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Abstract

Time series analysis is used to predict future behaviour of processes and is widely used in the finance
sector. In this paper we will analyse the modelling of multivariate time series of financial data using
vector autoregressive processes. The goal is that the reader will understand the presented models and
could theoretically perform time series analysis by himself.

Two specific models will be explained: the Vector Autoregressive model (VAR model) and the Vec-
tor Error Correction Model (VECM). We will describe various methods to analyse multivariate time
series using these models, such as forecasting the process, variance decomposition of the forecast error,
causality analysis and impulse response analysis. Examples of these models and analysis methods will be
presented and investigated. Finally, we will perform a time series analysis with these models on Dutch
indices and stock data. We conclude that real-world data often does not fit the VAR model and VECM
requirements and that further improved models should be considered as well.
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1 Introduction

Nowadays stock data, government indices, interest rates and other financial historical data of the past
decades are easily obtainable for everyone. These historical data are widely used by companies and in-
vestors in order to obtain certain information of the data or to predict its future behaviour. Obtaining
such information might be very useful to improve investing strategies, therefore one should definitely
analyse historical data when striving for optimal returns. There are already many different existing mod-
els which am to gather as much information as possible of historical data. However, we will be looking
at a specific group of models of so-called vector autoregressive processes. Most of the information about
these models in this paper is based on Lütkepohl (2005). For simplicity we mostly applied the same
notation as in this book.

In our models, we will be using multivariate time series. A univariate time series is a series of data
points in some time order. However, a multivariate time series is a vector of combined univariate time
series, in which each element of a multivariate time series vector represents a univariate time series. For
multivariate time series we will mostly use the following notation throughout this paper:

yt : Multivariate time series vector at time t.

ut : Vector of errors made by a certain model at time t.

In the multivariate time series vector yt we will be combining multiple univariate time series we want
to investigate, which we will call the variables of interest. So if, y1, y2, . . . , yK would be K different
univariate time series, then we would create the K-dimensional multivariate time series vector

yt “

»

—

—

—

–

y1t

y2t

...
yKt

fi

ffi

ffi

ffi

fl

. (1.1)

The models we will be looking at for analysing multivariate time series will be based on vector autore-
gressive processes. If we assume yt to be a vector autoregressive process, then the value of each variable
of interest at time t linearly depends on both the

1. previous values of the variable of interest,

2. previous values of the other variables of interest.

This means that if yt has K variables of interest as in (1.1), then for the k-th variable of interest we could
find constants νk, a1, a2, . . . such that

ykt “ νk `

»

—

—

—

–

a1

a2

...
aK

fi

ffi

ffi

ffi

fl

T

yt´1 `

»

—

—

—

–

aK`1

aK`2

...
aK`K

fi

ffi

ffi

ffi

fl

T

yt´2 ` . . . (1.2)

Note that νk, a1, a2, . . . could be different for each variable of interest k. When we use models based
on autoregressive processes, we will not only gather information of the individual variables of interest,
but we could also gather information of the relationship with the other variables of interest. In this
paper we will investigate two of these types of models, which are the Vector Autoregressive Model (VAR
model) and the Vector Error Correction Model (VECM). In section 2 we will investigate the VAR model
thoroughly. We will present everything that we need to apply the VAR model on multivariate time series.
In addition, we will look at various methods to analyse a time series using the VAR model. In section 3
we will be presenting the VECM in a similar way. In section 4 we will perform a multivariate time series
analysis with the presented models and methods on actual data of the Dutch stock market. Finally, we
draw a conclusion of the strengths and the limitations of these time series models.
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2 Vector Autoregressive Model

The VAR (Vector Autoregressive) model of a multivariate time series is based on the assumption that
the time series is approximately a vector autoregressive process. If we assume yt to be a VAR process of
order p, then we assume yt to approximately be a vector autoregressive process, where each variable of
interest linearly depends on the previous p values of all variables of interest. Instead of the representation
ykt as in (1.2), the k-th variable of interest of a VAR process yt of order p looks like

ykt “ νk `

»

—

—

—

–

a1

a2

...
aK

fi

ffi

ffi

ffi

fl

T

yt´1 `

»

—

—

—

–

aK`1

aK`2

...
a2K

fi

ffi

ffi

ffi

fl

T

yt´2 ` ¨ ¨ ¨ `

»

—

—

—

–

app´1qK`1

app´1qK`2

...
apK

fi

ffi

ffi

ffi

fl

T

yt´p ` ukt,

where ukt is the error made by the assumption that yt is a vector autoregressive process. Now yt is the
vector that combines all variables of interest as in (1.1), hence we can write the VAR process yt of order
p, or the K-dimensional VAR(p) process as follows.

yt “ ν `A1yt´1 `A2yt´2 ` ¨ ¨ ¨ `Apyt´p ` ut, t P Z, (2.1)

with yt “ py1t, y2t, . . . , yKtq
T as the pK ˆ 1q random vector with values of K variables of interest.

Furthermore, the intercept ν is a fixed pK ˆ 1q vector which can be used to express a non-zero mean
of the process yt and the matrices A1, A2, . . . , Ap are fixed pK ˆKq coefficient matrices. We also have
the error terms, ut “ pu1t, u2t, . . . , uKtq

T , as a K-dimensional white noise process, which is defined as
follows.

Definition 2.1. The K-dimensional process ut is called a white noise process if the following holds.

1. Eruts “ 0,

2. ErutuTt s “: Σu for all t,

3. ErutuTs s “ 0 for all s ‰ t.

We call Σu the covariance matrix of the process ut and we assume throughout this paper Σu to be a
nonsingular, i.e. Σ´1

u exists. We also assume that all diagonal elements of Σu are non-zero. Mostly ut is
referred to as the residuals of the process in the literature.

2.1 Properties of the VAR model

In the following sections we will discuss important properties of the VAR model, which will give us a
better understanding of the model. Later in this paper we will often refer back to these properties.

2.1.1 Stability

As stated in the VAR(p) model in (2.1), we have that t P Z for a VAR(p) process yt. At first it might
look a little strange to let t also be able to have negative values, but this is simply because sometimes it
is assumed that the starting point of the process happened in the infinite past. It will then obviously not
be possible to start the time series at a certain finite time step. The question now is: what will happen
with the stability of the VAR model when the starting point happened in the infinite past? Let us first
consider the following lemma.

Lemma 2.1. Let yt be a K-dimensional VAR(1) process as in (2.1), where the process starts at yt´j´1,
then yt can be generated as

yt “ pIK `A1 ` ¨ ¨ ¨ `A
j
1qν `A

j`1
1 yt´j´1 `

řj
i“0A

i
1ut´i,

with IK as the pK ˆKq identity matrix.
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Proof. Let us first assume that yt starts at y0. From (2.1) we have that

y1 “ ν `A1y0 ` u1,

y2 “ ν `A1y1 ` u2,

...

yt “ ν `A1yt´1 ` ut.

If we now substitute the generated y1 in the equation of y2, y2 in the equation of y3 and so on, we find

y1 “ ν `A1y0 ` u1

y2 “ pIK `A1qν `A
2
1y0 ` pA1u1 ` u2q

...

yt “ pIK `A1 ` ¨ ¨ ¨ `A
t´1
1 qν `At1y0 `

t´1
ÿ

i“0

Ai1ut´i.

We see here that the equation of yt can actually be rearranged into an equation with the variables
y0, u1, u2, . . . , ut. If we assume that our process did not specifically start at time 0, but at time t´ j ` 1,
it is easy to see that we find

yt “ pIK `A1 ` ¨ ¨ ¨ `A
j
1qν `A

j`1
1 yt´j´1 `

řj
i“0A

i
1ut´i.

Now we can look what happens with yt when we have the assumption that our information set contains
an infinite amount of values of y, which is equivalent with having j Ñ 8. We then find that yt is stable
when the following stability condition holds.

Theorem 2.1. The VAR(1) process yt is stable if the stability condition

detpIK ´A1zq ‰ 0 for |z| ď 1

holds.

Proof. In yt, as in Lemma 2.1, we have three different terms that we sum up, which all contain j. It turns
out that if all eigenvalues of A1 have a modulus smaller than 1, then the sequence pAj1qjPN0

is absolutely
summable and the sum of the sequence converges to pIK ´A1q

´1 (Lütkepohl, 2005, p. 657). Using that
all eigenvalues of A1 have a modulus smaller than 1, it can be found that the term

ř8

i“0A
i
1ut´i exists

in mean square (Lütkepohl, 2005, p. 688) and obviously that Aj`1
1 yt´j´1 goes to zero. Now we find for

j Ñ8 that

yt “ µ`
8
ÿ

i“0

Ai1ut´i, (2.2)

where µ “ pIK ´ A1q
´1ν. Hence, we find that yt is stable when all eigenvalues of A1 have a modulus

smaller than 1. This condition is equivalent with

detpI ´A1zq ‰ 0 for |z| ď 1,

which can simply be seen by using the fact that

detpIK ´A1zq “ zK detp
IK
z
´A1q for z ‰ 0,

which is equal to 0 if z´1 is an eigenvalue of A1. All eigenvalues of A1 are smaller than 1, hence 1
z ą 1

results zK detp IKz ´A1q to be 0. For the case z “ 0 we have detpIK ´A1zq “ 1.
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We can also find the stability condition of a VAR(p) model. Let us first define the companion form of a
VAR(p) process.

Definition 2.2. The companion form of a VAR(p) process is

Yt “ ν `AYt´1 ` Ut,

, where Yt “

»

—

—

—

–

yt
yt´1

...
yt´p`1

fi

ffi

ffi

ffi

fl

is a pKpˆ1q vector and Ut “

»

—

—

—

–

ut
0
...
0

fi

ffi

ffi

ffi

fl

is a pKpˆ1q vector. We define the pKpˆ1q

vector ν and the pKpˆKpq matrix A as

ν “

»

—

—

—

—

—

–

ν
0
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

fl

,A “

»

—

—

—

—

—

–

A1 A2 . . . Ap´1 Ap
IK 0 . . . 0 0
0 IK . . . 0 0
...

...
. . .

...
...

0 0 . . . IK 0

fi

ffi

ffi

ffi

ffi

ffi

fl

.

We have defined Yt such that

yt “ JYt,

with J :“ pIK , 0, . . . , 0q as pK ˆKpq matrix.

Now using the companion form a VAR(p) process, we can simply obtain the stability condition of yt in
a similar way we obtained Theorem 2.1.

Theorem 2.2. The VAR(p) process yt is stable if the stability condition

detpIKp ´Azq “ detpIKp ´A1z ´A2z
2 ´ ¨ ¨ ¨ ´Apz

pq ‰ 0 for |z| ď 1

holds.

We call the stability condition in Theorem 2.2 the reverse characteristic polynomial and therefore we
can say that the VAR(p) process is stable if the reverse characteristic polynomial has no roots in and on
the complex unit circle. Again equivalent to the stability condition is only having eigenvalues of A with
modulus smaller than 1.

Example 2.1. We can look at an example of a bivariate VAR(2) process and check if it suffices the
stability condition of a VAR(2) process. Suppose we have

yt “ ν `

„

0.5 0.1
0.4 0.5



yt´1 `

„

0 0
0.25 0



yt´2 ` ut.

The reverse characteristic polynomial of yt is

det

ˆ„

1 0
0 1



´

„

0.5 0.1
0.4 0.5



z ´

„

0 0
0.25 0



z2

˙

“ 1´ z ` 0.21z2 ´ 0.025z3.

The roots of the reverse characteristic polynomial are

z1 “ 1.3,

z2,3 « 3.55˘ 4.26i,

where |z1| “ 1.3 and |z2| “ |z3| « 5.545. All roots of the reverse characteristic polynomial have modulus
greater than 1, hence yt is a stable process.

4



2.1.2 Moving Average representation

The MA (moving average) representation of a VAR process is a very useful representation, which allows
to rewrite the process into an infinte sum of some elements. The process Yt as in Definition 2.2 is defined
in such a way that it can be possible to rewrite Yt into the MA representation as follows.

Yt “ µ`
8
ÿ

i“0

AiUt´i, (2.3)

which we can obtain by a similar method we used to get (2.2). Here µ represents the mean of Yt. We
assume here that the stability condition from Theorem 2.2 holds. Using (2.3), we can find the moving
average representation of yt as follows:

yt “ JYt

“ Jµ`
8
ÿ

i“0

JAiJTJUt´i

“ µ`
8
ÿ

i“0

Φiut´i, (2.4)

where we use Φi “ JAiJT , the fact that JTJ “ I and ut “ JUt. Since again pAi
qiPN0 is absolutely

summable by the stability condition, we have that pΦiqiPN0
is absolutely summable as well. Now (2.4) is

the moving average representation of yt, which we will be frequently using later on.

It turns out a more direct way to determine the values of Φi as in (2.4) can be found by rewriting
the VAR(p) model using the so-called lag operator, which is defined as follows.

Definition 2.3. The lag operator L transforms an element of a time series to its previous time step, so

Lyt “ yt´1. (2.5)

This operator is also sometimes referred to as the backshift operator. Using the lag operator, it will be
possible to find the following values of Φi.

Theorem 2.3. The values of Φi of a moving average representation can be represented as

Φ0 “ IK ,

Φi “

i
ÿ

j“1

Φi´jAj , i P N,

where Aj “ 0 for j ą p.

Proof. With the lag operator we can rewrite the VAR(p) model (2.1) as

yt “ ν ` pA1L`A2L
2 ` ¨ ¨ ¨ `ApL

pqyt ` ut. (2.6)

If we now define ApLq as

ApLq :“ pI ´A1L´A2L
2 ´ ¨ ¨ ¨ ´ApL

pq,

we can rewrite (2.6) to

ApLqyt “ ν ` ut. (2.7)

If we now define the infinite sum ΦpLq as

ΦpLq :“
8
ÿ

i“0

ΦiL
i

5



and we define the following relationship between ApLq and ΦpLq as

ΦpLqApLq “ IK , (2.8)

then we can rewrite (2.7) as

yt “ ΦpLqν ` ΦpLqut

“ p

8
ÿ

i“0

Φiqν `
8
ÿ

i“0

Φiut´i.
(2.9)

In the result above we again find a moving average representation of yt as in (2.4) if we simply take
µ “ p

ř8

i“0 Φiqν, which is still a fixed term since ν is fixed. Now we can use the relationship (2.8) between
ΦpLq and ApLq to find the values of Φi. Writing out the relationship in terms of L results in

IK “ pΦ0 ` Φ1L` Φ2L
2 ` . . . qpIK ´A1L´A2L

2 ´ ¨ ¨ ¨ ´ApL
pq

“ Φ0IK ` pΦ1 ´ Φ0A1qL` pΦ2 ´ Φ1A1 ´ Φ0A2qL
2 ` ¨ ¨ ¨`

pΦi ´
i
ÿ

j“1

Φi´jAjqL
i ` . . . ,

(2.10)

which gives us now the following equality’s

Ik “ Φ0

0 “ Φ1 ´ Φ0A1

0 “ Φ2 ´ Φ1A1 ´ Φ0A2

...

0 “ Φi ´
i
ÿ

j“1

Φi´jAj

... ,

with Aj “ 0 if j ą p. Now it is easy to see that the values for Φi can be written as

Φ0 “ IK

Φi “

i
ÿ

j“1

Φi´jAj , i P N.

2.1.3 Stationarity

The stationarity (or non-stationarity) of a process is an important property that we will be using later
on. Let us first look at the definition of stationarity of a process.

Definition 2.4. We call a certain process stationary if the first and second moments are time invariant,
which means that a process yt is stationary when the following holds.

1. Epytq “ µ @t,

2. Erpyt ´ µqpyt´h ´ µqT s “ Γyphq @t,@h.

In the first condition of Definition 2.4 we have that the mean of yt is the same vector µ for all possible
time steps t. The second condition tells us that Erpyt ´ µqpyt´h ´ µqT s is a certain function Γy, that
only depends on h and not on t. We call this function the autocovariance of yt. In other words, the
autocovariance of yt does not depend on t, but only on the amount of time steps h between the two
vectors yt and yt´h. Let us look at some examples of stationary and non-stationary univariate processes.

6



(a) Non-stationary process yt. (b) Non-stationary process yt.

(c) Stationary process yt.

Figure 2.1: Various stationary and non-stationary univariate processes.

In figure 2.1a we see a non-stationary process, since the first condition of Definition 2.4 does not hold.
The mean of the process is obviously lower for time steps between 400 and 500 than for other time steps.
In figure 2.1b we also see a non-stationary process, since the second condition of Definition 2.4 does not
hold. The autocovariance of the process definitely seems to increase when t increases, which contradicts
the condition. In figure 2.1c we clearly see a stationary process, since both conditions hold.

We would like to know when a VAR(p) proces yt is actually stationary. If we look at a stable VAR(p)
process yt, we find that

Eryts “ ErJYts
“ JErYts
“ Jµ

“ pI ´A1 ´A2 ´ ¨ ¨ ¨ ´Apq
´1ν, (2.11)

where µ “ pIKp ´Aq´1ν, which can be found by using the same methodology we used to obtain µ in
(2.2). It can also be found that

Γyphq “ ErpJYt ´ µqpJYt´h ´ µqT s

“ J
8
ÿ

i“0

Ah`iΣU pA
i
qTJT , (2.12)

where ΣU “ ErUtUTt s (Lütkepohl, 2005, pp. 688-689). We can see that the mean of a stable VAR(p)
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process does not depend on t and that the autocovariance only depends on h, which means that a stable
VAR(p) process is always stationary. This is why the stability condition of a VAR(p) process can also be
referred to as the stationarity condition.

An important result of the stationarity of a process is Wold’s theorem (Wold, 1938), which is as fol-
lows.

Theorem 2.4. Every stationary process xt can be written in the form:

xt “ zt ` yt,

where zt is a deterministic process and yt is a process uncorrelated with zt that can be written in a moving
average representation

yt “
8
ÿ

i“0

Φiut´i.

With this theorem it is possible to show that we can rewrite yt of the stationary process xt as an infinite
sum of coefficient matrices A1, A2, . . . as

yt “
8
ÿ

i“1

Aiyt´i ` ut,

where we assumed Φi to be absolutely summable (Lütkepohl, 2005, p. 25). This means that every
stationary process xt has an infinite order VAR representation. Since the matrices Φi are absolutely
summable, which means the matrices Ai are absolutely summable and will converge to 0, we can also see
that a stationary process xt can be approximated with a VAR representation of finite order. Hence, the
stationarity of a process is a very strong property, since it implies that a finite order VAR process can be
found.

2.1.4 Autocovariance

The autocovariance function is a function of a process that gives the covariance of the process between
two different points in time, for example between yt and yt´h. We also refer to this as the covariance of
the process at lag h. This function will depend on the value of the time t and the lag h. However, for
stable VAR processes we found in (2.12) that the autocovariance only depends on h and not on t. In this
section we will be looking at some properties of the autocovariance of a stable VAR process. We will use
the notation Γyphq as the autocovariance function of a VAR process yt, which is defined as follows.

Definition 2.5. The autocovariance of a stationary process yt at lag h is

Γyphq “ Erpyt ´ µqpyt´h ´ µqT s,

with µ “ Eryts. We can Γyphq the autocovariance function.

First, let us look at the autocovariance of a VAR(1) process yt. We can obtain the following autocovariance
function.

Lemma 2.2. The autocovariance function of a VAR(1) process yt is

Γyphq “

#

A1Γyph´ 1q h ą 0

A1Γyp1q
T ` Σu h “ 0

Proof. If we look at the process yt ´ µ, which is still a VAR(1) process, but with ν “ 0, we find

yt ´ µ “ A1pyt´1 ´ µq ` ut. (2.13)

We can multiply both sides of (2.13) with pyt´h ´ µq
T and take the expectation, to obtain

Erpyt ´ µqpyt´h ´ µqT s “ A1Erpyt´1 ´ µqpyt´h ´ µq
T s ` Erutpyt´h ´ µqT s,
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or equivalently

Γyphq “ A1Γyph´ 1q ` Erutpyt´h ´ µqT s.

When we take h “ 0, we find that

Erutpyt´h ´ µqT s “ ErutpA1pyt´1 ´ µq ` utq
T s

“ ErutuTt s
“ Σu

and for h ą 0

Erutpyt´h ´ µqT s “ ErutpA1pyt´1 ´ µq ` utq
T s

“ 0,

since ut is a white noise sequence and hence uncorrelated with yt´1, yt´2, . . . and ut´1, ut´2, . . . We now
have the autocovariance function of yt for different values of h as

Γyphq “

#

A1Γyph´ 1q h ą 0

A1Γyp1q
T ` Σu h “ 0

We used the fact that Γyp´1q “ Γyp1q
T , which follows straightforward from Definition (2.5).

These equations are referred to as the Yule-Walker equations (Yule, 1927; Walker, 1931). If we assume
that the matrices A1 and Σu are known beforehand, then all we need to do to find the autocovariance of
yt for all values of h is to determine Γyp0q, because then we can use the Yule-Walker equations recursively
to determine the autocovariances for all values of h.

We can determine Γyp0q by combining the Yule-Walker equations of Γyp0q and Γyp1q as

Γyp0q “ A1Γyp1q
T ` Σu

“ A1Γyp0qA
T
1 ` Σu. (2.14)

To obtain Γyp0q from (2.14), we will first need to look at the definitions of the vec operator and the
Kronecker product.

