(é|�) ∥  Æ(é)], (3) 

where � represents an expectation value, Æ and � are probability distributions, 

(¥< represents the KL divergence, � is the binary vector representing the RN unit 

cells, and é represents the latent variables. �(é|�) and Æ(�|é) are approximated by 

the recognition and reconstruction models, respectively. The incorporation of the 

conditional information into the loss function of the VAE modifies the loss function 

of CVAE as follows38,39: 

ℒiæ|t  =  �[�çèÆ(�|é, �)] − (¥<[�(é|�, �) ∥  Æ(é|�)], (4) 

where � is a condition vector that plays an active role in both the encoding and 

decoding operations. The condition vector in our model contains the elastic 

properties of the RN unit cells.  
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To assess the elastic properties of the generated RN unit cells and as a 

regularisation term to the overall loss function30, the pre-trained “unit cell elastic 

properties model” that predicts the elastic properties of the RN unit cells was 

incorporated into the overall loss function (ℒmAA). ℒmAA for the training of the deep 

generative model contains the terms that account for the configuration of the latent 

space, the reconstruction of the input metamaterial design, and the retrieval of the 

desired elastic properties from the generated RN unit cells. For the retrieval of the 

desired mechanical properties from the reconstructed RN unit cells, MSE is 

considered as the loss function, ℒëËt. Therefore, the total loss function for the deep 

generative model (Equation (5)) include those corresponding to the CVAE (ℒiæ|t) 

and the MSE (ℒëËt) between the target and predicted elastic properties of the 

reconstructed RN unit cells. 

ℒmAA  = ℒiæ|t + ℒëËt (5) 

To train a CVAE with an optimal fitting and a lower dimension of the latent 

space, we used the same hyperparamater tuning pipeline as for the unit cell elastic 

properties model. Some assumptions were made based on the best resulting 

parameters for the unit cell properties model. Identical hyperparameters as for the 

unit cell elastic properties model were used in the data processing steps. 

Additionally, the Adam optimizer was preselected, having outperformed the 

RMSprop optimizer in the training of the "unit cell properties model". In total, 6144 

combinations of parameters were tested through the hyperparameter optimization 

method with a running time of approximately 1341 minutes (~23 hours) 

(Supplementary Table 7). For the validation of the elastic properties arising from the 

generated RN unit cells and as a regularization term to the overall loss, the pre-

trained unit cell elastic properties model was used as a forward predictor of the elastic 

properties of the RN unit cells (�##, �++, -#+, and -+#). 

For the evaluation of the trained CVAE (Supplementary Figure 8) with the help 

of the test dataset, we visualized the latent space to see if it is well-clustered. 
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Moreover, we used the relevant performance metrics (i.e., Confusion matrix, 

Precision, Recall, and e# score) for the same purpose. To visualize the latent space 

(Supplementary Figure 9a) where the metamaterial design is encoded, the t-

distributed stochastic neighbor embedding (t-SNE) approach was used to reduce its 

dimension to two. In addition to capturing the relevant information regarding the 

design of RN structures, the latent variables need to capture some information 

regarding the elastic properties of the designs. As a result, elastic properties are 

examined and distributed inside each geometric cluster. Because elastic properties 

are continuous and, thus, cannot be split into categories, they were manually 

classified according to certain specific criteria to investigate if the latent space can 

identify distinct Poisson’s ratios to a satisfactory degree. The targets of the elastic 

properties are assigned to three classes: 0 for auxetic metamaterials, 1 for 

conventional metamaterials, and 2 for double-auxetic metamaterials. The binary 

multilabel class output is assessed in the case of unit cell representation 

reconstruction. This is accomplished by calculating the weighted average of the 

actual and predicted classes for each sample in the test dataset. The confusion matrix 

shows, in a sample-wise manner, the summary of the prediction results of the 

classification problem with each row corresponding to the actual class and each 

column corresponding to the predicted one. This matrix was then used to assess the 

classification accuracy of the model. 

For the evaluation of the model training, the e# score (Supplementary Figure 

9b) was chosen as the evaluation index of the introduced RN reconstruction, and the 

predicted elastic responses of the returned structures were evaluated using Å+. The 

e# score is mainly established for binary classification tasks with the values 1 and 0 

corresponding to the best and worst performances, respectively. The e# score may 

be considered a weighted harmonic mean of the precision and recall, where the 

recall and precision are both equally essential (Equation (6)). Intuitively, precision 

is the proportion of the true positive cases among those labelled as positive by the 
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model and recall is the proportion of the positive instances among the total number 

of positive examples including : 

e# = +×íîJïðð×ñíîJEDEKF
íîJïððCñíîJEDEKF  , where recall = òó

òóCôõ , precision = òó
òóCôó, (6) 

where TP is true positive, FN is false negative, and FP is false positive. 

Size-agnostic model: To predict the elastic properties of the combinatorial 

designs composed of RN unit cells with given dimensions, we trained a forward 

predictor model referred to as the “size-agnostic model”. This model aims to learn 

the mapping from the space of combinatorial designs composed of (# × (+ 

repetitions of RN unit cells (where (# and (+ are the number of  the repetitions of a 

RN unit cell along directions 1 and 2, respectively, and are assumed to be an even 

value in the range of (2 − 20)) to the space of their elastic properties (i.e., �##, �++, 

-#+, and -+#). A binary vector representing the RN unit cells combined with the 

vectors (# and (+ were introduced to the model as inputs. The model returned the 

elastic properties of the combinatorial design as its output. Before training the model, 

we used the same hyperparameter tuning pipeline as described above for the unit cell 

elastic properties model to optimize the hyperparamaters of the model 

(Supplementary Table 11). We assumed MSE (Equation (1)) as the loss function of 

the model and used Å+ (Equation (2)) and MSE (Equation (1)) for the evaluation of 

the trained model. 

6.2.3. Experiments  

We selected six RN unit cells (Figure 1b and 1c) and four combinatorial designs 

(Figure 3d) to be 3D printed and mechanically tested. We used selective laser 

sintering (SLS) for printing these lattices using a commercially available material 

(i.e., Oceanz Flexible TPU). We attached the 3D printed specimens to the testing 

machine using a designed pin and gripper system that was 3D printed using a fused 

deposition modeling (FDM) 3D printer (Ultimaker 2+, Geldermalsen, the 
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Netherlands) from polylactic acid (PLA) filaments (MakerPoint PLA, 750 gr, 

Natural). We used a mechanical testing machine (LLOYD instrument LR5K, load 

cell = 100 N) to perform axial tensile loading test on the specimens (stroke rate = 

1 mm/min) along directions 1 and 2. The stress-strain curves were then obtained 

based on the applied displacements and the recorded reaction forces. Stress and strain 

values were calculated by dividing the force by the initial cross-section area and 

dividing the crosshead displacements by the initial length of the specimen, 

respectively. The overall stiffness of the specimens along directions 1 and 2 (i.e., 

�## and �++) were then calculated as the slope of the stress-strain curves. To 

calculate the Poisson’s ratios (i.e., -#+ and -+#) of the specimens, we performed 

image analysis using a custom-made MATLAB code.  Towards this aim, we used a 

digital camera to capture the lateral deformations of the specimens to measure the 

transverse strain at the different steps of the applied longitudinal displacement. 

Finally, the Poisson’s ratio was calculated as - = − /°±²7u
/²³6²´

, where  ,¶·ml� and ,my3mA 

were calculated in the same way as in the computational models. 

6.3. Results and discussion 

6.3.1. Elastic properties of RN unit cells  

For the first module, we considered RN unit cells composed of 16 nodes 

(:y ×  :�, :y = :� = 4) because this number of nodes allows for a broader range 

of elastic properties when compared to larger sizes of RN unit cells (Supplementary 

Figure 2 and Supplementary Table 1), as well as a higher chance of extreme negative 

and extreme positive Poisson’s ratios (Supplementary Table 2). For this number of 

nodes, it is possible to generate unit cells with average nodal connectivity values of 

~ß = 2.5, 3, 3.5, 4, and 4.5. Depending on the ~ß value, the number of beam-like 

elements in the RN unit cells varied between 20 and 42 (Figure 1a). It should be 

noted that the total estimated number of unit cells that can be generated, whether 

they abide by the design limitations or not, considering the above-mentioned values 
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of ~ß is ≈ 9.22 × 10## (Supplementary Table 3). Assuming that the average 

simulation time per design equals ≈ 5.42 × 10	a s (Supplementary Figure 3), it 

takes approximately 497 million seconds (= 5761 days) (Supplementary Table 3) 

to perform FE analysis on all these RN unit cells. The huge number of possible 

designs highlights the need to have an ultra-fast model to predict the elastic 

properties of the RN unit cells. 

We performed FE analysis on 6 million randomly generated RN unit cells (i.e., 

1.2 million unit cells from each group of ~ß) as the training group. The elastic 

properties in directions 1 and 2, which were calculated by FE modeling of these unit 

cells, cover a cone-like region with a range of (0 , 0.25) and (−1.5 , 1.2) for the 

relative elastic moduli (�## /�I and �++ /�I , where �I is the elastic modulus of the 

bulk material) and Poisson’s ratios (-#+ and -+#), respectively (Figure 1b). The 

distributions of the relative elastic modulus and Poisson’s ratio in directions 1 and 

2 had similar ranges of values. Moreover, the results show that the RN unit cells are 

highly anisotropic. The broad range of the elastic properties is due to the possibility 

to generate both stretching- and bending-dominated structures using random 

distributions of elements as well as by changing ~ß. These results confirm that it is 

possible to devise RN unit cells with extreme positive and extreme negative values 

of the Poisson’s ratio as well as rare-event19 double-auxetic unit cells.  

