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Abstract  
 

 

The design of an offshore wind farm (OWF) is multidisciplinary in nature as it involves the design of 

many disciplines such as the wake effects, support structure, electrical cables etc. For the optimal 

design of an OWF, an optimization procedure is required where all the disciplines are optimized 

simultaneously. The objective function plays a significant role in optimization as it expresses the main 

aim of the model which is to be either minimized or maximized.  So far, cost of energy (COE) and 

annual energy production (AEP) are one of the commonly used objective functions for OWF 

optimization as far as the author is aware. However, there might be other objective functions that may 

influence the optimal design of an OWF as well. This may include maximizing the profit, minimizing 

the environmental impact, reducing their carbon emissions etc. Hence, this thesis investigates the 

overview of different objective functions and understand its impact on the optimal design of an OWF. 

 

An inventory of different objective functions is prepared, and relevant ones are selected for further 

study. It is observed that even though some objectives are dissimilar, they still depend on the same 

wind farm parameters and are therefore expected to give similar design results. From the list of 

objective functions, net present value (NPV) and risk management objectives are chosen for further 

research. 

 

The selected objective functions are then formulated in a metric for optimization. The price of 

electricity plays a significant role in determining the NPV. It is learnt that electricity price varies with 

the power supply depending on the site conditions. The electricity price is low if the supply of power 

is high in a region where there are many OWF’s and vice versa. Moreover, OWF investors value 

constant power output without any fluctuations. Hence, taking all these aspects into consideration, the 

electricity price in the NPV function is modelled for a constant value, wind variability and wind power 

predictability. 

The risk management function, on the other hand, aims at minimizing the uncertainty associated with 

an OWF project. The risk here refers to the uncertainty associated with the profit obtained from the 

OWF. A set of annual average wind speeds is computed using monte carlo simulations and the AEP 

and NPV are estimated. The mean( NPVmean) and standard deviation ( NPVstd ) of NPV are then 

calculated. NPVstd represents the uncertainty in this scenario and is minimized to reduce the risk. 

 

A suitable method is then identified to deal with multiple objectives. The NPV function is maximized 

for maximum profit and this objective is evaluated using a single objective optimization technique. 

The risk management objective involves the calculation of NPVmean and NPVstd. Both objectives are 

contrasting in nature as a significant reduction in NPVstd  corresponds to an undesirable reduction in 

NPVmean. A tradeoff between both these objectives is the best possible solution. Therefore, a multi- 

objective optimization technique is used, and a list of solutions is obtained by generating a pareto front. 

 

The new approach is then evaluated by implementing different case studies. It is observed that 

optimum rotor diameter and number of turbines for the single objective optimization technique are 

influenced by economic indicators such as the real interest rate and lifetime. However, they are not 

influenced by variation in the electricity price. Nevertheless, the NPV function is sensitive to the 

economic indicators and variation in the electricity price.  

 

For the multi - objective optimization technique, multi criteria analysis was used to determine the 

weight to the objective functions while moving along the pareto curve. It was observed that the 

improvement of one objective led to the deterioration of the other objective. Hence, the pareto front 
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provides opportunities to investors to negotiate and decide on the weight they want to specify for their 

objectives. 
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1. Introduction  
 

This chapter gives a background which forms the foundation of this thesis. Firstly, in Section 1.1 

information is provided on growing interest in the offshore wind energy sector and its emerging 

challenges. Secondly, section 1.2 gives a brief description of wind farm optimization. Section 1.3 

discusses the commonly used objective functions for optimization of an offshore wind farm (OWF). 

These three sections provide the necessary context for the research motivation in Section 1.4. This 

chapter ends with sections 1.5 and 1.6 where a description of the research approach and thesis outline 

is deliberated. 

 

1.1. Offshore wind energy 

 

The world is constantly looking for innovations in the field of energy to endure sustainability. Energy 

generating companies are always exploring new ways and means of providing clean energy in their 

quest to replace non-renewable sources [1].  Among renewable energy sources, wind power plays a 

major role around the globe. With an additional capacity of 52GW in 2017, the global installed 

capacity has risen to 539GW. [2].  

In the field of wind power, onshore wind is an established technology which is proven to be cost 

effective. While it is cost effective, the visual impact and noise levels in the environment compels 

researchers to look at other viable options within wind power. 

One such option is offshore wind power (OWP), which promises higher electricity generation with 

less noise and visual impact versus onshore wind power and hence has shown lots of promise as 

alternate technology, thus generating a significant interest in this area ever since the last decade. With 

the cost of generating OWP being relatively expensive compared to well entrenched existing 

technologies, extensive research is on at a rapid pace to make OWP generation a competitive energy 

source. [3].  

A total of 4.3 GW of global OWP was added cumulatively in 2017. The overall installed capacity of 

OWP now is around 18.8 GW across 17 countries. It is predicted that global OWP will have around 

34GW of installed capacity by 2020 [4]. 
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Figure 1.1: Offshore wind energy statistics 

 

 

On the European scale, UK has the highest contribution in the offshore wind energy market with 

around 36% of global installed capacity. UK is closely followed by Germany, which contributes to 

28% of the market share [5]. It is anticipated that OWP will be instrumental in achieving the 

renewable energy target set by the European Union for the year 2020 [6].  

Offshore wind has grown consistently and is moving from niche to conventional market stage since 

the last decade. The last few years has seen offshore wind energy steadily grow in Europe and expand 

in new markets around the world in Asia and USA [13]. However, offshore wind energy still faces a 

lot of challenges. Costs are very high for the installation of wind turbines, foundations, electricity 

cables and connecting wind farm to the grid [9]. For offshore wind energy to be competitive with other 

energy sources, major research is required in almost every discipline associated with it [10]. The 

current trend followed by the researchers is to carry out an optimization approach wherein all required 

disciplines are included. 

 

  

1.2. Wind farm optimization – An introduction 

 

Even though research was underway on planning and modelling of wind farms by 1970’s, the study 

of wake models based on momentum conservation and linearized wake assumptions in 1980 started 

the main groundwork for the study on wind farm design and optimization [14-20]. The main purpose 

of the research was to maximize power by minimizing wake effects in an array. This resulted in an 

increase of power percentage by 1.29%. The work by Mosetti is still considered to be a breakthrough 

in the field of wind farm optimization [21]. Significant improvements were made in both wind farm 

performance and numerical approach to solve the problem. The objective function used by Mosetti 

was to minimize cost of energy (COE) and a genetic algorithm was used to solve the optimization 

problem.  

The breakthrough by Mosetti led to researchers using similar objective functions for optimizing a wind 

farm [11]. The commonly identified objective functions were COE and annual energy production 

(AEP), which are further elaborated in the next sections. 
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1.3. Commonly used objective functions for optimization 

1.3.1. AEP 

  

AEP is one of the frequently used objectives for wind farm optimization [28,29].  Four metrics from 

the literature were found to be equivalent in definition to AEP: [22 – 26].  

 

1. Maximize wind speed reaching to each turbine 

2. Minimize wind speed deficit at each wind turbine 

3. Optimize capacity factor of the wind farm 

4. Maximize the efficiency of the wind farm 

 
AEP is maximized for the wind farm and the following constraints are commonly adopted: 

 

1. Minimum spacing between the turbines 

2. The boundary of the wind farm 
 

Wake effects are taken into consideration and Jensen wake model is commonly used to determine the 

wind speed deficit in a wind farm. The commonly used design variables are as follows: 

 

1. Number of turbines 

2. Cartesian coordinates of the turbines 

 
The AEP can be calculated using equation 1.1:   

 

                                                       𝑨𝑬𝑷 = 𝑻 ∫ 𝑷(𝑼) . 𝒇
𝑽𝟐

𝑽𝟏
(𝑼) 𝒅𝑼         Equation 1.1   

 

In which, T represents the number of hours in a year, P(U) is the power of the wind farm for every 

wind speed and f(U) is the probability of occurrence of the wind speeds. V1 is the cut in wind speed 

and V2 is the cut-out wind speed.          
 

The AEP calculated in the above equation is for a single turbine. For turbines in a wind farm, wind 

direction also plays a significant role and cannot be neglected. This is because the wind turbine wakes 

will reduce the total AEP of the wind farm due to a reduction of power of the wake affected wind 

turbines. Hence AEP for a wind farm is calculated using the equation 1.2 as proposed by [28,32]: 

 

                            𝑨𝑬𝑷𝑭𝒂𝒓𝒎 =  𝑻 ∫ ∫ 𝑷(𝑼).  𝒇(𝑼, 𝜭) 𝒅𝑼 𝒅𝜭
𝒄𝒖𝒕 𝒐𝒖𝒕

𝟎

𝟑𝟔𝟎

𝟎
    Equation 1.2  

 

In the above equation,  𝒇(𝑼, 𝜭) refers to a bivariate probability density function. It represents the 

probability of occurrence of a wind condition characterized by wind speed from the range 0 to cut out 

wind speed in m/s and wind direction from 0 ≤  𝜭 ≤ 360 in degrees at the position of a specific turbine.  

 

𝑨𝑬𝑷𝑭𝒂𝒓𝒎 of a wind farm considers the conversion of kinetic energy in the wind into mechanical 

energy at the rotor of the wind turbine. The estimation of 𝑨𝑬𝑷𝑭𝒂𝒓𝒎 also includes net mechanical to 

electrical efficiency and availability factors. To make calculations easier, manufacturers usually 

provide electrical power curves which include all the possible electrical and mechanical losses [11]. 
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The availability of the wind turbine refers to the fraction of time that the wind turbine is in operation 

mode and supplies electricity. The total availability of the wind turbines and wind farm are often 

assumed to be constant factors. This factor is usually assumed to be in the range of 95 to 98 % [32]. 

For accurate measurements, IEC 61400 – 26 availability standards for wind turbines can be referred 

[51].   
  

1.3.2. COE 

 

COE is defined as the cost of kWh of energy converted from the wind and denotes the price of energy 

at which wind farms will neither have profit nor loss over its lifetime i.e. it represents the breakeven 

price of energy. The general expression for COE is given as: 

 

                                                             𝑪𝑶𝑬 =
𝑪𝒐𝒔𝒕𝑭𝒂𝒓𝒎

𝑨𝑬𝑷𝑭𝒂𝒓𝒎
             Equation 1.3 

 

Lot of definitions were identified in literature differing in the way the total cost of the wind farm was 

defined. More than 33% of the works reviewed for the current study used Mosetti’s cost function 

which assumed the total cost of the wind farm to be a function of the number of wind turbines present 

in the farm [21]. The equation below represents Mosetti’s cost function: 

 

                                         𝑪𝒐𝒔𝒕𝑴𝒐𝒔𝒆𝒕𝒕𝒊 = 𝑵(
𝟐

𝟑
+  

𝟏

𝟑
𝒆−𝟎.𝟎𝟎𝟏𝟕𝟒𝑵𝟐

)      Equation 1.4 

 

Equation 1.4 is dimensionless and represents only a minor portion of the total costs of the wind farm. 

A dimension of 
𝒄𝒐𝒔𝒕

𝒚𝒆𝒂𝒓
 is assumed which is unreliable because, for farms with more than 35 turbines, the 

function value converges to 2/3N.  

  

Similarly, two equivalent definitions related to the COE were identified from literature:  

Levelized cost of energy (LCOE) and Levelized Production Cost (LPC) which will be explained in 

detail in chapter 2. 

 

1.4. Research motivation 

 

It was stated that AEP and COE are the most common objective functions used in a wind farm 

optimization problem. However, while designing a wind farm (OWF in this research), AEP is not a 

good objective function as it principally considers energy obtained from the wind with the 

consideration of wake effects. Nevertheless, costs also play a major role in the design of an OWF and 

therefore, there needs to be a tradeoff between costs and energy produced. In general terms, energy 

needs to be maximized and cost needs to be minimized. Hence, considering only AEP as an objective 

function is not a reasonable choice. A more rational choice would be if AEP is considered as one of 

the modules for the optimization problem instead of an objective function.  