Definition 2.6. If A :“ pa1, a2, . . . , anq is a pmˆnq matrix with a1, a2, . . . , an as pmˆ1q column vectors,
then the vec operator returns the pmnˆ 1q vector

vecpAq “

»

—

—

—

–

a1

a2

...
an

fi

ffi

ffi

ffi

fl

.

Definition 2.7. Suppose A is a pmˆ nq matrix, where aij is the i-th row j-th column element of A. If
B is a ppˆ qq matrix, then the Kronecker product between these two matrices is defined as

AbB :“

»

—

—

—

–

a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB

fi

ffi

ffi

ffi

fl

.

These two operators combined can give us the following useful lemma (Lütkepohl, 2005, pp. 661-662).

Lemma 2.3. Let A,B and C be three matrices, where the product ABC is defined. Then

vecpABCq “ pCT bAq vecpBq.
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We can now apply this lemma to find the following value for Γyp0q.

Corollary 2.1. As a result of Lemma 2.2 we find that

vecpΓyp0qq “ pIK2 ´A1 bA1q
´1 vecpΣuq,

where Γyp0q can be found by reverting the vec operator back to a matrix.

Proof. When we apply Lemma 2.3 on (2.14), we find that

vecpΓyp0qq “ vecpA1Γyp0qA
T
1 ` Σuq

“ vecpA1Γyp0qA
T
1 q ` vecpΣuq

“ pA1 bA1q vecpΓyp0qq ` vecpΣuq,

where we used the fact that vecpA`Bq “ vecpAq ` vecpBq. Solving the equation above allows us to find
vecpΓyp0qq as

vecpΓyp0qq “ pIK2 ´A1 bA1q
´1vecpΣuq,

where we now can find the original matrix Γyp0q by simply reverting the vec operator back to the matrix
itself.

We can now look at the autocovariance of a VAR(p) process yt. Using the same reasoning we used to
obtain the Yule-Walker equations of a VAR(1) process in Lemma 2.2, we find that the VAR(p) process
yt has the following autocovariance function.

Theorem 2.5. The autocovariance function of a VAR(p) process yt is

Γyphq “

#

A1Γyph´ 1q `A2Γyph´ 2q ` ¨ ¨ ¨ `ApΓyph´ pq h ą 0

A1Γyp1q
T ``A2Γyp2q

T ` ¨ ¨ ¨ `ApΓyppq
TΣu h “ 0

Again, we use the fact that Γyp´hq “ Γyphq
T for all h, which follows straight from Definition (2.5). If

we again assume that matrices A1, A2, . . . , Ap,Σu are known beforehand, we can see that Γyphq can be
determined for h ě p if we know the values of Γyp1q,Γyp2q, . . . ,Γypp ´ 1q. We find that these matrices
can be found using the following corollary.

Corollary 2.2. As a result of Theorem 2.5 we find, using the companion form of a VAR(p) process, that

vecpΓY p0qq “ pIpKpq2 ´AbAq´1vecpΣU q,

where ΣU “ EpUtUTt q and

ΓY p0q “

»

—

—

—

–

Γyp0q Γyp1q . . . Γypp´ 1q
Γyp´1q Γyp0q . . . Γypp´ 2q

...
...

. . .
...

Γyp´p` 1q Γyp´p` 2q . . . Γyp0q

fi

ffi

ffi

ffi

fl

.

The matrices Γyp1q,Γyp2q, . . . ,Γypp´ 1q can be obtained by reverting the vec operator back to a matrix.

Proof. The VAR(p) process yt ´ µ can be written in companion form as in Definition 2.2, which results
in

Yt ´ µ “ ApYt´1 ´ µq ` Ut,
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where µ “ ErYts. Using Definition 2.5 we find that the autocovariance of Yt for h “ 0 is

ΓY p0q :“ ErpYt ´ µqpYt ´ µqT s

“ E

¨

˚

˚

˚

˝

»

—

—

—

–

yt ´ µ
yt´1 ´ µ

...
yt´p`1 ´ µ

fi

ffi

ffi

ffi

fl

“

yt ´ µ yt´1 ´ µ . . . yt´p`1 ´ µ
‰T

˛

‹

‹

‹

‚

“

»

—

—

—

–

Γyp0q Γyp1q . . . Γypp´ 1q
Γyp´1q Γyp0q . . . Γypp´ 2q

...
...

. . .
...

Γyp´p` 1q Γyp´p` 2q . . . Γyp0q

fi

ffi

ffi

ffi

fl

.

For similar reasons we used to obtain Corollary 2.1, we find that ΓY p0q can be obtained by using

vecpΓY p0qq “ pIpKpq2 ´AbAq´1vecpΣU q,

where ΣU “ EpUtUTt q. Hence, we can find the values for Γyp0q,Γyp1q, . . . ,Γypp´ 1q by reverting the vec
operator back to the matrix.

Example 2.2. Now we can try to find the autocovariances of the bivariate VAR(2) process yt as in
Example 2.1. We again have

yt “ ν `

„

0.5 0.1
0.4 0.5



yt´1 `

„

0 0
0.25 0



yt´2 ` ut

and we suppose the covariance matrix of ut to be

Σu “

„

0.09 0
0 0.04



.

Then we have for the matrices A and ΣU in the companion form of yt as in Definition 2.2 that

A “

»

—

—

–

0.5 0.1 0 0
0.4 0.5 0.25 0
1 0 0 0
0 1 0 0

fi

ffi

ffi

fl

and

ΣU :“ EpUtUTt q

“

„

Σu 0
0 0



“

»

—

—

–

0.09 0 0 0
0 0.04 0 0
0 0 0 0
0 0 0 0

fi

ffi

ffi

fl

.

Using Corollary 2.2, we find that

ΓY p0q “

»

—

—

–

0.131 0.066 0.072 0.051
0.066 0.181 0.104 0.143
0.072 0.104 0.131 0.066
0.051 0.143 0.066 0.181

fi

ffi

ffi

fl

“

„

Γyp0q Γyp1q
Γyp1q

T Γyp0q



,
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hence Γyp0q “

„

0.131 0.066
0.066 0.181



and Γyp1q “

„

0.072 0.051
0.104 0.143



. We now find the autocovariances for all

h ě 2 using the Yule-Walker equations of Theorem 2.5 as follows.

Γyp2q “ A1Γyp1q `A2Γyp0q

“

„

0.046 0.040
0.113 0.108



,

Γyp3q “ A1Γyp2q `A2Γyp1q

“ pA2
1 `A2qΓyp1q `A1A2Γyp0q

“

„

0.035 0.031
0.093 0.083



,

...

and so on.

2.1.5 Autocorrelation

Most of the time the autocorrelation function is being used instead of the autocovariance function, when
analysing the linear correlation of the lags. The autocorrelation function of a process yt at lag h returns
the correlation between yt and yt´h. This function will again only depend on h and not on t when we
work with stationary processes. For stationary processes, the autocorrelation is defined as follows:

Definition 2.8. The autocorrelation of a stationary process yt is

Ryphq “ D´1ΓyphqD
´1, (2.15)

where Γyphq is the autocorrelation for lag h and D´1 is defined as

D´1 “

»

—

—

—

—

—

–

1?
γ11p0q

0 . . . 0

0 1?
γ22p0q

. . . 0

...
...

. . .
...

0 0 . . . 1?
γKKp0q

fi

ffi

ffi

ffi

ffi

ffi

fl

, (2.16)

where γijphq is the i-th row and j-th column element of the autocovariance at lag h.

With this definition, the i-th row and j-th column element of Ryphq is simply the correlation between
yi,t and yj,t´h. We can expand Example (2.2) to find the autocorrelation of yt.

Example 2.3. Continuing from Example (2.2), we can find the autocorrelation of yt as follows. We
have

D´1 “

«

1?
0.131

0

0 1?
0.181

ff

, (2.17)

hence

Ryp0q “ D´1Γyp0qD
´1

“

„

1 0.43
0.43 1



,

Ryp1q “ D´1Γyp1qD
´1

“

„

0.55 0.33
0.68 0.79



,

...

(2.18)

12



and so on. We then can find the following autocorrelations between the variables.

Figure 2.2: Autocorrelations between the variables for various lags.

2.2 Forecasting

When analysing financial time series, forecasting the process will be of great importance. It is a great
way to predict the future behaviour of a process. When forecasting we can use all of the information that
the time series has to predict future values of the process. Suppose we have a time series yt with values
up to time t, then we could try to forecast t ` 1, t ` 2, . . . up to maybe h steps ahead. We call period t
the forecast origin and h the forecast horizon. If we have a function that gives us a forecast of a process
h steps ahead of our forecast origin, then we call this function the h-step predictor. Our goal is to find
a predictor of a stable VAR(p) process that provides us the best possible forecast. For VAR models it
turns out that predictors that minimize the mean squared error are the most effective (Granger, 1969,
pp. 199-207). The mean squared error of a predictor is defined as follows.

Definition 2.9. If yt is a stable VAR(p) process, with h-step predictor ȳtphq, then the mean squared
error (MSE) of this predictor is

MSErȳtphqs :“ Erpyt`h ´ ȳtphqqpyt`h ´ ȳtphqqT s. (2.19)

The value of yt`h ´ ȳtphq is the error that is made by forecasting the process, hence it is referred to as
the forecast error.
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2.2.1 Zero mean VAR(1) models

To find the minimum MSE predictor for a VAR(p) process we will first analyse when we have a zero
mean VAR(1) model yt, which means

yt “ A1yt´1 ` ut.

As in Lemma 2.1 we can rewrite yt, yt`1, . . . , yt`h in terms of A1, yt and the white noise term ut. We
find that

yt`h “ Ah1yt `
h´1
ÿ

i“0

Ai1ut`h´i.

If we define a predictor of yt with forecast origin t and forecast horizon h as ytphq, then this predictor
should depend on yt, yt´1, . . . and so on. We can write ytphq as

ytphq :“ B0yt `B1yt´1 ` . . . ,

where B0, B1, . . . are pK ˆKq matrices. Our goal is to find these matrices so that mean squared error of
this predictor is minimized. Let us first look at the forecast error of this predictor, which is

yt`h ´ ytphq “ Ah1yt `
h´1
ÿ

i“0

Ai1ut`h´i ´
8
ÿ

i“0

Biyt´i

“

h´1
ÿ

i“0

Ai1ut`h´i ` pA
h
1 ´B0qyt ´

8
ÿ

i“1

Biyt´i.

Using the fact that ut`1, ut`1, . . . is uncorrelated with yt, yt´1, . . ., we find the mean squared error as
follows.

MSErytphqs “ Erpyt`h ´ ytphqqpyt`h ´ ytphqqT s

“ E

»

–

˜

h´1
ÿ

i“0

Ai1ut`h´i

¸˜

h´1
ÿ

i“0

Ai1ut`h´i

¸T
fi

fl (2.20)

` E

»

–

˜

pAh1 ´B0qyt ´
8
ÿ

i“1

Biyt´i

¸˜

pAh1 ´B0qyt ´
8
ÿ

i“1

Biyt´i

¸T
fi

fl . (2.21)

From (2.20)-(2.21) we can see that the mean squared error of ytphq is minimal when the second term is
0, which means when B0 “ Ah1 and Bi “ 0 for i P N. Now the minimum MSE predictor of a VAR(1)
process with zero mean is

ytphq “ Ah1yt

“ A1ytph´ 1q,

with a forecast error of

h´1
ÿ

i“0

Ai1ut`h´i. (2.22)

2.2.2 Zero mean VAR(p) models

Now for a VAR(p) process yt with zero mean we can write this process in the companion form as in
Definition 2.2 to obtain

Yt “ AYt´1 ` Ut. (2.23)
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Using the same methodology to obtain the minimum MSE predictor as in (2.22), we find

Ytphq “ AhYt

“ AYtph´ 1q,

where Ytphq is the minimum MSE predictor of Yt`h. Using the definition of the vector Yt, we can rewrite
this predictor into the form

Ytphq “

»

—

—

—

–

ytphq
ytph´ 1q

...
ytph´ p` 1q

fi

ffi

ffi

ffi

fl

,

where ytphq is the h-step predictor of the VAR(p) process yt. We use here that ytpjq :“ yt`j , where j ď 0.
In other words, the predictions of values of the time series at time steps before the forecast origin are
simply the same values we already know. We can now find the minimum MSE predictor ytphq as follows.

ytphq “ JYtphq

“ JAYtph´ 1q

“ A1ytph´ 1q `A2ytph´ 2q ` ¨ ¨ ¨ `Apytph´ pq. (2.24)

The forecast error of this predictor can also be determined. Using the companion form as in Definition
2.2, we find for a VAR(p) process with zero mean that

Yt`h “ AYt`h´1 ` Ut`h

“ A2Yt`h´2 `AUt`h´1 ` Ut`h
...

“ AhYt `
h´1
ÿ

i“0

AiUt`h´i,

which means our forecast error will look like

yt`h ´ ytphq “ JYt`h ´ JYtphq

“ J

˜

AhYt `
h´1
ÿ

i“0

AiUt`h´i

¸

´ JAhYt

“

h´1
ÿ

i“0

JAiUt`h´i

“

h´1
ÿ

i“0

JAiJTJUt`h´i

“

h´1
ÿ

i“0

Φiut`h´i, (2.25)

where Φi “ JAiJT as in the moving average representation (2.4).

2.2.3 Non-zero mean VAR(p) models

Using the minimum MSE predictor of a VAR(p) process with zero mean (2.24) we can find the minimum
MSE predictor of a VAR(p) process with a non-zero mean. If we have VAR(p) process with a non-zero
mean yt, then we define xt to be

xt : “ yt ´ µ, (2.26)
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which is a VAR(p) process with zero mean if we take µ :“ Eryts. Remember from (2.11) that we have

Eryts “ pI ´A1 ´A2 ´ ¨ ¨ ¨ ´Apq
´1ν. (2.27)

We found that the minimum MSE predictor of xt is equal to

xtphq “ A1xtph´ 1q `A2xtph´ 2q ` ¨ ¨ ¨ `Apxtph´ pq, (2.28)

hence µ to both sides of the equation above and using (2.27) results in the minimum MSE predictor of
the non-zero mean VAR(p) process

xtphq ` µ “ µ`A1xtph´ 1q ` ¨ ¨ ¨ `Apxtph´ pq

“ µ`A1pytph´ 1q ´ µq ` ¨ ¨ ¨ `Appytph´ pq ´ µq

“ µpI ´A1 ´ ¨ ¨ ¨ ´Apq `A1ytph´ 1q ` ¨ ¨ ¨ `Apytph´ pq

“ ν `A1ytph´ 1q ` ¨ ¨ ¨ `Apytph´ pq (2.29)

“ ytphq.

The forecast error of the minimum MSE predictor of a non-zero mean VAR(p) process is obviously the
same as the forecast error of the non-zero mean process, since

yt`h ´ ytphq “ xt`h ´ µ´ xtphq ` µ

“ xt`h ´ xtphq

“

h´1
ÿ

i“0

Φiut`h´i.

2.2.4 Forecast intervals

The forecast error we found for the minimum MSE predictor of a VAR(p) model shows us that this
predictor does not perfectly predict future values. An assumption which is often made is that the white
noise terms ut are considered i.i.d. multivariate normally distributed put „ N p0,Σuqq. If we now look at
the forecast error we found in (2.25), then we find, under the assumption of multivariate normal white
noise terms, that the forecast error is a linear combination of the error terms. Hence, the forecast error
is multivariate normally distributed as well, so

yt`h ´ ytphq „ N p0,Σyphqq, (2.30)

where Σyphq is the covariance matrix of the forecast error for h steps ahead. This covariance matrix can
be written as follows using Definition 2.9 of the mean squared error and the fact that the error terms are
uncorrelated.

Σyphq :“ MSErytphqs “ E

»

–

˜

h´1
ÿ

i“0

Φiut`h´i

¸˜

h´1
ÿ

i“0

Φiut`h´i

¸T
fi

fl (2.31)

“ E

«

h´1
ÿ

i“0

Φiut`h´iu
T
t`h´iΦ

T
i

ff

“

h´1
ÿ

i“0

ΦiΣuΦTi

“ Σyph´ 1q ` Φh´1ΣuΦTh´1. (2.32)

Since ytpjq :“ yt`j where j ď 0, we see that the mean squared error of the predictor is 0 for h ď 0, hence
Σyphq “ 0 for h ď 0. Now (2.30) tells us that the forecast errors of the variables of interest of y are
normally distributed. We find for the k-th variable of interest that

yk,t`h ´ yk,tphq

σkphq
„ N p0, 1q, (2.33)
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where yk,tphq is the k-th component of ytphq and σkphq is the square root of the k-th row k-th column
element of Σyphq. This means we can now set up confidence intervals of our prediction for each variable
of interest. If we define zα to be the value such that

PpZ ď zαq “ 1´ α, (2.34)

where Z „ N p0, 1q, then

1´ α “ Pp´zα{2 ď
yk,t`h ´ yk,tphq

σkphq
ď zα{2q

“ Ppyk,tphq ´ σkphqzα{2 ď yk,t`h ď yk,tphq ` σkphqzα{2q,

(2.35)

which means our p1´ αq100% forecast interval of the k-th variable of interest for h steps ahead will be
“

yk,tphq ´ σkphqzα{2, yk,tphq ` σkphqzα{2
‰

. (2.36)

2.2.5 Forecasting example

Let us look again at the bivariate VAR(2) process

yt “ ν `

„

0.5 0.1
0.4 0.5



yt´1 `

„

0 0
0.25 0



yt´2 ` ut, (2.37)

with the covariance matrix of ut

Σu “

„

0.09 0
0 0.04



,

but now we choose the process to have a non-zero mean by assuming

ν “

„

1
2



, y´1 “

„

3.8
8.8



and y0

„

3.5
8.5



.

We assume that our process yt starts at y´1. Using the values above we can now generate the bivariate
VAR(p) process (2.37) from y1 to yN for a certain integer N , by taking random samples of the N p0,Σuq
distribution for u1, u2, . . . , uN . For this example we take N “ 100, which results in the following generated
process.

Figure 2.3: Generated process of (2.37) for N “ 100.
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We find that y99 «

„

3.556
9.347



and y100 «

„

3.589
9.218



. In this example we would like to forecast this process up

to 3 steps ahead of N . By using the minimum MSE predictor we found in (2.29), we find the following
predictions.

yN p1q “ ν `A1yN p0q `A2yN p´1q

«

„

1
2



`

„

0.5 0.1
0.4 0.5

 „

3.589
9.218



`

„

0 0
0.25 0

 „

3.556
9.347



«

„

3.716
8.934



,

yN p2q “ ν `A1yN p1q `A2yN p0q

«

„

1
2



`

„

0.5 0.1
0.4 0.5

 „

3.716
8.934



`

„

0 0
0.25 0

 „

3.589
9.218



«

„

3.752
8.851



,

yN p3q “ ν `A1yN p2q `A2yN p1q

«

„

1
2



`

„

0.5 0.1
0.4 0.5

 „

3.752
8.851



`

„

0 0
0.25 0

 „

3.716
8.934



«

„

3.761
8.855



.

We can now look for a 95% forecast interval of these predictions for both variables of interest. First we
will need to find the covariance matrices of the forecast errors for h “ 1, 2, 3. From (2.32) we found that

Σyphq “ Σyph´ 1q ` Φh´1ΣuΦTh´1. (2.38)

We now need to find the coefficient matrices Φ0,Φ1 and Φ2 of the moving average representation. Using
Theorem 2.3, we find

Φ0 “

„

1 0
0 1



, (2.39)

Φ1 “ Φ0A1

“

„

0.5 0.1
0.4 0.5



, (2.40)

Φ2 “ Φ1A1 ` Φ0A2

“

„

0.5 0.1
0.4 0.5

2

`

„

0 0
0.25 0



“

„

0.29 0.10
0.65 0.29



. (2.41)
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We now find

Σyp1q “ Φ0ΣuΦT0

“

„

0.09 0
0 0.04



,

Σyp2q “ Σyp1q ` Φ1ΣuΦT1

“

„

0.09 0
0 0.04



`

„

0.5 0.1
0.4 0.5

 „

0.09 0
0 0.04

 „

0.5 0.4
0.1 0.5



«

„

0.113 0.020
0.020 0.064



,

Σyp3q “ Σyp2q ` Φ2ΣuΦT2

«

„

0.113 0.020
0.020 0.064



`

„

0.29 0.10
0.65 0.29

 „

0.09 0
0 0.04

 „

0.29 0.65
0.10 0.29



«

„

0.121 0.038
0.038 0.106



.

Now using (2.36), we find for the first variable of interest

steps ahead forecast lower bound upper bound interval length
1 3.716 3.128 4.304 1.176
2 3.752 3.093 4.410 1.317
3 3.761 3.079 4.442 1.363

Table 1: The minimum MSE predictions for 1,2 and 3 steps of the first variable of interest and their 95%
forecast intervals.

And for the second variable of interest we find

steps ahead forecast lower bound upper bound interval length
1 8.934 8.542 9.326 0.784
2 8.851 8.353 9.348 0.995
3 8.855 8.218 9.493 1.275

Table 2: The minimum MSE predictions for 1,2 and 3 steps of the second variable of interest and their
95% forecast intervals.

This whole process of forecasting 1,2 and 3 steps ahead can of course be expanded to forecast 4 or more
steps ahead. This way we can find the following 10 step prediction.
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Figure 2.4: Prediction of the process 10 steps ahead for both variables of interest.

