Exploring the automatic Level of Detail inference for the validation of buildings in 3D city models

MSc thesis presentation Geomatics for the Built Environment

Balázs Dukai

Supervisors:

Dr. Filip Biljecki Dr. Hugo Ledoux Anna Labetski Co-reader: Dr. Jorge Lopez Gil

30.01.2018

\cancel{K}_6 > \cancel{G} > \cancel{B} > \cancel{B} > \cancel{K}_9 1 hr 12 min

Source: Google Maps Mobile Application

TUDelft

Source: http://www.esri.com/news/arcnews/summer10articles/summer10gifs/p13p1-lg.jpg

Philadelphia Redevelopment

Source: https://informedinfrastructure.com/wp-content/uploads/2014/09/CityEngine_Philadelphia.jpg

Level of Detail (LoD)

LOD0

LOD1

LOD2

LOD4

Source: [2]

Source: LoD2 model of Bad Godesberg, NRW, Germany

Source: Google Maps

Source: LoD2 model of Amsterdam, virtualcitySystems

Source: Google Maps

Source: LoD2 model of Bad Godesberg, NRW, Germany

ŤUDelft

Source: Google Maps

9

- Knowing the accurate LoD is important for analysis and maintenance
- CityGML 2.0 is not clear on LoD, CityGML 3.0 will probably complicate things
- Roof reconstruction (>LoD2) fails occasionally
- Heterogenous LoD
- CityGML has no explicit LoD attribute per building, non-semantic formats have no tag at all

Research questions (paraphrased)

How to determine the geometric LoD automatically?

- How to classify the geometry of 3D building models (in terms of LoD)?
 - How to describe the geometry of a building model for the classification?

Research questions (paraphrased)

- How to validate the LoD automatically?
 - Without comparing to a reference data set?
 - By comparison with a reference data set?

LoD^[3] revisited

CityGML2.0

LoD0.1-0.3, 1.1-2.3

Synthetic data – LoD0.1-0.3, 1.1-2.3

1000 buildings 100 per class

Amsterdam data – LoD1.2, LoD2

482 valid buildings (green)

Amsterdam data – LoD2 (and LoD1)

Imbalanced LoD classes – LoD2 (reds), LoD1 (blues)

Extract building surfaces

Generate features

Geometry	Feature	Related LoD requirement	Rele- vant LoD
2D footprint	Number of Shape Characterising Points (NSCP)	none	all
	Shape Characterising Lengths (SCL)	Size of building parts	≥ 0.1
	Footprint Area	Size of building parts	≥ 0.1
,	Building Part Footprint Area	Size of building parts	≥ 0.1
3D solid	Building Volume	none	all
3D surface	Roof Type	Roof representation	≥ 1
	Median Roof Gap	Top surface (Single / Multi)	0.2-1.3
	Roof Overhangs	Explicit roof overhangs (if o.2m)	≥ 2.3
	Footprint-Roof Triangle Ratio	Roof superstructures	≥ 2.2
	Walls	Presence of walls	0
3D solid, Point Cloud	RMSE of PC-Model distance	(LoD validity)	all

NSCP & SCL

Building part area

Roof type

- Signed distance from point cloud to mesh
- With CloudCompare, per building

RMSE

NSCP

Frequency distribution of Shape Characterising Point per LoD

Min. SCL

Frequency distribution of minimal footprint SCL per LoD

Footprint-roof ratio

ŤUDelft

Classification

- Logistic Regression
- Linear Discriminant Analysis
- K Nearest Neighbours
- Decision Tree
- Gaussian Naive Bayes
- Support Vector Machine

Experiment 1&2

- Not / Standardized features
- Train and test in the same data
- Cross-validation and prediction

Experiment 1&2 – Raw and standardized features

Algorithm Comparison on standardized features

Experiment 4

- Standardized features
- Train and test in Amsterdam data
- Include RMSE
- Binary classes (LoD2 or not)

Experiment 4

Dtree prediction 92.5% but:

	Not LoD2	LoD2
Not LoD2	7	5
LoD2	2	83

Experiment 5

- Standardized features
- Train and test in Amsterdam data
- Replace 10, 25, 50 of LoD2 with LoD1
- Include RMSE
- Multi-class and Binary classes (LoD2 or not)

Experiment 5 – mixed LoD1&2

Algorithm Comparison, Multi-label, combined 10%, 25%, 50% LoD1

Experiment 5 – kNN

Experiment 3&6

- Standardized features
- Train in synthetic and test in Amsterdam
- Replace 10, 25, 50 of LoD2 with LoD1
- Include RMSE
- Multi-class

Experiment 3&6

Experiment 3

LR	DTree	NB
7.4%	3.7%	0.0%

With LoD0

Ŋ

Conclusions

- Synthetic data is not suitable as design set
 - Representative data set
- Features seem to be OK, but are there better?
- 42%, 88%, binary classes 92%
- Class imbalance is an open problem
- Issues with noisy point cloud, distances are not reliable
 - Other reference data?
 - RMSE might be too coarse
- LoD inference and validation

References

- [1] Biljecki, F.; Heuvelink, G. B.; Ledoux, H. & Stoter, J. The effect of acquisition error and level of detail on the accuracy of spatial analyses Cartography and Geographic Information Science, Taylor & Francis, 2018, 45, 156-176
- [2] Gröger, G.; Kolbe, T. H.; Nagel, C. & Häfele, K.-H. OGC City Geography Markup Language (CityGML) Encoding Standard, Version 2.0 Open Geospatial Consortium, Open Geospatial Consortium, 2012, 344
- [3] Biljecki, F., Ledoux, H., Stoter, J., 2016. An improved LOD specification for 3D building models. Computers, Environment and Urban Systems 59, 25–37. doi:10.1016/j.compenvurbsys.2016.04.005
- [4] Cignoni, P., Rocchini, C., Scopigno, R., 1998. Metro: Measuring Error on Simplified Surfaces. Computer Graphics Forum 17, 167–174. https://doi.org/10.1111/1467-8659.00236