We selected six unit cells from the different groups of elastic properties, i.e., 

almost extreme positive and negative values of the Poisson’s ratio in one direction, 

almost extreme double-auxeticity, almost extreme elastic moduli in both directions, 

and moderate positive and negative values of the Poisson’s ratio as well as moderate 

values of the elastic moduli in both directions (Figure 1b). To validate the results of 

our simulations, we 3D printed and experimentally evaluated the elastic properties 

and deformation patterns of these six unit cells. The experimentally obtained values 

of the elastic moduli (see the stress-strain curves in Supplementary Figure 4) and 

Poisson’s ratios show a good agreement with FE simulations (Supplementary Table 
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4). Moreover, the deformation patterns follow similar trends in both simulations and 

experiments (Figure 1c). In some elements within the FE models, we see higher 

levels of deformations predicted by FE models as compared to those observed 

experimentally. These small differences may be explained by the assumptions of the 

FE models, including a linear elastic constitutive behavior and fully fixed boundary 

conditions. 

We trained a DL model, hereafter referred to as the “unit cell elastic properties 

model” that predicted the four elastic properties of any RN unit cell given its design 

(Figure 1d). Based on the results of our hyperparameter tuning pipeline, the 

applications of an undersampling process and a MinMaxScaler to the cross-

validation data resulted in the best model performance. The hyperparameter tuning 

suggested a model with four hidden layers (500, 376, 252, and 128 hidden neurons 

in subsequent layers) without a regularization term, with Adam optimizer40, and with 

ReLU activation functions throughout the layers (Supplementary Table 5). Within 

200 epochs of model training with the optimized hyperparameters, the mean squared 

error (MSE) and the mean absolute error (MAE) reduced for the training dataset from 

9.5 × 10	a and 2.0 × 10	+ to 1.5 × 10	d and 2.7 × 10	W, respectively. For the 

validation dataset, the values of MSE and MAE reduced from 3.7 × 10	a and 

1.4 × 10	+ to 1.6 × 10	d and 2.6 × 10	W, respectively (Supplementary Figure 6). 

The evaluation of the trained model using the test dataset resulted in a coefficient of 

determination (Å+) of >0.993 and >0.999 for the Poisson’s ratios and elastic moduli, 

respectively (Supplementary Table 6 and Supplementary Figure 7). In general, the 

trained model exhibited a high degree of accuracy in predicting the elastic properties 

of the RN unit cells with an overall coefficient of determination (Å+) of 0.997, an 

MAE of 3.6 × 10	W, and an MSE of 6.0 × 10	d (Supplementary Table 6 and 

Supplementary Figure 7).  
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Figure 1. A schematic illustration and elastic properties of the RN unit cells. (a) Each RN unit 

cell has a fixed horizontal and vertical distance of  ∆� = ∆� = 7.5 mm. Assuming a grid of 4 × 4 

nodes, the overall dimensions of each unit cell is � = � = 22.5 mm. Based on the defined overall 

connectivity, ~ß, the applicable number of beam-like elements were randomly distributed within the 

structure. (b) The elastic properties (i.e., �##/�÷, �++/�÷, -#+, and -#+) calculated for the RN unit cells 

using FE analysis. (c) The deformation patterns of six RN unit cells under two loading conditions of 

,## = 5% and ,++ = 5% as predicted by FE analysis and observed in the mechanical tests on the 3D 

printed specimens. (d) The network architecture of the trained unit cell elastic properties model, which 

maps the design of the unit cell to their elastic properties. 
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All these results show that the model is well trained without underfitting and 

overfitting and can, therefore, be further used for highly accurate, deterministic 

prediction of the elastic properties of various RN unit cell designs. The availability 

of such a model allows for the ultrafast prediction of the elastic properties associated 

with any design of RN unit cells with the evaluation of the DL model taking ≈
2.44 × 10	d s per design (for prediction of 10
 specimens), which is > 20 times 

faster than the corresponding FE simulation. 

6.3.2. Generative inverse design framework 

For the inverse design of RN unit cells, we trained a deep generative model 

based on the CVAE that was paired with the pretrained forward predictor (i.e., the 

unit cell elastic properties model) (Figure 2a). Based on the results of the 

hyperparameter tuning, the size of the latent space was chosen to be 8. For both 

recognition and reconstruction models of the CVAE, we selected two hidden layers 

with 512 and 260 neurons, an Adam optimizer, and ReLU activation functions 

throughout both hidden layers. ReLU and Sigmoid were selected as the activation 

functions of the output layer for the recognition and reconstruction models, 

respectively (Supplementary Table 7 and Supplementary Figure 8). 

The reconstruction model of the trained CVAE was separated and called “unit 

cell generative model”. To assess the generative ability of this model, the elastic 

properties of the test dataset and a random sampling from a normal distribution 

(,~p(0,1)) were passed as inputs to this model. The predicted unit cell structures 

were passed as inputs to the unit cell elastic properties model and the predicted elastic 

properties were compared with the initially requested elastic properties of the test 

dataset. The results of this comparison showed an overall coefficient of 

determination (Å+) of 0.865, an MAE of 5.1 × 10	+, and an MSE of 8.5 × 10	W 

(Supplementary Figure 9c and Supplementary Table 8). To assess the best 

achievable accuracy among the designs generated by the unit cell generative model, 

one hundred possible designs were generated for each set of elastic properties present 
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in the test dataset. Then, the elastic properties of the generated unit cells were 

compared with the desired mechanical response provided to the model through the 

calculation of the regression metrics Å+, MSE, MAE, and RMSE. The best candidates 

were then selected among the 100 possible designs. Based on the proposed 

approach, the final evaluation of the unit cell generative model showed an overall 

Å+ of 0.977, an MAE of 1.2 × 10	+, and an MSE of 3.0 × 10	a (Supplementary 

Figure 9d and Supplementary Table 9). In addition, the high accuracy of the unit cell 

generative model in generating new RN unit cells was demonstrated by comparing 

the DL-predicted elastic properties of the generated unit cells with their 

corresponding FE results (Supplementary Figure 10). Based on this comparison, Å+ 

of 0.98, 0.98, 0.99, and 0.99 were calculated for -#+, -+#, �##, and �++, respectively 

(Supplementary Figure 10). 

6.3.3. Unit cells with requested rare elastic properties 

To demonstrate the generative ability of the unit cell generative model, grid-

sampled values of double-auxetic elastic properties, which are rare occurrences in 

the natural sampling of random networks21, were created and fed to the deep 

generative model. For each request, the elastic properties were defined as a 

combination of -#+ and -+# in the range of (−1, −0.1) and an equal elastic modulus 

along both directions with values within the range of �##/�I = �++/�I = (0, 0.25). 

For each input, the best design out of a 100 designs was selected. The four elastic 

properties of the generated unit cells predicted by the unit cell properties model are 

reported in a 3D scatterplot incorporating color coding for the fourth property 

(Figure 2b). To explore the expansion offered by the deep generative model over the 

observed elastic properties in the initial library (i.e., the training and test datasets), 

the existing elastic properties in the dataset and the non-duplicate values from the 

generative process were compared (Figure 2b). From the 3D scatterplot, we can see 

that the envelope of the achievable elastic properties is expanded in all three planes 

(i.e., planes of -#+ − -+#, �##/�I − -#+, and �##/�I − -+#). The top view of the 3D 
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scatterplot, which shows the expansion of the envelope in the -#+ − -+# plane, 

reveals the possibility of generating unit cells with extreme double-auxetic properties 

(Figure 2b). In general, these results confirm the ability of the deep generative model 

to generate unit cells with new elastic properties that were not within the envelope 

of the elastic properties covered by the initial (i.e., training) library. The deep 

generative model is, therefore, of value for the efficient generation of unit cells with 

predefined elastic properties, specially rare-event properties, such as double-

auxeticity.  

As case studies, we selected four sets of elastic properties (I, II, III, and IV) with 

negative values of the Poisson's ratio and different Young’s moduli (see the top 

views in Figure 2b) to illustrate the generated unit cells corresponding to these cases. 