In the figure above we also see forecasted values and intervals for t ď 100, even though those values of
yt are already known. What happens here is that for t ď 100 we predict 1 step ahead, which creates a
forecasted value with confidence intervals. Since the process is known for t ď 100, we can check how well
our predictor is performing. Looking at t ď 100, we see that our process follows the forecasted values
very well and it is nicely between the 95% interval most of the time.

Another way to check how well the predictor is performing is by simply continuing the generation and
see whether our prediction for 10 steps ahead is accurate. We see that the continued generation pretty
much follows the forecasted values and lies between the 95% interval, except for y2,103. Since it is just a
single value that lies outside the interval and since the process instantly corrects itself, we can conclude
that this is not a big deal and that our predictor is still pretty accurate.
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2.3 Analysis methods

In this section we will discuss various methods we can use to analyse VAR processes. These analysis
methods all have their own strengths when it comes to time series analysis. The idea is that one should
apply all these methods when performing time series analysis in order to gain as much information as
possible.

2.3.1 Forecast error variance decomposition

The forecast error variance decomposition allows us to give a better interpretation of our forecast results.
This method shows us how big the influence is of a certain variable of interest k on the error made by
forecasting variable of interest j.

Let us first look at the definition of a positive definite matrix.

Definition 2.10. Let A be a symmetric pKˆKq matrix. Then A is positive definite when for all non-zero
real pK ˆ 1q vectors x the following holds:

xTAx ą 0. (2.42)

If we now look at the covariance matrix ut of a VAR(p) process yt, we find the following theorem.

Theorem 2.6. The covariance matrix of ut of a VAR(p) process yt with K variables of interest is positive
definite.

Proof. Let x be a non-zero real pK ˆ 1q vector, then

xTΣux “ ErxTutuTt xs
“ ErpxTutqpxTutqT s
“ ErpxTutqpxTutqT s
ą 0,

since xTut is a constant and ut ‰ 0, since Σu is assumed not to be 0 in the VAR model.

Now let us state the Cholesky decomposition (Brezinski, 1924) of the positive definite matrix.

Theorem 2.7. Let A be a positive definite pK ˆKq matrix, then there exist a lower triangular matrix
P with real and positive values on the diagonal such that

A “ PPT . (2.43)

Together with Theorem 2.6 we see that a matrix such as P also exists for the covariance matrix Σu. We
can now rewrite the moving average representation of a VAR(p) process yt as in (2.4) as the so-called
orthogonal representation as follows.

yt “ µ`
8
ÿ

i“0

Φiut´i

“ µ`
8
ÿ

i“0

ΦiPP
´1ut´i

“ µ`
8
ÿ

i“0

Θiwt´i, (2.44)

where Θi “ ΦiP and wt “ P´1ut. Now using Theorem 2.7 we find that the covariance matrix of wt is

Σw “ ErwtwTt s
“ P´1ErutuTt spP´1qT

“ P´1ΣupP
´1qT

“ P´1PPT pP´1qT

“ IK . (2.45)
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The wt in the representation of (2.44) is often referred to as the orthogonal residuals, since (2.45) shows us
that the residuals are uncorrelated between each variable of interest. We will be using this representation,
since now we can determine how much one variable is influencing the covariance matrix of the forecast
error. Previously this was not possible, since the variables of interest were correlated with each other.
We now want to use the representation in (2.44) to rewrite the forecast error made by our minimum MSE
predictor as in (2.25). We find the forecast error of

yt`h ´ ytphq “

h´1
ÿ

i“0

Φiut`h´i

“

h´1
ÿ

i“0

Θiwt`h´i. (2.46)

We can now look at the forecast error made by the predictor of just a single variable of interest. For
notation we introduce θmn,i as m-th row and n-th column element of the matrix Θi in (2.46). To find
the forecast error of the j-th variable of interest, we only use the j-th row of Θi in (2.46), which results
in

yj,t`h ´ yj,tphq “

h´1
ÿ

i“0

θj1,iw1,t`h´i ` ¨ ¨ ¨ ` θjK,iwK,t`h´i

“

K
ÿ

k“1

˜

h´1
ÿ

i“0

θjk,iwk,t`h´i

¸

. (2.47)

We see that the forecast error of the j-th variable of interest is formed with the orthogonal residuals of all
K variables of interest. We now would like to look at the variance of the forecast error of the prediction h
steps ahead for just a certain variable of interest j. This is the same as the j-th row j-th column element
of the covariance matrix of the forecast error Σyphq, which we can use to obtain the following theorem.

Theorem 2.8. The variance of the forecast error of the j-th variable of interest equals

K
ÿ

k“1

h´1
ÿ

i“0

θ2
jk,i. (2.48)

Proof. The variance of the forecast error of the j-th variable of interest is the same as the j-th row j-th
column element of Σyphq, which is MSEryj,tphqs. We now find

MSEryj,tphqs “ Erpyj,t`h ´ yj,tphqq2s

“ E

»

–

˜

K
ÿ

k“1

˜

h´1
ÿ

i“0

θjk,iwk,t`h´i

¸¸2
fi

fl (2.49)

“ E

«

K
ÿ

k“1

h´1
ÿ

i“0

θ2
jk,iw

2
k,t`h´i

ff

` (2.50)

E

«

K
ÿ

k“1

K
ÿ

l“1

h´1
ÿ

i“0

θjk,iθjl,iwk,t`h´iwl,t`h´i1tk‰lu

ff

. (2.51)

In the last step we split the square of (2.49) into 2 parts. In (2.50) we have the part where the orthogonal
residuals wt are multiplied with the same variable of interest and in (2.51) the orthogonal residuals are
multiplied with a different variable of interest. We follow these steps because the equation in (2.51)
equals 0. This is simply because the orthogonal residuals are uncorrelated between the variables of
interest, which we found in (2.45). We now have

MSEryj,tphqs “ E

«

K
ÿ

k“1

h´1
ÿ

i“0

θ2
jk,iw

2
k,t`h´i

ff

“

K
ÿ

k“1

h´1
ÿ

i“0

θ2
jk,iE

“

w2
k,t`h´i

‰

. (2.52)
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In (2.45) we also found that Erw2
k,ts “ 1 for all k, hence

MSEryj,tphqs “
K
ÿ

k“1

h´1
ÿ

i“0

θ2
jk,i (2.53)

We now have found the variance of the forecast error of the j-th variable of interest. Theorem 2.8 shows
that the variance is formed with values of θ using all variables of interest. All we need to do to now is
calculate how big the proportion of the forecast error variance is of a certain variable of interest k of the
total forecast error variance or a variable of interest j. We call this proportion ωjk,h, which is defined in
the following definition.

Definition 2.11. The proportion of the forecast error variance of the k-th variable of interest by fore-
casting the j-th variable of interest h steps ahead is

ωjk,h “

řh´1
i“0 θ

2
jk,i

MSEryj,tphqs
. (2.54)

Example 2.4. Continuing from the forecasting example in section 2.2.5 we can apply the forecast error
variance decomposition for a better interpretation of the forecast results. In this example we will calculate
the proportions of the forecast error variance of both variables of interest, based on the forecasts for 1, 2
and 3 steps ahead for both variables of interest. From Definition 2.11 we see that we need to determine
matrices Θ0,Θ1 and Θ2. Since Θi “ ΦiP , we will first need to determine the lower triangular matrix P
from Theorem 2.7. In general we can apply the following method to find the matrix P .

Σu “

„

0.09 0
0 0.04



“ PPT

“

„

p1,1 0
p2,1 p2,2

 „

p1,1 p2,1

0 p2,2



,

where p1,1 and p2,2 have to be positive and real valued. We now find

p2
1,1 “ 0.09 “ñ p1,1 “ 0.03

p1,1p2,1 “ 0 “ñ p2,1 “ 0

p2
2,1 ` p

2
2,2 “ 0.04 “ñ p2,2 “ 0.02,

hence

P “

„

0.03 0
0 0.02



.

Obviously the matrix P is straightforward when Σu is a diagonal matrix, but this does not always have to
be the case. Now using matrices Φ0,Φ1 and Φ2 we found earlier in (2.39 - 2.41), we find that

Θ0 “ Φ0P

“

„

1 0
0 1

 „

0.03 0
0 0.02



“

„

0.03 0
0 0.02



,

Θ1 “ Φ1P

“

„

0.5 0.1
0.4 0.5

 „

0.03 0
0 0.02



“

„

0.15 0.02
0.12 0.10



,
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Θ2 “ Φ2P

“

„

0.29 0.10
0.65 0.29

 „

0.03 0
0 0.02



“

„

0.087 0.020
0.195 0.058



.

Now using Definition 2.11 and the covariance matrices of the forecast errors for 1,2 and 3 steps ahead
(2.42 - 2.42), the proportions of the forecast error variance for the first variable of interest on itself will
be

ω11,1 “

ř0
i“0 θ

2
11,i

MSEry1,tp1qs

“
0.32

0.09
“ 1

ω11,2 “

ř1
i“0 θ

2
11,i

MSEry1,tp2qs

“
0.32 ` 0.152

0.1129
« 0.996

ω11,3 “

ř2
i“0 θ

2
11,i

MSEry1,tp3qs

«
0.32 ` 0.152 ` 0.0872

0.121
« 0.993

and the proportions of the forecast error variance for the first variable of interest on the second variable
of interest will be

ω21,1 “

ř0
i“0 θ

2
21,i

MSEry2,tp1qs

“
02

0.04
“ 0

ω21,2 “

ř1
i“0 θ

2
21,i

MSEry2,tp2qs

“
02 ` 0.122

0.0644
« 0.224

ω21,3 “

ř2
i“0 θ

2
21,i

MSEry2,tp3qs

«
02 ` 0.122 ` 0.1952

0.106
« 0.496.

Now for the proportions of the forecast error variance of the second variable of interest we can calculate
them the same way as above, or simply take

ωj2,i “ 1´ ωj1,i @j, i, (2.55)

since we are working with just 2 variables of interest. Of course using the same methodology, we can find
the proportions of the forecast error variance for forecast horizons higher than 3. This will result into the
following table.
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Forecasted
variable of
interest

Forecast horizon Proportions of
variable 1 on the
forecast error
variance

Proportions of
variable 2 on the
forecast error
variance

1 1 1 0
2 0.996 0.004
3 0.993 0.007
4 0.992 0.008
5 0.991 0.009
10 0.989 0.011

2 1 0 1
2 0.224 0.776
3 0.496 0.504
4 0.596 0.404
5 0.637 0.363
10 0.679 0.321

Table 3: Proportions of the forecast error variance of both variables of interest for forecasting both
variables of interest with various forecast horizons.

We see that the proportions of a variable of interest for a forecast horizon of 1 both have a value of
1 on its own prediction. This is simply because in this case Θ2

0 “ PP “ Σu and is a diagonal matrix,
hence the forecast error variance of predicting one step ahead fully depends on its own variable of interest.
Furthermore we see that forecast error variance of forecasting the first variable mostly depends on the first
variable of interest. This means that the second variable of interest almost contributes no information to
the first variable of interest. However, while forecasting the second variable of interest, its forecast error
variance will in the long term depends more on the first variable of interest. We can conclude from this
that in the long term the first variable of interest contributes more information to the second variable of
interest than the second variable itself. These results do not come as a suprise, since the top right values
of the coefficients matrices A1 and A2 have values close to 0, while the bottom left values have larger
values.

2.3.2 Granger-causality

Granger-causality is a method to find out whether certain variables of interest are influencing each other.
It is based on the idea that the prediction of certain variables of interest should be improved when other
influencing variables of interests are added to the process. For example, if we know that variable x is
affecting variable z, then the prediction of variable z would be better if we take variable x into account
as well. This form of causality we call Granger-causality, which is defined as follows.

Definition 2.12. Suppose xt and zt are multidimensional variables of interest. Let Σzph|Ωtq be the
forecast mean squared error of the h-step minimum MSE predictor of zt as in (2.25) based on the infor-
mation set Ωt, which contains all available information of all variables up until time t. Then we say that
xt Granger-causes zt when

Σzph|Ωtq ‰ Σzph|Ωtztxs|s ď tuq (2.56)

for at least one h “ 1, 2, . . ..

Let us now take a stable VAR(p) process yt with K variables of interest. We define

yt “

„

zt
xt



, (2.57)

where zt and xt are pM ˆ 1q and ppK ´Mq ˆ 1q vectors respectively. If we now rewrite yt into a moving
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average representation as in (2.4), we get

yt “

„

zt
xt



“ µ`
8
ÿ

i“0

Φiut´i

:“

„

µ1

µ2



`

„

Φ11,0 Φ12,0

Φ21,0 Φ22,0

 „

u1,t

u2,t



`

„

Φ11,1 Φ12,1

Φ21,1 Φ22,1

 „

u1,t´1

u2,t´1



` . . . , (2.58)

with appropriate dimensions such that

zt “ µ1 `

8
ÿ

i“0

Φ11,iu1,t´i `

8
ÿ

i“0

Φ12,iu2,t´i, (2.59)

xt “ µ2 `

8
ÿ

i“0

Φ21,iu1,t´i `

8
ÿ

i“0

Φ22,iu2,t´i. (2.60)

We can now obtain the following useful lemma.

Lemma 2.4. Let yt be as in (2.58), then xt does not Granger-cause zt if and only if

Φ12,i “ 0 for i “ 1, 2, . . . . (2.61)

Proof. First we will show that the minimum MSE predictor of yt can be rewritten into a moving average
representation as in (2.4). We use that the forecast error of the minimum MSE predictor can be rewritten
into the moving average representation, which has been shown in (2.25). Since we of course can rewrite
yt`h into a moving average representation as well, we find that ytphq can also be rewritten into a moving
average representation as follows. We use

yt`h ´ ytphq “

h´1
ÿ

i“0

Φiut`h´i

Ø

such that

ytphq “ yt`h ´
h´1
ÿ

i“0

Φiut`h´i

“ µ`
8
ÿ

i“0

Φiut`h´i ´
h´1
ÿ

i“0

Φiut`h´i

“ µ`
8
ÿ

i“h

Φiut`h´i

“ µ`
8
ÿ

i“0

Φi`hut´i. (2.62)

Now let us first look at the case where h “ 1. Using (2.62) we will try to find the 1 step prediction
of zt in a moving average representation based on the information set Ωt “ tys|s ď tu. We use the
pM ˆKq matrix Z “ pIM , 0, . . . , 0q such that zt “ Zyt. For notation we use that the minimum MSE h
step prediction of zt with forecast origin t based on the information set Ωt equals ztph|Ωtq, so the 1 step
prediction of zt is

ztp1|Ωtq “ Zytp1q

“ Z

˜

µ`
8
ÿ

i“0

Φi`1ut´i

¸

“ µ1 `

8
ÿ

i“0

Φ11,i`1u1,t´i `

8
ÿ

i“0

Φ12,i`iu2,t´i. (2.63)
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Since

zt`1 “ Zyt`1

“ µ1 `

8
ÿ

i“0

Φ11,iu1,t`1´i `

8
ÿ

i“0

Φ12,iu2,t`1´i, (2.64)

we have a forecast error of ztph|Ωtq of

zt`h ´ ztph|Ωtq “ Φ11,0u1,t`1 ` Φ12,0u2,t`1

“ u1,t`1, (2.65)

because we found in Theorem 2.3 that Φ0 “ IK .

Secondly we will try to find the 1 step prediction of zt based on Ωtztxs|s ď tu, which is equivalent
to tzs|s ď tu. To find this prediction we will need an implication from Wold’s theorem. This implication
states that every subprocess of a stationary process also has a moving average representation, hence zt
has a moving average representation. This simply follows from the fact that

Erzts “ ErZyts
“ Zµ

and

Γzphq “ ErztzTt s
“ ErZytpZytqT s
“ ZΓyphqZ

T ,

hence zt is stationary and has a moving average representation, which follows again from Wold’s theorem.

Now we can rewrite zt as

zt “ µ1 `

8
ÿ

i“0

Fivt´i, (2.66)

where Fi are some moving average coefficient matrices and vt are the white noise terms. We can again
use (2.62) to find a moving average representation of the minimum MSE 1 step predictor ztp1q, which is

ztp1|Ωtztxs|s ď tuq “ µ1 `

8
ÿ

i“0

Fi`1vt´i. (2.67)

Now using (2.66) for t` 1 and the 1 step predictor (2.67), we find the following forecast error.

zt`1 ´ ztp1|Ωtztxs|s ď tuq “ µ1 `

8
ÿ

i“0

Fivt`1´i ´ µ1 ´

8
ÿ

i“0

Fi`1vt´i

“ F0vt`1

“ vt`1, (2.68)

since again from Theorem 2.3 we have that F0 “ IK .

Finally now all we need to do in order to show when xt does not Granger-cause zt is we have to see
when the predictors in (2.63) and (2.67) are the same. This is equivalent to checking when the forecast
errors in (2.65) and (2.68) are the same, therefore assume that

u1,t`1 “ vt`1. (2.69)
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Substituting (2.69) into (2.66) results into

zt “ µ1 `

8
ÿ

i“0

Fiu1,t´i. (2.70)

Since from (2.59) we also have that

zt “ µ1 `

8
ÿ

i“0

Φ11,iu1,t´i `

8
ÿ

i“0

Φ12,iu2,t´i, (2.71)

we see that (2.70) and (2.71) are the same if and only if Φ11,i “ Fi for i ě 0 and Φ12,i “ 0 for i ě 1.
Definition 2.12 now tells us that xt does not Granger-cause zt if and only if Φ12,i “ 0 for i “ 1, 2, . . .

In the proof above we showed that the 1 step predictors in (2.63) and (2.67) are the same if and only
if Φ12,i “ 0 for i “ 1, 2, . . .. Using the same methodology used in this proof, it is possible to show that
these predictors for h steps ahead are the same if and only if Φ12,i “ 0 for i “ 1, 2, . . . as well. Note that
only one h has to be found where those predictors are different in order to have Granger-causality.

We can transform the condition that Φ12,i “ 0 for i “ 1, 2, . . . in Lemma 2.4 to a condition based
on the coefficient matrices A1, A2, . . . , Ap of the stable VAR(p) process yt as follows. Again we take yt
as in (2.57). We then let Ajk,i be as follows.

yt “

„

zt
xt



“ ν `A1 `A2 ` ¨ ¨ ¨ `Ap

“

„

ν1

ν2



`

„

A11,1 A12,1

A21,1 A22,1



` ¨ ¨ ¨ `

„

A11,p A12,p

A21,p A22,p



, (2.72)

with suitable dimensions for Ajk,i. We now get the following theorem.

Theorem 2.9. Let yt be a stable VAR(p) process as in (2.72) and Ajk,i be the j-th row k-th column
element of the coefficient matrix Ai, then xt does not Granger-cause zt if and only if

A12,i “ 0 for i “ 1, 2, . . . , p. (2.73)

Alternatively zt does not Granger-cause xt if and only if

A21,i “ 0 for i “ 1, 2, . . . , p. (2.74)

Proof. Using Lemma 2.4 we have that xt does not Granger-cause zt if and only if Φ12,i “ 0 for i “
1, 2, . . .. Using this condition together with the Φ matrices we found in Theorem 2.3, we see that A12,i

for i “ 1, 2, . . . , p is an equivalent condition, hence xt does not Granger-cause zt if and only if

A12,i “ 0 for i “ 1, 2, . . . , p. (2.75)

The proof to show that zt does not Granger-cause xt can be done in a similar way.

Example 2.5. Let us again look at the bivariate VAR(2) process

yt “ ν `

„

0.5 0.1
0.4 0.5



yt´1 `

„

0 0
0.25 0



yt´2 ` ut

“

„

zt
xt



,

where zt “ y1t and xt “ y2t. We see that A12,1 “ 0.1 and A12,2 “ 0 and we see that A21,1 “ 0.4 and
A21,2 “ 0.25, hence using Theorem 2.9 we have that xt does Granger-cause zt and zt also Granger-causes
xt. This means that a prediction of the process y1t would be improved if the predictor takes the values of
the process y2t into account and a prediction of the process y2t would be improved if the predictor takes
the values of the process y1t into account.
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Example 2.6. Let us now look at the following 3-dimensional stable VAR(1) process

yt “ ν `

»

–

0.5 0 0
0.1 0.1 0.3
0 0.2 0.3

fi

fl yt´1 ` ut

“:

„

zt
xt



,

where zt “ y1t and xt “

„

y2t

y3t



. We see that A12,1 “
“

0 0
‰

and A21,1 “

„

0.1
0



, hence xt does not

Granger-cause zt, but zt does Granger-cause xt. We can calculate the forecast mean squared errors of the
minimum MSE predictors of xt and zt with and without taking each other into account. In this example
we will only be looking at the predictors that forecast 3 steps ahead. Using (2.32) we find

Σyp3q «

»

–

2.953 0.146 0.011
0.146 1.161 0.663
0.011 0.663 0.943

fi

fl ,

which means

Σzp3|Ωtq “ Σzp3|tys|s ď tuq

« 2.953 (2.76)

and

Σxp3|Ωtq “ Σxp3|tys|s ď tuq

«

„

1.161 0.663
0.663 0.943



. (2.77)

Now if the calculate the forecast mean squared error of xt and zt without taking the other variable into
account, we find

Σzp3|Ωtztxs|s ď tuq “ Σzp3|tzs|s ď tuq

« 2.953 (2.78)

and

Σxp3|Ωtztzs|s ď tuq “ Σxp3|txs|s ď tuq

«

„

1.131 0.661
0.661 0.942



. (2.79)

We see that Σzp3|Ωtq “ Σzp3|Ωtztxs|s ď tuq, which is what we expected since zt did not Granger-cause
xt. If we would check for values of h other than 3, we would find the same result. We also see that
Σxp3|Ωtq ‰ Σxp3|Ωtztzs|s ď tuq, hence xt does indeed not Granger-cause zt.