Thus, COE is a better objective function as it takes both energy and costs into consideration. COE 

gives an indication of the breakeven price of the OWF. Moreover, there might be other objective 

functions that might be of interest to the OWF designer apart from AEP and COE. For example, COE 

indicates the price at which costs are equal to the revenues, but it does not provide any detail on how 

much profit is obtained from the OWF which might be of interest to the OWF investors. Similarly, it 

has been observed that carbon is emitted during the installation, operation and maintenance phase of 

the OWF which needs to be controlled [8]. OWFs are also a threat to some marine animals and birds 

for which guidelines are provided by environmental regulations to minimize environmental impacts 
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for the betterment of marine species [7]. Thus, while designing an OWF, multiple objectives need to 

be taken into consideration to arrive at a commercially and socially viable model.  

On the other hand, there might also be a possibility where designers might be interested in analyzing 

more than one objective for the same OWF at the same time. For example, one designer would want 

a tradeoff between COE and carbon emissions. Another designer might be attracted towards a tradeoff 

between AEP and noise levels as shown in figure 1.2.  

 

 
 

Figure 1.2: Optimized tradeoff between AEP and noise generated [34,35] 

 

These tradeoffs can be attained by using a multi – objective approach. The advantage of a multi - 

objective approach is that investors can have an insight into optimized tradeoffs between different 

objectives [12]. 

Even though optimization of wind farms is a common area of research, examination of different 

tradeoffs has been very few and far between [11]. There has been a study on the tradeoff between the 

capacity factor of the wind farm and the power density within the wind farm area [31]. Researchers 

have also analyzed the conflict between minimizing the spacing of the wind turbines and maximizing 

the energy production via reducing the wake effects. The work done by [32] optimized the AEP where 

the constraints were considered as the second objective function. In another study, AEP was 

maximized, and the sum of the number of turbines and wind farm area was treated as a second objective 

function [33]. The noise effects and AEP were optimized in [34,35]. Some researchers used three 

objective functions for optimization [36]. 

In short, there are only a few frameworks available as far as the author is aware which give a good 

tradeoff between different objectives and provide descriptive insight to wind farm designers. 

Therefore, the current research effort will develop a method to model different objective functions for 

optimization of an OWF. Tradeoffs between different objectives and their influence on the optimal 

design of an OWF will be investigated as well. In the following sections, goals and the report structure 

of this thesis are briefly explained. 
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1.5. Objective and approach 

 

The objective of the thesis study is outlined as: 

 

“To have an overview of different objective functions and understand their impact on the optimal 

design of an OWF” 

 

Eventually, the result of the project is to have a technique that provides flexibility to OWF designers 

in using different objective functions and estimating tradeoffs between different objectives for optimal 

design of an OWF. The points below encapsulate the different drafts required to achieve the goal 

mentioned above: 

 

1. A list of different objective functions for the OWF optimization and selection of relevant ones. 

2. Formalize the relevant objective function in metrics suitable for optimization. 

3. A suitable method to deal with multiple objectives. 

4. Devise case studies to reflect the new approach towards solving the OWF optimization 

problem. 

 

Figure 1.3 shows the aspects which will be worked within this thesis. The boxes which are colored are 

the ones which will be worked with and the boxes with no color are adopted from literature. This 

research work focuses mainly on the objective functions, design variables and constraints. A desirable 

optimization algorithm is chosen based on the literature study.  OPENMDAO framework will be 

adopted in this thesis. This framework will be explained more conclusively in chapter 3. 

  

  

 
Figure 1.3: Aspects that will be looked upon in this research 

 

 

1.6. Thesis outline 

 

The outline of the thesis is shown in figure 1.4. Chapter 1 provides an introduction with some 

background information on the OWF optimization problem and the setup of the research is also 

conferred. Chapter 2 introduces to the reader the inventory of different objective functions. Applicable 

ones are selected and are formulated in a metric and a description is provided on how these selected 

objective functions are modelled. Chapter 3 discusses the OpenMDAO framework and converses the 
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ANALYZER   
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optimization approach used in this research where an explanation will be provided on the use of design 

variables, constraints and objective function. Chapter 4 and 5 present the different case studies 

implemented in the project. Finally, chapter 6 includes the conclusion of the thesis work and appends 

the recommendations for future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

  

Figure 1.4: Overview of thesis outline and the numbers indicate respective chapters 
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2. Inventory of different objective 
functions, their selection and 
modelling 

 
 

2.1. Introduction 
 

The list of different objective functions in a metric form will be discussed in this section. Relevant 

ones are then selected for the optimization problem and arguments are provided for the choices made. 

Modelling approach will also be discussed for the selected objective functions. 

 

 

2.2. Objective functions 

 

2.2.1. Levelized cost of energy/Levelized production cost 

 

It was mentioned in section 1.3 that COE was one of the commonly used objective function for wind 

farm optimization. It was also stated that two equivalent definitions for COE were found in 

literature: 

 

• Levelized cost of energy (LCOE)  

• Levelized Production Cost (LPC) 

 

Both LCOE and LPC are very similar in definitions with subtle variations. However, as far as wind 

farm optimization is concerned both the definitions have been used interchangeably as per the author’s 

knowledge. Both provide a good estimate as both costs and AEP are taken into consideration.  

 

                                              𝑳𝑪𝑶𝑬 =
𝑪𝒊𝒏

𝒂.𝑨𝑬𝑷
+

𝑪𝒐𝒎

𝑨𝑬𝑷
+

𝑪𝒅𝒆𝒄(𝟏+𝒓)−𝑻

𝒂.𝑨𝑬𝑷
    Equation 2.1  

 

 

In the above equation, 𝑨𝑬𝑷 is the annual energy production, 𝑪𝒊𝒏represents the investment costs of the 

wind farm, 𝑪𝒐𝒎 operation and maintenance cost, 𝑪𝒅𝒆𝒄 refers to the decommissioning cost of the wind 

farm and T denotes lifetime of the wind farm during operation. The annuity factor is given by 𝒂 in the 

above expression. Annuity factor is defined as a financial value, when multiplied by a periodic amount 

calculates the present or future value of that amount. Annuity factor is denoted by the following 

expression: 

 

                                                                   𝒂 =
𝟏

𝒓
 (𝟏 − (𝟏 −  

𝟏

𝒓
)

𝑻

)                Equation 2.2 

 

Where r is the real rate of interest and is calculated by using equation 2.3: 
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                                                              𝟏 + 𝒓 =
𝟏+𝒊

𝟏+𝒗
                         Equation 2.3 

 

In the above equation, i is the interest rate and v is the inflation rate. 

There are other LCOE models defined in literature as well [39,41]. A detailed review of economics of 

wind energy and concepts of COE and LCOE can be found in [37,38,40]. 

As stated in chapter 1, OpenMDAO framework will be adopted in this research. LCOE is used in 

WINDOW, which is built within OpenMDAO. The framework and WINDOW will be explained in 

detail in chapter 3. This research uses LCOE as one of the references for the selection of the objective 

functions. 

 

2.2.2. Net present value   

 

Net present value (NPV) represents the value and worth of a stream of payments in a single number 

taking into consideration that the same nominal payment made at different times will have different 

worth [42].  NPV of a project examines the cost (cash outflows) and revenues (cash inflows) together 

and it consists of many different cost and revenue streams. In general terms, the form of different 

streams should be known for the correct use of discount rate for NPV analysis. The internal rate of 

return (IRR) of a payment stream is defined as a discount rate for which NPV of the payment stream 

is zero.  

A positive NPV represents a good investment and a negative NPV indicates that the income is lower 

than the costs.  The formulation of NPV is given by equation 2.4: 

 

                              𝑵𝑷𝑽 = (𝑹 − 𝑶𝑴) ∗ 𝒂 − 𝑪𝒊𝒏 −
𝑫𝒆𝒄

(𝟏+𝒓)𝒕               Equation 2.4  
 

Revenue is defined using equation 2.5: 

 

                                 𝑹 = 𝒆𝒑 ∗ 𝑨𝑬𝑷                                   Equation 2.5 
 

In equation 2.4 𝑶𝑴 is the operation and maintenance cost, 𝒂 denotes the annuity factor, 𝑪𝒊𝒏 represents 

the total investment cost, 𝑫𝒆𝒄 signifies the decommissioning cost, T is the number of years the wind 

farm is in operation and 𝒓 denotes the real rate of interest. Comparing equations 2.1 and 2.4, the 

formulation of LCOE is very similar to NPV in the sense that both require almost the same economic 

parameters.  The only addition is the electricity price in the NPV calculation as shown in equation 2.4. 

If LCOE is substituted instead of the electricity price in equation 2.4, then the value of NPV will be 

zero.  

 

 

2.2.3. Risk management 

 

The estimation of AEP over the entire project life cycle is one of the most important factors to 

determine the profitability of wind power project.  AEP is determined using equation 1.2. 

From equation 1.2, it is observed that there is a certain uncertainty involved while specifying the AEP 

for the wind farm. The first uncertainty lies in the fact that the wind speed is uncertain as it is 

unpredictable in nature. Secondly, the availability of wind turbines plays a crucial role. For instance, 

there might be a situation where the wind turbine has a certain issue and it is being worked upon. In 

this case, the wind turbine does not operate, and AEP generated for the wind farm will decrease. To 

finance a wind power project, it would be favorable if the investors have an accurate knowledge on 
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these uncertainties to mitigate the errors and increase the reliability of the project [43] Hence, there is 

a need to calculate this uncertainty. Usually, project investors are interested in the estimation of the 

P90 value of the AEP. This value refers to a 90% probability of the AEP being attained or exceeded. 

P90 (AEP) can be calculated using the equation 2.6: 

 

                                       𝑷𝟗𝟎 =  𝑷𝟓𝟎 (𝟏 − 𝒛 ∗ 𝒖)                          Equation 2.6 
 

P50 refers to the 𝑨𝑬𝑷𝑭𝒂𝒓𝒎 calculated in equation 1.2. It is also referred to as central energy production 

estimate in normal Gaussian distribution. This represents an energy value with 50% probability of 

being exceeded as shown in figure 2.1. The z value is dependent on the desired probability and 

appendix A1 shows the z values for various probability levels. It is seen that for higher values of 

uncertainty (represented by 𝒖 in the equation), higher will be the difference between P50 and the other 

levels of probability of exceedance.  

 

 
Figure 2.1: Normal distribution - energy production probability 

 

2.2.4. Reducing carbon emissions  

 

Wind turbines do not emit any carbon during their operation. However, they can release greenhouse 

gases at the rate of 72% and 90% of cumulative emissions during their lifetime especially in the 

manufacturing, installation and operation and maintenance stage. [44,45] It was estimated that a 1.65 

MW turbine emitted 394 t of CO2 during its lifetime [46]. Hence, this number will be even higher for 

a wind farm. For this reason, there should be a system to facilitate wind farm design to reduce these 

emissions. The main goal of this objective is to reduce the carbon emissions by decreasing the carbon 

payback period. The equation for carbon payback period is shown in 2.7: 

 

                                               𝑪𝑷𝑷 =
𝑪𝑶𝟐,𝒆𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝒔∗ 𝒍𝒊𝒇𝒆𝒔𝒑𝒂𝒏

𝑪𝑶𝟐,𝒆𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝒔 𝒂𝒗𝒐𝒊𝒅𝒆𝒅
                                     Equation 2.7 
 

CPP is defined as the length of time in years to offset the carbon emissions released over the lifetime 

of the wind farm. [46] 

 

CO2 emissions avoided can be calculated by: 

 

                                 𝑪𝑶𝟐,𝒆𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝒔 𝒂𝒗𝒐𝒊𝒅𝒆𝒅 = 𝑨𝑬𝑷 ∗ 𝑪𝑬𝑺 ∗ 𝒍𝒊𝒇𝒆𝒔𝒑𝒂𝒏             Equation 2.8 
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CES refers to carbon emissions signature. Equation 2.9 is used to calculate CES [47] 

 

                                       𝑪𝑬𝑺 = (𝒏 ∗
 𝟏𝟏𝟐∗%𝑪+𝟒𝟗∗%𝑵𝑮+𝟔𝟔∗%𝑷

𝟏𝟎𝟎
)                            Equation 2.9 

 

n = energy conversion efficiency 

%C = percentage of coal contribution to the electrical grid 

%NG = percentage of natural gas contribution to the electrical grid 

%P = percentage of (other) sources contribution to the electrical grid 

 

CES is specific to an electrical energy grid and can be used by manufacturers or anyone using energy 

which has been generated by fossil fuels [46].  An electrical grid has many primary sources of energy 

such as coal, petroleum, biofuel, hydro, solar, wind, geothermal, natural gas, wave and tidal. Each of 

these sources can be expressed as a fraction and a grid which provides electrical energy is made up of 

the sum of fractions of the primary energy sources and multiplied by the conversion efficiency. The 

coefficients 112, 66 and 49 used in equation 2.9 are the kilograms of carbon emitted per gigajoule of 

heat released in each case. Therefore, for any system that uses electrical energy from the grid, carbon 

emissions can be calculated by multiplying energy consumed by CES. 