For the elastic properties of case IV, three generated candidates are displayed to 

demonstrate the possibility of generating different designs exhibiting similar sets of 

elastic properties. The deformation patterns of these unit cells (when subjected to 

5% strain along directions 1 and 2) were compared to the initial state of the 

generated unit cell (Figure 2c). The calculated error values averaged over the four 

components of the elastic properties were 8.3%, 8.6%, 3.6%, and 3.1% for unit cells 

I, II, III, and IV, respectively (Supplementary Table 10). These case studies show a 

high degree of accuracy of the deep generative model when used for the design of 

double-auxetic unit cells with elastic properties that were not seen before in the 

training or test datasets. 
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Figure 2. The unit cell generative model and its ability to generate new RN unit cells. (a) The 

reconstruction part of CVAE is referred to as the “unit cell generative model” to generate RN unit cells 

given the target elastic properties. The elastic properties of the generated unit cells are further predicted 

by the unit cell elastic properties model for final filtering. (b) A demonstration of the ability of the unit 

cell generative model to generate new unit cells with given elastic properties which were not present in 

the initial library. Cross-sections are presented to more clearly visualize the generated unit cells with 

new elastic properties. (c) The deformation pattern of three specimens (i.e., I, II, III) with new elastic 

properties not present in the original library. Moreover, a group of specimens (i.e., IV) are presented to 

show the ability of the trained model to generate specimens with similar elastic properties. 
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6.3.4. Elastic properties of combinatorial designs  

We studied combinatorial designs composed of (# × (+ repetitions of RN unit 

cells (Figure 3a). Assuming (# and (+ are values varying in a range of (2, 20), we 

studied a total of 100 combinatorial designs from each RN unit cell. We used the 

undersampled dataset of RN unit cells (dataset size = 81,569), which was used for 

the training of the unit cell elastic properties model and performed numerical 

simulations for all the 100 combinatorial designs composed of these RN unit cells 

(size of dataset = 8,156,900). The generated dataset was further used to train a 

forward predictor called “size-agnostic model” that predicts the elastic properties of 

the combinatorial designs (Figure 3a).  

To train the model, we assumed MinMaxScaler as the scaling method, ReLU as 

the activation function of all the hidden layers as well as of the output layer, and 

Adam as the optimizer with a learning rate of 0.0001, which were adopted from the 

hyperparameter tuning step of the unit cell elastic properties model. The 

hyperparameter tuning step of the deep generative model resulted in 6 hidden layers 

with 512, 428, 343, 258, 174, and 89 neurons, respectively (Supplementary Table 

11). Within 200 epochs, the prediction errors (MSE, MAE) reduced from MSE =
4.7 × 10	W and MAE = 2.9 × 10	+ to MSE = 1.6 × 10	d and MAE = 2.9 ×
10	W for the training dataset and from MSE = 4.1 × 10	W and MAE = 1.4 × 10	+ 

to MSE = 1.7 × 10	d and MAE = 3.0 × 10	W for the validation dataset 

(Supplementary Figure 11). The trained model had an overall Å+ of 0.995 for the 

test dataset (10% of the original dataset), confirming that it can accurately predict 

the elastic properties of the combinatorial designs (Supplementary Table 12 and 

Supplementary Figure 12). 

Combinatorial designs showed a wide range of elastic properties. The relative 

elastic moduli (�## /�I and �++ /�I ) and Poisson’s ratios (-#+ and -+#) calculated 

by the numerical simulations were in the ranges of (0 , 0.3) and (−2 , 3), respectively 

(Figure 3b). The 3D distribution of the elastic properties of the combinatorial designs 
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resembled a square pyramid with inwardly curved faces whose base is placed within 

the -#+ − -+# plane. The distribution of the elastic properties in the -#+ − -+# plane 

was bounded by two hyperbolas, one with openings in the first and third quadrants 

and the other one with openings in the second and forth quadrants.  

To study how the elastic properties vary with (# and (+, we selected one of the 

RN unit cells and depicted the evolution of the four elastic properties as a function 

of changes in (# and (+ (Figure 3c). We found a nonlinear relationship between the 

elastic properties and dimensions of the combinatorial designs of this unit cell that, 

as expected, saturates for large enough numbers of unit cells along each spatial 

direction (Figure 3c and Supplementary Figure 13). For this selected RN unit cell, 

�##/�I, �++/�I, -#+, and -+# converge towards 0.020, 0.048, 0.05, and 0.5, 

respectively (Supplementary Figure 13). Based on a preliminary study we performed 

on the combinations of RN unit cells, we selected (# =  (+ = 20 as the maximum 

size of combinatorial designs due to the saturation of the elastic properties for larger 

numbers of unit cells (Supplementary Figure 13). To validate the results of our 

simulations, the elastic properties and deformation patterns of four selected 

combinatorial designs were determined experimentally (Figure 3d). The mechanical 

tests on these specimens indicated that the deformation patterns follow the same 

trends as observed in the simulations. The mismatches between the simulations and 

mechanical tests can be attributed to the assumptions used in the simulations (e.g., a 

linear elastic constitutive equation), the differences between the experimental and 

simulated boundary conditions, and manufacturing imperfections. 
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Figure 3. A schematic illustration and elastic properties of the combinatorial designs as well as 

the network architecture of the size-agnostic model. (a) Each combinatorial design with a given 

dimension ((# × (+) is created by repeat filliping a specific RN unit cell (# times vertically (along 

direction 1) and (+ times horizontally (along direction 2). The vectors containing (# and (+ and the 

binary vectors representing the design of the unit cells are introduced to the size-agnostic model as 

input. The model then returns the predicted elastic properties of the combinatorial design as output. (b) 

The envelope of the elastic properties achieved by the combinatorial designs, according to direct FE 

simulations. (c) The evolution of the elastic properties as functions of (# and (+ for a specific case 

study. (d) The deformation patterns of four combinatorial designs subjected to the following loading 

conditions: ,## = 5% and ,++ = 5% using FE analysis and experimental tests. 
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6.3.5. Inverse design of lattice structures with requested elastic 

properties and dimensions  

We combined the unit cell generative model and the size-agnostic model to 

develop a comprehensive and powerful framework called Deep-DRAM, which can 

inversely design lattice structures with given elastic properties and dimensions. 

Given the requested elastic properties, we first used the deep generative model to 

generate 10d RN unit cells. It takes the deep generative model 5.7 ± 0.1 s on a 

workstation (see the Methods section for the specifications) to generate these unit 

cells. Since the returned unit cell structures would vary in their design and 

mechanical response, they can deviate from the requested set of elastic properties. 

This is, in fact, an advantage of such a generative model because the actual elastic 

properties of a lattice structure with a finite (anisotropic) number of unit cells along 

each spatial direction may be quite different from the unit cell properties. The 

presence of such natural variations in the elastic properties of the generated unit cells 

enables us to feed a large number of designs created by the deep generative model 

to the size-agnostic model that is trained to account for the effects of size along each 

direction. Then, all these generated unit cells together with the  desired dimensions 

are introduced to the size-agnostic model to predict the elastic properties of these 

combinatorial designs. Finally, the MSE values showing the difference between the 

target properties and the final elastic properties of the generated combinatorial 

designs are calculated. Based on the error values, we selected the designs that best 

matched the target elastic properties for the given dimensions (Figure 4a). 

To demonstrate the functionality of Deep-DRAM, we assumed a constant value 

for the elastic modulus (i.e., �##/�I = �++/�I = 0.03) and a range of (−1, 1.6) for 

the Poisson’s ratios with a step size of 0.2 (i.e., 14 groups of values for the Poisson’s 

ratios). In total, we studied 196 (i.e., 14 × 14) sets of elastic properties. We also 

predefined a dimension of (# =  (+ = 4 for the generated combinatorial designs. 

Using these predefined values, 1.96 × 10À combinatorial designs were generated 
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and filtered based on their MSE values. The whole design procedure including the 

inverse design of the RN unit cells, combining the unit cells into combinatorial 

designs, prediction of the elastic properties of the combinatorial designs, and finding 

the best candidates based on the calculated MSE values took ≈38 min (for all the 

1.96 × 10À designs) using the same, above-described computer. A few examples of 

generated RN lattice structures with predefined elastic properties and dimensions are 

presented in Supplementary Movie 1 (RN lattice structures with negative Poisson’s 

ratio) and Supplementary Movie 2 (RN lattice structures with positive Poisson’s 

ratio). 

To quantify the expected error values for the design of combinatorial designs 

with different elastic properties and dimensions, we repeated the aforementioned 

procedure for 196 selected sets of elastic properties considering two groups of 

dimensions. In the first group, we predefined equal dimensions (i.e., (# =  (+ =
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]) while in the second group we assumed (+ = 2 and 

(# = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]. We defined the envelope of successful 

designs such that it was bounded by the designs corresponding to an MSE value of 

0.1. The heat maps of the MSE values depict the expected error values for generating 

combinatorial designs when the elastic properties and dimensions are provided as 

input (Figure 4b). The gray regions represent the designs whose elastic properties 

are associated with MSE values exceeding the acceptance threshold (Figure 4b). 

Upon closer inspection, we found that the gray regions primarily correspond to the 

property-size combinations that simply cannot arise from the considered random 

network. As expected, the envelopes of successful design generations converge for 

large enough values of (# and (+ (Figure 4b). For larger sizes, the heat maps of MSE 

values for combinatorial designs with (# =  (+ are symmetrical around the -#+ =
-+# line. This increased symmetry indicates a more isotropic behavior of RN 

combinatorial designs as their dimensions increase. In the other group of the 

combinatorial designs with (+ =  2 and varying (# values, we do not expect isotropy 

because the ratio of (#/(+ increases and the geometry is not symmetric anymore. 
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Figure 4. The structure of Deep-DRAM as a size-agnostic inverse design framework. (a) In this 

framework, the deep generative model and the size-agnostic model are combined to generate 

combinatorial designs with desired elastic properties and dimensions. The best candidates among the 

generated combinatorial designs are then selected based on their MSE values. (b) The heat maps of the 

MSE values indicating the expected error values for generating combinatorial designs with predefined 

elastic properties and dimensions. 