2.3.3 Instantaneous causality

Instantaneous causality is a method to find out whether certain variables of interest will have a better
1-step prediction if the values of some other variables of interest of 1 step ahead are already known.
Thus whenever adding xt`1 to the information set Ωt is improving the prediction of zt and conversely,
then we speak of instantaneous causality between those variables. We get the following definition for
instantaneous causality.

Definition 2.13. Suppose xt and zt are multidimensional variables of interest. Let Σzph|Ωtq be the fore-
cast mean squared error of the h-step minimum MSE predictor of zt as in (2.25) based on the information
set Ωt, which contains all available information of all variables up until time t. Then we say that there
is instantaneous causality between xt and zt when

Σxp1|Ωtq ‰ Σxp1|Ωt Y tzt`1uq. (2.80)
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Note that we do not say that there is instantaneous causality from xt to zt or from zt to xt. We will
show that both statements are equivalent, hence we call it instantaneous causality between xt and zt. To
show whether there is no instantaneous causality between 2 variables, we can simply use the following
theorem.

Theorem 2.10. Let yt a stable VAR(p) process as in (2.58), then there is instantaneous no causality
between xt and zt if and only if

Eru1,tu
T
2,ts “ 0. (2.81)

Proof. We will use the representation of yt as in (2.44) to obtain

yt “

„

zt
xt



“ µ`
8
ÿ

i“0

Θiwt´i

“:

„

µ1

µ2



`

„

Θ11,0 Θ12,0

Θ21,0 Θ22,0

 „

w1,t

w2,t



`

„

Θ11,1 Θ12,1

Θ21,1 Θ22,1

 „

w1,t´1

w2,t´1



` . . . , (2.82)

with appropriate dimensions such that

zt “ µ1 `

8
ÿ

i“0

Θ11,iw1,t´i `

8
ÿ

i“0

Θ12,iw2,t´i, (2.83)

xt “ µ2 `

8
ÿ

i“0

Θ21,iw1,t´i `

8
ÿ

i“0

Θ22,iw2,t´i. (2.84)

Using this notation we can look at the minimum MSE predictor 1 step ahead for xt based on the
information set tys|s ď tu Y tzt`1u. From the representation in (2.82) we see that this information set is
equivalent with tws|s ď tuYw1,t`1. Since the w1,t`1 is uncorrelated with tws|s ď tu, we find from (2.84)
that

xtp1|tws|s ď tu Y w1,t`1q “ xtp1|tws|s ď tuq `Θ21,0w1,t`1,

hence there is instantaneous causality between xt and zt if and only if Θ21,0 “ 0. We know from (2.44)
that Θi “ ΦiP , where PPT “ Σu. Since from Theorem 2.3 we found that Φ0 “ IK , we see that Θ0 “ P .
We know that P is a lower triangular matrix, hence

„

Θ11,0 Θ12,0

Θ21,0 Θ11,0



“ P

“

„

P11 0
P21 P22



,

where Pjk and Θjk,0 have the same dimensions. When Θ21,0 “ 0, then obviously P21 “ 0. Since
Σu “ PPT , we can see that Covpumt, untq “ 0 for m “ 1, 2, . . . ,M and n “ M ` 1,M ` 2, . . . ,K.
Therefore there is instantaneous causality between xt and zt if and only if Eru1,tu

T
2,ts.

Example 2.7. Let us take a look again at the 3-dimensional VAR(1) process of Example 2.6, where we

still have that xt = y1t and zt “

„

y2t

y3t



. We define the covariance matrix of the white noise terms to be

Σu “

»

–

2.25 0 0
0 1 0.5
0 0.5 0.74

fi

fl . (2.85)

We see that Eru1,tu
T
2,ts “ 0, hence there is no instantaneous causality between xt and zt, which means

that the prediction of variable xt`1 will not improve if we take zt`1 into account.
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2.3.4 Impulse Response analysis

With impulse response analysis we can investigate situations where suddenly one variable of interest
increases in value. We call the sudden increase of a variable of interest an impulse, which is defined as
follows.

Definition 2.14. Suppose we have a stable VAR(p) process yt, where we assume that yt is equal to the
mean µ for t ă 0. Then we define the error terms for an impulse in the k-th variable of interest for t “ 0
to be

uk0 “ 1 and uj0 “ 0 for j ‰ k (2.86)

and for t ą 0 to be

u1 “ 0, u2 “ 0, . . . .

For example, the impulse in the first variable of interest of a certain VAR(p) process will be

u0 “

»

—

—

—

–

1
0
...
0

fi

ffi

ffi

ffi

fl

, u1 “

»

—

—

—

–

0
0
...
0

fi

ffi

ffi

ffi

fl

, u2 “

»

—

—

—

–

0
0
...
0

fi

ffi

ffi

ffi

fl

, . . .

If we now create an impulse in a certain variable, we are able to see what happens with y1, y2, . . . and
look at the effect that the impulse has on all of the variables of interest. We call this effect the response
of the impulse.

Whenever the variables have different scales it can be useful to create a different impulse than in (2.86),
since an impulse with uk0 “ 1 might be a really small or a really big change in comparison with the k-th
variable of interest. If that is the case then we can assume the value of uk0 to simply be the standard
deviation of the k-th variable of interest. If we look for example at the impulse of the first variable of the
bivariate VAR(2) process in Example 2.2, we could take u10 to be

?
0.09 instead of 1.

Since we are not really interested in the mean of the process, but only in the response on the im-
pulses, we can take for simplicity µ “ 0 and ν “ 0. It turns out that now the responses caused by certain
impulses are as follows.

Theorem 2.11. Let yt be a stable VAR(p) process, where yt “ 0 for t ă 0 and ν “ 0. Then the response
of an impulse in the k-th variable of interest for t “ i are the first K values of the k-th column of Ai,
where A is as in Definition 2.2.

Proof. We can rewrite yt in companion form as in Definition 2.2, hence

Yt “ AYt´1 ` Ut.

An impulse in the k-th variable of yt would result in Uk0 “ 1 and Uj0 “ 0 for j ‰ k and furthermore
Ut “ 0 for t ą 1. Hence

Y0 “ AY´1 ` U0

“ U0.
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We now have that

Y1 “ AY0 ` U1

“ AU0,

Y2 “ AY1 ` U2

“ A2U0,

...

Yi “ AYi´1 ` Ui

“ AiU0.

...

Since U0 is a vector of zeros, except for the k-th element, which is 1, we find that Yi is the k-th column
of A, hence yi are the first K values of the k-th column of A.

It is interesting to know when there is no response of a certain variable after an impulse. When this
occurs we call this response a zero impulse response. Zero impulse responses occur when the variable
of the impulse does not Granger-cause the other variables, because then the prediction of the response
variables are not influenced by the impulse variable. From Lemma 2.4 it is now obvious that variable
j has a zero impulse response from an impulse in variable k ‰ j when φjk,i “ 0 for i “ 1, 2, . . ., where
φjk,i “ 0 is the j-th row k-th column element of Φi. In order to check if all φjk,i are 0, we do not have
to find Φi for all values of i, since we have the following proposition (Lütkepohl, 2005, pp. 54-55).

Proposition 2.1. Let yt be a stable K-dimensional VAR(p) process, then for j ‰ k we have that

φjk,i “ 0 for i “ 1, 2, . . . (2.87)

is equivalent with

φjk,i “ 0 for i “ 1, 2, . . . , ppK ´ 1q. (2.88)

This means that we simply have to look at the first ppK ´ 1q matrices of Φi to see whether a response of
an impulse of a variable of interest is a zero impulse response.

Example 2.8. Let us take a look at the 3-dimensional VAR(1) process as in Example 2.6, but for
simplicity we take µ “ 0 and ν “ 0, hence yt “ 0 for t ă 0. We get the following process.

yt “

»

–

0.5 0 0
0.1 0.1 0.3
0 0.2 0.3

fi

fl yt´1 ` ut.

If we create an impulse in the first variable of interest, we have that

u0 “

»

–

1
0
0

fi

fl , u1 “

»

–

0
0
0

fi

fl , u2 “

»

–

0
0
0

fi

fl , . . . ,

hence

y0 “

»

–

0.5 0 0
0.1 0.1 0.3
0 0.2 0.3

fi

fl y´1 ` u0

“

»

–

0.5 0 0
0.1 0.1 0.3
0 0.2 0.3

fi

fl

»

–

0
0
0

fi

fl`

»

–

1
0
0

fi

fl .
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Now the responses of this impulse are

y1 “

»

–

0.5 0 0
0.1 0.1 0.3
0 0.2 0.3

fi

fl y0 ` u1

“

»

–

0.5 0 0
0.1 0.1 0.3
0 0.2 0.3

fi

fl

»

–

1
0
0

fi

fl`

»

–

0
0
0

fi

fl

“

»

–

0.5
0.1
0

fi

fl ,

y2 “

»

–

0.5 0 0
0.1 0.1 0.3
0 0.2 0.3

fi

fl y1 ` u2

“

»

–

0.5 0 0
0.1 0.1 0.3
0 0.2 0.3

fi

fl

»

–

0.5
0.1
0

fi

fl`

»

–

0
0
0

fi

fl

“

»

–

0.25
0.06
0.02

fi

fl

and so on. Note that we can also use Theorem 2.11 to find that yi is the first column of

»

–

0.5 0 0
0.1 0.1 0.3
0 0.2 0.3

fi

fl

i

(2.89)

and the responses at t “ i of the impulse in the second and third variable of interest are the second and
third column of (2.89) respectively. We now obtain the following responses.
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Figure 2.5: Impulse responses of our process.

Since from Example 2.6 we found that the second and third variable of interest do not Granger-cause the
first variable of interest, it is obvious that the responses of the impulse in the first variable are 0, as we
can see in the figure above. We could also calculate the moving average coefficients as in Theorem 2.3 to
obtain

Φ1 “

»

–

0.5 0 0
0.1 0.1 0.3
0 0.2 0.3

fi

fl (2.90)

Φ2 “

»

–

0.25 0 0
0.06 0.07 0.12
0.02 0.08 0.15

fi

fl . (2.91)

We see that φ12,i “ φ13,i “ 0 for i “ 1, 2, hence using Proposition 2.1 and the fact that ppK ´ 1q “ 2,
we know that the responses of the second and third variable caused by the impulses of the first variable
should indeed be 0.

2.3.5 Orthogonal Impulse Response analysis

The problem with impulse response analysis in the last section is that the impulse only happens in one
variable at a time. Whenever the variables of interest are all uncorrelated, then this does not cause any
problems, but when some variables are dependent then the responses may not be correct. When we
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create an impulse in a variable of interest, we only assume that one error term changes in value at t “ 0,
but when that error term is dependent with an error term of another variable of interest, then in reality
both error terms should change in value. Hence the impulse of correlated variables will result in responses
that will likely not happen in reality. That is why we will be looking at the representation of a stable
VAR(p) process yt with uncorrelated error terms of the variables of interest as in (2.44). We will create
an impulse in the k-th variable of interest that does not necessarily only have one non-zero error term,
but which can have multiple non-zero values which depends on the correlation of the error terms. This
special impulse will be called an orthogonal impulse. We can obtain the following useful theorem.

Theorem 2.12. Let yt be a stable VAR(p) process, where yt “ 0 for t ă 0 and ν “ 0. Then the response
of an orthogonalised impulse in the k-th variable of interest is for t “ i the k-th column of Θi, where Θi

is as in (2.44).

Proof. First, using the representation of yt as in (2.44), we know that Σu “ PPT for a lower triangular
matrix P . We can rewrite this as

Σu “ PPT

“ PD´1DDT pPD´1qT

“ WΣεW
T ,

where we define D to be the diagonal matrix with the same diagonal as P . Furthermore W :“ PD´1

and Σε :“ DDT .

Remember from (2.1) that our VAR(p) process yt with ν “ 0 looks like

yt “ A1yt´1 ` ¨ ¨ ¨ `Apyt´p ` ut. (2.92)

Since of course WW´1 “ I, we can rewrite (2.92) as

yt “ A1yt´1 `A2yt´2 ` ¨ ¨ ¨ `Apyt´p `WW´1ut.

Since

ErW´1utpW
´1utq

T s “ W´1ErutuTt spW´1qT

“ W´1ΣupW
´1qT

“ W´1P pW´1P qT

“ Σε,

we can define εt :“W´1ut, hence

yt “ A1yt´1 `A2yt´2 ` ¨ ¨ ¨ `Apyt´p `Wεt.

Since Σε “ DDT and hence diagonal, it means that the εt are independent. Now with an impulse of
the k-th variable of interest, we have ek0 as the value of its standard deviation or equivalently ε0 is the
k-th column of D, since Σε “ DDT and D is a diagonal matrix. This means we get as response for the
impulse in the k-th variable of interest at t “ 0 that

y0 “ Wε0

“ PD´1ε0

“ Pek,

where ek “ p0, . . . , 0, 1, 0, . . . , 0q
T is the unit vector with 1 at the k-th row. This means that y0 is the

k-th column of Θ0, since from (2.44) we know that Θ0 “ P .

Now for the response on the impulse in the k-th variable we have that

y1 “ A1y0

“ Φ1Pek

“ Θ1ek,
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hence the response at time t “ 1 of the impulse in the k-th variable of interest is the k-th column of
Θ1. Using the same methodology we can find that the response at time t “ i of the impulse in the k-th
variable of interest is the k-th column of Θi.

Again it is interesting to know when there is no response at all of a certain variable after a certain
orthogonal impulse. When this occurs, we call this response a zero orthogonal impulse response. A zero
orthoganal impulse response of the j-th variable caused by an orthogonal impulse in the k-th variable
only happens when of course Θjk,i “ 0 for i “ 1, 2, . . ., where Θjk,i is the j-th row k-th column element of
Θi. Again we do not need to find Θi for all values of i, since it is possible to find the following proposition
(Lütkepohl, 2005, p. 61).

Proposition 2.2. Let yt be a stable K-dimensional VAR(p) process, then for j ‰ k we have that

Θjk,i “ 0 for i “ 1, 2, . . .

is equivalent with

Θjk,i “ 0 for i “ 1, 2, . . . , ppK ´ 1q.

This means we only have to look at the first ppK ´ 1q matrices of Θi to see whether a certain response
of a variable is a zero orthogonal impulse response.

Example 2.9. If we continue with the same process as in Example 2.8, we can find Θ0,Θ1 and Θ2 from
2.44 as follows. Since for

P “

»

–

1.5 0 0
0 1 0
0 0.5 0.7

fi

fl

we have that Σu “ PPT , we find that

Θ0 “ P

“

»

–

1.5 0 0
0 1 0
0 0.5 0.7

fi

fl , (2.93)

Θ1 “ Φ1P

“

»

–

0.75 0 0
0.15 0.25 0.21

0 0.35 0.21

fi

fl , (2.94)

Θ2 “ Φ2P

“

»

–

0.375 0 0
0.090 0.130 0.084
0.030 0.155 0.105

fi

fl , (2.95)

where Φ0 “ IK which we found in Theorem 2.3 and Φ1 and Φ2 are as in (2.90) - (2.91). The Θi

matrices for i ą 2 can be found using the same methodology. Now using Theorem 2.12 we find the
following responses.
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Figure 2.6: Orthogonal impulse responses of our process.

We see that there is no response for the second and third variable of interest on the orthogonal impulse
in the first variable for t “ 0, 1, . . . , 8. Using Proposition 2.2, the fact that ppK´1q “ 2 and the matrices
(2.93 - 2.95) we can confirm that the response for the second and third variable on the orthogonal impulse
in the first variable are indeed zero orthogonal impulse responses.

2.4 Estimators

In the previous sections we always assumed that we knew the intercept ν and the coefficient matrices
A1, A2, . . . , Ap of a VAR(p) process. However in reality these matrices are not known beforehand and
they have to be estimated. In this section we will discuss two different methods we can use to estimate
these parameters

We will assume that we have a time series y1, y2, . . . , yN with K variables of interest, hwere N is the
sample size. We assume that for t “ 1, 2, . . . , N the process can be fully generated by a VAR(p) process
as in (2.1), so we assume that y´p`1, . . . , y´1, y0 is available as well. We call these values the presample
values.
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2.4.1 Ordinary Least Squares estimator

The first estimator we will investigate is the Ordinary Least Squares (OLS) estimator. For notation it
will be useful to rewrite our time series using the following parameters.

Definition 2.15. We define

Y :“ py1, y2, . . . , yN q pK ˆNq,

B :“ pν,A1, A2, . . . , Apq pK ˆ p1`Kpqq,

Zt :“

»

—

—

—

—

—

–

1
yt
yt´1

...
yt´p`1

fi

ffi

ffi

ffi

ffi

ffi

fl

pp1`Kpq ˆ 1q,

Z :“ pZ0, Z1, . . . , ZN´1q pp1`Kpq ˆNq,

U :“ pu1, u2, . . . , uN q pK ˆNq,

y :“ vecpY q pKN ˆ 1q,

β :“ vecpBq ppKp1`Kpqq ˆ 1q,

b :“ vecpBT q ppKp1`Kpqq ˆ 1q,

u :“ vecpUq pKN ˆ 1q,

(2.96)

where our time series can now be rewritten compactly in the form

Y “ BZ ` U. (2.97)

Since from (2.97) we have that

vecpY q “ vecpBZq ` vecpUq, (2.98)

we also find using Lemma 2.3

y “ pZT b IKqβ ` u, (2.99)

where b is the Kronecker product as in Definition 2.7. The OLS estimator is the vector β in (2.99) that
minimizes the sum of squared residuals, or equivalently the sum of squared error terms. In other words,
the ordinary least squares estimator β̂ minimizes the function Spβq “ uTu. This common problem has
already been solved many times for vectors (Rice, 2007, p. 573) and the least squares estimator of (2.99)
turns out to be

β̂ “ rpZT b IKq
T pZT b IKqs

´1pZT b IKq
Ty (2.100)

We will simplify β̂ to find a least squares estimator for B in terms of Y and Z as in (2.98). To do so
we will use Lemma (2.3) and the following lemmas (Lütkepohl, 2005, pp. 661-662) with the vec operator
and the Kronecker product.

Lemma 2.5. Let A and B be matrices, then

pAbBqT “ AT bBT ,

where b is the Kronecker product as in Definition 2.7.

Lemma 2.6. Let A,B,C and D be matrices, then

pAbBqpC bDq “ AC bBD,

where b is the Kronecker product as in Definition 2.7. We assume matrices A,B,C and D to have
suitable dimensions for all matrix products used.
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Now we can find the OLS estimator for B in the following theorem.

Theorem 2.13. The least squares estimator for B in terms of Y and Z is

B̂ “ Y ZT pZZT q´1 (2.101)

Proof. From (2.100) we have that

vecpB̂q “ β̂

“ rpZT b IKq
T pZT b IKqs

´1pZT b IKq
Ty.

Using Lemma 2.5 we find that

vecpB̂q “ rpZ b IKqpZ
T b IKqs

´1pZ b IKqy.

Now using Lemma 2.6 we find that

vecpB̂q “ pZZT b IKq
´1pZ b IKqy

Now finally using Lemma 2.3 twice, we find

vecpB̂q “ pZZT b IKq
´1vecpY ZT q

“ vecpY ZT pZZT q´1q.

Since both sides of the equation are matrices with the vec operator, it is obvious that

B̂ “ Y ZT pZZT q´1.

2.4.2 Asymptotic properties of the Ordinary Least Squares estimator

The OLS estimator has some useful asymptotic properties including consistency and asymptotic normal-
ity. Before we look at these properties, let us first introduce definition of standard white noise.

Definition 2.16. A standard white noise process is a white noise process ut where all fourth moments
exist and are bounded, hence for some constant c we have for all t that

Eruitujtuktumts ď c for i, j, k,m “ 1, 2, . . . ,K.

The definition of the standard white noise allows us to create some restrictions on the residuals. Note
that the assumption that ut is i.i.d. normally distributed with a covariance matrix Σu is still a valid
assumption, since it still suffices the condition of a standard white noise process. Now assuming we have
a standard white noise process, it can be found that the OLS estimator has the following asymptotic
properties (Lütkepohl, 2005, pp. 73-74).

Proposition 2.3. Suppose yt is a stable K-dimensionl VAR(p) process with standard white noise resid-
uals, where yt can be rewritten as in Definition 2.15. Let B̂ be the least squares estimator of the VAR
coefficients B, then the following asymptotic properties hold.

1. The least squares estimator B̂ is consistent, i.e.

plim B̂ “ B.

2. We have asymptotic normality of

?
N vecpB̂ ´Bq

d
Ñ́ N p0,Γ´1 b Σuq,

where b is the Kronecker product as in Definition 2.7 and Γ “ plim ZZT

N .
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Note that plim in the first asymptotic property is equivalent with convergence in probability. In order to
apply the second property in Proposition 2.3, we need to know the matrix Γ b Σu. Since not all values
of this matrix are known beforehand, we will have to estimate these matrices. The matrix Γ however is
known beforehand, since Z and N are values that we can simply extract from our time series. Hence an
estimator for Γ will be

Γ̂ “
ZZT

N
. (2.102)

Since we know that Σu “ ErutuTt s, we know that a good estimator of Σu would simply be the the sample
mean as

Σ̃u “
1

N

N
ÿ

t“1

ûtût
T

“
1

N
ÛÛT ,

where ût are the residuals of the VAR model with the estimated coefficients. Using (2.97) we find

Σ̃u “
1

N
pY ´ B̂ZqpY ´ B̂ZqT .