 
 

2.2.5. Financial balance  

 

Financial balance (FB) and profit are equivalent in definition. This model includes time variation in 

electricity prices, taxes, payments O&M costs of wind farm etc. [48].  Equation 2.10 is generally used 

to calculate FB:  

 

                            𝑭𝑩 = 𝑾𝑷 − 𝑪𝑫 − 𝑪𝑶&𝑴 − (𝑪𝑭 +  𝑪𝑮) (𝟏 +
𝒊−𝒗

𝒏𝒍
)

𝑻∗𝒏𝒍

            Equation 2.10 

 

In the above equation, 𝑊𝑃 represents the revenue got from the wind farm. CD is the accumulated cost 

of degradation. CO&M is the operation and maintenance cost. CF and CG represent the cost of 

foundations and electrical infrastructure. The interest and inflation rate is represented by i and v 

respectively. The number of times the loan must be paid is represented by nl. 𝑻 is the number of years 

the wind farm will be in operation. For simplicity, the operating costs can be interpreted as referring 

to year zero with an assumption that the development of these costs over time follows the inflation rate 

and that the inflation rate can be represented as the discounting factor for transforming these running 

costs into NPV.  

 

2.3. Selection of objective functions 

 

This section will discuss the objective functions that are selected for further study in the research.  

The objective functions in consideration are as follows: 

 

• NPV 

• Risk Management 

• Carbon Emissions 

• Financial Balance 
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NPV 
 

NPV is chosen as one of the objective functions in this thesis as it estimates the total profit of an OWF. 

It is also suitable to evaluate exclusive projects because it can distinguish the size of different OWFs 

[51].  The LCOE is used as a reference for selecting NPV as one of the objectives. It was mentioned 

earlier that COE(LCOE) is one of the commonly used objectives used for wind farm optimization. 

From equation 2.4, revenue plays an important role in the estimation of NPV. To calculate the revenue, 

the electricity price plays a significant role. The electricity price is in some ways determined by 

estimating the LCOE. The LCOE represents the breakeven price of energy and to attain any profit, the 

electricity price should be higher than the estimated LCOE.  

WINDOW uses LCOE as the objective function as mentioned before and the electricity price in the 

NPV function will be assigned based on the estimation of the LCOE. 

 

 

Risk management 
 

Risk Management is chosen as one of the objective functions in this thesis as well. As stated earlier, it 

will be motivating to see the AEP values based on different values of probability of exceedance. AEP 

is used as a reference for selecting risk management as an objective function. For determining 

uncertainty, AEP needs to be calculated. The application of this objective function will benefit the 

investor in estimating the profit obtained from OWF for different levels of probability of exceedance. 

The application of this objective function will be explained more in detail in section 2.4.2. 

 

Carbon emissions 
 

The modelling of this objective involves calculating two important factors: CO2 emissions emitted by 

the wind farm and the estimation of AEP. It can be clearly seen that the AEP needs to be maximized 

to reduce the carbon payback period. However, AEP is already being maximized in the NPV objective 

function and is also used in the risk management objective. For this research, it is a redundant objective 

as it would give an extra weight to AEP. Secondly, modelling the CO2 emissions generated during the 

installation, O&M and decommissioning is a complex task. It is out of scope in this research. Hence, 

this objective function is not chosen for further study.  

 

Financial balance 
 

The definition and representation of FB are identical to that of NPV. FB also helps in determining the 

profit of OWF, like NPV. Degradation cost is the additional term in FB equation. This cost is estimated 

from the fatigue of the wind turbines and support structure. The calculation of fatigue for the 

degradation cost requires complex modelling and simulations. With the limited resources available for 

the project and the limited difference with respect to NPV, FB is not chosen as one of the objectives 

for further study. 

 

To summarize, the table below shows the inventory of objective functions. A tick means that the 

objective function is chosen for further study and cross means vice versa. 
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Table 2.1: Selection of objective functions for further research 

 

Objective function 

 

Selection for further study 

NPV ✔ 

Risk Management ✔ 

Carbon Emissions ✘ 

Financial Balance ✘ 

 

 

 

2.4. Modelling of objective functions 

 

2.4.1. NPV 

 

To estimate the NPV, electricity price plays a significant role. In industrial standards, electricity prices 

reflect the cost to build, finance, maintain and operate OWFs and electricity grid. Independent Service 

Operator (ISO) manages the auctions that determine the day ahead and real - time electricity prices in 

the market. The prices fluctuate mainly due to the demand and bidding strategies. For OWP, predicting 

electricity price is not straightforward as the power output is variable and hence there is a certain level 

of uncertainty for wind generators and power market. For example, if the wind generator cannot supply 

the bidding amount of power, it must pay a penalty for the unsupplied amount of electricity. The ISO 

must balance the system from the reserves which charge more, so the electricity price goes up. On the 

other hand, if the wind generator produces more than the bidding amount, the excess power may not 

be sold to the grid as there might be voltage fluctuations in the grid. In this case, the electricity price 

goes down [52]. Hence, it is important to assess the value of electricity price based on the power 

supply. In this thesis, the price of electricity is modelled in the following ways: 

 

• Constant electricity price 

• Electricity price based on wind variability 

• Electricity price based on wind power predictability 
  

 Constant electricity price 
 

In this scenario, the electricity price is assumed to be a constant for the OWF. The revenue is calculated 

based on this constant electricity price and NPV is estimated. As mentioned earlier, LCOE determines 

the breakeven price of the OWF. Therefore, in general, LCOE is first estimated for the OWF and it is 

used as the base (lower limit) for the determination of the electricity price. For example, if the LCOE 

is 9 
𝒄€

𝒌𝑾𝒉
 for an OWF, this will be the minimum value for the electricity price for determination of 

NPV.  This value is then substituted in equation 2.5 and revenue for the OWF is estimated. NPV is 

calculated using equation 2.4. 

 

 

 Electricity price based on wind variability 

 

As mentioned earlier, the electricity price varies based on the power supply. Power produced by an 

OWF is directly dependent on the wind speed of that site. Therefore, if there are many OWFs in a 
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region where wind speed is high, the electricity price will be reduced. Similarly, in a region where 

there are many OWFs and the wind speed is low, there will be in an increase in the electricity price. 

[49].   

 

To make electricity price a function of the varying wind speed, following technique is adopted. It is 

known that at low wind speeds the electricity price is high and vice versa. Therefore, in this modelling 

technique, a range of realistic electricity prices is assumed and the revenue and NPV is calculated for 

this range of prices. Let’s consider an OWF’s power curve as shown in the figure 2.2: 

 

 
 

Figure 2.2: Power curve of a virtual OWF [27] 

 

 

 

As shown in figure 2.2, the cut in wind speed is 3.5 m/s and the rated wind speed is 14m/s for the 

OWF. The region between these two wind speeds is referred to as partial load region where the power 

of the wind farm is proportional to the cube of the wind speed. The cut-out wind speed is 25 m/s and 

the region between the rated wind speed and cut out wind speed is known as the full load region. In 

this region, the power output from the OWF is a constant i.e. it delivers rated power. As mentioned 

earlier, LCOE is used as a basis to determine the electricity price. Let’s say the LCOE for this OWF 

is 9 
𝒄€

𝒌𝑾𝒉
. Therefore, the assumed electricity price for the respective wind speeds is tabulated in table 

2.2. 

 

Using the data from table 2.2, the revenue and NPV can be calculated for the list of electricity prices. 

It should be noted that the electricity price in the full load region is the same as the OWF delivers rated 

power i.e. constant power in this region. The revenue is calculated with the sum over the wind speeds 

and wind directions. To represent the above words in an equation, the total revenue can be estimated 

using equation 2.11: 

 

                     𝑹 = ∑ 𝒆𝒑 (𝑼) ∗ 𝑷(𝑼, 𝜭).  𝒇(𝑼, 𝜭) 𝒅𝑼 𝒅𝜭𝟐𝟓
𝟑.𝟓                   Equation 2.11 

 

The NPV is calculated again using equation 2.4.  
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It should be noted that the values of wind speed and electricity price used here are just an example for 

the reader to understand the concepts. Different values will be used in chapter 4 while implementing 

the case study. 

 
Table 2.2: List of wind speeds and the corresponding electricity price 

 

 

 

  

 

Electricity price based on wind power predictability 

 

Predicting the power output from an OWF is very essential. Developers/investors value OWFs that 

deliver constant power output. Delivery of constant power output leads to fewer penalties being 

provided to OWF. It is observed that a slight change in wind direction leads to fluctuations in the wind 

farm power output [50]. Figure 2.3 shows the fluctuation of OWF power output for a range of wind 

speeds and all wind directions. The solid lines represent the fluctuations in power output and the dashed 

lines represent constant power output which the investors/developers are looking for.   

 

 

 

  Wind speed 
(m/s) 

 

Electricity price (𝒆𝒑 (𝑼)) 

(c€/kWh) 

3.5 14.75 

4 14.5 

5 14 

6 13.5 

7 13 

8 12.5 

9 12 

10 11.5 

11 11 

12 10.5 

13 10 

14 9.5 

15 9.5 

16 9.5 

17 9.5 

18 9.5 

19 9.5 

20 9.5 

21 9.5 

22 9.5 

23 9.5 

24 9.5 

25 9.5 
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Figure 2.3: Power fluctuations in an OWF for different wind speeds and wind directions [53] 

 

 

To tackle this case, a penalty is provided for the fluctuation in power output for different wind 

directions. The power output is obtained for all possible wind directions and the mean and standard 

deviation of the power output is determined. The concept of percentage difference is then used to 

estimate the new electricity price. The percentage difference is defined as the difference between two 

values divided by the average of two values and is shown as a percentage. Hence, the two values, in 

this case are the total power output and its standard deviation. The percentage difference is estimated 

for these two values and a penalty is given for this estimated difference and finally, the remodeled 

electricity price is calculated using equation 2.12: 

 

 

 

                                                          𝒆𝒑𝒏𝒆𝒘 = 𝒆𝒑 −   𝒑 ∗
|𝒎𝒑−𝒔𝒕𝒅|

𝒎𝒑+𝒔𝒕𝒅

𝟐

                                Equation 2.12 

 

 

Where 𝒆𝒑𝒏𝒆𝒘 is the remodeled electricity price, 𝑝 is the penalty provided, 𝒎𝒑 is the total power and 

𝒔𝒕𝒅 is the standard deviation of the power output in all directions. NPV is then calculated using 

equation 2.4 using this remodeled electricity price. 

 

2.4.2. Risk management 

 

The uncertainty factor plays a significant role in estimating P90(AEP). It is seen that higher the value 

of uncertainty, lower the value of P90. In industrial standards, the uncertainty is assumed to be around 

10 to 15% [43]. In this thesis, the uncertainty value is modelled. To estimate this value, the following 

approach is adopted. 100 values of annual average wind speeds are taken into consideration using a 

normal distribution. The Weibull parameters are then estimated for these annual average wind speeds 

and AEP is computed. The NPV is then calculated and the mean and standard deviation of NPV is 

estimated. The focus is on minimizing the standard deviation of NPV and the uncertainty is minimized. 
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2.5. Conclusion 

 

This chapter helped to answer the first two sub - goals of the thesis:   

 

• A list of different objective functions for the research and selection of relevant ones. 