6.3.6. Stress distribution  

Deep-DRAM provides many solutions to the design problem of finding RN 

lattice structures with pre-defined dimensions and elastic properties. It is, therefore, 



Chapter 6-Size-agnostic inverse design of random networks  

158 

 

possible to apply additional design requirements, such as criteria regarding the stress 

distributions observed within the generated structures under various types of loading 

conditions. One such criterion is to choose the design with the minimum peak stress, 

thereby enhancing their resistance against fatigue and failure. To demonstrate the 

utility of our size-agnostic inverse design framework within this context, we first 

generated combinatorial designs with predefined elastic properties and dimensions. 

We then filtered the generated designs based on their maximum von Mises stress 

(Figure 5a) (see Supplementary Movie 3). As representative cases, we studied three 

groups of combinatorial designs with predefined specifications: (i) (# = (+ = 4, 

-#+ = −0.2, and -+# = 0.2, (ii) (# = 10, (+ = 4, -#+ = -+# = 0.5, and (iii) (# =
(+ = 10, -#+ = -+# = −0.2, while the elastic modulus was assumed to be the same 

for these three groups (i.e., �## /�I =  �++ /�I = 0.03). From each group, the first 

1000 designs with MSE < 0.1 were further analyzed using FE simulations to 

determine the stress distribution within their elements under two loading conditions 

(i.e., ,## = 5% or ,++ = 5%). The normalized peak values of the von Mises stress 

in directions 1 and 2 were then calculated (Figure 5b). From each group, we selected 

two specimens with almost the same MSE but with either the minimum or maximum 

Euclidean distance from the origin. The stress distributions corresponding to these 

case studies clearly show stress concentrations in some regions within the specimens 

with the maximum Euclidean distances (i.e., specimens 2, 4, and 6) while the stress 

distribution are comparatively more uniform within specimens 1, 3, and 5 (Figure 

5c). The specimens with high peak stresses are prone to premature crack initiation  

and growth and should be avoided in the design of mechanical metamaterials aimed 

for practical applications. Further analysis of these results shows 310%, 250%, and 

270% differences between the maximum and minimum values of the von Mises 

stresses of the three study groups, which are very substantial numbers within the 

context of peak stress reduction analysis. 
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Figure 5. Multi-objective design where the minimization of peak von Mises stresses is considered 

as an additional design requirement. (a) Finding the optimized combinatorial designs based on the stress 

values of the elements of the lattice structure (see Supplementary Movie 3). (b) For each group of 

representative cases, the normalized peak von Mises stresses when the structure was subjected to a 

strain of ,## = 5% are plotted against the same type of stress when the applied stain is ,++ = 5%. (c) 

The stress distributions of the elements of some selected combinatorial designs. 
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6.4. Discussion and future outlook 

The Deep-DRAM framework presented here is a combination of four modules 

and provides many opportunities for the design of mechanical metamaterials for 

practical use in the design of advanced functional devices. In addition, the presented 

modular approach allows the individual modules to be combined with other tools 

available elsewhere to provide solutions for the many challenges encountered in the 

design of designer materials. To a degree, the modularity of this approach and the 

probabilistic nature of the CVAE allows us to decouple some of the problems 

encountered in the design and optimization of mechanical metamaterials, thereby 

enabling multi-objective design optimization with minimum development and 

computational costs. For example, the multiple objectives of achieving a certain set 

of elastic properties and minimizing the peak stress within the structure can be 

handled in-series with minimum computational costs. That is partially due to the 

extremely high speeds of both generating and evaluating individual designs, which 

are in the range of micro-seconds. 

There are a number of points that need to be discussed regarding the broader 

use of Deep-DRAM. First, while we focused on a specific choice of RN for this 

study, the same methodology can also be used for any underlying design paradigm 

including any other types (i.e., size, organization) of random structures as well as 

ordered structures and a combination thereof. Second, the modular design of our 

approach as well as its ad hoc combination with direct FE modeling affords it a high 

degree of flexibility in terms of taking design requirements into account and tackling 

multiple types of problems that are challenging in their own right. For example, the 

problem of finding rare combinations of elastic properties is treated independently 

in multiple other studies19,41 but can also be studied, within the confines of the 

selected RN design, using the modules developed here. Third, our focus on the linear 

elastic properties meant that we used linear elastic constitutive models everywhere 

in the current study. However, the same approach can be used to study the nonlinear 

properties of RN designs or to consider any other aspects of their constitutive 
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behavior (e.g., viscoelasticity). The only difference would be that the FE models 

need to be modified to reflect the more complex constitutive behavior. Indeed, the 

relative advantage of the presented approach would be even more evident when the 

simulation time is longer, such as the case of nonlinear or viscoelastic constitutive 

behaviors. Fourth, the compact and computationally efficient nature of the final 

models means that they can be implemented in low-resource settings to power edge 

computing42,43 applications. Finally, some elements of the developed modulus (i.e., 

even individual layers) can be used for more advanced machine learning approaches, 

such as transfer learning, to further generalize the domain of application of our 

models.  

6.5. Conclusion 

In summary, we developed a size-agnostic inverse design framework, Deep-

DRAM, which can generate RN lattice structures not only with predefined elastic 

properties but also with predefined dimensions suitable for any intended application. 

We showed that combining deep generative models with forward predictors is 

successful in generating bespoke mechanical metamaterials while also satisfying 

additional design requirements, such as minimum peak stresses, to improve the 

endurance of designer materials for real-world applications. 
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6.6. Supplementary document 

 

Supplementary Figure 1. Random network design filtering. This figure illustrates how the 

connectivity of RN unit cells are checked. A comparison between two different algorithms for the 

detection of non-connected nodes and their time efficiency. The analysis is performed for different node 

sizes (:y = :�). 

 

Supplementary Figure 2. The elastic properties (top row) and the confidence ellipses (bottom 

row) for RN unit cells with different node numbers (i.e., :y =  :� = 3, 4, 5, 6, 7, and 8). �I is the elastic 

modulus of the bulk material 
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Supplementary Table 1. The principal radii (�# and �+) as well as the areas (f) of the confidence 

ellipses presented in Supplementary Figure 2. 

:y
=  :� 

-#+, -+#[−] 
�##/�I , �++
/�I[−] 

-#+, �##/�I[−] -+#, �++/�I[−] 

�# �+ A �# �+ A �# �+ A �# �+ A 

3 0.43 0.41 0.55 0.17 0.15 0.08 0.38 0.16 0.19 0.38 0.16 0.19 
4 0.46 0.41 0.59 0.24 0.11 0.08 0.42 0.19 0.24 0.42 0.19 0.24 
5 0.45 0.37 0.52 0.25 0.08 0.06 0.43 0.18 0.25 0.43 0.18 0.25 
6 0.43 0.34 0.46 0.27 0.06 0.05 0.41 0.19 0.25 0.41 0.19 0.25 
7 0.43 0.32 0.43 0.29 0.05 0.04 0.39 0.2 0.24 0.39 0.2 0.25 
8 0.41 0.35 0.45 0.27 0.04 0.03 0.38 0.18 0.22 0.38 0.18 0.22 

Supplementary Table 2. The probability of finding different ranges of the Poisson’s ratio (%) 

for datasets with different :y and :� values. 

:y=  :� 
-#+. -+# < −0,5 −0,5 ≤ -#+. -+# < 0 0 ≤ -#+. -+# < 0,5 (-#+. -+# ≥ 0,5) 

3 0.00 6.75 92.75 0.50 
4 0.05 6.63 90.47 2.84 
5 0.05 6.01 91.43 2.50 
6 0.04 6.00 91.47 2.49 
7 0.03 5.43 92.51 2.02 
8 0.03 5.17 93.02 1.78 
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Supplementary Figure 3. Time comparison for the direct FE simulations aimed at determining 

the elastic properties of the RN unit cells. 

Supplementary Table 3. The estimated time (considering 5.4 × 10	a s for each RN unit cell) to 

generate all possible RN unit cells with :y = :� = 4. The estimated number of RN unit cells is 

calculated as "tA;´²øùú
tA²´´ = tA²´´!

(tA²´´	tA;´²øùú)! tA;´²øùú! , where, ��mAA  =  :y@:� − 1H + :�(:y − 1) + 2(:y −
1)(:� − 1) , ��zAmüný  =  #

+ ~ß × :y × :�. 

~ß The estimated number of RN unit cells Estimated Time [s] 

2,5 "+$a+ ≈ 5.14 × 10##
 277.447.468 

3 "+aa+ ≈ 3.54 × 10##
 190.996.445 

3,5 "+Äa+ ≈ 5.29 × 10#$
 28.544.524 

4 "W+a+ ≈ 1.47 × 10$�
 794.579 

4,5 "W
a+ ≈ 5.25 × 10$

 2.832 

Total 9.22 × 10##
 497.785.848 
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Supplementary Figure 4. The stress-strain curves for the experimental results of the RN unit 

cells. For the color code of each specimen see Figures 1b and 1c. 

 

Supplementary Table 4. The numerical simulations and experimental results for the elastic 

properties of the RN unit cells. The numerically calculated elastic moduli are normalized to the elastic 

modulus of the bulk material assumed in the FE analysis (�I,{t = 0.6 MPa) while the experimentally 

obtained elastic moduli are normalized with respect to the elastic modulus of the bulk material from 

which the samples were printed (�I,tþ� = 25 MPa). 