However Lütkepohl (2005, p. 75) suggested that the degrees of freedom should be taken into account,
since this estimator might lead to a biased estimator of the covariance matrix. We then obtain the
estimator

Σ̂u “
1

N ´Kp´ 1
pY ´ B̂ZqpY ´ B̂ZqT , (2.103)

since for each variable of interest pKp` 1q parameters have to be estimated.

Example 2.10. In this example we want to take a look at the consistency of the OLS estimator. We will
look at the error that this estimator is making while estimating the VAR coefficient A1 of the following
3-dimensional VAR(1) process

yt “ ν `

»

–

0.5 0 0
0.1 0.1 0.3
0 0.2 0.3

fi

fl yt´1 ` ut, (2.104)

with multivariate normally distributed ut, which has a covariance matrix

Σu “

»

–

2.25 0 0
0 1 0.5
0 0.5 0.74

fi

fl . (2.105)

We choose

ν “

»

–

1
2
3

fi

fl and y0 “

»

–

1
1
1

fi

fl ,

such that we can now generate our process from y1 till yN for an integer N by taking N samples of ut.
Using Theorem 2.13 we can find the least squares estimator B̂ of our generated process.

The consistency of the least squares estimator tells us that

plim B̂ “ B, (2.106)

where

B “

»

–

1 2.25 0 0
2 0 1 0.5
3 0 0.5 0.74

fi

fl .
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Let us now generate y1 till yN an amount of 1000 times for some value of N and define the OLS estimation
of the coefficient matrix A1 of the i-th generation to be Âpiq. We now also define Â to be

Â “
1

1000

1000
ÿ

i“1

||Âpiq ´A||F ,

where

||Âpiq ´A||F :“

c

tr
”

pÂpiq ´AqpÂpiq ´AqT
ı

is the Frobenius norm (Golub and van Loan, 1996). Then using the law of large numbers it is obvious
that (2.106) implies that

ÂÑ 0,

for N Ñ8. We find the following values of Â for various values of N .

Values of Â for various N.

As expected, we see Â moving towards 0 for N Ñ8. Also we see for N ě 1000 that approximately Â ď

0.1, hence we could conclude that for N ě 1000 the OLS estimator of a VAR(1) process is approximately
B.

2.4.3 t-Ratios

With t-ratios we can determine which values of the OLS estimator B̂ are actually significant, i.e. not
equal to 0. Let us define β̂i and βi to be the i-th element of vecpB̂q and vecpBq respectively. Also let ŝi
be the square root of the i-th row i-th column element of pZZT q´1 b Σ̂u. From the second asymptotic
property in Proposition 2.3 we can now see that

β̂i ´ βi
ŝi

„ N p0, 1q @i. (2.107)

This means that we can simply take βi “ 0 and thus divide the least squares estimator B̂ by all corre-
sponding values of ŝi to obtain the t-ratios. Then we can look at the t-distribution with our degrees of
freedom in order to look if our estimated coefficients are significant. Usually the sample size minus the
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amount of parameters is taken as degrees of freedom, which is KN ´ KpKp ` 1q, however Lütkepohl
(2005, p. 77) argued that N ´ pKp` 1q suffices as well. The t-distribution will be close to the standard
normal distribution for large degrees of freedom, hence these differences between degrees of freedom will
not differ so much anyways when we have a large data set.

Example 2.11. Continuing with the same stable 3-dimensional VAR(1) process yt as in Example 2.10,
we can generate this process for N “ 1000. We take N “ 1000 since we showed in Example 2.10 that for
this value the OLS estimator is a good approximation of the coefficients. We obtain the OLS estimator

B̂ “
“

ν̂ Â1

‰

«

»

–

1.049 0.451 0.007 0.007
1.766 0.127 0.067 0.357
3.013 ´0.003 0.198 0.304

fi

fl . (2.108)

When we calculate all values of ŝi, we can find the t-ratios corresponding to the coefficients of B̂ as
»

–

3.739 15.846 0.131 0.107
9.454 6.703 1.810 8.518
19.097 ´0.160 6.301 8.591

fi

fl . (2.109)

When looking at the t-distribution with N ´ pKp` 1q “ 996 degrees of freedom, we find that coefficients
with t-ratios between approximately -1.962 and 1.962 will not be significant with a significance level of 5%.
In (2.109) we see that only 4 coefficients have t-ratios between -1.962 and 1.962, but all other coefficients
are significant. The t-ratios of the coefficients with estimations close to 0 will of course have low t-ratios.
The second row second column element of A1 is 0.1, hence it is not surprising that the t-ratio of this
coefficient shows that it is not significant for N “ 1000. However if we would take larger values for N ,
then we would see that only three t-ratios would not be significant, which are the coefficients of A1 that are
0. This does not mean that we have chosen N wrong. We only need 1 significant value in the intercept
and 1 in each of the coefficient matrices to show that the whole vector or matrix is not 0.

2.4.4 Maximum Likelihood estimator

The second method to estimate the intercept and the coefficient matrices of a VAR(p) model is the
maximum likelihood estimator. To derive this estimator, we will be using the following notations.

Definition 2.17. Define

µ :“ Eryts pK ˆ 1q,

Y 0 :“ py1 ´ µ, y2 ´ µ, . . . , yN ´ µq pK ˆNq,

A :“ pA1, A2, . . . , Apq pK ˆKpq,

Y 0
t :“

»

—

—

—

–

yt ´ µ
yt´1 ´ µ

...
yt´p`1 ´ µ

fi

ffi

ffi

ffi

fl

pKpˆ 1q,

X :“ pY 0
0 , Y

0
1 , . . . , Y

0
N´1q pKpˆNq,

U :“ pu1, u2, . . . , uN q pK ˆNq,

α :“ vecpAq pK2pˆ 1q,

y :“ vecpY q pKN ˆ 1q,

µ˚ “

»

—

—

—

–

µ
µ
...
µ

fi

ffi

ffi

ffi

fl

pKN ˆ 1q,

such that we can write the mean-adjusted form of the VAR(p) process

pyt ´ µq “ A1pyt´1 ´ µq `A2pyt´2 ´ µq ` ¨ ¨ ¨ `Appyt´p ´ µq ` ut

42



compactly as

Y 0 “ AX ` U. (2.110)

The mean-adjusted form of the VAR(p) process is used so that the asymptotic normality we will find of
the maximum likelihood estimators will be independent. The idea of the maximum likelihood estimator
is to find the values of the parameters such that the log-likelihood function of the parameters µ,α,Σu is
optimized, where we assume the residuals to be multivariate normally distributed. The methodology of
the calculations we will use to find the log-likelihood function and the maximum likelihood parameters
can be found in (Lütkepohl, 2005, pp. 87-90). We will simply present the results and analyse them.

We can find the log-likelihood function of

Proposition 2.4. The log-likelihood function l of the parameters µ,α,Σu is

lpµ,α,Σuq “ ´
KN

2
lnp2πq ´

N

2
lnpdetpΣuqq ´

1

2
tr
“

pY 0 ´AXqTΣ´1
u pY

0 ´AXq
‰

.

If we now would want to find the parameters µ̃, α̃ and Σ̃u which maximize the log-likelihood function
lpµ,α,Σuq, we have to those values such that

B lpµ,α,Σuq

Bµ
“ 0, (2.111)

B lpµ,α,Σuq

Bα
“ 0, (2.112)

B lpµ,α,Σuq

BΣu
“ 0, (2.113)

respectively holds. We then call µ̃, α̃ and Σ̃u the maximum likelihood estimators. It turns out that these
estimators can be found in the following proposition.

Theorem 2.14. The maximum likelihood estimators α̃ and Σ̃u which solves (2.111)-(2.113) can be found
by solving the set of equations

µ̃ “
1

N

˜

IK ´
p
ÿ

i“1

Ãi

¸´1 N
ÿ

t“1

˜

yt ´
p
ÿ

i“1

Ãiyt´i

¸

,

α̃ “ ppX̃X̃T q´1X̃ b IKqpy´ µ̃
˚
q,

Σ̃u “
1

N
pỸ 0 ´ ÃX̃qpỸ 0 ´ ÃX̃qT ,

where Ỹ 0 and X̃ are obtained from Definition 2.17 by using µ̃ instead of µ. The matrices Ãi come from
α̃ :“ vecpÃq, where Ã :“ pÃ1, . . . , Ãpq.

It turns out that the maximum likelihood estimators µ̃ and α̃ are actually the same as the least squares
estimator B̂ as in Theorem 2.13. One might wonder why we would also analyse the maximum likelihood
estimator, since the result is the same. This is because our maximum likelihood estimator has some
interesting asymptotic properties, which we obtain in the following section.

2.4.5 Asymptotic properties of the Maximum Likelihood estimator

The maximum likelihood estimators also have their own asymptotic properties, just as the OLS estimator.
Before we take a look at the asymptotic properties, let us first look at the following definitions.

The so-called vech operator is almost the same as the vec operator from Definition 2.6. This opera-
tor is mostly used for symmetric matrices, since the vech operator does not collect the duplicates of the
elements which are above the diagonal. It is defined as follows.
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Definition 2.18. If A is a pmˆmq matrix, then the vech operator returns the pmpm`1q
2 ˆ 1q vector

vechpAq :“ pa11, . . . .am1, a22, . . . , am2, . . . , apm´1qpm´1q, ampm´1q, ammq
T ,

which are the stacked columns of A, but only with the elements that are on or below the diagonal.

Example 2.12. For a p3ˆ 3q matrix we have

vech

¨

˝

»

–

a11 a12 a13

a21 a22 a23

a31 a32 a33

fi

fl

˛

‚“

»

—

—

—

—

—

—

–

a11

a21

a31

a22

a32

a33

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Secondly, let us look at the duplication matrix.

Definition 2.19. The duplication matrix DK is a pK2 ˆ
KpK`1q

2 q matrix such that for any pK ˆ Kq
matrix A we have that

vecpAq “ DK vechpAq.

Furthermore using these definitions we define D`
K and σ as follows.

Definition 2.20. We define

D`K :“ pDT
KDKq

´1DT
K ,

σ :“ vechpΣuq

where DK is a duplication matrix.

Note that σ̃ can be found the same way in the definition above, but with using Σ̃u.

Using these definitions, we can find the asymptotic properties of the maximum likelihood estimators.
Again, the methodology of the calculations of these properties and can be found in Lütkepohl, 2005,
pp. 90-93. The following properties can be found.

Proposition 2.5. Suppose yt is a stable K ´ dimensional VAR(p) process with normally distributed
error terms, then the following asymptotic properties hold.

1. The maximum likelihood estimators µ̃, α̃ and Σ̃u are consistent estimators, i.e. they converge in
probability to µ,α and Σu respectively.

2. We have asymptotic normality of

?
N

»

–

µ̃´ µ
α̃´α
σ̃ ´ σ

fi

fl „ N

¨

˝0,

»

–

Σµ̃ 0 0
0 Σα̃ 0
0 0 Σσ̃

fi

fl

˛

‚,

where

Σµ̃ “

˜

IK ´
p
ÿ

i“1

Ai

¸´1

Σu

˜

IK ´
p
ÿ

i“1

ATi

¸´1

,

Σα̃ “ ΓY p0q
´1 b Σu,

Σσ̃ “ 2D`KpΣu b ΣuqpD
`
Kq

T ,

where ΓY p0q :“ plim XXT

N .

The matrices Σµ̃,Σα̃ and Σσ̃ could be estimated with consistent estimators such that the asymptotic

normality still holds. We therefore could use the consistent estimators α̃, σ̃ and Γ̂Y p0q :“ X̃X̃T

N in Σµ̃,Σα̃

and Σσ̃ and obtain the same asymptotic normality.
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2.4.6 Forecasting With Estimated Coefficients

Forecasting with estimated coefficients by an OLS or maximum likelihood estimation will be different
than forecasting a known VAR process. Since we will be forecasting with estimated coefficients, it means
that our h-step predictor will have to be estimated as well. This results into a different forecast error
variance.

To show this occurrence, let us assume we estimated a VAR(p) process yt. We then find using (2.29)
that the estimated minimum MSE predictor is

ŷtphq “ ν̂ ` Â1ŷtph´ 1q ` ¨ ¨ ¨ ` Âpŷtph´ pq, (2.114)

where ŷtpjq :“ yt`j for j ď 0. Using the result we found in (2.25) we find a forecast error of ŷtphq as

yt`h ´ ŷtphq “ pyt`h ´ ytphqq ` pytphq ´ ŷtphqq

“

˜

h´1
ÿ

i“0

Φiut`h´i

¸

` pytphq ´ ŷtphqq. (2.115)

All we now need to find to start forecasting with forecast error intervals is the covariance matrix of the
forecast error. Let us first look at the multivariate delta method in the following lemma (Doob, 1935).

Lemma 2.7. Let gpβq “ pg1pβq, . . . , gKpβq
T be a continuous differentiable function and β̂ be an estimator

of the pK ˆ 1q vector β with
?
Npβ̂ ´ βq „ N p0,Σq. If Bg

Bβ ‰ 0, then

?
Npgpβ̂q ´ gpβqq „ N p0, Bgpβq

BβT
Σ
BgpβqT

Bβ
q.

Using this lemma, we can obtain the following theorem.

Theorem 2.15. The covariance matrix of the forecast error of ŷtphq is

Σŷphq “ Σyphq `
Ωphq

N
,

with

Ωphq :“
Bypβq

BβT
pΓ´1 b Σuq

BypβqT

Bβ
,

where β :“ vecpBq is defined as in Definition 2.15.

Proof. Using Σyphq from earlier in (2.32), we can find using the forecast error in (2.115) the following
covariance matrix of the forecast error of ŷtphq.

Σŷphq :“ MSErŷtphqs

“ Σyphq `MSErytphq ´ ŷtphqs.

To obtain the MSE of ytphq ´ ŷtphq we will be using Lemma 2.7. Since yt is obviously a continuous
differentiable function with parameter β, using this lemma we obtain

?
Npŷtphq ´ ytphqq „ N p0,

Bypβq

BβT
pΓ´1 b Σuq

BypβqT

Bβ
q,

or

ŷtphq ´ ytphq „ N p0,
Ωphq

N
q. (2.116)

Now (2.116) suggests that the covariance matrix of ytphq´ ŷtphq is Ωphq
N , hence we can now fill in (2.116),

which results in

Σŷphq “ Σyphq `
Ωphq

N
.
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Now we just need to find the function Ωphq, since the expression of Ω in Theorem 2.15 is definitely not
trivial. It turns out that we can find following proposition (Lütkepohl, 2005, pp. 96-98).

Proposition 2.6. The function Ωphq in Theorem 2.15 can be expressed as

Ωphq “
h´1
ÿ

i“0

h´1
ÿ

j“0

tr
”

pBT
qh´1´iΓ´1Bh´1´jΓ

ı

ΦiΣuΦTj ,

with

B :“

»

—

—

—

—

—

–

1 0 0 . . . 0 0
ν A1 A2 . . . Ap´1 Ap
0 IK 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . IK 0

fi

ffi

ffi

ffi

ffi

ffi

fl

.

When we are estimating β, we can not exactly determine Ωphq, but we will again have estimate it. We
will have to find an estimate Ω̂phq, which is defined the same way as in Proposition 2.6, but we use the
estimated coefficients ν̂, Â1, . . . , Âp and the estimators Γ̂ and Σ̂u, which are all consistent estimators.

Now we are able to determine the covariance matrix of the forecast error of ŷtphq. For similar rea-
sons we earlier found the forecast intervals (2.36), we have a p1 ´ αq100% forecast interval of the k-th
variable of interest of predicting h steps ahead of

“

ŷk,tphq ´ σ̂kphqzα{2, ŷk,tphq ` σ̂kphqzα{2
‰

, (2.117)

where

yk,tphq : k-th element of ŷtphq,

σ̂kphq : square root of the k-th row k-th column element of Σ̂ŷphq,

zα : value such that PpZ ď zαq “ 1´ α, where Z „ N p0, 1q.

Example 2.13. Let us continue from Example 2.11 where we generated a 3-dimensional VAR(1) process
for N “ 1000. In this example we will forecast this generated process up to 2 steps ahead using (2.114),
where we will need ν̂, Â1 and ŷ1000p0q. We can find ν̂ and Â1 using the least square estimation we
performed in (2.108). The value of ŷ1000p0q in our generation turns out to be

ŷ1000p0q :“ y1000

«

»

–

4.325
1.327
3.786

fi

fl .

Using (2.114) allows us to find the forecasts

ŷ1000p1q “ ν̂ ` Â1ŷ1000p0q

«

»

–

1.049
1.766
3.013

fi

fl`

»

–

0.451 0.007 0.007
0.127 0.067 0.357
´0.003 0.198 0.304

fi

fl

»

–

4.325
1.327
3.786

fi

fl

«

»

–

3.035
3.755
4.414

fi

fl
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and

ŷ1000p2q “ ν̂ ` Â1ŷ1000p1q

«

»

–

1.049
1.766
3.013

fi

fl`

»

–

0.451 0.007 0.007
0.127 0.067 0.357
´0.003 0.198 0.304

fi

fl

»

–

3.035
3.755
4.414

fi

fl

«

»

–

2.475
3.978
5.088

fi

fl .

Now from Theorem 2.15 we see that we can estimate the covariance matrix of the forecast error of ŷ100phq
with

Σ̂ŷphq “ Σ̂yphq `
Ω̂phq

N
. (2.118)

First, we see that we need to obtain Σ̂yp1q and Σ̂yp2q. From (2.32) we see that we therefore will need to

find Σ̂u, Φ̂0 and Φ̂1.

Using (2.103) we can find that

Σ̂u “
1

N ´Kp´ 1
pY ´ B̂ZqpY ´ B̂ZqT

«

»

–

2.422 ´0.012 0.003
´0.012 1.073 0.511
0.003 0.511 0.765

fi

fl . (2.119)

Also using Theorem 2.3, we find

Φ̂0 :“

»

–

1 0 0
0 1 0
0 0 1

fi

fl

and

Φ̂1 :“ Φ̂0Â1

«

»

–

0.451 0.007 0.007
0.127 0.067 0.357
´0.003 0.198 0.304

fi

fl .

Now filling in (2.32) results into

Σ̂yp1q :“ Φ̂0Σ̂uΦ̂T0

«

»

–

2.422 ´0.012 0.003
´0.012 1.073 0.511
0.003 0.511 0.765

fi

fl

and

Σ̂yp2q :“ Σ̂yp1q ` Φ̂1Σ̂uΦ̂T1

«

»

–

2.914 0.131 0.005
0.131 1.239 0.654
0.005 0.654 0.939

fi

fl .

Secondly, to find the covariance matrix as in (2.118), we will need to obtain Ω̂p1q and Ω̂p2q. To get these
matrices, we see from Proposition 2.6 that we will need to find B̂ and Γ̂ first.
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Using the least squares estimator B̂ from (2.108), we find

B̂ :“

„

1 0

ν̂ Â1



«

»

—

—

–

1 0 0 0
1.049 0.451 0.007 0.007
1.766 0.127 0.067 0.357
3.013 ´0.003 0.198 0.304

fi

ffi

ffi

fl

.

Now using (2.102), we find

Γ̂ :“
ZZT

N

«

»

—

—

–

1.000 2.030 4.285 5.532
2.030 7.147 8.889 11.269
4.285 8.889 19.654 24.419
5.532 11.269 24.419 31.612

fi

ffi

ffi

fl

.

Now using the matrices B̂ and Γ̂ we found together with Σ̂u, Φ̂0 and Φ̂1, we find

Ω̂p1q :“ tr
”

pB̂T q1´1Γ̂´1B̂1´1Γ̂
ı

Φ̂0Σ̂uΦ̂T0

“ trpI3˚1`1qΣ̂u

“ 4Σ̂u

«

»

–

9.686 ´0.047 0.013
´0.047 4.292 2.044
0.013 2.044 3.061

fi

fl

and

Ω̂p2q :“
1
ÿ

i“0

1
ÿ

j“0

tr
”

pB̂T q1´iΓ̂´1B̂1´jΓ̂
ı

Φ̂iΣ̂uΦ̂Tj

“

»

–

9.550 1.125 0.016
1.125 3.180 2.560
0.016 2.560 3.048

fi

fl .

Now finally filling in (2.118) with Σ̂yp0q, Σ̂yp1q, Ω̂p1q and Ω̂p2q results in

Σ̂ŷp1q :“ Σ̂yp1q `
1

N
Ω̂p1q

«

»

–

2.422 ´0.012 0.003
´0.012 1.073 0.511
0.003 0.511 0.765

fi

fl`
1

1000

»

–

9.686 ´0.047 0.013
´0.047 4.292 2.044
0.013 2.044 3.061

fi

fl

«

»

–

2.431 ´0.012 0.003
´0.012 1.077 0.513
0.003 0.513 0.768

fi

fl

and

Σ̂ŷp2q :“ Σ̂yp2q `
1

N
Ω̂p2q

«

»

–

2.914 0.131 0.005
0.131 1.239 0.654
0.005 0.654 0.939

fi

fl`
1

1000

»

–

9.550 1.125 0.016
1.125 3.180 2.560
0.016 2.560 3.048

fi

fl

«

»

–

2.924 0.132 0.005
0.132 1.242 0.656
0.005 0.656 0.942

fi

fl .
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Now applying (2.117) gives us the following 95% forecast intervals. For the first variable of interest we
find the following.

steps ahead forecast lower bound upper bound interval length
1 3.035 -0.021 6.091 6.112
2 2.475 -0.876 5.826 6.703

Table 4: The minimum MSE predictions for 1 and 2 steps of the first variable of interest and their 95%
forecast intervals.