• Formalize the relevant objective function in metrics suitable for optimization. 

 

The selected objective functions are: 

 

1. Net Present Value (NPV) 

2. Risk Management   

 

Electricity price is the main parameter in focus while estimating NPV and is modelled for three 

different cases: 

 

1. Constant Electricity price 

2. Electricity price based on wind variability 

3. Electricity price based on wind power predictability 

 

Similarly, to calculate the uncertainty the standard deviation of NPV is estimated and needs to be 

minimized to minimize uncertainty.  For this purpose, a certain optimization procedure needs to be 

carried out. Chapter 3 will discuss the optimization framework and approach in detail. A general 

description will also be provided on the objective function, design variables and constraints. 
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3. Background on MDAO and 
optimization approach 

 

 

3.1. Introduction 

 

This chapter will provide a brief description of the framework that is used in this thesis. An 

introduction and development of the framework will be provided followed by its application in OWF 

design. Details will also be listed on the different analysis blocks used in the framework which will be 

further adopted in this research. Finally, this section will also present the readers with the optimization 

approach that will be implemented while carrying out the different case studies. 

 

3.2. Multi – disciplinary analysis and optimization 

 

Multi-disciplinary analysis and optimization (MDAO) is a methodology that allows the analysis and 

optimization of a system by explicit and implicit consideration of important interactions between all 

the disciplines [54]. It is used to couple multiple computational tools to a driver for solving a problem 

that requires the estimation of the overall performance of the system. It is a system’s engineering 

approach in the sense that MDAO helps in the design and management of a complex engineering 

system. MDAO exhibits the following characteristics [54]: 

 

• Create workflows encircling analysis tools and processes from different disciplines. 

• Execute these workflows to explore the performance, cost and risk of many different design 

alternatives. 

• Perform sensitivity analyses to find the most important variables and discover the key 

relationships. 

• Run optimization algorithms to find the best optimum design and evaluate the robustness and 

reliability of their designs. 
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Figure 3.1: A MDAO workflow diagram [30] 

 

 

 

Figure 3.1 shows a simple MDAO framework. The coupled tools are referred to as analysis blocks as 

shown in the figure. These blocks are repeatedly called by the driver. The driver regulates the flow of 

inputs and outputs for the optimization purpose through the analysis blocks. The driver in this diagram 

refers to any algorithm that calls the analysis block for a specific purpose. This specific purpose is 

referred to as the use case. Examples of drivers include optimization algorithms, sensitivity analysis, 

design certification etc. with multiple use cases.  The workflow helps in the coupling of the disciplines 

in the form of input and output interactions between the models. This is depicted through the arrows 

in the figure.   

However, there are challenges while implementing MDAO. One of the main challenges is the need for 

reconfigurability and reusability of analysis techniques. This means that a possibility is missed out on 

improving the performance of MDAO workflow by not exploring the coupling of other tools with 

different levels of fidelity.  To counter this challenge, OpenMDAO framework was developed. The 

illustration of this framework will be given in the next section.  

 

3.2.1. Open – MDAO framework 

 

OpenMDAO is developed by NASA Glenn Research Centre and is an open source framework. It 

provides users with a combination of tools and interface that helps in the setup for complex engineering 

design, analysis and optimization problems as shown in figure 3.2. MDAO involves optimization 

around complex system models where they are made up of many analysis blocks and are linked with 

each other. OpenMDAO is an open source high - performance computing platform for analysis of a 

system and multidisciplinary optimization. It simplifies the implementation of tools and methods for 

multidisciplinary design, analysis and optimization. It has been designed to handle variable problem 

formulations and promote the reuse of the model. OpenMDAO provides tools and interface that helps 

in solving complex problems [56]. Special emphasis has been placed to ensure robustness, flexibility 

and reconfigurability. This framework is written in Python programming language and leverages the 

object-oriented format to decompose MDAO algorithms. The OpenMDAO library provides access to 
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many gradient and non-gradient optimizers and the performance of various optimizers can be readily 

compared in this framework. OpenMDAO was initially famous for solving problems related to aircraft 

design, however, it has gained popularity in other disciplines as well [55]. 

 

 
 

 Figure 3.2 : Different domains that OpenMDAO works on [56] 

 

 

The OpenMDAO framework is managed through a website, http:// OpenMDAO.org. This website 

hosts discussion forums and provides downloads for all official OpenMDAO release versions. It is 

also home to all the documentation concerning the OpenMDAO. The OpenMDAO team is currently 

working on problems involving cubesat design, mission planning, wind turbine design, wind farm 

layout, boundary layer ingestion for aircraft etc [56]. 

 

 

3.2.2. Application of OpenMDAO in OWF  

 
OWF design is a multidisciplinary problem as it has a lot of disciplines like the support structure, 

cables, aerodynamics etc. associated with it. Considering the requirements of an OWF optimization 

problem and framework required, the wind energy research group at the faculty of aerospace 

engineering, TU Delft has been designing software, Windfarm Integrated Design and Optimization 

Workflow (WINDOW) for multi-disciplinary design analysis and optimization of OWF [30]. The 

feature of this software is the ability of the workflow to suit the desired case study which makes this 

software distinctive.  
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Figure 3.3 : XDSM diagram of the WINDOW workflow for an OWF optimization problem  

 

 

 

The interactions between the different disciplines can be investigated using Extended Design Structure 

Matrix (XDSM) [57]. The XDSM diagram represents a particular workflow for a given use case. In 

figure 3.3, the spacing of the turbines is optimized for a minimum LCOE. A more descriptive 

information of WINDOW and the respective workflows can be found in [30]. 

 

The first row in the XDSM diagram includes all the fixed parameters for the respective disciplines 

while the given MDAO is performed. The green rectangle boxes represent the different disciplines 

comprising of the OWF design in WINDOW. 

 

The second row comprises of the design variables and the spacing of the turbines. The spacing of the 

turbines here refers to the crosswind spacing and downwind spacing and is controlled by the MDAO 

driver. The driver here is represented by the blue rounded rectangle. The vertical lines connected to 

each discipline represent the flow of inputs and the horizontal lines represent the flow of output.  

 

The coordinates of the turbine and substation are set by the layout discipline. This is based on the 

spacing provided by the driver. The water depth at each turbine and substation is computed using the 

bathymetry data of the site. 

 

The wake effect is calculated by the wake aerodynamics discipline. The wind is sampled into discrete 

speed and directions. For every sample, the power and the thrust coefficient is interpolated and 

computed and is used to calculate the wind speed deficit in each turbine. The wake merge model then 

calculates the overall wind speed deficit and the overall power output from each turbine for each wind 

sampling is found out. The power output is then integrated with a Weibull distribution and wind rose 

of the site condition and the AEP of the OWF is estimated. 

 

The support structure is designed by using the wake - induced turbulence, water depth at each turbine, 

the mass of rotor and nacelle assembly (RNA), yaw radius, rated wind speed and maximum rotor 

thrust. 
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The cabling discipline determines the layout of the cables, length and cost based on Esau – Williams 

heuristic algorithm [58]. This algorithm uses the coordinates of the turbines and substations as inputs. 

A cable type is also accepted from the database for a given capacity of the turbine. 

 

The cost model sums the cost of RNA, support structure and cabling for all turbines. The operation 

and maintenance cost is scaled linearly with the AEP. The capital expenditure, operating expenditure 

and decommissioning cost is then calculated. Lastly, LCOE is calculated for the OWF which is sent 

back to the optimizer driver which generates a new set of design variables.  

 

 

3.2.3. Application of WINDOW in this research 

 

The focus of this research is on objective functions, constraints, design variables and optimization 

approach as mentioned in chapter 1. The analysis blocks are all adopted from WINDOW and are not 

changed in this study.  

 

 

3.3. Optimization approach 

 

The formulation of an optimization problem involves the selection of design variables, constraints and 

objective function, wherein the consideration of one parameter may be influenced by the other. This 

section will brief on the above-mentioned parameters.  

  

 

3.3.1. Design variables 

 

The design variables are varied during the optimization process. A design problem involves the use of 

many parameters, of which some are highly sensitive to the proper working of the design. These 

parameters are referred to as design variables. Other parameters which are not so important usually 

remain fixed or vary in accordance to the design variables and these parameters are referred to as fixed 

variables. There is no rigid guideline to choose a list of parameters which may affect the problem, as 

one parameter may affect the cost of the design while maybe totally insensitive with maximizing the 

life of the product [59]. Hence, the choice of design variables in the optimization problem largely 

depends on the user. However, it should be noted that the efficiency and speed of the optimization 

algorithms to some extent depend on the number of chosen design variables. Thus, by effectively 

choosing the required design variables, the accuracy and efficacy of the optimization problem can be 

increased. Hence, it is generally recommended to choose as few design variables as possible. 

 

3.3.2. Constraints 

 

Constraint is a condition of an optimization problem that the solution must satisfy. Constraints are 

generally there to limit the design space, hence to forbid the search to step through an area of the design 

space that is unfeasible. They determine the feasable region in the design space. They are the functions 

that describe the relationships among the design variables and define the allowable values for the 

design variables.  
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The constraints might represent some functional relationships between the design variables and other 

fixed variables satisfying a physical phenomenon and resource limitations. The nature and number of 

constraints depend on the user again and there is no unique way to formulate constraints in an 

optimization problem. It is not necessary to have a mathematical formulation of a constraint, however 

an algorithm or a mechanism to calculate the constraint is mandatory. There are two types of 

constraints that are commonly used in optimization problems: 

 

• Equality constraints 

• Inequality constraints 

 

Inequality constraints state that the functional relationship between the design variables is generally 

lesser or greater than a resource value [59]. On the other hand, equality constraints state that the 

functional relationships should exactly equal the resource value defined in the optimization problem. 

Generally, equality constraints are difficult to handle and thus need to be avoided wherever possible. 

There are certain optimization algorithms which are specifically designed to handle this type of 

constraints. However, in most cases, equality constraints are converted to inequality constraints as it 

allows a smoother operation of the optimization algorithm. Thus, the thumb rule is to keep the number 

of equality constraints as low as possible. 

 

3.3.3. Objective functions 

 

The previous chapter selected the objective functions for the optimization problem. This section will 

illustrate the use of the objective functions in general for the optimization problem. Firstly, the 

objective function can be of two types. Either the objective function must be maximized like the NPV 

objective function or minimized like the COE objective function. However, most of the optimization 

algorithms comply only with minimization problems. Nevertheless, tinkering with the objective 

function, a maximizing problem can be converted to a minimization problem. This is made possible 

by multiplying the objective function with -1.  

 

The most common optimization techniques involve the use of a single objective function as mentioned 

in chapter 1.  

 

However, a conflict between two or more objectives enhances the need for a multi - objective 

approach. For example, from the selected objective functions, an investor would want to maximize the 

NPV and at the same time minimize the uncertainty. To satisfy both demands, a multi - objective 

optimization can be used. The objective functions can be represented as a vector function and its 

optimization will lead to a non-unique solution to the problem. 

Pareto technique is most commonly used technique for multi - objective optimization nowadays [60]. 

The pareto technique states the following: 

 

• An objective function x1 is said to dominate another objective function x2 if the solution of x1 

is no worse than solution of x2 in all cases. 

• The design variable y1 dominates y2 if f(y1) dominates f(y2) where f(y1) and f(y2) are the 

objective functions respectively. 

• All the non-dominated solutions are the optimal solutions of the given problem. This means 

that these solutions are not dominated by any other solutions. The set of these solutions is called 

as the Pareto set and its image in objective space is named pareto front  depicted in figure 3.4. 
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         Figure 3.4: Example of a pareto front [60] 

 

The optimization solver then searches for all non-dominated solutions that agree to the tradeoffs 

between the concerned objectives. Typically, an ideal point is one which corresponds to the minimum 

point of all the objectives. This point is called as a utopia point and is generally not a real or a feasible 

point. 