Samp

le 

Numerical Simulations Experimental Results 

�#+[−] �+#[−] �##/�I,{t[−]
�++/�I,{t[−] �#+[−] �+#[−] �##/�I,tþ�[−] 

�++/�I,tþ�[−] 

1 −0.58 −0.65 0.048 0.049 −0.39 −0.48 0.048 0.045 
2 0.53 0.46 0.144 0.115 0.59 0.41 0.152 0.133 
3 0.50 −0.49 0.083 0.094 0.20 −0.41 0.091 0.104 
4 −1.18 0.23 0.030 0.074 −0.88 0.54 0.053 0.097 
5 0.35 1.16 0.053 0.028 0.39 0.86 0.084 0.063 
6 0.16 0.16 0.243 0.243 0.31 0.27 0.229 0.209 
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6.6.1. Supplementary methods 

Finite Element modeling 

The element stiffness matrix was transferred to the global coordinate (�n) and 

was calculated as44,45: 

�n = ����n�, (1) 

��n =

t�
(#C�)

⎣
⎢⎢
⎢⎢
⎢
⎡ f(1 + �)/�n
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where ��n is the local element stiffness matrix, and �I, f, [, and �n are the 

elastic modulus of the bulk material, the cross-section area (f = c ) of the element, 

the moment of inertia ([ = c W ⁄ 12) of the element, and the length of the element, 

respectively. � is a dimensionless coefficient that characterizes the importance of 

shear-related parameters including ªI (shear modulus of the bulk material) and �� 

(shear correction factor = 0.85). � is the transformation matrix and contains the 

direction cosines: 

:yy̅ = :��§ = �+ −  �#
�n

, :�y̅ = −:y�§ = �+ −  �#
�n

 (5) 

where �#, �#, �+, and �+ are the element nodal coordinates. The stiffness matrix 

was calculated for all the elements and was assembled into a global stiffness matrix 

(�).  
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The predefined boundary conditions for our displacement control (« = 0) 

analysis are applied as the following boundary condition matrix: 

!� =

⎣
⎢
⎢
⎢
⎡ (�e# (k##)lbýn_#

(�e+ (k++)lbýn_#
(�eW (kWW)lbýn_#
⋮ ⋮

(�eW×l (kWW)lbýn_l⎦
⎥
⎥
⎥
⎤
 (6) 

where the first column shows the number of DOF and the second column shows 

the corresponding predefined displacements. Considering : as the total number of 

nodes and three DOF for each node, we had 3 × : DOF in total. Finally, we used 

solveq function ([w, �] = �ç���¬(�, «, !�)) of CALFEM finite element toolbox45 to 

calculate reaction forces (�) and displacements (w) in all DOF. 
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Hyperparameter tuning pipeline 

 

Supplementary Figure 5. The training pipeline. a) The suggested methodology for the training 

of deep learning models while avoiding the pitfalls of common practice and introducing an extra step 

of optimization in the search of best parameters, b) The data analysis and model hyperparameter options 

for the search space of the hyperparameter tuning procedure. 

Data processing 

Various data processing methods can aid in the successful training of a deep 

learning model. The features have binary values and no further analysis is, therefore, 

required. The distributions of the targets were acquired. It is noticeable that the 

distribution of the Poisson’s ratio for both directions have heavy tails, explained by 

the rarity of the specimens with extreme negative and positive values of the Poisson’s 
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ratios. Furthermore, the Poisson’s ratios and elastic moduli have different ranges of 

values (i.e., -#+, -+# = [−1.5, 1.5] and �##/�I, �++/�I = [0, 0.25]). 
Model training on highly skewed data tends to be misleading and leads to poor 

model performance46. These observations within the tail of the distributions refer to 

rare but useful data samples, such as double-auxeticity or strong auxeticity. In this 

case, the dataset is imbalanced with some data of interest underrepresented. To 

balance out the dataset based on the targets, a data resampling process is proposed. 

Prior to training a deep learning model, the input and output data can be prepared by 

utilizing transformation/rescaling techniques46. Models commonly work more 

efficiently when the inputs have a normal distribution, and it is also shown that the 

transformation of the outputs could help in improving the performance of the 

model46. An input with a variance that is orders of magnitude greater than others may 

dominate the objective function and prevent the estimator from learning from other 

inputs. Output transformation may also aid in the training of the model. Some form 

of output scaling is also suggested to make the model converge more easily, as 

unscaled output variables can cause exploding gradients when dealing with 

regression problems46. Taking into consideration the distribution and the range of the 

targets, the training dataset could be processed accordingly by including the option 

of target-based data resampling and transformation/rescaling options (either as 

output for the forward models or as input for the inverse model) in the search space 

of the hyperparameter tuning pipeline.  

Data resampling: Addressing classification issues for imbalanced data is well-

documented. However, regression training on imbalanced data is not as widely 

studied. Using the same techniques as in other cases is often problematic. Pre-

processing approaches are primarily concerned with oversampling the minority 

samples, undersampling the majority ones, or a combination of both before training 

the regression model47. Oversampling depends on duplicating some data that do not 

have enough representation or fabricating similar data. The simplest technique for 

oversampling is to produce new samples by randomly sampling and replacing 
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existing samples47. Undersampling cuts down the total number of the available data 

points, selecting a roughly similar size of each type of data that needs to be 

represented47. For oversampling, we used the Synthetic Minority Over-Sampling 

Technique for Regression with Gaussian Noise (SMOGN)48, which is beneficial for 

regression problems where the prediction of rare values is of great importance.  

By undersampling the dataset, the model can be trained faster while having 

equivalent information to work with. Undersampling for classification is a much 

easier work due to the explicit segmentation of classes that is specified from the 

beginning. However, in the case of a continuous variable, the areas of resampling 

are more difficult to specify. The binning of the dataset was performed by manually 

selecting the number of “classes” to obtain datasets with a similar number of data 

points. As a preliminary inspection of bin-based undersampling, three bins were 

created for the following ranges of the Poisson’s ratio: −1.5 < � < 0, 0 < � < 0.3, 

and 0.3 < � < 1.5. The second class appeared to be the most common while the 

other two were underrepresented. The results revealed that the initial dataset was 

greatly downsized. To better classify the dataset, samples with relatively similar 

elastic properties were grouped together. The number of samples per each group was 

then kept constant. The values of � and � were rounded to the first and second 

decimals respectively, as smaller variations of the elastic properties can be neglected. 

In that way, multiple tiles can be grouped to have similar elastic properties. The 

frequency of each unique combination of the four elastic properties was then 

calculated. It is clear that there are more duplicates for specific elastic properties. 

Finally, we kept five unit cells for each pair of the elastic properties when available. 

Consequently, a dataset of six million-unit cells reduced to eighty thousand unit 

cells. Both oversampling and undersampling were included in the search space 

considered for hyperparameter tuning. 

Data transformation/scaling: Scaling features to be confined in the range 

between specific minimum and maximum values is an alternative standardization 

method. In the case of multitask regression, normalizing all the targets aids in 
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balancing the training loss from various individual tasks. The rescaling through 

MinMaxScaler and the quantile transformation were included in the search space of 

the hyperparameter tuning pipeline applied before training the model. 

MinMaxScaler transforms features by scaling each feature such that it is in the range 

of [0,1]. Quantile transformer is a class that transforms features and targets to fit a 

uniform or normal distribution, given enough training examples.  

Model hyperparameters 

Training of a deep learning model requires the modification of several 

hyperparameters. Here, we tuned the architecture of the model (including the number 

of hidden layers, the number of hidden neurons per each layer, and the trend of the 

changes of the neurons of different hidden layers), the activation function, the 

optimizer, and the regularization terms as hyperparameters. Then, we created the 

models with the use of Keras TensorFlow API for Sequential Models. The search 

methods of cross-validation grid search from scikit-learn46 were then used to 

systematically iterate among a library of predefined values for the hyperparameters. 

Capacity/architecture of the model: Each model was created from scratch. 

The architecture of a neural network model is modified (i) by the width, determined 

by the number of neurons in each layer and (ii) the depth that is determined by the 

number of layers, and (iii) the trend of the changes of the neurons of different hidden 

layers. The number of neurons in the input layer equals the number of features in the 

data and the number of neurons in the output layer for supervised learning equals the 

number of targets/labels. As there is no predefined formula that guarantees the high 

accuracy of a model without overfitting, we systematically studied different 

combinations of hyperparameters. The parameterized sequential model was built 

based on a function that takes the following as its inputs: the number of hidden layers, 

the input and output size, the width of the first hidden layer, and the trend of the 

variation of the number of hidden neurons per layer (whether the number of neurons 

remains the same throughout the hidden layers or is it gradually decreasing). The 
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width of the other hidden layers is declining by a specific step that is defined as the 

difference between the number of neurons of the first hidden and output layer, 

divided by the number of hidden layers. For the CVAE, a final parameter that affects 

the capacity of the models is the dimension of the latent space. The bottlenecking 

was expected to affect the ability of the reconstruction/inverse model. Therefore, 

various values [2, 8, and 16] were considered for the dimension of the latent space. 

Regularization: When there is no way to expand the data, overfitting can be 

combated by regularization, which is a way to constrain the amount and kind of 

information that the model can hold, forcing the model to focus on the most essential 

parameters to achieve generalization. The most prevalent regularization approaches 

are weight regularization and dropout. Batch normalization can also operate as a 

regulator, decreasing and, in certain cases, eliminating the requirement for dropout. 