For the second variable of interest we find the following.

steps ahead forecast lower bound upper bound interval length
1 3.755 1.720 5.789 4.069
2 3.978 1.794 6.162 4.369

Table 5: The minimum MSE predictions for 1 and 2 steps of the second variable of interest and their
95% forecast intervals.

For the third variable of interest we find the following

steps ahead forecast lower bound upper bound interval length
1 4.414 2.380 6.132 3.752
2 5.088 2.903 6.990 4.087

Table 6: The minimum MSE predictions for 1 and 2 steps of the second variable of interest and their
95% forecast intervals.

Of course we can use the same methodology to find forecasts and their intervals for h ą 2. If we would
predict up to 10 steps ahead, we get the following figure.
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Figure 2.7: Estimated prediction of the estimated process 10 steps ahead for all 3 variables of interest.

We see that the generated process is following the forecasted values pretty well and it is lying between the
95% interval most of the times. The continued generation also looks to get nicely predicted.

2.5 Model tests

In this section we will describe the tests we can perform on a VAR process. First we will look at ways
to test for existence of Granger-causality and Instantaneous causality between certain variables of inter-
est. We previously found that causality occurs when certain values of the coefficient matrices or of the
covariance matrix are non-zero. However when we estimate the coefficient matrices and the covariance
matrix, we will not be able to find the original values of the matrices. Some values in those matrices
might originally be 0, but the estimated values might not be 0, hence one can not determine causality
between variables of interest when the process is estimated. Therefore tests should be used to test if some
values of a matrix are significantly 0.

Secondly we will look at tests for autocorrelation and non-normality of the residuals. Performing these
residual tests is also called diagnostic checking. Diagnostic checking is important when performing time
series analysis, since we often assumed that the residuals are a white noise process, hence uncorrelated
with each other. We also sometimes made the assumption that the residuals are normally distributed.
Therefore it is important that these assumption are checked before performing any sort of analysis method.

2.5.1 Test for Granger-causality

From Theorem 2.9 we see that if we would want to know whether Granger-causality occurs or when it
does not occur, we will have to test whether certain elements of the coefficient matrices are 0 or not. In
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general we will be using the Wald test (Wald, 1939), which tests the null hypothesis

H0 : Cβ “ c (2.120)

against the alternative hypothesis

H1 : Cβ ‰ c, (2.121)

where C is a pM ˆ pKpKp` 1qq matrix of rank M and c is a pM ˆ 1q vector. We choose matrix C such
that we can test whether the elements in the coefficient matrices we want to look at are equal to c. Thus
taking the right matrix C and taking c “ 0 allows us to test no existence of Granger-causality against
existence Granger-causality between certain variables.

In order to figure out what test statistic we will use to test H0 against H1, let us first look at the
following lemma (Lütkepohl, 2005, pp. 692-693).

Lemma 2.8. Let β̂ be an estimator of the pK ˆ 1q vector β with
?
Npβ̂ ´ βq „ N p0,Σq. If C is a

pM ˆKpKp` 1qq matrix with C ‰ 0, then the following holds.

1.
?
NpCβ̂ ´ Cβq „ N p0, CΣCT q.

2. Npβ̂ ´ βqΣ´1pβ̂ ´ βq „ χ2pKq.

Now using this lemma, we can find the following test statistic, which is called the Wald statistic.

Theorem 2.16. Let the null hypothesis in (2.120) be true and let β̂ be the OLS estimator of β, then

NpCβ̂ ´ cqT
“

CpΓ´1 b ΣuqC
T
‰´1

pCβ̂ ´ cq „ χ2pMq.

Proof. Using the asymptotic normality of the OLS estimator as in Proposition 2.3, we have that
?
Npβ̂ ´ βq „ N p0,Γ´1 b Σuq.

Using the first statement from Lemma 2.8 we see that
?
NpCβ̂ ´ Cβq „ N p0, CpΓ´1 b ΣuqC

T q.

Now since Cβ̂ and Cβ are pM ˆ 1q vectors, we have using the second statement from Lemma 2.8 that

NpCβ̂ ´ Cβq
“

CpΓ´1 b ΣuqC
T
‰´1

pCβ̂ ´ cq „ χ2pMq.

In general Γ and Σu are not known in advance, hence we will need to use the estimators Γ̂ and Σ̂u from
(2.102) and (2.103) respectively. Since these parameters will be estimated, Lütkepohl (2005, pp. 103)
suggested it might be better to test with an adjusted distribution, which is derived from the following
lemma.

Lemma 2.9. Let d1 and d2 be certain degrees of freedom, then

d1F pd1, d2q „ χ2pd1q, when d2 Ñ8,

where F pd1, d2q is an F random variable with d1 and d2 degrees of freedom.

We will be using the F -distribution in our test statistic, since this distribution has fatter tails, hence
more room for errors in the estimation of Γ and Σu. Let us now define

λW :“ pCβ̂ ´ cqT
”

CppZZT q´1 b Σ̂uqC
T
ı´1

pCβ̂ ´ cq, (2.122)

which is the Wald statistic, but with the estimated parameters Γ̂ and Σ̂u. We know from Theorem
2.16 that also λW „ χ2pMq, hence using Lemma 2.9 we also know that λW „ MF pM,d2q, for d2

degrees of freedom. Most of the times d2 will be taken to be the sample size minus the amount of
unknown parameters. Lütkepohl (2005, p. 104) argued that d2 “ N ´ pKp ` 1q suffices as well, since
each individual restriction of the Wald test is applied on only one variable of interest. We can now come
up with the following adjusted test statistic.
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Proposition 2.7. Let the null hypothesis in (2.120) be true and let β̂ be the least squares estimator of
β, then

λF :“
λW
M

„ F pM,N ´ pKp` 1qq.

Example 2.14. Let us continue with the generated 3-dimensional VAR(1) process we used in Example
2.11. We found the least squares estimator B̂ in (2.108). In Example 2.6 we have seen that in the original
process the second and third variable of interest did not Granger-cause the first variable of interest. In
this example we will be testing whether our generated process also shows no significant existence Granger-
causality between these variables.

We want to test the null hypothesis

H0 : Cβ “ 0

against the alternative hypothesis

H1 : Cβ ‰ 0,

where

C “

„

0 . . . 0 1 0 0 0 0 0
0 . . . 0 0 0 0 1 0 0



is the p2 ˆ 12q matrix. The rank of this matrix is obviously 2, hence M “ 2. With this specific matrix
we have that the hypotheses H0 and H1 are equivalent with testing whether the second and third element
in the first row of the coefficient matrix are 0 or are not 0 respectively. Thus indeed Granger-causality is
tested here. Together with Σ̂u in (2.119) we find using (2.122) that

λW “ pCβ̂qT
”

CppZZT q´1 b Σ̂uqC
T
ı´1

pCβ̂q

« 0.076,

hence

λF :“
λW
2

« 0.038.

Now using Proposition 2.7, we see that λF is distributed as F p2, 996q. Now we find a p-value of approx-
imately 0.963, hence we do not reject the null hypothesis if we take a significance level of 0.05 and we
conclude that the second and third variable of interest do not Granger-cause the first variable of interest.

2.5.2 Test for instantaneous causality

To test for no instantaneous causality between certain variables, we will be testing when certain values
of Σu are 0 or not. In general we will again be using the Wald test to test the null hypothesis

H0 : Cσ “ 0 (2.123)

against the alternative hypothesis

H1 : Cσ ‰ 0, (2.124)

where C is the pM ˆ
KpK`1q

2 q matrix of rank M, σ is again defined as vechpΣuq and c is a pM ˆ1q vector.
We again choose matrix C such that we can test whether certain elements on and below the diagonal of
Σu are equal to c. When we take the right matrix C and we take c “ 0, then we are testing no exis-
tence of instantaneous causality against the existence of instantaneous causality between certain variables.

Since we have from Proposition 2.5 the asymptotic property
?
Npσ̃ ´ σq „ N p0,Σσ̃q,

we can now obtain the following Wald statistic the same way we obtained Theorem 2.16.
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Theorem 2.17. Let the null hypothesis in (2.125) be true, then

λW :“ NpCσ̃qT
”

2CD`KpΣ̃u b Σ̃uqpCD
`
Kq

T
ı´1

Cσ̃ „ χ2pMq.

Example 2.15. Let us continue with the generated 3-dimensional VAR(1) process as in Example 2.11.
In Example 2.7 we have seen that there is no instantaneous causality between the first variable of interest
and the second variable combined with the third variable of interest. In this example we will be testing
whether our generated process shows the same result.

We want to test the null hypothesis

H0 : Cσ “ 0 (2.125)

against the alternative hypothesis

H1 : Cσ ‰ 0, (2.126)

where

C “

„

0 1 0 0 0 0
0 0 1 0 0 0



.

The rank of this matrix is 2, hence M “ 2. We choose this specific matrix C such that the hypotheses
H0 and H1 are equivalent with testing whether the second and third element of the first row and first
column of Σu are 0 or not respectively. From Theorem 2.10 we have seen that this is equivalent with test-
ing whether there is no instantaneous causality against testing whether there is instantaneous causality
between the first variable and the second and third variable combined.

From Definition 2.19 we can find the following duplication matrix D3.

D3 :“

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

hence

D`3 :“ pDT
KDKq

´1DT
K

“

»

—

—

—

—

—

—

–

1 0 0 0 0 0 0 0 0
0 0.5 0 0.5 0 0 0 0 0
0 0 0.5 0 0 0 0.5 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0.5 0 0.5 0
0 0 0 0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We also have from Theorem 2.14 that

Σ̃u “
1

N
pỸ 0 ´ ÃX̃qpỸ 0 ´ ÃX̃qT .

Now since we know that µ̃ and Ã is the same as µ̂ and Â from the least squares estimation respectively, we
can find these values from the least squares estimator we found in (2.108). This way Σ̃u can be calculated
and we find

Σ̃u «

»

–

2.412 ´0.012 0.003
´0.012 1.069 0.509
0.003 0.509 0.762

fi

fl .
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Now using Theorem 2.17, we find

λW “ NpCσ̃qT
”

2CD`3 pΣ̃u b Σ̃uqpCD
`
3 q
T
ı´1

Cσ̃

« 0.114.

Since λW „ χp2q, we find a p-value of approximately 0.944, which means we definitely do not reject H0 if
we take a significance level of 0.05, hence we have instantaneous causality between the first variable and
the second combined with the third variable.

2.5.3 Test for residual autocorrelations

Testing for autocorrelations in the residuals is important when performing time series analysis with the
VAR model. We assumed that a VAR model has white noise residuals, hence we should check for au-
tocorrelation between the residuals before we perform analysis methods. If there exists autocorrelation
between the residuals, then one might consider using another model.

Let us use the following notations.

Definition 2.21. Let us define the estimator Ci of the autocovariance of the residuals at lag i to be

Ci :“
1

N

N
ÿ

t“i`1

utu
T
t´i

and define the estimator Ri of the autocorrelation of the residuals at lag i to be

Ri :“ D´1CiD
´1,

where D is a diagonal pK ˆKq matrix with the same diagonal elements as C0. Then we define Ch and
Rh to be the following pK ˆKhq matrices.

Ch :“ pC1, C2, . . . , Chq,

Rh :“ pR1, R2, . . . , Rhq.

In order to test for no autocorrelation of the residuals up to lag h we can use the so-called portmanteau
test Castle and Hendry, 2010, which states to test the null hypothesis

H0 : Rh “ 0 (2.127)

against the alternative hypothesis

H1 : Rh ‰ 0. (2.128)

The test statistic can again be found with the use of an asymptotic property, this time of vecpĈhq. Note
that Ĉh can similarly be found by using ût. It turns out that

?
N vecpĈhq is asymptotically normally

distributed with mean 0 (Lütkepohl, 2005, pp. 165-166). The following test statistic can then be found
(Lütkepohl, 2005, p. 169).

Theorem 2.18. Let the null hypothesis in (2.127) be true, then

Qh :“ N
h
ÿ

t“1

trpĈTi Ĉ
´1
0 ĈiĈ

´1
0 q „ χ2pK2ph´ pqq.

Example 2.16. Let us again continue with the 3-dimensional VAR(1) process from Example 2.11. We
now do not assume the residuals ut to be i.i.d. normally distributed, but we will modify ut such that
autocorrelation can occur. We will define ut to be

ut “ ρut´1 ` εt for ρ P r´1, 1s,
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where εt is i.i.d. with N p0,Σuq and u0 “ 0. The idea is that autocorrelation between the residuals
clearly occur when ρ is close to 1 or -1, but when ρ is close to 0 it might be harder for the portmanteau
test to observe autocorrelation. If we generate our process 100 times with ρ P r´1, 1s, calculate the
corresponding p-value 100 times using Theorem 2.18 and calculate the percentage of the amount of rejected
null hypotheses, we find the following figure.

Figure 2.8: Percentage of the amount of rejected null hypotheses of the portmanteau test for h “ 2, a
significance level of 0.05 and for ρ P r´1, 1s.

As expected, we see that the portmanteau test rejects the null hypothesis more often for rho closer to 0.
The blue line in Figure 2.8 represents a 5% rejection rate of the null hypothesis. We see however that the
rejection rate is always above 5%, even for ρ “ 0, where we would actually expect a 0% rejection rate. A
reason for this is that N “ 1000 is probably not large enough for this test.

2.5.4 Test for non-normality of the error terms

Testing for non-normality of the residuals is an important test as well, since for some methods we made
the assumption that the residuals are normally distributed, e.g. forecast intervals and the maximum
likelihood estimation.

Let us assume we have a stable K-dimensional VAR(p) process with normally distributed white noise
error terms, hence ut „ N p0,Σuq for some pK ˆKq matrix Σu. We can rewrite the multivariate normal
distribution using the following lemma (Lütkepohl, 2005, pp. 174-175).

Lemma 2.10. Let X be a K-dimensional multivariate normally distributed random variable with X „

N pµ,Σq, then we have that

P´1pX ´ µq „ N p0, IKq,
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where P is the Cholesky decomposition of Σ from Theorem 2.7.

Now using Lemma 2.10 we find that

wt “

»

—

—

—

–

w1t

w2t

...
wKt

fi

ffi

ffi

ffi

fl

:“ P´1ut „ N p0, IKq,

however when estimating results, our error terms are estimated, hence then we use

ŵt “

»

—

—

—

–

ŵ1t

ŵ2t

...
ŵKt

fi

ffi

ffi

ffi

fl

:“ P̂´1ût „ N p0, IKq, (2.129)

where P̂ is the Cholesky decomposition of the consistent estimator Σ̂u “
ÛÛT

N and hence P̂ is consistent,
so (2.129) holds. Now using this result we want to find a test statistic for the normality of the residuals.
The idea is to use the fact that skewness (third moment) and the kurthosis (fourth moment) of an
univariate normal distribution are 0 and 3 respectively. Based on this idea we will test the following null
hypothesis

H0 : E

»

—

—

—

–

w3
1t

w3
2t
...

w3
Kt

fi

ffi

ffi

ffi

fl

“ 0 and E

»

—

—

—

–

w4
1t

w4
2t
...

w4
Kt

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

3
3
...
3

fi

ffi

ffi

ffi

fl

“: 3K (2.130)

against the alternative hypothesis

H1 : E

»

—

—

—

–

w3
1t

w3
2t
...

w3
Kt

fi

ffi

ffi

ffi

fl

‰ 0 and E

»

—

—

—

–

w4
1t

w4
2t
...

w4
Kt

fi

ffi

ffi

ffi

fl

‰

»

—

—

—

–

3
3
...
3

fi

ffi

ffi

ffi

fl

“: 3K . (2.131)

to test normality against non-normality respectively. The well-known univariate case of this test called
the Jarque-Bera test (Jarque and Bera, 1987). To determine the test statistic, we will be using the
following lemma (Lütkepohl, 2005, pp. 175-177).

Lemma 2.11. Define b1 and b2 to be

b1 “

»

—

—

—

–

b11

b21

...
bK1

fi

ffi

ffi

ffi

fl

, with bi1 :“
1

T

N
ÿ

t“1

w3
it, for i “ 1, . . . ,K,

b2 “

»

—

—

—

–

b12

b22

...
bK2

fi

ffi

ffi

ffi

fl

, with bi2 :“
1

T

N
ÿ

t“1

w4
it, for i “ 1, . . . ,K,

then

?
N

„

b1
b2 ´ 3K



„ N p0,
„

6IK 0
0 24IK



q.

Note that the same results with ŵt can be formed, but then b1 and b2 will be called b̂1 and b̂2 respectively.

Now using this lemma we can easily find the test statistic as in the following theorem.

56



Theorem 2.19. Let b1 and b2 be defined as in Lemma 2.11. If H0 as in (2.130) is true, then

λsk :“ Np
bT1 b1

6
`
bT2 b2
24

q „ χp2Kq.

Proof. From Lemma 2.11 we see that the following holds.

?
N
b1
?

6
„ N p0, IKq,

?
N
pb2 ´ 3Kq
?

24
„ N p0, IKq.

Hence we can find the test statistics

λs :“ N
bT1 b1

6
„ χpKq,

λk :“ N
bT2 b2
24

„ χpKq,

which we will need to combine in order to test H0 against H1. Hence adding these test statistics results
in the test statistic

λsk :“ λs ` λk „ χp2Kq.

Note that again this theorem holds for b̂1 and b̂2.

Example 2.17. Let us continue with the generated 3-dimensional VAR(1) process as in Example 2.11.
But now we will modify ut again in such a way that normally distributed residuals will occur. We will
take 100 samples where we assume ut to be i.i.d. t-distributed for some degrees of freedom 1 till 50
and perform a non-normality test on each sample. Since the t-distribution will converge to the standard
normal distribution when the degrees of freedom go to infinity, we will expect more rejections of the null
hypothesis for t-distributed residuals with low degrees of freedom and less rejections of the null hypothesis
for t-distributed residuals with high degrees of freedom. Now using Theorem 2.19 we can calculate the
p-values of all 100 samples for all degrees of freedom and find the percentage of the amount of rejected
null hypotheses. The following figure can then be found.
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Figure 2.9: Rejection rate of the null hypothesis with a significance level of 0.05 for various degrees of
freedom.

In Figure 2.9 we indeed find lower rejection rates for t-distributed residuals with higher degrees of freedom,
which is what we expected. The blue line again represents a 5% rejection rate of the null hypothesis.
Whenever we take infinite degrees of freedom, or normally distributed residuals, the rejection rate turns
out to be 4.6% for 1000 normally distributed residuals. However, we would expect the rejection rate to
go to 0% for normally distributed residuals. This results probably happens since N “ 1000 is not large
enough to show a 0% rejection rate. However, it is large enough if we agree that the rejection rate of
normally distributed residuals should be below 5%.

2.6 Order selection

In all of the previous sections we have assumed that the VAR order p is known, however in reality we
do not know p beforehand, thus also the VAR order will have to be estimated. In this section we will be
investigating four different criteria that we can use on a process to estimate its VAR order p̂.

2.6.1 FPE criterion

The Final Prediction Error (FPE) criterion is based on choosing an order m, such that the precision of
the forecast is optimal. It is suggested in (Akaike, 1969, 1971) to base this criterion on the covariance
matrix of the 1-step forecast error of ŷtp1q, which is Σŷp1q as in Theorem 2.15. It is also easy to see that

Σŷp1q “
N `Km` 1

N
Σu.

To turn the covariance matrix into an order selection criterion, we simply look at Σupmq, which is the
covariance matrix of the error terms when we estimate a VAR(m) model. Again, since we are estimating
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the process, we will be using the estimator

Σ̂upmq “
N

N ´Km´ 1
Σ̃upmq,

where Σ̃u is the maximum likelihood estimator as in Theorem 2.14. In order to find the order such that
the 1-step forecast is optimal, we look at the determinant of Σŷp1q and find the order that minimizes this
value. This way the FPE criterion is formed in the following proposition.

Proposition 2.8. Define FPEpmq to be

FPEpmq :“ det

ˆ

N `Km` 1

N ´Km´ 1

N

N ´Km´ 1
Σ̃upmq

˙

“

ˆ

N `Km` 1

N ´Km´ 1

˙K

detpΣ̃upmqq,

then we call the estimate of the VAR order based on the FPE criterion p̂pFPEq if

FPEpp̂pFPEqq “ mintFPEpmq|m “ 0, 1, . . . ,Mu.

2.6.2 AIC, HQ criterion and SC

The Akaike’s Information Criterion (AIC) (Akaike, 1973, 1974), the Hannan-Quinn (HQ) criterion (Han-
nan and Quinn, 1979; Quinn, 1980) and the Schwarz Criterion (SC) (Schwarz, 1978) are all based on
optimising the precision of the forecast, but at the same time a penalty for the amount of unknown
parameters will be taken into account. The following criterion will be used for these criteria.

Crpmq :“ lnpdetpΣ̃upmqqq `m
CN
N

, (2.132)

where CN is different for the AIC, HQ criterion and SC. We see that lnpdetpΣ̃upmqqq corresponds to the
precision of the forecast and mCN

N corresponds to the penalty for the amount of unknown parameters.
In the following proposition we find the different criteria.