 

Type of pareto fronts: 
 

The computation of the pareto front is not an easy task. Non-continuous design space, high 

dimensionality and clustered solutions are some of the issues that can make the problem very complex. 

Local pareto frontiers can sometimes cause bad convergence of the multi - objective optimization 

approaches. There are two main types of pareto fronts that arise while solving a multi - objective 

problem: 

 
 

• Convex  pareto front 

 

This type of front is of most interest to the decision makers and is displayed in figure 3.5. The 

decision makers can negotiate, fighting for their own objective and they can easily agree for a 

tradeoff point which is much better than the linear combination of the original objectives. For 

example, if a decision maker gives up a percentage of the target, say 40%, another decision 

maker may have an improvement of more than 40% on his/her personal target. 
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                Figure 3.5: Convex pareto front [61] 

 

 

• Non-convex pareto front 

 

Figure 3.6 is an example of a non – convex front. This front is exactly the opposite to the 

previous case. The negotiation between the decision makers is hard. The decision maker should 

give up more than 40% of his/her goal to give a minimum 40% advantage to the other decision 

maker. The final solution is not based on a democratic negotiation but rather influenced by the 

decision maker.  

 

 

 
 

 

 
 
 
 
 

   Figure 3.6: Non – Convex pareto front [61] 
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3.4. Conclusion 

 

This chapter briefed on the OpenMDAO technique, its implementation and helped in answering the 

third sub goal of the thesis: 

 

• A suitable method to deal with multiple objectives. 

 

 

Further research on the objective functions is carried out in the following ways: 

 

• Single – objective Optimization 

• Multi – objective Optimization 

 

Maximizing NPV is the objective function used in the single – objective optimization case study which 

is presented in chapter 4. The NPV is maximized for three different models of electricity price for two 

different set of design variables. Chapter 5 discusses the results of multi – objective optimization. The 

two objective functions that are used are maximizing the mean of NPV  (𝑵𝑷𝑽𝒎𝒆𝒂𝒏)  and minimizing 

the standard deviation of NPV (𝑵𝑷𝑽𝒔𝒕𝒅 ). Both these objectives are conflicting with each other and a 

tradeoff is the best possible result for the user, based on the requirement.  

The optimization algorithm for both the single – objective and the multi – objective case study will be 

discussed briefly in chapter 4 and 5 respectively. The design variables and constraints will also be 

mentioned for each case in the respective chapters. 
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4. Single – objective optimization 
 

4.1. Introduction 

 

This chapter will focus on maximizing the NPV for three models of electricity price with two different 

set of design variables. The structure of this chapter is as follows:  

 

First, a brief description will be provided on the choice of design variables for the optimization 

problem. The scope and the choices made for evaluating the case studies are shown next. Further, the 

reader will be presented with different sub - models of the electricity price that will be treated for 

sensitivity studies. The constraints and the optimization algorithm to evaluate the respective cases will 

be described as well. Finally, the last section of this chapter will evaluate the results obtained for both 

the studies.   

4.2. Choice of design variables 

 

The rated power, rotor diameter and hub height of offshore wind turbines are increasing at a rapid rate 

since the initial installations. The average rated power of turbines installed in 2017 is 5MW offshore 

in UK and Germany [62] and is on a constant rise. Hence, the current trend indicates that the offshore 

wind industry prefers larger wind turbines.  

For an OWF, the number, location and model of wind turbines must be optimized to obtain the best 

possible design for an OWF. The location of turbines has a robust impact on the overall efficiency of 

the wind farm. The turbine’s energy production is directly proportional to its power curve and the wind 

resource specifically from the wind farm area. However, installing turbines close to each other causes 

shadowing effects which leads to reduced power production and hence leads to lower wind farm 

efficiencies.   

Moreover, different turbine models have different market prices. Therefore, it is a necessity to assess 

the influence of the number of turbines and the model of turbines in the capital costs. Support structures 

also need to be evaluated since the turbine model, water depth and soil properties play a significant 

role. The cost of the support structure is determined by the water depth and is dominated by the steel 

price and the structure design [12]. Hence, all these factors need to be taken into consideration for 

designing an optimal layout for an OWF. 

In this thesis, only the wind turbines and its parameters are taken into consideration for the role of 

design variables. As specified earlier, the turbine models play a crucial role in the energy production 

and costs.  Similarly, the number of turbines and location coordinates of the turbines play a crucial 

role in determining the optimal layout. 

Therefore, in this chapter, NPV is optimized for two independent sets of design variables to understand 

the individual effect of these parameters on the objective function. These are: 

 

1. Rotor diameter 

2. Number of turbines 

In the first case, the number of turbines and their position are fixed, and the rotor diameter is varied.  

In the second case, the rotor diameter is fixed, and the number and position of turbines are design 

variables.  For convenience, the first case will be referred to as rotor diameter optimization and the 

second case will be referred to as layout optimization from now.  The fixed variables will be mentioned 

in section 4.3. 
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4.3. Scope and choices made 

 

This section will discuss the scope and choices made for the respective case studies. 

4.3.1. Rotor diameter optimization 

 

The scope of this case study lies in the juxtaposition of the RNA model and OWF optimization. A 

complete optimization of both these domains together is a cumbersome procedure and is 

computationally very expensive. Therefore, a case study with realistic assumptions is carried out. 

At the RNA level, the blade design from NREL 5MW Reference Turbine (N5RT) is scaled to make 

the rotor 𝑪𝒑,𝒎𝒂𝒙 and 𝑪𝒕,𝒎𝒂𝒙 constant. The values for the design tip speed ratio, shaft tilt angle, gearbox 

ratio and drive – train efficiency are adopted from design iteration 2 performed in [63]. The constraints 

and the design vectors for the optimization problem is also adopted from [63]. However, the focus of 

this study is only the rotor diameter and hence, only this parameter will be treated. 

 

Table 4.1 shows the choices made for carrying out this case study. 

 

 
Table 4.1: Choices made for rotor diameter optimization 

 

Design Parameter Choices Made 

 

No of turbines 49 turbines 

Power Rating 5MW 

Cut in and rated wind speed 4 m/s and 12 m/s 

Wind speed distribution Shape factor = 2.11, scale factors = 9 𝑚/𝑠 

Bathymetry Fixed water depth of 20 m 

Farm layout Rectangular layout with 7 X 7 turbines and 1 

substation 

Wake model Jensen wake model with the directional 

sampling of 10 and speed sampling of 1 𝑚/𝑠 

Electrical Infrastructure 7 turbines per cable, grid 60 km, harbor 40km, 

onshore transport distance 100km, collection 

voltage 66kV, transmission voltage 220kV 

Availability of the OWF 98% 

 

 

The layout of the OWF is given in figure 4.1: 

 



       

Single – objective optimization Page 31 
 

 
Figure 4.1: Layout of the OWF for rotor diameter optimization case study 

  

4.3.2. Layout optimization 

 

Similarly, certain choices were made for evaluating this case study as well. They are represented in 

table 4.2. 

 

 
       Table 4.2: Choices made for layout optimization 

 

Design Parameter Choices Made 

 

 

Turbine rating 5MW, 126D 

Bathymetry Varying water depth ranging from 30 to 70 

m 

Farm layout Layout with a fixed boundary 

Wake model Jensen wake model with the directional 

sampling of 10 and speed sampling of 

1 𝑚/𝑠 

Availability of the OWF 98% 

 

4.4. Sensitivity study 

 

This section will help the reader understand the different sub models that will be evaluated in this 

study. 

Figure 4.2 shows the different electricity models that are evaluated in separate optimization runs. The 

electricity models have already been presented in brief in chapter 2.  
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From Figure 4.2, the three models of electricity price that are considered are as follows: 

4.4.1. Constant electricity price - Model 1 

 

The electricity price in this model is assumed to be a constant. The work done in [63] optimized the 

LCOE and for rotor diameter optimization, the optimized LCOE was in the range of 9 to 10 𝑐€/𝑘𝑊ℎ. 

Hence, this value of LCOE is used as a reference for assuming a realistic electricity price.  The 

electricity price is presumed to be 11 𝑐€/𝑘𝑊ℎ. For layout optimization as well, this value of electricity 

price is used. In this model, the economic indicators are varied.  The NPV function is dependent on 

the following economic indicators: 

 

• Annuity factor 

• Real interest rate 

• Lifetime 

• Electricity price 

 

The annuity factor is a function of both the real rate of interest and lifetime of the OWF as represented 

in equation 2.2. Hence, the interest rate and lifetime are varied for a fixed electricity price and rotor 

diameter optimization and layout optimization is carried out for four different scenarios. The four 

scenarios are listed in table 4.3: 

 

 

 

 

 

NPV

Electricity price 
modelling

Electricity price based 
on wind power 

predictability - Model 
3

Electricity price based 
on wind variability -

Model 2

Large variation in 
electricity price-

Model 2a

small variation in 
electricity price-

Model 2b

Constant electricity 
price  - Model 1

Influence of economic 
indicators 

  
Figure 4.2: Different models of electricity price and the various sub models 
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Table 4.3: Four scenarios for model 1 

 

Scenarios Lifetime 

[years] 

Real Interest rate 

[%] 

 

Scenario 1 25 7.5 

Scenario 2 20 7.5 

Scenario 3 25 10 

Scenario 4 25 10 

 

 

4.4.2. Electricity price based on wind variability – Model 2 

 

The operational wind speed range for an OWF is assumed to be between 4 m/s and 25 m/s. As stated 

in chapter 2, the lowest wind speed will have the highest electricity price and the highest wind speed 

will have the lowest electricity price. It should be noted that the electricity price between 12 m/s and 

25 m/s is assumed to be a constant as the power generated for wind speeds from 12 m/s to 25 m/s by 

a single wind turbine is assumed to be a constant. 

Again, in this model, there are two sub models:  

 

 

4.4.2.1. Large variation in electricity price – Model 2a 
 

In this case, for every 1 m/s wind speed increase, the electricity price is decreased by 0.5𝑐€/𝐾𝑤ℎ. 

This is shown in table 4.4. 

 

4.4.2.2. Small variation in electricity price – Model 2b 
 

In this model, the electricity price is reduced by 0.2 for every 1m/s wind speed increase. This is 

represented in table 4.5. 

 

4.4.3. Electricity price based on wind power predictability – Model 3 

 
The electricity price for this model is estimated using equation 2.12. From equation 2.12, 𝒆𝒑 is 

assumed to be 11 𝒄€/𝒌𝑾𝒉. The total power output for all directions is obtained and the standard 

deviation of the power output is estimated. The percentage difference is calculated for the total power 

output and the standard deviation of the power output. A penalty 𝑝 of 1 𝒄€/𝒌𝑾𝒉 is provided, and the 

remodeled electricity price is calculated. 
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               Table 4.4:  Large variation in electricity price based on wind variability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wind Speed (m/s) 
 

Electricity Price 

(𝒆𝒑 (𝑼)) (c€/kWh) 

(large variation)  
4 

  
15 

5 
  

14.5 

6 
  

14 

7 
  

13.5 

8 
  

13 

9 
  

12.5 

10 
  

12 

11 
  

11.5 

12 
  

11 

13   11 

14   11 

15   11 

16   11 

17   11 

18   11 

19   11 

20   11 

21   11 

22   11 

23   11 

24   11 

25   11 
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Table 4.5: Small variation in electricity price based on wind variability 

 

Wind Speed (m/s) 
 

Electricity Price (𝒆𝒑 (𝑼)) 

(c€/kWh) (small variation)  
4 

  
12.6 

5 
  

12.4 

6 
  

12.2 

7 
  

12.0 

8 
  

11.8 

9 
  

11.6 

10 
  

11.4 

11 
  

11.2 

12 
  

11 

13   11 

14   11 

15   11 

16   11 

17   11 

18   11 

19   11 

20   11 

21   11 

22   11 

23   11 

24   11 

25   11 

 

 

4.5. Optimization study 

 

This section will describe the optimization procedure of the respective case studies. The optimization 

problem will be first defined followed by a brief description of the optimization algorithm.  