The option of batch normalization inclusion after each hidden layer was, thus, 

included in the hyperparameter optimization pipeline. 

Optimizers: Optimizers are the algorithms that are used to minimize losses by 

adjusting the characteristics of the neural network, such as weights and learning rate. 

An optimization algorithm called gradient descent is frequently used to train deep 

learning models. In current deep learning algorithms, three forms of gradient descent 

learning algorithms are used: batch gradient descent, stochastic gradient descent, and 

small batch gradient descent. The simplest, yet widely used optimization approach 

is batch gradient descent. It is extensively utilized in linear regression and 

classification techniques. However, for big datasets, batch gradient descent performs 

redundant computations since it recomputes gradients for comparable cases before 

each parameter change. By completing one update at a time, stochastic gradient 

descent (SGD) eliminates this redundancy. As a result, it is significantly faster. Many 

methods have been proposed for optimizing SGD, among which we selected Adam 

and RMSprop optimizers to be evaluated through the hyperparameter tuning 

pipeline. 
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Activation function: Activation functions are widely utilized because of a few 

desired properties: non-linearity, range, and differentiability. For a universal 

function approximator, nonlinear activations are desirable. Moreover, the function 

should be continuously differentiable for gradient-based optimization approaches to 

be possible. The model's stability and efficiency are influenced by whether the 

function's range is finite or not. Sigmoid, tanh, and ReLU are the examples of popular 

activation functions that fit the selection criteria and were included as options in the 

search space for creating the sequential neural network models. The activation 

functions of hidden layers and the output layer were defined separately. If the range 

of the output activation function is shorter than the range of the dataset values, a 

value cut-off can be detected. For the output layer of the reconstruction model of the 

CVAE, the activation function was pre-set to sigmoid, to output a binary 

probabilistic representation of the vector that describes the designs, which would 

allow the reconstruction part of the overall CVAE loss to be approximated with the 

binary cross entropy.  

Batch size: The batch size is an important hyperparameter, as there is a relation 

between the batch size on the one hand and the speed and stability of the learning 

process on the other. The recommended batch size varies depending on whether the 

learning method uses batch, stochastic, or minibatch gradient descent. Stochastic 

gradient descent algorithms that are selected work in a small-batch mode, sampling 

a subset of the training data, typically 32 to 512 data points. In fact, it has been 

shown that employing a bigger batch dramatically lowers the model's quality as 

measured by its capacity to generalize49. Thus, the batch size was set at 32. 
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Supplementary Table 5. The search space of the hyperparameter tuning pipeline as applied to 

the unit cell elastic properties model. 

Step Process Search Space Selected 

Data 

Analysis 

Resampling 
Undersampling, 

Oversampling 
Undersampling 

Rescaling/transforming 
None, MinMaxScaler, 

Quantiletransformer 
MinMaxScaler 

Model Tuning 

Hidden layers 2 − 5 4 

Neurons 1
st
 hidden layer 20, 100, 500 500 

Trend of neurons 

variations 
Rectangle, Triangle Triangle 

Activation function None, Relu, Tanh Relu 

Last layer activation 

function 
None, Relu, Tanh Relu 

Optimizer Adam, RMSprop Adam 

Step size 0.0001 

Loss function MSE 

Batch normalization Yes, No No 

Targets 4 

Fitting 
Batch size 32 (Default) 

Epochs 200 

Cross-

validation 

K-folds 3 

Data split 60 − 30 − 10 

Scoring Å+ 
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Supplementary Figure 6. The MSE graph for the unit cell elastic properties model. 

Supplementary Table 6. The regression metrics. The evaluation of the unit cell elastic properties 

model using the test dataset. In this table, Å+ is the coefficient of determination (Å+ = 1 − ∑ (�6	�äã )07681
∑ (�6	�§)07681

), 

�¾� is the mean squared error (�¾� = #
l ∑ (�3 − �âã)+l3o# ), �f� is the mean absolute error (�f� =

 #
l  ∑ |�3 − �½3|l3o# ), and Å�¾� is the root mean squared error (Å�¾� = √�¾�), where : is the size of 

the dataset, �3 is the ith real target, �âã  is the corresponding predicted value, and �§ is the mean value of � 

(�§ = #
l ∑ �3l3o# ). 

Index �#+ �+# �## �++ Overall 

Å+ 0.9934 0.9945 0.9997 0.9997 0.9968 
MSE 0.0001 0.0001 0.0000 0.0000 0.0000 
MAE 0.0071 0.0065 0.0004 0.0004 0.0036 

RMSE 0.0114 0.0104 0.0005 0.0005 0.0057 
 

 

Supplementary Figure 7. The evaluation of the unit cell elastic properties model. The prediction 

vs. target values and the coefficients of determination for the test datasets. 
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Supplementary Table 7.  The search space for the training of the CVAE model and the selected 

parameters. 

Step Parameter Search Space Selected 

Recognition 

Model 

Inputs Structures + elastic properties 

Neurons 1
st
 hidden layer 128 ,512 512 

Hidden layers 1 − 4 2 
Trend of neurons variations Rectangle, Triangle Triangle 

Activation function Relu, Sigmoid Relu 

Last layer activation 

function 
Relu. Sigmoid Relu 

Outputs Latent dimensions 

Latent Space 

Dimension 
Size 2,8,16 8 

Reconstruction 

Model 

Inputs Latent Dimensions + elastic properties 

Neurons 1
st
 hidden layer 128,512 512 

Hidden layers 1 − 4 2 
Trend of neurons variations Rectangle, Triangle Triangle 

Activation function Relu, Sigmoid Relu 

Last layer activation 

function 
Sigmoid 

Outputs Structure 

Optimizer Adam 

Step size 0.0001 

Loss function ℒmAA  = ℒiæ|t + ℒëËt 

Batch normalization No 

Fitting 
Batch size 32 (Default) 

Epochs 2000 

Cross-

validation 

K-folds 3 

Data split 60 − 30 − 10 

Scoring ℒmAA  = ℒiæ|t + ℒëËt 
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Supplementary Figure 8.  The network architecture and selected hyperparameters of the CVAE 

model and forward prediction unit cell elastic properties model. The reconstruction model of the CVAE 

is then used to generate unit cells with given elastic properties. 

Forward 

Prediction 
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Supplementary Figure 9. The evaluation of the trained CVAE and the unit cell generative 

model. a) The t-SNE plot of the latent space created by the CVAE, displaying the placement of 

conventional, auxetic, and double auxetic metamaterials. b) The confusion matrix and e1 score for the 

reconstruction of the unit cell through the reconstruction model of the CVAE (i.e., the unit cell 

generative model). c) The prediction error plot and Å+ for the predicted elastic properties of the designs 

generated by the unit cell generative model. d) The prediction error plot and Å+ for the predicted elastic 

properties of the best unit cell candidates from the unit cell generative model. 
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Supplementary Table 8. The regression metrics corresponding to the unit cell generative model 

for the test dataset, as displayed in Supplementary Figure 9c. 

Index �#+ �+# �## �++ Overall 
Å+ 0.8460 0.8489 0.8878 0.8772 0.8650 

MSE 0.0170 0.0168 0.0001 0.0001 0.0085 
MAE 0.0935 0.0932 0.0086 0.0090 0.0511 

RMSE 0.1305 0.1297 0.0011 0.0012 0.0710 

Supplementary Table 9. Test regression metrics for the unit cell generative model as applied to 

the test dataset, displayed in Supplementary Figure 9d. 

Index �#+ �+# �## �++ Overall 

Å+ 0.9672 0.9665 0.9870 0.9868 0.9769 
MSE 0.0006 0.0006 0.0000 0.0000 0.0003 
MAE 0.0207 0.0208 0.0033 0.0033 0.0120 

RMSE 0.0257 0.0258 0.0041 0.0042 0.0151 

Supplementary Figure 10. The error plot and Å+ values for the FEM validation of the DL-predicted 

elastic properties presented in Supplementary Figure 9d. 

Supplementary Table 10. The target, forward predicted, and numerically simulated elastic 

properties of the generated samples displayed in Fig. 2. 

Samp

le 

Target Forward Predicted FEM simulated 

�#+[− �+#[− �##
�I

[− �++
�I

[− �#+[− �+#[− �##
�I

[− �++
�I

[− �#+[− �+#[− �##
�I

[− �++
�I

[−
I −0.2 −1.0 0.03 0.03 −0.2 −1.0 0.02 0.03 −0.2 −1.1 0.02 0.03 
II −0.7 −0.7 0.05 0.05 −0.7 −0.6 0.05 0.04 −0.7 −0.7 0.04 0.04 
III −1.0 −0.2 0.07 0.07 −1.0 −0.2 0.07 0.06 −0.9 −0.2 0.07 0.07 
IV −0.5 −0.5 0.08 0.08 −0.5 −0.5 0.08 0.09 −0.5 −0.5 0.09 0.09 
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Supplementary Table 11. The search space of the hyperparameter tuning pipeline for the 

size-agnostic model. 