Proposition 2.9. The estimate of the VAR order based on the AIC, HQ criterion and SC are p̂pAICq,
p̂pHQq and p̂pSCq, where

Crpp̂pAICqq “ mintAICpmq|m “ 0, 1, . . . ,Mu

“ mintCrpmq|CN “ 2K2 ^m “ 0, 1, . . . ,Mu,

Crpp̂pHQqq “ mintHQpmq|m “ 0, 1, . . . ,Mu

“ mintCrpmq|CN “ 2K2 lnplnpNqq ^m “ 0, 1, . . . ,Mu,

Crpp̂pSCqq “ mintSCpmq|m “ 0, 1, . . . ,Mu

“ mintCrpmq|CN “ 2K2 lnpNq ^m “ 0, 1, . . . ,Mu.

2.6.3 Consistency of the criteria

Now in total we have found 4 different criteria to estimate the VAR order. However it turns out that not
all of these criteria are consistent, i.e. plim p̂ ‰ p for N Ñ 8, where p is the VAR order. It also turns
out that some estimators are strongly consistent, which is defined as follows.

Definition 2.22. The estimator p̂ is called strongly consistent when

Pp lim
NÑ8

p̂ “ pq “ 1.

Using the following lemma (Hannan and Quinn, 1979; Quinn, 1980; Paulsen, 1984), we find that (strong)
consistency of p̂ is based on the convergence of functions with CN , where N Ñ8.
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Lemma 2.12. The estimator p̂ is consistent if and only if

CN Ñ8 and
CN
N

Ñ 0 when N Ñ8 (2.133)

and the estimator p̂ is strongly consistent if and only if (2.133) holds and

CN
2 lnplnpNqq

ą 1 when N Ñ8. (2.134)

Now using this lemma we can determine the consistency of all our criteria. We find the following theorems.

Theorem 2.20. The following statements hold.

1. The estimators p̂pFPEq and p̂pAICq are not consistent.

2. The estimator p̂pHQq is consistent for K “ 1 and strongly consistent for K ą 1.

3. The estimator p̂pSCq is strongly consistent.

Proof. (Statement 1) It can be shown that p̂pFPEq “ p̂pAICq when N Ñ8, hence we only have to check
p̂pAICq with Lemma 2.12. It is obvious that CN does not converge to 8 with N Ñ8 since CN “ 2K2,
hence (2.133) does not hold, which means p̂pFPEq and p̂pAICq are not consistent.

(Statement 2) For CN “ 2K2 lnplnpNqq it is easy to see that (2.133) holds. We also see that CN

2 lnplnpNqq “

K2 when N Ñ 8, which is bigger than 1 for K ą 1. Using Lemma 2.12 shows us now that p̂pHQq is
consistent for K “ 1 and strongly consistent for K ą 1.

(Statement 3) For CN “ 2K2 lnpNq is it easy to see that both (2.133) and (2.134) hold, hence using
Lemma 2.12 we see that p̂pSCq is strongly consistent.

This theorem shows that the FPE criterion and the AIC will perform better when we have a small sample
size and that the HQ criterion and the SC perform better when we have a big sample size. Sometimes
it is hard to consider a certain sample size small or a big when performing analysis on a time series. In
such situations we can apply all four criteria and simply take the highest resulting VAR order just to be
sure.

Example 2.18. If we again look at the generated 3-dimensional VAR(1) process of Example 2.11, we
can apply all four criteria on the generated process and determine its VAR order, which we of course
expect to be 1. We find the following values.

VAR order FPE AIC HQ SC
1 1.381 0.323 0.345 0.382
2 1.391 0.330 0.370 0.434
3 1.400 0.337 0.393 0.485
4 1.414 0.347 0.420 0.540
5 1.428 0.357 0.447 0.594

Table 7: Various criteria values for VAR order 1 to 5.

Here the values of the criteria will keep increasing when we test for VAR orders higher than 5. Thus the
bold values in Table 7 represent the minimum values of the criteria. All criteria suggest a VAR order of
1, as expected.
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3 Vector Error Correction Model

In the previous sections we have always assumed that the time series we are analysing is stationary,
however this does not always have to be the case. Many financial time series, e.g. stock prices, are
non-stationary, hence the VAR model will fail on these financial time series. That is why the Vector
Error Correction Model (VECM) is introduced. This model allows us to analyse some special cases of
non-stationary time series, which are cointegrated processes. These type of time series are said to have
variables of interest which are moving together or are driven by a common stochastic trend (Lütkepohl,
2005, p. 245). An example of a cointegrated bivariate time series can be seen in the figure below.

Figure 3.1: A cointegrated bivariate process.

We see that both variables of interest are indeed moving in a similar way. Let us first look at cointegrated
processes in general.

3.1 Cointegrated processes

Let us first look at the definition of differencing a process.

Definition 3.1. If we have a process yt, which we want to difference d times, we obtain

∆dyt “ ∆d´1pyt ´ yt´1q

“ ∆d´1p1´ Lqyt

“ p1´ Lqdyt,

where L is the lag operator operator from Definition 2.3.

The idea of the VECM is that we can somehow first make the time series stationary by differencing the
process. Once it is stationary, we can apply the VAR model on the stationary process.

We now can define an integrated process as follows.

Definition 3.2. A process yt is called integrated of order d, or yt „ Ipdq, when ∆dyt is stable, but ∆d´1yt
is not stable.

Since an integrated process of order d will be stable if we difference it d times, we will work with the
stable process ∆dyt in order to form a VECM. But first we will need to introduce equilibrium relationships
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between the variables of interest.

In financial data there are many relationships between different variables, for example between different
stocks from the similar market sector. If such a relationship exists between different variables of interest
of a process, then one could find a K dimensional vector β such that

βT yt :“ β1y1t ` ¨ ¨ ¨ ` βKyKt “ 0, with β ‰ 0,

which we call a long-term equilibrium relationship. Obviously β will not have to be a unique vector,
however up to K ´ 1 independent linear combinations can be found in total, which we will discuss later.

In reality βT yt will not always be equal to 0 for all t, but it will be equal to a stochastic variable
zt, which represents the deviations of βT yt. If the equilibrium relationship βT yt exists, then we may
assume all variables of interests to move together, hence zt is stable. With this knowledge we can now
look at the definition of a cointegrated process.

Definition 3.3. A K-dimensional process yt is cointegrated of order (d,b), or yt „ CIpd, bq, if the
following holds.

1. All variables of interest are integrated of order d.

2. There exist a linear combination βT yt “ zt, where β “

»

—

—

—

–

β1

β2
...
βK

fi

ffi

ffi

ffi

fl

and zt is integrated of order d´ b.

3.1.1 The model

With the help of cointegrated processes we can derive the VECM. In this model we make an important
assumption that all variables of interest of yt are integrated of order 1. We will then be able to find a
model for the first difference of yt, or ∆yt.

Suppose we have a zero-mean K-dimensional, possible non-stationary, process yt, with a single equi-
librium relationship of βT yt. In the VECM we will assume that ∆yt depends on 2 factors:

1. The linear combination βT yt´1.

2. The previous p´ 1 differences ∆yt´1,∆yt´2, . . . ,∆yt´p`1.

This means that for the k-th variable of interest we will have

∆ykt “ αkβ
T yt´1 ` γ

T
k,1∆yt´1 ` ¨ ¨ ¨ ` γ

T
k,p´1∆yt´p`1 ` ukt, (3.1)

where γTk,1, . . . ,γ
T
k,p´1 are pK ˆ 1q vectors, αk is a constant and ukt is a white noise process.

We assumed that there only existed 1 (independent) equilibrium relationship between the variables of
interest, however up to K ´ 1 equilibrium relationships might exist. Note that if K equilibrium relation-
ships exist, then the equilibrium relation is 0 for all t instead of a stochastic variable zt. This is quite
unlikely when working with financial time series. Whenever r equilibrium relationships exist, we say that
yt is cointegrated of rank r. The variable αk will then turn into the p1 ˆ rq vector and β will turn into
the pK ˆ rq matrix with columns as the equilibrium relationships.

We will now be able to write the VECM for ∆yt using (3.1) as

∆yt “ Πyt´1 ` Γ1∆yt´1 ` ¨ ¨ ¨ ` Γp´1∆yt´p`1 ` ut, (3.2)

where Π “ αβT “

»

—

–

α1

...
αK

fi

ffi

fl

βT and Γi “

»

—

–

γT1
...
γTK

fi

ffi

fl

for i “ 1, 2, . . . , p ´ 1 are (K ˆ K) matrices and ut is

considered to be a K-dimensional white noise process.
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Note that yt being cointegrated of rank r will be equivalent with Π having rank r. Hence matrix Π, or
the cointegration matrix, will be 0 when yt is cointegrated of rank 0, however when yt is cointegrated of
rank r ą 1, then Π ‰ 0.

Also note that for a cointegration rank r ą 1 we can represent β into a normalised form as

β˚ :“

„

Ir
βpK´rq



, (3.3)

where βpK´rq is a ppK ´ rq ˆ rq matrix. This representation can simply be found by rearranging the
variables.

Example 3.1. Suppose β “

»

–

2 0
2 1
0 2

fi

fl, then the normalised form in (3.3) is

β˚ “

»

–

1 0
0 1
´2 2

fi

fl .

A nice result of the VECM is that we can rewrite the VECM representation (3.2) of ∆yt into a VAR(p)
representation as

yt “ A1yt´1 `A2yt´2 ` ¨ ¨ ¨ `Apyt´p, (3.4)

where

A1 “ IK `Π` Γ1, (3.5)

Ai “ Γi ´ Γi´1 for i “ 2, 3, . . . , p´ 1, (3.6)

Ap “ ´Γp´1. (3.7)

This VAR representation will be useful later on, e.g. forecasting the VECM.

Example 3.2. Suppose we have the bivariate process yt with an equilibrium relationship y1t “ y2t, or

equivalently βT yt “ 0, where β “

„

1
´1



. Suppose we take the VECM representation of ∆yt to be

∆yt “ αβT yt´1 ` Γ1∆yt´1 ` ut

“

„

´1
0



“

1 ´1
‰

yt´1 `

„

0 0
0 1



∆yt´1 ` ut

“

„

´1 1
0 0



yt´1 `

„

0 0
0 1



∆yt´1 ` ut, (3.8)

where ut is i.i.d. bivariate normally distributed with covariance matrix

Σu “

„

1 0
0 0.5



.

Now using (3.4)-(3.7) we can rewrite our VECM in (3.8) as VAR(2) representation

yt “

„

0 1
0 2



yt´1 `

„

0 0
0 ´1



yt´2 ` ut.

If we assume y´1 and y0 to be 0, then we can again generate the VAR process. Taking N “ 100 results
in the following generated process.
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Figure 3.2: Generated VECM yt.

We definitely see a non-stationary cointegrated process in Figure 3.2, hence the process is unstable. How-
ever, since the process is cointegrated, we can look at the equilibrium relationship y1t´ y2t and expect the
result to be stable, hence stationary.

Figure 3.3: The equilibrium relationship of the generated VECM yt.

We indeed find a stable process y1t ´ y2t if we look at the Figure 3.3.
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3.1.2 Non-zero mean VECM

So far we have assumed that we have VECM of a zero mean process yt, however in reality we will
mostly encounter processes that have a non-zero mean. The VECM in (3.2) will then have a different
representation. We might actually consider a VECM with having a mean including linear trend. Then
the VECM in (3.2) can be rewritten into the form

∆yt “ ν0 ` ν1t`Πyt´1 ` Γ1∆yt´1 ` ¨ ¨ ¨ ` Γp´1∆yt´p`1 ` ut,

where ν0 and ν1 are some pKˆ1q vectors. For simplicity of the calculations in this section we will assume
that we have a zero mean, but one should be aware of the fact that a non-zero mean VECM could be
considered as well.

3.1.3 Analysis methods

Just like we could forecast the VAR model and different analysis methods, we can also do the same for
the VECM. Since we found in (3.4) - (3.7) that we can rewrite a VECM into a VAR model, most methods
will remain the same when applied on the VAR representation. However a few differences might occur
when the VAR process is unstable.

When forecasting an unstable VAR process, we will not necessarily have finite forecast intervals. We
previously found that the (estimated) forecast error covariance matrix Σyphq contains (estimated) mov-
ing average coefficients Φi, where Φi Ñ 0 when i goes to infinity. However when the process is unstable,
then Φi does not necessarily converge to 0, hence some of the coefficients of the (estimated) forecast error
covariance matrices will go to infinity when hÑ8.

The forecast error variance decomposition and the conditions for instantaneous causality will of course
have no reasons to change. Not even the test statistic for instantaneous causality will change, since we
will later show in section 3.2.2 that the asymptotic normality of the maximum likelihood estimator for
Σu in the VECM is the same as for the maximum likelihood estimator in the VAR model, which implies
that the Wald statistic is the same.

The conditions for not having Granger-causality between variables also does not change. Remember
from Theorem 2.9 that having A12,i “ 0 for i “ 1, 2, . . . , p implied not having Granger-causality between
certain variables and conversely. If we now simply use the VAR representation of a VECM, then it is
easy to see that having Π12 “ 0 and Γ12,i “ 0 for i “ 1, 2, . . . , p´ 1 implies not having Granger-causality
between certain variables and conversely, where we partition Π and Γ the same way we partitioned
A1, A2, . . . , Ap as in (2.72). However the Wald statistic we found earlier in section 2.5.1 will not always
work correctly for the VECM, for reasons that the estimated Wald statistic on the coefficient matrices
will not converge to the same χ2 distribution. A more detailed description for this specific problem with
testing Granger-causality can be found in (Toda and Phillips, 1993). A solution to this problem was
proposed by (Dolado and Lütkepohl, 1996; Toda and Yamamoto, 1995). They suggested that the Wald
statistic for the coefficient matrices did work if it was applied on a VAR model of order p` 1, called the
lag augmented VAR model.

Finally the (orthogonal) impulse responses can be considered as well in the VECM. Remember from
section 2.3.4 and 2.3.5 that the responses to a corresponding (orthogonal) impulse were represented by
pAiqiě1 (or pΘiqiě1 for orthogonal impulses). The responses always converged to 0 when we had a stable
VAR process, however when the process is not stable, these impulses do not necessarily converge to 0,
hence a single impulse might result into a permanent effect in a certain variable.

3.2 Estimators

Just like in the VAR model we can find the ordinary least squares estimator and the maximum likelihood
estimator of the VECM coefficient matrices. We will assume that we have a time series y1, y2, . . . , yN
with all necessary presample values and that ut is i.i.d. multivariate normally distributed with covariance
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matrix Σu. All of the theorems and propositions we will represent in this section can be found in
(Lütkepohl, 2005, pp. 269-297).

3.2.1 Ordinary Least Squares estimator

We will use the following notations for the OLS estimator.

Definition 3.4. We define

∆Y :“ p∆y1,∆y2, . . . ,∆yN q pK ˆNq,

Y´1 :“ py0, y1, . . . , yN´1q pK ˆNq,

Γ :“ pΓ1,Γ2, . . . ,Γp´1q pK ˆKNq,

∆Xt :“

»

—

—

—

–

∆yt
∆yt´1

...
∆yt´pp´2q

fi

ffi

ffi

ffi

fl

pKpp´ 1q ˆ 1q,

∆X :“ p∆X0,∆X1, . . . ,∆XN´1q pKpp´ 1q ˆNq,

U :“ pu1, u2, . . . , uN q pK ˆNq,

such that we can rewrite the VECM into

∆Y “ ΠY´1 ` Γ∆X ` U.

Using this notation it is possible to find the OLS estimator by applying the same methods we used in
section 2.4.1 to obtain the OLS estimator for the VAR model. We then obtain the following estimator.

Theorem 3.1. The ordinary least squares estimator for the VECM coefficient matrices Π and Γ is

“

Π̂ Γ̂
‰

“
“

∆Y Y T´1 ∆Y∆XT
‰

„

Y´1Y
T
´1 Y´1∆XT

∆XY T´1 ∆X∆XT

´1

.

Again, asymptotic properties of the OLS estimator can be found. They are specified as follows.

Proposition 3.1. Let
“

Π̂ Γ̂
‰

be the OLS estimator of a VECM of a process. Then the following
asymptotic properties hold.

1. The least squares estimator
“

Π̂ Γ̂
‰

is consistent, i.e.

plim
“

Π̂ Γ̂
‰

“
“

Π Γ
‰

.

2. We have asymptotic normality of

?
N vecp

“

Π̂ Γ̂
‰

´
“

Π Γ
‰

q „ N p0,Σcoq,

where

Σco “

ˆ„

β 0
0 IKpp´1q



Ω´1

„

βT 0
0 IKpp´1q

˙

b Σu,

with

Ω “ plim
1

N

„

βTY´1Y
T
´1β βTY´1∆XT

∆XY T´1β ∆X∆XT



.

The problem again with the asymptotic normality of the OLS estimator is that the matrix Σco is not
known beforehand when estimating a process with unknown VECM coefficient matrices. That is why
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we again have to find a consistent estimator of this matrix. It turns out that Σco can consistently be
estimated by

Σ̂co “ N

„

Y´1Y
T
´1 Y´1∆XT

∆XY T´1 ∆X∆XT

´1

b Σ̂u,

where

Σ̂u “
1

N ´Kp
UUT (3.9)

for similar reasons as we found the estimator of the covariance matrix in (2.103) for the VAR model in
section 2.4.2.

We can again also find the t-ratios of the estimator the same way we did for the OLS estimator of
the VAR model in section 2.4.3. Now for similar reasons we can find using the asymptotic normality of
“

Π̂ Γ̂
‰

that

vecp
“

Π̂ Γ̂
‰

qi ´ vecp
“

Π Γ
‰

qi

ŝi
„ N p0, 1q @i,

where vecp
“

Π̂ Γ̂
‰

qi and vecp
“

Π Γ
‰

qi are the i-th element of vecp
“

Π̂ Γ̂
‰

q and vecp
“

Π Γ
‰

q respectively

and ŝi is the square root of the i-th row i-th column element of 1
N Σ̂co.

3.2.2 Maximum Likelihood estimator

For the maximum likelihood estimator we will use the following notations.

Definition 3.5. Using the same notations as in Definition 3.4, we define

M :“ IN ´∆XT p∆X∆XT q´1∆X pN ˆNq,

R0 :“ ∆YM pK ˆNq,

R1 :“ Y´1M pK ˆNq,

Sij :“
RiRj
N

, for i “ 0, 1 pK ˆKq,

Y´p :“ py´p`1, y´p`2, . . . , yN´pq pK ˆNq,

v :“ pv1, v2, . . . , vKq pK ˆKq,

where we define v1, v2, . . . , vK to be the orthonormal eigenvectors corresponding to the eigenvalues λ1, λ2, . . . , λK
of the pK ˆKq matrix

S
´ 1

2
11 S10S

´1
00 S01S

´ 1
2

11 .

With these notations it is possible to find the following log-likelihood function of the VECM.

Proposition 3.2. The log-likelihood function of the VECM is

lpα,β,Γ,Σuq “ ´
KN

2
lnp2πq ´

N

2
lnpdetpΣuqq

´
1

2
tr
”

p∆Y ´αβTY´1 ´ Γ∆XqT p∆Y ´αβTY´1 ´ Γ∆Xq
ı

.

It can also be found that this log-likelihood function is maximized with the following maximum likelihood
estimators.

Theorem 3.2. The maximum likelihood estimators that maximize the log-likelihood function in Propo-
sition 3.2 are

β̃ :“ vTS
´ 1

2
11 ,

α̃ :“ S01β̃pβ̃
T
S11β̃q

´1,

Γ̃ :“ p∆Y ´ α̃β̃
T
Y´1q∆X

T p∆X∆XT q´1,

Σ̃u :“
1

N
p∆Y ´ α̃β̃

T
Y´1 ´ Γ̃∆Xqp∆Y ´ α̃β̃

T
Y´1 ´ Γ̃∆XqT .
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These maximum likelihood estimators again have asymptotic properties, which give some interesting
results.

Proposition 3.3. For the maximum likelihood estimators α̃, β̃, Γ̃ and Σ̃u as in Theorem 3.2 the following
holds.

1. The estimators α̃, β̃, Γ̃ and Σ̃u are consistent estimators.

2. The matrix
”

α̃β̃
T

Γ̃

ı

has the same asymptotic normality as the OLS estimator
“

Π̂ Γ̂
‰

, i.e.

?
N vecp

”

α̃β̃
T

Γ̃

ı

´
“

αβT Γ
‰

q „ N p0,Σcoq,

where Σco is defined as in Proposition 3.1.

3. The estimator σ̃ :“ vechpΣ̃uq has the same asymptotic normality as the maximum likelihood esti-
mator of the VAR model for σ :“ vechpΣuq, i.e.

?
Npσ̃ ´ σq „ N p0,Σσ̃q,

where

Σσ̃ “ 2D`KpΣu b ΣuqpD
`
Kq

T ,

with DK defined as in Definition 2.20.

3.2.3 Obtaining the estimated equilibrium relations

With the maximum likelihood estimator in Theorem 3.2 we found a consistent estimator for β, however
with the OLS estimator we only found estimates for Π,Γ1, . . . ,ΓK . When we use the OLS estimator, we

know nothing about the estimated equilibrium relations β̂, other than Π̂ “ α̂β̂
T

. We do however know
a straightforward estimator for α if β is normalised as in (3.3). Since the first r columns of βT will then
be Ir, we find that a consistent estimator of α will be the first r columns of Π.