 

4.5.1. Rotor diameter optimization 

 

4.5.1.1. Optimization problem definition  

 
The formulation of the optimization problem is given below.  
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            𝑓(𝑥) =  𝑀𝑖𝑛 𝐹(−𝑁𝑃𝑉)       Objective function 

 

𝐷𝑒𝑤 , 𝐷𝑛𝑠   ≥ 12 ∗  𝑅𝑟𝑜𝑡𝑜𝑟  Spacing Constraint  

 

∆𝑚𝑎𝑟𝑔𝑖𝑛=  ∆𝑡𝑖𝑝 ∗ 𝑅𝑟𝑜𝑡𝑜𝑟
𝑟𝑒𝑓

/(∆𝑡𝑖𝑝
𝑟𝑒𝑓

∗ 𝑅𝑟𝑜𝑡𝑜𝑟) ≤  1  Tip deflection constraint         

 

𝑥⃗ = [𝑅𝑟𝑜𝑡𝑜𝑟, 𝐷𝑒𝑤  , 𝐷𝑛𝑠]𝐹                 Design Vector                                                    

 

 

 

Where, ∆𝑚𝑎𝑟𝑔𝑖𝑛 refers to maximum tip deflection margin, ∆𝑡𝑖𝑝 is the tip deflection, and 𝐷𝑒𝑤 , 𝐷𝑛𝑠 

refers to the east west and north south spacing. For more description on these parameters, the reader 

is recommended to refer [63]. 

 
Table 4.6 displays the minimum and maximum range of diameter used in this study. The initial value 

is also specified. 

 
Table 4.6: Minimum and maximum scaling of rotor diameter for the Optimization of NPV 

 

 

 
4.5.1.2. Optimization algorithm  
 

This section will brief on the optimization algorithm used in this case study. The algorithm used is 

COBYLA and it stands for constrained optimization by linear approximation.  

The COBYLA algorithm works based on linear approximations to the objective functions and 

constraints. If a function is minimized over x variables, at the ith iteration, the algorithm has x + 1 

points, an approximate solution k_i and a radius RHO_i approximations to the objective function and 

constraints such that their function values satisfy with the linear approximation on the x+1 points [64]. 

This gives a linear problem to solve where the linear approximations of the constraint functions are 

constrained to be non-negative. In other words, a candidate is obtained for an optimal solution during 

an iteration. The candidate solution is evaluated using the objective function and the constraints which 

thereby yields a new point in the solution space. This information is then used to improve the 

approximating linear programming problem used for the next iteration. When the solution cannot be 

improved anymore, the step size is reduced and ultimately when the search space becomes infinitely 

small, the algorithm terminates.  

 

 

 

 

 

 

 

 

 

 

      Design Variable  Initial Value Lower Bound Upper Bound 

Rotor Diameter [m] 126.0 101.0 200.0 
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4.5.2. Layout optimization 

 

 

4.5.2.1. Optimization problem definition 
 

The optimization problem is given by f(x) =  

 
 𝑀𝑖𝑛 𝐹(−𝑁𝑃𝑉)       Objective function  

 

𝑋𝑚𝑖𝑛 ≥ 0, 𝑋𝑚𝑎𝑥 ≤ 5000 Area constraint 

 

 𝑌𝑚𝑖𝑛  ≥  0, 𝑌𝑚𝑎𝑥  ≤ 5000   Area constraint 

 

𝐷 ≥ 2 ∗  𝑅𝑟𝑜𝑡𝑜𝑟  Spacing constraint  

  

𝑥⃗ = [𝑛𝑡  , 𝑋, 𝑌]𝐹 Design vector 

                                            

 
Where 𝒏𝒕 represents the number of turbines. 

The constraints are explained more specifically in the next section. 

 

4.5.2.2. Constraints 
 

To obtain the desired wind farm layouts, the following constraints were implemented in this study: 

 

1. A minimum distance between the turbines is always necessary to guarantee the good function 

and integrity of the turbines. Hence, a minimum separation is considered equal to 1 time the 

rotor diameter for all the models. 

2. The turbines need to be placed in the farm area. As seen in figure 4.3 a specific area constraint 

is employed to make sure that the turbines do not fall out of the boundary.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Example of an area constraint [12] 
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4.5.2.3. Optimization algorithm 
 

PSO was developed by Eberhart and Kennedy [65] in 1995 and is based on an idea of mimicking the 

flocking of birds or fish schooling. PSO does not guarantee a global optimum but it works well in 

challenging, non – convex and non – continuous environments. The two equations shown below make 

up the bare bones of the PSO algorithm.  

 

𝒙𝒌+𝟏
𝒊 =  𝒙𝒌

𝒊 +  𝒗𝒌+𝟏
𝒊    Equation 4.1 

 

𝒗𝒌+𝟏
𝒊 = 𝒘𝒌𝒗𝒌

𝒊 + 𝒄𝟏𝒓𝟏 (𝒑𝒌
𝒊 − 𝒙𝒌

𝒊 ) +  𝒄𝟐𝒓𝟐 (𝒑𝒌
𝒈

− 𝒙𝒌
𝒊 )  Equation 4.2 

 

Equation 4.1 is associated with particle position and equation 4.2 is linked to particle velocity. In PSO, 

each candidate solution is called a particle and represents a point in the design space, representing the 

values of the design variables.  The table below defines the different variables used in equations 4.1 

and 4.2. 
 

 
 

Table4.7: Different variables used in PSO 

 

Variable Definition 

𝑥𝑘
𝑖  Particle position 

𝑣𝑘
𝑖  Particle position 

𝑝𝑘
𝑖  Best individual particle position 

𝑝𝑘
𝑔

 Best swarm position 

𝑤𝑘 Constant inertia weight 

𝑐1, 𝑐2 Cognitive and social parameters 

𝑟1 , 𝑟2  Random numbers between 0 and 1 

𝑘 , 𝑘 + 1 Current iteration and next iteration 

𝑖 Particle index 

 

 

Two sets of equations emerge from the particle velocity term: 

 

• Social term: 𝒄𝟐𝒓𝟐 (𝒑𝒌
𝒈

− 𝒙𝒌
𝒊 ) 

• Cognitive term: 𝒄𝟏𝒓𝟏 (𝒑𝒌
𝒊 − 𝒙𝒌

𝒊 ) 

 

 

Using the two equations (4.1 and 4.2), the flow structure of the PSO algorithm is as follows: 

 

Initialize 
 

In this step, 𝒌𝒎𝒂𝒙, 𝒘𝒌, 𝒄𝟏 and 𝒄𝟐 values are fixed. The particle positions and particle velocities are 

initiated in a random manner.  
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Optimize 
 

For a minimization problem, the following procedure is followed. The objective function is evaluated 

at each particle position and if the value of the objective function for the current iteration is lesser than 

the best value of particle position, then this current value is taken as the best value. Similarly, if the 

current iteration value of swarm position is lesser than the nest swarm position, the best swarm position 

value is replaced by the current iteration value. After this step, all the particle velocities and particle 

positions are updated, and the value of k is incremented and the same procedure repeats. 

 

Let’s say an objective function is represented by 𝑓𝑘
𝑖: 

 

At each particle position 𝑥𝑘
𝑖 ; 

 

• If 𝒇𝒌
𝒊  ≤ 𝒇𝒃𝒆𝒔𝒕

𝒊  then 𝒇𝒃𝒆𝒔𝒕
𝒊  = 𝒇𝒌

𝒊  and 𝒑𝒌
𝒊  = 𝒙𝒌

𝒊  

• If 𝒇𝒌
𝒊  ≤ 𝒇𝒃𝒆𝒔𝒕

𝒈
 then 𝒇𝒃𝒆𝒔𝒕

𝒈
 = 𝒇𝒌

𝒊  and 𝒑𝒌
𝒈

 = 𝒙𝒌
𝒊  

 
Terminate 
 

The main concept behind PSO is that there is a continuous balance between three distinct forces pulling 

on each particle: 

 

• The particles previous velocity (inertia) 

• Distance from the individual particles best - known position (cognitive force) 

• Distance from the swarms best - known position (social force) 

 

Specific weights 𝒘𝒌 , 𝒄𝟏 , 𝒄𝟐 are assorted to the three forces and are randomly perturbed by 𝒓𝟏 , 𝒓𝟐. 

Hence, depending on the weight specified, either the particles best position or swarm’s best position 

will pull harder on the particle and dictate the overall direction. It is also assumed that inertia won’t 

cause the particle to wander around. The three forces can be represented in vector form as shown in 

the figure below. Here, the magnitude of the vector represents the value of weight specified for that 

force. 
 

 
 

Figure 4.4: Example of how PSO works 

 

In the above example, inertia and individual best overpowers swarms influence as more weight is given 

to the former two forces. In this case, the particle will keep exploring the search space instead of 

converging on the swarm. However, if more weight is specified to the swarm, it will result in faster 
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convergence and the search space, in this case, will not be fully explored. This will result in not 

obtaining a better solution.  

 

4.6. Results and discussion 

 

4.6.1. Rotor diameter optimization 

 

The optimization was run 10 times and the time taken for one run was roughly around 45 minutes. The 

results for all the models are shown below in table 4.8 and 4.9. The optimization properties are 

tabulated in appendix A3. A3 indicates the minimum value, maximum value and average value 

obtained for each model.  

 

 

 

 
 Table 4.8: Results for Model 1 

 

 Lifetime 

 

[years] 

 

Real Interest 

Rate 

[%] 

NPV 

 

[Euros] 

Optimized Rotor 

Diameter 

[meter] 

Scenario 1 25 7.5 1.7E +10 140.00 

Scenario 2 20 7.5 1.0E +10 136.70 

Scenario 3 25 10 0.3E +10 128.00 

Scenario 4 20 10 0.1E + 10 127.75 

 

 

 
Table 4.9: Results for Model 2 and Model 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter    Varied Rotor Diameter 

[m] 

NPV 

[Euros] 

  
Small Variation in 

Electricity price 

139.0 2.25E +10 

Large variation in 

electricity price 

141.0 3.6E + 10 

Wind power 

predictability 
141.0 1.37E + 10 
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The results obtained indicate the following trend. It is observed that the economic indicators i.e. the 

lifetime and real interest rate influence the optimum rotor diameter and the NPV function. This is 

indicated in table 4.8 and the highest value for the NPV function and rotor diameter is obtained for 

maximum lifetime and minimum interest rate. To understand this sensitivity, let’s consider a simpler 

version of the NPV formulation:  

 

 

𝑵𝑷𝑽 = (𝑹) ∗ 𝒂 − 𝑬  Equation 4.3 

 

Where,          

E = (𝑶𝑴) ∗ 𝒂 − 𝑪𝒊𝒏 −
𝑫𝒆𝒄

(𝟏+𝒓)𝒕  Equation 4.4 

 

As mentioned earlier in chapter 2, a represents the annuity factor and it has a fixed value for a fixed 

interest rate and a fixed lifetime.  Hence equation 4.4 can be reformulated as: 

 

𝑵𝑷𝑽 = (𝑹) ∗ 𝑪 − 𝑬        Equation 4.5 

 

Since rotor diameter is the design variable that is being varied, both R and E can be generalized as 

functions of rotor diameter, D.  

𝑵𝑷𝑽 = 𝑪 ∗ 𝑹(𝑫) − 𝑬(𝑫) Equation 4.6 

 

The maximum NPV is found by differentiating the above equation with respect to the rotor diameter. 

And setting it equal to zero as shown below. 

 

                                                      
𝒅𝑵𝑷𝑽

𝒅𝑫
= 𝑪

𝒅𝑹(𝑫)

𝒅𝑫
−

𝒅𝑬(𝑫)

𝒅𝑫
= 𝟎   Equation 4.7 

 

Equation 4.7 shows that constant C influences the rotor diameter that maximizes the NPV. Hence, the 

financial assumptions that go into determining the real rate of interest and lifetime will change the 

optimum design. 