Step Process Search Space Selected 

Data analysis Rescaling/transforming MinMaxScaler 

Model Tuning 

Hidden layers 1 − 7 6 
Neurons 1

st
 hidden layer 128,256,512,1024 512 

Network shape Triangle 

Activation function ReLU 

Last layer activation 

function 
ReLU 

Optimizer Adam 

Step size 0.0001 

Loss function MSE 

Batch normalization No 

Targets 4 

Fitting 
Batch size 32, 64,128,256 128 

Epochs 200 

Cross-

validation 

K-folds 3 

Data split 60 − 30 − 10 

Scoring MSE, R+ 

 

 

Supplementary Figure 11. The MSE graph for the size-agnostic model. 
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Supplementary Table 12.  Regression metrics. The evaluation of the size-agnostic model using 

the test dataset. 

Index �#+ �+# �## �++ Overall 

R+ 0.9911 0.9915 0.9996 0.9995 0.9954 
MSE 0.0005 0.0004 0.0000 0.0000 0.0002 
MAE 0.0151 0.0144 0.0005 0.0005 0.0076 

RMSE 0.0214 0.0208 0.0007 0.0007 0.0109 
 

 

Supplementary Figure 12. The evaluation of the size agnostic model. The prediction vs. target 

values and the coefficients of determination for the test datasets are presented. 

 

 

Supplementary Figure 13. 2D plots showing the evolution of the elastic properties based on 

changes in (# and (+ for a representative case. 
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6.6.2. Supplementary movies 

Supplementary Movie 1. Generating random-network metamaterials with 

negative Poisson’s ratio. 

Supplementary Movie 2. Generating random-network metamaterials with 

positive Poisson’s ratio. 

Supplementary Movie 3. Deep-DRAM: Generating RN metamaterials with 

desired elastic properties and dimensions considering the minimization of peak von 

Mises stresses as an additional design requirement. 
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7.1. General discussion 

The central theme of this thesis was the rational design of mechanical 

metamaterials to meet specific design requirements, such as rare-event elastic 

properties, predefined dimensions that fit particular applications, and minimized 

peak stress throughout the lattice structure. We introduced two sources of 

randomness in the design of such materials (i.e., random distribution of hard and soft 

phases in multi-material architected materials and a random arrangement of beam-

like elements in random-network (RN) lattices). To achieve the goal of this thesis, a 

combination of rational design techniques, computational modeling approaches, 

machine learning (ML) models, advanced additive manufacturing technologies, and 

mechanical experiments was employed. The key findings and results of the research 

presented in the previous chapters will be summarized in the following sections 

followed by a general outlook and some recommendations for future research. 

7.1.1. Multi-material mechanical metamaterials 

In the design of mechanical metamaterials, a crucial objective is to separately 

tune both the elastic modulus and Poisson's ratio1. We demonstrated that by 

rationally distributing different materials with different mechanical properties (e.g., 

a soft and a hard phase) in a cellular structure with an auxetic2, zero Poisson’s ratio, 

or conventional unit cells, it is possible to adjust the elastic properties (i.e., elastic 

modulus and Poisson’s ratio) of architected materials. The possibility of tuning the 

Poisson’s ratio in a wide range of values from extremely negative to extremely 

positive opens the door to an extensive set of new functionalities3,4. Through the 

spatial distribution materials with different mechanical properties, it is also possible 

to independently tailor the elastic properties of the material in different directions. 

We can, therefore, use this approach for the rational design of anisotropic mechanical 

metamaterials, allowing them to be optimized for a particular application.  

Our findings, as revealed by the computational models, indicate that the non-

homogeneous strain distributions and localized deformations at the micro-scale are 



7.1. General discussion 

189 

 

the driving forces behind the macro-level observations, including the effective elastic 

properties and asymmetric deformations. Most importantly, adding a hard phase to 

a lattice structure can disrupt the flow of deformation in a lattice structure. The stiffer 

the hard phase is, the stronger this disruption will be. In lattice structures with a large 

positive or negative Poisson's ratio, such a disruption of deformation is unlikely to 

further increase the absolute value of the Poisson's ratio. However, in the case of 

lattice structures with orthogonal unit cells and near-zero Poisson's ratios, any 

(random) disruption of the deformation flow will likely increase the absolute value 

of the Poisson's ratio. There is an equal chance that this random disruption of the 

deformation flow results in a positive or a negative Poisson's ratio. That is why the 

elastic modulus-Poisson's ratio duos exhibited by random multi-material lattice 

structures with orthogonal unit cells are more or less symmetric. 

The rational positioning of  the hard phase in a mechanical metamaterials 

structure can result in significant changes to its Poisson's ratio. The inclusion of a 

hard phase increases the resistance to deformation, resulting in a higher elastic 

modulus. However, the extent of this increase depends on how effectively the hard 

phase is utilized to enhance the load-bearing capacity of the lattice structure in a 

particular direction. By adjusting the load-bearing effectiveness of the hard phase in 

a specific direction, it is possible to tune the elastic modulus of the lattice structure. 

These mechanisms enable independent tailoring of the elastic modulus and Poisson's 

ratio of the lattice structure, regardless of its geometric design. 

Our findings reveal that the spatial distribution of materials within the lattice 

structure can result in a wide range of elastic properties and non-affine deformations. 

The degree of non-affinity, which is a measure of deviation from a homogeneous 

deformation field, was shown to be strongly influenced by design parameters, such 

as θ, ρ	, and E	/ED. The degree of non-affinity increased with ρ	 and reached a 

maximum value before decreasing to zero for a monolithically hard material, 

regardless of the type of the unit cell and applied strain. In addition, the degree of 

non-affinity increases with E	/ED until a saturation point is reached at around 
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E	/ED = 10a. Hard phases with higher stiffness disrupt stress flow more, but for 

extremely large values of E	/ED, the hard phase behaves like a rigid material and 

further increases in E	/ED do not affect stress flow, resulting in the observed 

saturation. There is, therefore, a theoretical ceiling to the extent by which 

deformations in heterogeneous structures can deviate more from those of equivalent 

homogeneous structures. 

Our results show that the degree of non-affinity is also highly correlated to the 

mechanical properties, particularly the Poisson's ratio. A power law relationship was 

observed between the degree of non-affinity and Poisson's ratio in auxetic and 

honeycomb unit cells, which was stronger at higher levels of applied strain. 

However, no such relationship was observed for lattice structures with near-zero 

Poisson's ratios. This observation suggests that achieving high absolute values of the 

Poisson’s ratio in multi-material mechanical metamaterials requires highly affine 

deformations. It was also found that achieving high values of the elastic modulus 

with multi-material mechanical metamaterials is associated with high levels of non-

affine deformations, creating a new type of incompatibility between high values of 

the elastic modulus and high absolute values of the Poisson's ratio. 

We found that lattice structures composed of auxetic unit cells are more 

susceptible to inhomogeneous deformations caused by the presence of high-stiffness 

struts. This is due to the fact that deformations in auxetic unit cells are dominated by 

high stresses concentrated around sharp corners, while stresses are more 

homogeneously distributed in honeycomb and orthogonal unit cells. The high-stress 

concentration zones created by non-affine deformations could accelerate crack 

initiation and lead to premature structural failure5. These effects could potentially be 

alleviated through the use of functional gradients. 

7.1.2. RN mechanical metamaterials 

Another source of randomness in the design of mechanical metamaterials that 

we studied in this thesis was the geometrical randomness manifested in RN 
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mechanical metamaterials. We studied the elastic properties of random networks, 

both lattice-restricted and unrestricted, with varying levels of connectivity. Our 

results showed a wide range of elastic properties achieved by these random networks, 

and similar trends for both types of networks. Moreover, the changes of the elastic 

modulus with the relative density (ϕ) followed a similar nonlinear trend for both 

types of networks. The range of the elastic moduli achieved was within the 

theoretical limits given by the Hashin-Shtrikman bounds6–9 for the positive values of 

the Poisson's ratio. In general, the lattice-restricted networks had higher values of the 

elastic modulus, while unrestricted networks had larger variations in their elastic 

properties. Auxetic behavior was only observed for the smaller values of 

connectivity. The maximum level of connectivity for auxetic behavior was higher 

for unrestricted networks than restricted networks. In the case of lattice-restricted 

networks, all auxetic structures were bending-dominated based on the Maxwell’s 

stability number10,11. In the case of unrestricted networks, however, auxetic 

structures could be found even for networks with high connectivity values and 

positive Maxwell numbers, indicating that they were stretch-dominated10,12. Given 

that stretch-dominated networks exhibit higher stiffness values, unrestricted random 

networks are useful for expanding the range of elastic properties of auxetic 

structures. 

Our results state that the level of anisotropy decreases as the size of networks 

increases, which is expected due to the random nature of the networks. The 

anisotropy of the stiffness values of lattice-restricted and unrestricted networks 

showed different types of dependency on the degree of connectivity. The maximum 

level of stiffness anisotropy in lattice-restricted networks was observed for the 

intermediate values of connectivity. In unrestricted networks, stiffness anisotropy 

increased up to a certain point after which it remained constant. The opposite was 

observed for the Poisson's ratio, which decreased with connectivity for both types of 

networks. In addition, the probability of finding auxetic networks decreased as the 

size of the networks increased. This probability was also higher in unrestricted 
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networks than lattice-restricted networks. Moreover, our finding showed a low 

probability of finding networks with double-auxetic behavior (i.e., ranging between 

0.4% and 1.62%), which further decreased as the size of the networks increased. 