All that is left to find is the bottom ppK ´ rq ˆ rq matrix βpK´rq. It turns out that the following
consistent estimator can be found.

β̂pK´rq “ pα̂
T Σ̂´1

u α̂q
´1α̂T Σ̂´1

u

˜

N
ÿ

i“1

p∆yt ´ α̂y
p1q
t´1qpy

p2q
t´1q

T

¸˜

N
ÿ

i“1

y
p2q
t´1py

2
t´1q

T

¸´1

,

where we divide yt into

«

y
p1q
t

y
p2q
t

ff

, with y
p1q
t the first r variables of yt and y

p2q
t the last K ´ r variables of

yt. Furthermore we have α̂ as the first r columns of the OLS estimator Π̂ and we have Σ̂u as in (3.9).
Finally with this estimator, we find the normalised estimator for β as

β̂ “

„

Ir
β̂pK´rq.



.

3.3 Cointegration rank selection

We now know how to estimate the coefficients of the VECM, however the lag order p´ 1 of the VECM
and the cointegration rank r :“ rkpΠq are still unknown. Since we have shown in (3.4)-(3.7) that the
VECM is basically another representation of the VAR model, we can simply apply the order selection
criteria from section 2.6 on the differenced time series to find the lag order p ´ 1. The final prediction
error (FPE) criterion however will not work when working with unstable processes (Lütkepohl, 2005,
p. 325), for reasons that involve the fact that some elements of the forecast error covariance matrix will
approach infinity for the VECM.
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In order to find the cointegration rank r we will test the following null hypothesis

H0 : rkpΠq “ r (3.10)

against the alternative hypothesis

H1 : r ă rkpΠq ă K. (3.11)

Thus we will be testing whether the cointegration rank is r or if it is bigger than r. The idea of this test
is to start test for r “ 0, then keep testing for r “ 1, 2, . . . until the null hypothesis is not rejected. The
corresponding test statistic can be found to be the LR statistic, which we find in the following proposition
(Lütkepohl, 2005, pp. 328-329).

Proposition 3.4. The test statistic to test H0 in (3.10) against H1 in (3.11) is called the LR statistic
and is defined as

λLRpr,Kq :“ 2 rlnpKq ´ lnprqs

“ ´N
K
ÿ

i“r`1

lnp1´ λiq,

where λi for i “ 1, 2, . . . ,K are defined as in Definition 3.5 and lpKq and lprq are the maximum log-
likelihood functions of Proposition 3.2 where the maximum likelihood estimators are estimated with coin-
tegration rank K and r respectively.

It has been found that the LR statistic is actually distributed as

λLRpr,Kq „ trpDq,

where D is a specific function of pK ´ rq-dimensional Brownian motions (Johansen, 1988, 1995). This
test statistic is also referred to as the trace statistic.
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4 Application: Tech companies in the AEX

In this section we will perform a time series analysis, where we will apply all methods and techniques
we have found in all of the sections before. The time series we will be looking at will be containing 4
variables of interest, which are the AEX-index, the Adyen stock closing prices, the ASML stock closing
prices and the Philips stock closing prices from the 13th of June 2018 until the 13th of June 2019. The
reason that we are not using more data before the 13th of June 2018 is since this was the IPO date of
Adyen, which means that Adyen only started trading its stocks since that day. The AEX-index is a Dutch
index that represents Dutch companies who trade on the Amsterdam Stock Exchange. The companies
Adyen, ASML and Philips represent 3 tech companies that are part of the AEX-index. Our time series
looks as follows.

Figure 4.1: The time series of our variables of interest.

In Figure 4.1 we have t “ 1 represents the data of 13th of June 2018 and so on. The time series will
be represented as yt through this whole section. We will be performing time series analysis on these
variables and present our conclusions.
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4.1 The model

First we will have to determine what model we will use for our time series. From Figure 4.1 it is obvious
that our data is non-stationary and thus we should use a VECM. In order to use the VECM, we need to
check if all variables of interest are integrated of order 1.

Figure 4.2: The differenced time series of our variables of interest

In Figure 4.2 the data seems to be stationary for all of the variables of interest. Since the original
data is non-stationary, we can conclude that the variables of interest are integrated of order 1, hence we
can apply the VECM. Before we start estimating our VECM coefficients, we first should determine the
cointegration rank of our model. Let us observe the following trace statistics.

VECM order 1 VECM order 2 VECM order 3
r λLRpr, 4q λLRpr, 4q λLRpr, 4q 90% 95% 99%
3 2.92 3.45 2.87 10.49 12.25 16.26
2 14.93 17.31 14.73 22.76 25.32 30.45
1 33.76 33.85 32.38 39.06 42.44 48.45
0 70.99 64.11 61.42 59.14 62.99 70.05

Table 8: Trace statistics for various cointegration ranks and VECM orders. The last 3 columns show the
critical values of the trace statistic.
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Remember that the lowest cointegration rank that does not reject the null hypothesis is the cointegration
rank we should choose. The bold test statistics in Table 8 have this property when we have a significance
level of 0.05. The bold critical values on the right represent the critical values with a significance level of
0.05, which we will compare with the test statistics. We see that for a VECM of order 1 and 2 we have a
cointegration rank of 1, however for a VECM of order 3 we have a cointegration rank of 0. One can argue
based on these results that in general the cointegration rank should be 1, because the trace statistic of
the VECM of order 3 lies between the 90% and 95% critical values and hence the trace statistic is almost
significant.

If we want to make sure we choose the right cointegration rank, we should perform the order selec-
tion criteria on the differenced time series. We then find the following values of the criteria.

VECM order AIC HQ SC
1 9.599 9.719 9.896
2 9.538 9.755 10.0727
3 9.560 9.872 10.333
4 9.619 10.026 10.629
5 9.709 10.213 10.957
6 9.805 10.404 11.29

Table 9: Values of various order selection criteria and VAR orders.

Note that we do not use the FPE criterion for reasons we discussed in section 3.3. In Table 9 we have
the bold values representing the minimum values of the criteria. We will take the highest VECM order
suggested by all of the criteria just to be safe, which is a VECM order of 2. Table 8 now suggests that
we have a cointegration rank of 1.

We now have decided to use a VECM of order 2 and cointegration rank 1, but the mean of the pro-
cess is still unspecified. Just to be safe, let us first assume that we have a VECM with a linear trend,
which means we will use the model

∆yt “ ν0 ` ν1t`Πyt´1 ` Γ1∆yt´1 ` Γ1∆yt´2,

where the rank of Π is 1. Now we can start estimating the coefficients of the model. We find

Π “

»

—

—

–

´0.063 0.010 0.076 ´0.335
´0.073 ´0.072˚˚ 0.216 0.768
0.150˚ 0.002 ´0.207˚˚ ´0.305
0.025˚˚ 0.0003 ´0.019‚ ´0.131˚˚˚

fi

ffi

ffi

fl

,

Γ1 “

»

—

—

–

´0.188‚ 0.001 0.281˚˚ ´0.754
0.166 0.109 0.335 ´1.714
0.143‚ ´0.007 ´0.147 ´0.573
´0.008 0.001 0.013 ´0.021

fi

ffi

ffi

fl

, Γ2 “

»

—

—

–

0.069 ´0.021 0.010 1.493˚

0.894˚ 0.102 0.034 0.061
0.142‚ ´0.016 ´0.161‚ 1.362˚

0.004 0.001 0.002 0.113‚

fi

ffi

ffi

fl

,

ν0 “

»

—

—

–

26.937
9.154

´32.468‚

´5.178˚

fi

ffi

ffi

fl

, ν1 “

»

—

—

–

´0.007
0.056‚

´0.004
´0.001‚

fi

ffi

ffi

fl

.

We use here superscripts on the values of the matrices to show certain significance. The p-values of
the t-ratios with superscript *** are lower than 0.001, with superscript ** between 0.001 and 0.01, with
superscript * between 0.01 and 0.05 and with superscript ‚ between 0.05 and 0.10. We use this notation
to see which values are definitely significant and which values are close to being significant. We see that
each coefficient matrix has at least one significance value, except for the trend vector v1. However, we
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could argue that the trend vector still might be significant, since we only have a small data set of 243
data points and 2 values have a p-value below 0.10.

Using this model we can find the following values our vector with cointegration relations β.

β “

»

—

—

–

1
0.028
´1.030
´3.813

fi

ffi

ffi

fl

.

This means we have an equilibrium relation of

y1t ` 0.028y2t ´ 1.030y3t ´ 3.813y4t “ 0,

where y1t, y2t, y3t and y4t represent the closing prices of the AEX-index, the Adyen stock, the ASML
stock and the Philips stock respectively. The closing prices of the Adyen stock seems not to cointegrate
well with the other variables. This probably happens since Adyen only started trading its stocks on the
market at the start of our time series. Stock prices in general will have a different behaviour during the
first few months after the IPO.

4.2 Diagnostic checking

Now that we have decided what model we will use, we can perform diagnostic checking, which is per-
forming tests for the residuals of the VAR representation of the model. Let us look at the first test we
presented for the residuals, which is the non-normality test.

Test Test statistic 95% quantile P-value
Non-normality test 569.01 15.51 0

Table 10: Non-normality test of the residuals.

The non-normality test shows us an incredibly high test statistic, hence our residuals are definitely not
normally distributed. A reason why we have this high test statistic could be found using the ARCH-LM
test (Engle, 1982).

Test Test statistic 95% quantile P-value
ARCH-LM test 650.12 553.13 6.45 ˚ 10´6

Table 11: ARCH-LM test of the residuals.

This test shows that an ARCH effect occurs in the residuals, which means that the squared residuals are
correlated with each other. ARCH effects occur often in financial data. When one finds an ARCH effect
in the residuals, then normally other models should be used. However, we will continue our analysis with
the VECM and keep this result in mind.

Since our residuals or not normally distributed, there are some consequences. Our forecast intervals
are based on the assumption that the residuals are normally distributed, but since the residuals are not
normally distributed, we can not trust our forecast intervals.

The second test we presented for the residuals is the portmanteau test, where we test autocorrelation
between the residuals. If we test for autocorrelation up to lag 10, we find the following.

Test Test statistic 95% quantile P-value
Portmanteau 121.56 142.14 0.34

Table 12: Portmanteau test of the residuals for h “ 10.
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The test shows that there seems to be no autocorrelation between the residuals up to lag 10. We now can
still not conclude that the residuals are white noise, since we do not know if the residuals have a mean 0
and have equal variances for all t.

Figure 4.3: The residuals of the VAR representation for all variables of interest.

If we look at the residuals in Figure 4.3, then the assumption that the residuals have a mean 0 and that
they have equal variances for all t seems to be a valid assumption we can make, hence we assume the
residuals to be white noise. The estimated covariance matrix of the white noise residuals turns out to be

Σu “

»

—

—

–

17.991 5.462 9.688 0.183
5.462 307.554 ´1.289 2.191
9.688 ´1.289 13.695 0.122
0.183 2.191 0.122 0.214

fi

ffi

ffi

fl

.

4.3 Causality tests

Now that we have performed diagnostic checking, we can apply causality tests on our model. Let us first
look at the Granger-causality between our variables. Note that for Granger-causality, we will apply the
Wald test on the lag augmented var representation, hence on the VAR(4) representation. The reason for
this has been motivated in section 3.1.3. We will be testing if no Granger-causality exists between the
variables against the existence of Granger-causality between the variables. We find the following p-values
of our test statistics.
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xt zt xt does not
Granger-cause zt

zt does not
Granger-cause xt

AEX-index Adyen, ASML, Philips 3.313 ˚ 10´4 0.020
AEX-index, Adyen ASML, Philips 0.0044 0.027
AEX-index, ASML Adyen, Philips 1.208 ˚ 10´4 0.066
AEX-index, Philips Adyen, ASML 0.0045 0.116
AEX-index, Adyen, ASML Philips 2.55 ˚ 10´4 0.326
AEX-index, Adyen, Philips ASML 0.0033 0.036
AEX-index, ASML, Philips Adyen 0.019 0.817

Table 13: P-values of the Granger-causality tests.

The bold values in Table 13 represent the tests with p-values greater than 0.05, hence for these variables
we have that zt does not Granger-cause xt. Whenever zt does not Granger-cause xt, it implies that the
forecast of xt will not be improved when zt is added to the information set.

We see in Table 13 that all of the possible combinations of variables containing the AEX-index, Granger-
causes the other variables of interest. Adding the AEX-index closing prices to the information set seems
to improve the forecasts of the other variables in general. However, a few combinations of variables of
interest with the Adyen stock closing prices seems to not Granger-cause the other variables. The p-value
of testing if the Adyen stock closing prices do not Granger-causes the other variables has a really high
value of 0.817. It looks like the Adyen stock closing prices is not really helping with forecasting the time
series. Some combinations of variables containing the Philips stock closing prices do not Granger-cause
the other variables as well. However, these test statistics have lower p-values than the combinations
involving the Adyen stock closing prices.

The second type of causality we can investigate is instantaneous causality. The following p-values of
the test statistics can be found.

xt zt No instantaneous causality
between xt and zt

AEX-index Adyen, ASML, Philips 6.661 ˚ 10´15

AEX-index, Adyen ASML, Philips 0
AEX-index, ASML Adyen, Philips 0.206
AEX-index, Philips Adyen, ASML 0
AEX-index, Adyen, ASML Philips 0.0018
AEX-index, Adyen, Philips ASML 7.327 ˚ 10´15

AEX-index, ASML, Philips Adyen 0.0016

Table 14: P-values of the instantaneous causality tests.

Again, the bold value in Table 14 represents the p-value that is greater than 0.05. Remember that in-
stantaneous causality between xt and zt implies that adding the values of the next time step of one of
the variables improves the 1-step prediction of the other variable.

In Table 14 we find that only the AEX-index and the ASML stock closing prices have no instanta-
neous causality with the Adyen and the Philips stock closing prices. If we know the values of the next
time step of one of the combinations, then we will find the same 1-step prediction we would have found
without these values. We also see that the instantaneous causality between a combination of variables
containing the AEX-index closing prices always has instantaneous causality with a combination of vari-
ables containing the ASML stock closing prices. These specific combinations show incredibly low p-values
of the test statistics. Probably knowing the next value of the AEX-index closing prices helps improving
the 1-step prediction of the ASML stock closing prices and vice versa.
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4.4 Orthogonal impulse response functions

Let us now look at the orthogonal impulse response functions. Note that we use orthogonal impulses for
reasons we discussed in section 2.3.5.

(a) Orthogonal impulse in the AEX-index closing prices. (b) Orthogonal impulse in the Adyen stock closing prices.

(c) Orthogonal impulse in the ASML stock closing prices.
(d) Orthogonal impulse in the Philips stock closing
prices.

Figure 4.4: Orthogonal impulse response functions of our time series.
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In Figure 4.4b we see that the responses of the AEX-index closing prices and the ASML stock closing
prices are really small compared to their responses on orthogonal impulses of other variables. It looks
like these responses are zero orthogonal impulse responses, hence an orthogonal impulse of the Adyen
stock closing prices results in almost no response in the AEX-index closing prices and the ASML stock
closing prices. In Figure 4.4d we see that the same occurrence happens with an orthogonal impulse in
the Philips stock closing prices. However, these responses of the AEX-index closing prices and the ASML
stock closing prices seems to be higher than in Figure 4.4b.

We can find another interesting result in Figure 4.4a and Figure 4.4c. The orthogonal impulse of the
AEX-index closing prices results into a high response of the ASML stock closing prices. The ASML stock
closing prices seems to respond heavily when the AEX-index suddenly changes. However, the orthogonal
impulse of the ASML stock closing prices results into a low response of the AEX-index stock closing
prices. We find these results, since we are working with an index, where ASML is part of. A sudden
change in the ASML stock closing prices will not effect the AEX-index closing prices that much, since
the AEX-index is based on many other companies as well. A sudden change in the AEX-index closing
prices suggest that the stock closing prices of all companies within the AEX-index will change on average
as well, including ASML.

4.5 Forecast error variance decomposition

The forecast error variance decomposition can also be considered. We find the following proportions of
the forecast error variance.

Forecasted
variable of
interest

Forecast
horizon

Proportions
of AEX-
index

Proportions
of Adyen

Proportions
of ASML

Proportions
of Philips

AEX-index 1 1 0 0 0
2 0.970 2.143 ˚ 10´4 0.024 0.006
3 0.975 0.001 0.020 0.004
4 0.978 0.002 0.017 0.003
5 0.980 0.002 0.016 0.002
10 0.986 0.002 0.008 0.003

Adyen 1 0.005 0.995 0 0
2 0.014 0.982 0.004 6.821 ˚ 10´5

3 0.051 0.942 0.007 5.751 ˚ 10´5

4 0.067 0.920 0.013 1.546 ˚ 10´4

5 0.078 0.904 0.017 0.001
10 0.093 0.874 0.028 0.005

ASML 1 0.381 0.004 0.615 0
2 0.496 0.009 0.487 0.008
3 0.571 0.012 0.411 0.006
4 0.608 0.013 0.373 0.006
5 0.642 0.014 0.338 0.006
10 0.739 0.013 0.227 0.020

Philips 1 0.009 0.070 0.002 0.920
2 0.028 0.086 0.001 0.884
3 0.065 0.107 0.004 0.824
4 0.102 0.120 0.009 0.768
5 0.142 0.130 0.017 0.711
10 0.297 0.148 0.065 0.490

Table 15: Proportions of the forecast error variance of our variables of interest for forecasting each of the
variables of interest.

The proportions of the forecast error variance of forecasting the AEX-index closing prices and the Adyen
stock closing prices seems to have a large proportion of the forecast error variance by its own variable.
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This is not a surprise for the AEX-index closing prices, since it is an index of many more companies,
hence individual companies have small influence.

The proportions of the forecast error variance of forecasting the ASML stock closing prices seems to
be more spread out. The AEX-index closing prices proportions seems to increase in the long run and
will eventually have a higher proportion than the ASML stock closing prices itself. The proportions of
the Adyen and the Philips stock closing prices seems to be nearly 0 for all forecast horizons.

For the Philips stock closing prices it seems that for small forecast horizons, we have a large propor-
tion of its own variable, however in the long run the proportions will be more spread out.

4.6 Forecasting

Finally, let us take a look at the forecasts of all variables of interest.

Figure 4.5: Predictions of the AEX-index closing prices.

78



Figure 4.6: Predictions of the Adyen stock closing prices.

Figure 4.7: Predictions of the ASML stock closing prices.
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Figure 4.8: Predictions of the Philips stock closing prices.

Note that the continued closing prices represent the data past 13th of June 2019. In all figures we see that
the 95% intervals seems to be too large for the variables of interest. These results are not unexpected,
since we showed before that our residuals are not normally distributed. Our 95% intervals are based
on the assumption that the residuals are normally distributed, hence we should indeed not trust these
intervals. The 1-step forecasted values seems to perform well for t ď 243, however, the h-step forecasted
values for t ą 243 do not seem to match the continued closing prices.
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5 Conclusion

We have seen that we can use the VAR model and the VECM to model multivariate time series. Only
when our time series is stationary, we found that we can use the VAR model, however, when the time
series is non-stationary and is integrated of order 1, then we found that VECM can be used. For both
models we have found estimators and order selection criteria, which we can apply to find the parameters
of the models.

In addition, various analysis methods has been presented to perform time series analysis with these
models, including

• forecasting,

• forecast error variance decomposition,

• causality analysis,

• (orthogonal) impulse response analysis.

The differences of these analysis methods between the VAR model and the VECM model has been dis-
cussed as well and they turn out to be really small. A reason for this was that the VECM has a VAR
representation, hence the analysis methods can be applied on that representation.

Finally, we applied all of our presented methods on real-world financial data. We showed how one
could perform time series analysis using only the VAR model and the VECM. Most of the analysis meth-
ods gave us a nice interpretation of our time series. However, only the forecast of the variables of interest
seemed not to provide trustworthy results, since the residuals turned out not to be normally distributed.

In general it turns out that not all financial time series can be properly analysed with the VAR model or
the VECM. These models contain a lot of assumptions and restrictions for the time series, hence many
time series can not be properly analysed with these models. When the time series does not have these
assumptions or restrictions, some of the analysis methods would give results we can not trust. Further
improved models should then be applied on the time series.
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6 Discussion

The model we found in our application did not have a lot of significant values. The reason for this to
happen, was that our data set was too small. We previously showed that data sets with a sample size
of approximately larger than 1000 samples would have nicely estimated coefficients. However, our time
series only had 243 data points. The reason that we did not have a larger sample size, was because Adyen
only started trading its stocks at t “ 1, hence we simply did not have any more data available. In reality,
most of the time our data is not perfect to work with, which our time series is a perfect example of.
Whenever the data is not perfect, it does not imply that we can not perform time series analysis on that
data at all. One should just perform time series analysis and argue which of the results can be trusted
and which can not.

In addition, we assumed for the residuals of both models that the covariance matrix is constant for
all t. However, often this assumption is wrong. For example, in the application we have seen that an
ARCH effect occurred in the residuals, which implied that the squared residuals correlated with each
other, hence the covariance matrix is not constant. We should then consider using further improved
models, such as the multivariate ARCH model or the multivariate GARCH model. For further research,
one could find more information of these models in (Lütkepohl, 2005, pp. 557-584).
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à celui des inconnues (Procédé du Commandant Cholesky)[note on a method for solving normal equa-
tions through the application of the least squares method to a system with fewer linear equations than
unknowns (Method of Commandant Cholesky)]. Bulletin Géodésique, 2:67–77.
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