 

Therefore, for model 2, the best lifetime and real interest rate are chosen from model 1, and the results 

are tabulated in table 4.9. For both cases, the optimum rotor diameter obtained is very similar but there 

is a large variation in the NPV function. For model 3 as well, the electricity price model does not 

influence the rotor diameter but influences the NPV function. Hence, it can be concluded that the 

variation in electricity price influences the NPV function but does not influence the rotor diameter 

optimum. 

 

4.6.2. Layout optimization 

 

The optimization was run 10 ten times to avoid the effect of the initial population. The parameters 

used for implementing the PSO algorithm is shown in table 4.10. The results obtained are displayed 

in table 4.11 and table 4.12. 
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Table 4.10: Basic parameters used in PSO 

 

Parameters Varied Description 

Particle size 20 

Generations 200 

Total runs 10 

Stopping Criteria Maximum iterations (200) 

Constant inertia weight 0.8 
 
 

 
Table 4.11: Results for Model 1 

 

Lifetime 

 

 

[years] 

Real 

Interest 

Rate 

[%] 

NPV 

 

 

[Euros] 

Optimized 

Number of 

turbines 

25 7.5 4.71E +10 69 

20 7.5 4.10E +10 59 

25 10 4.00E +10 64 

20 10 3.8E +10 60 
 

 
Table 4.12: Results for Model 2 and Model 3 

 

 

 

 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

Parameter        Varied Turbines NPV 

[Euros]  
Small Variation in Electricity 

price 

65 4.82E+10 

Large variation in electricity 

price 

66 6.64E +10 

Wind power predictability 66 4.50E + 10 
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Figure 4.5: OWF layout for model 1: Scenario 1 and 2 
 

 

 

 
Figure 4.6: OWF layout for model 1: Scenario 3 and 4 

 
 

The results obtained indicate a similar trend as observed in rotor diameter optimization. From table 

4.12, it is seen that lifetime and the real rate of interest play an influential role in determining the 

optimal number of turbines and NPV function. Again, Scenario 1 has the highest NPV function value 

and the highest number of turbines. Referring to equation 4.3, both R and E are a function of the 

number of turbines as well.  Hence, the financial assumptions that go in determining the real rate of 

interest and lifetime will change the optimum number of turbines as well. The optimized layout for 

model 1 is shown in figure 4.5 and 4.6.  

 

The second observation is that the variation of electricity price has minimum effect on the optimum 

number of turbines. Again, the best real rate of interest and lifetime is chosen from table 4.11. It is 

observed that the optimal number of turbines for all three models of electricity price is very similar as 

shown in table 4.12. However, the variation in electricity price has a drastic influence on the outcome 

of the NPV function. Appendix A4 shows the optimized layout of model 2 and 3 respectively. 
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5. Multi – objective optimization 
 

5.1. Introduction 

 

This chapter will discuss the results of the multi - objective optimization technique.  The aim of this 

study is to provide OWF investors with tradeoffs by implementing a multi - objective approach. The 

objective functions used are 𝑵𝑷𝑽𝒎𝒆𝒂𝒏 and 𝑵𝑷𝑽𝒔𝒕𝒅 where 𝑵𝑷𝑽𝒎𝒆𝒂𝒏  is maximized and 𝑵𝑷𝑽𝒔𝒕𝒅 is 

minimized. Like the previous chapter, the choice of design variables will be discussed, and the scope 

and assumptions of this case study will be listed. A short description will be provided on the 

optimization study as well which includes a brief explanation of the optimization problem and the 

optimization algorithm. The pareto front is obtained and multi – criteria analysis (MCA) is used to 

rank the solutions in the pareto front for three different strategies. 

 

5.2. Choice of design variables 
 
 As mentioned in the previous chapter, two sets of design variables were taken into contemplation for 

evaluating the case studies. In this chapter, only rotor diameter optimization is carried out due to time 

constraints. However, a brief description is provided below on the choice of the rotor diameter as a 

design variable.  

In this study, 100 annual average wind speeds are computed using Monte Carlo Simulations (MC). A 

MC simulation performs risk analysis by building models of possible results by substituting a range 

of values, say a probability distribution, for any factor that has inherent uncertainty. It then calculates 

the results, each time using a different set of random values from the probability functions. Depending 

on the uncertainties and the ranges specified for them, a MC simulation could involve many 

recalculations before it is complete.  

The probability distribution used in this study is the normal distribution. In a normal distribution, the 

user defines the mean and a standard deviation to describe the variation about the mean where values 

in the middle i.e. close to the mean are most likely to occur.  

The mean of the average wind speed is assumed to be 8 m/s and the standard deviation is assumed to 

be 0.1 m/s in this study. The average wind speeds from the MC simulation are then used to estimate 

the scale and shape factors respectively using the following relation: 

 

𝒄 = (
𝑼𝒂𝒗𝒈

Г(𝟏+
𝟏

𝐤
)
)           Equation 5.1 

 

𝒌 = (
𝝈𝒖

𝑼𝒂𝒗𝒈
)

−𝟏.𝟎𝟖𝟔

    Equation 5.2 

 

 

Where  𝑼𝒂𝒗𝒈 is the annual average wind speed, 𝒄 is the shape factor, 𝒌 is the scale factor and  𝝈𝒖 is 

the standard deviation of the average wind speeds. The AEP is then calculated for the list of 100 shape 

and scale factors. The NPV is then estimated for the list of 100 AEP’s. In this way, MC simulation is 

used to evaluate the probability distribution of NPV and  𝑵𝑷𝑽𝒎𝒆𝒂𝒏 and 𝑵𝑷𝑽𝒔𝒕𝒅 is then depicted. 

The scale factor varies with the 𝑼𝒂𝒗𝒈 in the same order of magnitude. The variation in 𝑼𝒂𝒗𝒈 represents 

uncertainty for the site and hence there is an uncertainty as well in estimating the rotor diameter and 



       

Multi – objective optimization Page 46 
 

the rated wind speed for that site. As 𝑼𝒂𝒗𝒈 increases, the rotor diameter decreases and rated wind speed 

increases. Similarly, as 𝑼𝒂𝒗𝒈 decreases, the rotor diameter increases and the rated wind speed 

decreases. Therefore, the rotor diameter is varied for a specific range in this study to find the list of 

solutions for the 𝑵𝑷𝑽𝒎𝒆𝒂𝒏 and 𝑵𝑷𝑽𝒔𝒕𝒅 in a pareto front. 

5.3. Scope and choices made 

 
Like the previous chapter, the framework described in chapter 3 is adopted. The assumptions 

implemented in this case study are synonymous to those considered in case study 1. The major 

difference is the estimation of the Weibull parameters which are calculated using the average wind 

speed. The average wind speeds are determined using a normal distribution as mentioned in section 

5.2. The development of this case study required a slight change in the framework. The 𝑵𝑷𝑽𝒎𝒆𝒂𝒏 and 

𝑵𝑷𝑽𝒔𝒕𝒅 were added to the finance module as objective functions.  

For computational purposes, 25 turbines are considered in a rectangular layout in this case study as 

shown in figure 5.1. The choices made for this case study are tabulated in table 5.1: 

 
Table 5.1: Design parameters adopted for this case study 

 

Design Parameter Choices Made 

 

No of turbines 25 

Power Rating 5MW 

Cut in and rated wind speed 4 m/s and 12 m/s 

Bathymetry Fixed water depth of 20 m 

Farm layout Rectangular layout with 5 X 5 turbines 

Wake model Jensen wake model with the directional 

sampling of 10 and speed sampling of 1 m/s 

Electrical Infrastructure 5 turbines per cable, grid 60 km, harbor 40km, 

onshore transport distance 100km, collection 

voltage 66kV, transmission voltage 220kV 

Availability of the OWF 98% 

 

 

 
Figure 5.1: Layout of the OWF for this case study 
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5.4. Optimization study 

 
This section will discuss the process of carrying out the multi - objective optimization and obtaining 

the pareto front. The optimization problem will be first described followed by a brief description of 

the optimization algorithm. 

 
 
 

5.4.1. Optimization problem 

 

The optimization problem is given by: 

 

 

𝑓(𝑥) =  𝑀𝑎𝑥(𝑁𝑃𝑉𝑚𝑒𝑎𝑛), 𝑀𝑖𝑛( 𝑁𝑃𝑉𝑠𝑡𝑑)     Objective function 

 

𝐷𝑒𝑤 , 𝐷𝑛𝑠  ≥ 12 ∗ 𝑅𝑟𝑜𝑡𝑜𝑟  Spacing Constraint                          

 

∆𝑚𝑎𝑟𝑔𝑖𝑛=  ∆𝑡𝑖𝑝 ∗  𝑅𝑟𝑜𝑡𝑜𝑟
𝑟𝑒𝑓

/(∆𝑡𝑖𝑝
𝑟𝑒𝑓

∗  𝑅𝑟𝑜𝑡𝑜𝑟) ≤  1 Tip deflection constraint 

 

𝑥⃗ = [𝑅𝑟𝑜𝑡𝑜𝑟, 𝐷𝑒𝑤 , 𝐷𝑛𝑠]𝐹                 Design Vector                                   

 

 

The optimization problem is adopted from [63]. Again, rotor diameter is the main design variable in 

focus in this study as well.  

 

Table 5.2 displays the lower and upper range of the design variable used in the optimization technique. 

It should be noted that the 𝑵𝑷𝑽𝒎𝒆𝒂𝒏 values are multiplied with -1 to convert it into a minimization 

problem. 

 

 
                        Table 5.2: Minimum and maximum scaling of rotor diameter for the sensitivity analysis 

 

 

 

 

 

 

 

5.4.2. Optimization algorithm 

 

A suitable optimization technique must be selected to carry out the multi-objective optimization. It is 

necessary to understand the two phases of a multi - objective problem. Firstly, the optimization of 

objective functions involved and secondly, it is important to decide what kind of tradeoffs are suitable 

from the decision maker perspective. Within the operation research community, [66] proposed a 

popular technique that focusses on the way in which every method handles the two problems of making 

decisions and searching: 

 

Design Variable Lower Bound Upper Bound 

Rotor Diameter 100.0 200.0 
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• A priori preference articulation: Decision is taken before searching. It is assumed that the 

decision maker chooses a certain set of desirable goals and pre - ordering of objectives prior to 

the search. 

• A posteriori preference articulation: In this method, searching is done before decision making. 

These techniques do not require prior information of preference from the decision maker.  

• Progressive Preference Articulation: This method integrates search and decision making. 

Operation of this technique takes place in three stages: 

 

➢ Find a non-dominated solution 

➢ The decision maker then modifies the preferences of the objectives according to the 

requirement. 

➢ The two previous steps are repeated until the decision maker is totally satisfied, or no 

further improvement is possible. 

Evolutionary algorithms can be used to solve multi-objective problems. These algorithms are based 

on Darwin’s theory of survival of the fittest. The main idea is that the population evolves in a genetic 

algorithm and the solutions that are non-dominated are chosen to remain in the population. The basic 

idea behind the evolutionary algorithms is represented in figure 5.2. 

 

 
 

Figure 5.2: Flowchart representing Evolutionary Algorithms [61] 

 

 

In figure 5.2, the memory module contains the current solutions. In the selection module, the solutions 

that should be kept in the memory are determined. This is done in two ways, by mating and 

environmental selection. 

 

• The mating selection consists of a fitness selection phase where promising solutions are picked 

for variation. 

• Environmental selection determines which of the stored solutions are transferred to the memory 

module.  

 

A variation module modifies the set of solutions systematically or randomly to generate better 

solutions by using specific operators:  
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• Crossover operator which produces new individuals by combining the information of two or 

more parents  

• Mutation operator which alters individuals with a low probability of survival.  

 

In an evolutionary algorithm, by analogy to natural evolution, the solutions obtained are called as 

candidates and a set of candidates is called as a population. The objective function is also known as 

the fitness function in this case. It characterizes the problem measuring how close a given solution is 

to achieve the target, considering all the problem constraints as well in the process. 