Some of the most negative values of the Poisson's ratio were observed for networks 

with large lateral openings. Upon closer inspection, we found that diverse movement 

trajectories could be achieved using RN designs. Therefore, these RN designs can 

also be seen as a type of compliant mechanism13–15, particularly when multiple 

networks are combined to create complex movement patterns.  

In general, the results of our study show that unrestricted networks have 

multiple benefits compared to lattice-restricted networks. These advantages include 

a wider coverage of elastic modulus-Poisson's ratio plane and a higher probability of 

auxetic and double-auxetic behavior. Additionally, unrestricted networks can exhibit 

auxetic behavior even in the stretch-dominated domain, while lattice-restricted 

networks do not. This makes unrestricted networks useful for designing stiff auxetic 

metamaterials. 

7.1.3. Deep learning for the design of rare-event multi-material 

mechanical metamaterials 

Due to the vast range of possible designs, the introduction of randomness into 

mechanical metamaterials makes it challenging to optimize their design particularly 

with regard to rare-event combinations of mechanical properties. Conventional 

computational models are usually not fast enough to allow for a thorough canvassing 

of the entire design space. We, therefore, used ML techniques to create an efficient 

computational approach that could more effectively handle the vastness of the design 

space. The use of ML methods in the development of composites and 

metamaterials16–23 and to the prediction of material properties24–26 has recently drawn 

the attention of many researchers. However, this potential is not yet fully explored 

for the design of multi-material mechanical metamaterials. This thesis demonstrated 

how a combination of computational models and DL algorithms can be used for 
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ultrafast prediction of the mechanical properties of multi-material mechanical 

metamaterials with randomly distributed hard and soft phases within their structures. 

Specifically, we investigated how the distribution of the hard and soft phases affects 

the elastic properties of the resulting structures. The research presented in this thesis 

demonstrated that DL techniques can be used to effectively predict the elastic 

properties of multi-material mechanical metamaterials, speeds up the evaluation of 

each design, and facilitate efficient parallel computing. The developed DL-based 

approach allows us to evaluate multiple designs quickly and efficiently in parallel, 

with each evaluation taking approximately 2.4 × 10	
 seconds. This approach 

makes it possible to evaluate an extremely large number of possible designs. 

Therefore, it enables us to identify designs with highly desirable combinations of 

elastic properties, such as high stiffness and a highly negative Poisson's ratio.  

In addition, having such a vast design database makes it possible to apply 

additional design criteria. For example, our results showed a wide range of variations 

in the peak von Mises stresses observed in the various structures with similar elastic 

properties. This highlights the need to consider the uniformity of stress within the 

lattice structure as a key factor in the design process to prevent failure caused by 

cracks initiated in the high-stress regions5. Our proposed approach showed the 

possibility to identify designs with desired elastic properties while also minimizing 

the risk of premature failure due to high peak stress values. 

Finally, by combining the studied multi-material tiled designs into structures 

made of four such tiles, we demonstrated that by combining unit cells, it is possible 

to increase the range of elastic properties that can be achieved and create lattice 

structures that are both double-auxetic and stiff. On the other hand, combining 

different types of unit cells allows for various functionalities. For instance, these 

combinations can be used to design orthopedic implants with improved longevity27. 

A potential use for soft robotics is the ability to generate various patterns of local 

actuation through a single far-field deformation4. Combining different unit cells also 
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allows for shape-morphing boundaries and the possibility to fit the design to different 

surfaces28. 

7.1.4. Deep-DRAM framework: Deep learning for the design of 

random-network mechanical metamaterials 

The inverse design of mechanical metamaterials with predefined design 

requirements, such as elastic properties (particularly rare-event properties), and 

dimensions is crucial when considering their real-world applications. Given the 

demonstrated capability of DL techniques in predicting the elastic properties of 

multi-material mechanical metamaterials with random distributions of hard and soft 

phases within their structure (as presented in Chapter 5), we applied the same 

technique to predict the elastic properties of RN mechanical metamaterials. 

Additionally, we employed variational autoencoders (VAE)29 as a probabilistic deep 

generative model for the inverse design of these RN mechanical metamaterials with 

desired elastic properties and dimensions.  

We developed a size-agnostic inverse design framework, titled "Deep-DRAM", 

that utilizes DL for the design of RN mechanical metamaterials. Deep-DRAM can 

inversely design RN mechanical metamaterials with specific elastic properties and 

dimensions that are customized for different intended applications. The combination 

of deep generative models, forward predictors, and finite element modeling enables 

the creation of tailored mechanical metamaterials that also meet additional design 

requirements. While the Deep-DRAM framework combines four modules, each 

individual module can be also used either independently or be combined with other 

tools to address various challenges in the design process. In addition, the 

probabilistic nature of Deep-DRAM allows for finding many solutions to the multi-

objective inverse design problem mentioned above. For instance, this size-agnostic 

inverse design framework allows for the simultaneous pursuit of structures with 

specific elastic properties and dimensions, while also minimizing the peak stress 

within the structure. All this can be done efficiently due to the high speeds of design 
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generation and evaluation. The approach proposed in this study paves ways for the 

development of mechanical metamaterials with well-defined elastic properties 

(including rare properties) corresponding to a structure with pre-defined overall 

dimensions. In this thesis, RN mechanical metamaterials were used a case study due 

to their wide range of achievable elastic properties. However, the same methodology 

can be also used for the multi-objective inverse design of many other types of (multi-

material) mechanical metamaterials. 

7.2. Future outlook 

Looking ahead, the potential of mechanical metamaterials in general and 

randomness-incorporated architected materials in particular for pushing the 

boundaries of knowledge in multiple fields is considerable. Advances in rational 

design, computational methods, ML techniques, and additive manufacturing 

technologies have created numerous opportunities for the real-world applications of 

mechanical metamaterials in various industries. As we move forward, it is important 

to continue to push the boundaries of achievable properties and functionalities and 

explore new ideas to further progress in this field. Although this thesis made 

significant strides in the design of mechanical metamaterials with rare-event 

properties, there remain several unresolved questions that, if answered, could greatly 

expand the practical applications of these materials. This concluding section outlines 

a number of suggestions for future studies that could help to address these 

outstanding issues and further advance the field of mechanical metamaterials. 

1. In this thesis, we used linear elastic constitutive models and focused on the 

elastic properties of the designed lattices. The same method can be applied to 

investigate nonlinear properties or other characteristics of the designed 

structures. The most important change needed would be to adjust the FE models 

to reflect the more complex constitutive behavior. The benefits of using DL 

techniques for ultra-fast predictions would be then even more apparent when 
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simulation time is longer, such as when investigating nonlinear or viscoelastic 

behaviors. 

2. In our study, we carried out monotonic quasi-static tensile tests to investigate 

the elastic properties of the designed structures. However, to gain a 

comprehensive understanding of the failure and fatigue mechanisms in these 

structures, a more comprehensive set of tests would be required. This would 

include mechanical testing at various strain rates as well as fatigue tests to 

investigate how these structures behave under cyclic loading. Such tests would 

provide valuable insights into the durability and long-term performance of these 

structures. Additionally, fatigue testing would also help to identify any potential 

weak points or areas within structures that are more susceptible to failure under 

cyclic loading. 

3. Designing multi-material lattice structures using materials with different 

mechanical properties, such as soft and hard phases, can lead to stress 

concentrations at the local interfaces of soft and hard phases. These stress 

concentrations can become more pronounced as the difference between the 

mechanical properties of the hard and soft phases increases. This can ultimately 

lead to premature failure, especially under cyclic loading. To mitigate this, it 

may be beneficial to incorporate intermediate phases with gradually changing 

mechanical properties to decrease the impact of such stress concentrations. 

4. To extend the design space and explore a wider range of mechanical properties, 

additional parameters can be incorporated into the training of DL models. For 

instance, we previously concentrated on two main parameters in the training of 

a DL model for multi-material mechanical metamaterials. These parameters 

were the ratio of the volume of the hard phase to that of the soft phase (ρ	) and 

the angle of the unit cells, while the ratio of the elastic moduli of both phases 

was kept constant. However, varying this ratio can impact the mechanical 
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properties of the material. It would, therefore, be beneficial to include this in 

our model training to expand the potential design options. 

5. The Deep-DRAM platform has the potential to be adapted and applied to a wide 

range of structures beyond the specific type of random structures that were 

studied in this thesis. This could include lattice-unrestricted random networks, 

multi-material structures, and any other variations of mechanical metamaterials. 

Furthermore, the Deep-DRAM can also be used to optimize the generated 

structures based on other design parameters than peak stress values, stress 

uniformity, and energy absorption. The flexibility of the Deep-DRAM 

methodology allows for its use in a variety of fields and industries, including 

soft robotic, automotive, and biomedical engineering. 

6. The trained deep learning models are very compact and computationally 

efficient, which makes them ideal for use in edge computing applications. 

This thesis showcases the impressive potential of ML techniques in the design 

of mechanical metamaterials and the discovery of rare-event designs. The results 

underscore the need for further research into utilizing ML techniques to broaden the 

design space of mechanical metamaterials with unprecedented mechanical 

properties. Overall, this study represents a significant step forward in the field of 

mechanical metamaterials and offers exciting possibilities for the development of 

innovative structures with enhanced functionality. 
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