The drawback of evolutionary algorithms is that they require many iterations. However, they always 

lead to an accurate identification of the entire pareto front. Hence, based on correctness and accuracy, 

evolutionary algorithms are chosen for the multi - objective optimization problem. Non – sorting 

genetic algorithm (NSGA II) is one of the most effective algorithms for implementing multi-objective 

optimization problems [67]. This algorithm was developed by [68]. The working of NSGAII is briefed 

below: 

The population is divided into multiple fronts and the algorithm uses the front to determine the fitness. 

This algorithm sorts the solutions into levels of non-dominance. For example, the pareto front is solved 

for non-dominated solutions of the population. The pareto front of solutions are removed from the 

population and pareto front is calculated again. These two pareto fronts are called as level 1 and level 

2 respectively. This is represented in figure 5.3. 

 

 
Figure 5.3: Non – Dominated Sorting in NSGA-II 

 

In figure 5.3, Level 1 is non-dominated by all points in the solution space. Level 2 is dominated by 

level 1 but non-dominated by level 3 and so on. This process of finding different levels of pareto front 

is continued up to the nth front. All the points are removed from fronts 1 to n-1 and the pareto front is 

calculated for the remaining points. 

The NSGAII retains all the members in the population for the higher-level fronts so that later, 

crossovers might generate offspring that are even fitter and closer to the pareto front than the current 

members. 
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5.5. Results and discussion 

5.5.1. Basic parameters used in NSGAII  

 

The basic parameters used in the implementation of NSGAII is given in table 5.3: 

 
Table 5.3: Parameters used in NSGAII 

 

Parameters Varied Description 

Population size 20 

Generations 200 

Total runs 10 

Crossover probability 0.9 

Mutation Probability 0.5 

Stopping Criteria Maximum iterations (200) 

 

 

The optimization was run, and the entire population of the last generation is obtained as shown in 

figure 5.4.  The black dots in figure 5.4 represent the solutions in the pareto front.  These solutions 

are analyzed in the next section.      

 
Figure 5.4: Entire population of last generation 

            

                                         

5.5.2. Analysis of the front 

 

In this section, the solutions in the pareto front are sorted based on the rank. The ranking is given based 

on the weight provided to the two objective functions. In a general sense, the 𝑵𝑷𝑽𝒔𝒕𝒅 must be 

minimized and the 𝑵𝑷𝑽𝒎𝒆𝒂𝒏 must be maximized. As these objectives are conflicting, the investors 

need to compromise on one of the objectives to achieve the other objective. For example, a certain 

investor might be interested in obtaining maximum NPV. However, with maximum NPV comes 

maximum risk, hence the 𝑵𝑷𝑽𝒔𝒕𝒅 also increases. Similarly, another investor might opt for a 
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conservative approach and aim at minimizing the risk associated with the OWF. Therefore, in this 

section, different weighting is provided for the objective functions and the best solution is obtained for 

that weight.  

To achieve this result, the technique of multi - criteria analysis (MCA) is adopted. MCA technically 

compares different solutions according to a variety of criteria or policies [69]. This method is based 

on the evaluation of actions by means of a weighted average. The main advantage of MCA is its ability 

to find the best scenario that suits the decision makers expectations. However, the decision maker must 

reach a consensus on a weighted set of criteria with which to judge the performance of the project. 

Hence, the solutions from the pareto front are taken into consideration and appropriate scores are given. 

For example, the highest value of 𝑵𝑷𝑽𝒎𝒆𝒂𝒏 in the pareto front is given a score of 1. Based on this 

value, the weighted scores of the other values of 𝑵𝑷𝑽𝒎𝒆𝒂𝒏 are calculated proportional to the highest 

score. Therefore, if 𝒎 is the best value for 𝑵𝑷𝑽𝒎𝒆𝒂𝒏, it is given a score of one. The weighted scores 

of the other values are calculated using equation 5.4. 

Similarly, if 𝒎 is the best value for 𝑁𝑃𝑉𝑠𝑡𝑑 , it is given a score of 1. The weighted scores for the other 

values of 𝑵𝑷𝑽𝒔𝒕𝒅 are calculated using equation 5.3.  

 

 
𝒎

𝒑
∗ 𝟏    Equation 5.3 

 
𝒄

𝒎
∗ 𝟏   Equation 5.4 

 

 

After calculating the weighted score, the MCA analysis is carried out for three cases: 

 

• Ambitious investor strategy 

• Conservative investor strategy 

• Balanced investor strategy 

 
In the ambitious investor strategy, 𝑵𝑷𝑽𝒎𝒆𝒂𝒏 is given more preference with 80% weight and the 

remaining 20% to 𝑵𝑷𝑽𝒔𝒕𝒅. In the conservative investor strategy, 𝑵𝑷𝑽𝒔𝒕𝒅 is given more preference 

with 80% weight and the remaining 20% to 𝑵𝑷𝑽𝒎𝒆𝒂𝒏. In the balanced investor strategy, both the 

objective functions are given equal preference with a weight of 50% each. Table 5.4 represents the 

weighted sum for all the points for three cases: 

 
Table 5.4: The three scenarios and their respective results 

 

Scenario Solution with highest 
sum 

Weighted sum 

Ambitious investor strategy (0.523, -0.826) 0.888 

Conservative investor strategy (0.163, -0.365) 0.862 

Balanced investor strategy (0.337, -0.635) 0.756 

 

 

The best solution for all the three scenarios is shown in figure 5.5.  
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Figure 5.5: Best solutions obtained for the three scenarios 

 

 

The first scenario provides which provides 80% weightage to 𝑵𝑷𝑽𝒎𝒆𝒂𝒏 and 20% weightage to the 

𝑁𝑃𝑉𝑠𝑡𝑑. The solution (0.523, -0.826) has the highest score of 0.88. This solution is represented inside 

a square in figure 5.5. This seems logical, as more weightage is provided to the 𝑵𝑷𝑽𝒎𝒆𝒂𝒏. As the 

value of 𝑵𝑷𝑽𝒎𝒆𝒂𝒏  decreases along the curve, the overall score also decreases. This is because a 

significant weightage is provided to the 𝑵𝑷𝑽𝒎𝒆𝒂𝒏  which dominates the weightage given to the 

𝑵𝑷𝑽𝒔𝒕𝒅.  

 

The second scenario allocates 80% weightage to the 𝑁𝑃𝑉𝑠𝑡𝑑 and 20% to 𝑵𝑷𝑽𝒎𝒆𝒂𝒏. In this scenario, 

the solution (0.163, -0.365) has the highest score of 0.862. This point is shown inside a triangle in 

figure 5.5.  This is true as the weightage provided to the 𝑵𝑷𝑽𝒔𝒕𝒅 dominates the 𝑵𝑷𝑽𝒎𝒆𝒂𝒏. Hence, the 

solution with the lowest standard deviation will be given the preference.  

In the balanced investor and conservative strategy, a weightage of 50% is each provided to both the 

𝑵𝑷𝑽𝒎𝒆𝒂𝒏  and 𝑵𝑷𝑽𝒔𝒕𝒅. In this case, solution (0.337, -0.635) is ranked first by the MCA which has an 

overall score of 0.756. This solution is represented inside a circle in figure 5.5. This solution lies in 

the middle of the pareto curve which is reasonable as equal weights are provided to both the objectives. 

 

 

5.6. Concluding remarks 

 

The main observation of the pareto curve is discussed here. The property of the pareto front states that 

one criterion cannot be improved without degrading the other criterion. Therefore, this means that the 

improvement of 𝑵𝑷𝑽𝒎𝒆𝒂𝒏 solutions will lead to debasing the solutions of 𝑵𝑷𝑽𝒔𝒕𝒅 in the pareto front. 

For example, the best possible solution obtained for the conservative investor strategy is the worst 

possible solution for the ambitious investor strategy. Similarly, the best possible solution for the 

ambitious investor strategy is the worst solution for the conservative investor strategy.  

 

In general, the following trend is observed in the pareto curve. As one moves from the first solution in 

the curve, the weightage for the conservative investor reduces and at the same time, the weightage for 

the ambitious investor starts increasing. This is the movement which is followed till the end of the 

curve where the weightage of the ambitious investor totally dominates the conservative one. 
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6. Concluding observations 
 

6.1. Introduction 
 

This section will enumerate the findings of this thesis and provide directions for further research. It is 

divided into two parts: 

 

1. Conclusion  

2. Recommendation 

6.2. Conclusion 
 

The design of an OWF is interdisciplinary in nature. The common approach to design an OWF is to 

optimize all the disciplines simultaneously. Objective functions play a significant role in optimization 

as they express the main aim of the model which is to be either minimized or maximized. In common 

approaches, COE and AEP are the commonly used objective functions for OWF optimization. 

However, there might be other objective functions that might influence the optimal design of an OWF. 

Therefore, this report presented an overview of different objective functions and their impact on the 

optimal design of an OWF.  To achieve this main objective, the following sub goals were achieved. 

 

➢ A list of different objective functions for the OWF optimization and selection of relevant ones 

➢ Formalize the relevant objective function in metrics suitable for optimization 

➢ A suitable method to deal with multiple objectives 

➢ Devise case studies to reflect the new approach towards solving the OWF optimization 

problem. 

6.2.1. Sub goal 1 

 

A list of different objective functions for the OWF optimization and selection of relevant ones 

 

The objective functions that were included in the list are: 

 

I. NPV 

II. Risk Management 

III. Carbon emissions 

IV. Financial Balance 

The main conclusion that can be drawn from this sub goal is that some seemingly different objectives 

relate to the same basic properties of the OWF. For example, for reducing carbon emissions, AEP must 

be maximized. However, AEP is also maximized for maximizing NPV. Similarly, FB is very identical 

to NPV and depends on the same factors as NPV. Therefore, similar design results are expected when 

these objectives are taken into consideration. 

NPV and risk management were the chosen objective functions for further study.  
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6.2.2. Sub goal 2 

 

 

Formalize the relevant objective function in metrics suitable for optimization 

 

The conclusions drawn from this sub goal is as follows: 

The formulation of the NPV objective function requires the same economic parameters as the LCOE 

function, the only exception being the electricity price. It is observed that the electricity price is 

dependent on the power supply in the sense that if the power supply is low in a region where there are 

many OWF’s, the electricity price is high and vice versa. Moreover, OWF investors value constant 

power output from the wind farm. Hence, taking these aspects into consideration, the electricity price 

in this research is modelled in three ways:  

 

• Constant electricity price 

• Price based on wind variability 

• Price based on wind power predictability 

Similarly, the formulation of the risk management objective is to minimize the risks associated with 

an OWF project. There are many uncertain elements associated with an OWF and the risk can be 

minimized by reducing these uncertainties. Average wind speed is one such uncertainty. Accurate 

prediction of average wind speed is very difficult as they are stochastic in nature. In this research, 100 

average annual wind speeds are estimated using MC simulations and the AEP and NPV are depicted. 

The 𝑵𝑷𝑽𝒎𝒆𝒂𝒏 and 𝑵𝑷𝑽𝒔𝒕𝒅 are calculated and the 𝑵𝑷𝑽𝒔𝒕𝒅 is minimized. Minimizing  𝑵𝑷𝑽𝒔𝒕𝒅 

minimizes the uncertainty. 

6.2.3. Sub goal 3 

 

 

A suitable method to deal with multiple objectives 

 

In this research, the selected objective functions are dealt with in two ways for optimization. First, the 

NPV function is maximized using a single objective optimization technique. In this case, NPV will be 

optimized for a specific set of design variables and constraints. In the second case, the two objectives 

are 𝑵𝑷𝑽𝒎𝒆𝒂𝒏 and 𝑵𝑷𝑽𝒔𝒕𝒅. Both these objectives are conflicting in nature as 𝑵𝑷𝑽𝒎𝒆𝒂𝒏 must be 

maximized and 𝑁𝑃𝑉𝑠𝑡𝑑 must be minimized. Hence, a tradeoff between both the objectives is the best 

possible result. A multi – optimization technique is used, and a list of solutions are obtained by 

generating a pareto front. 
 

6.2.4. Sub goal 4 

 

Devise case studies to reflect the new approach towards solving the OWF optimization problem. 

 

 

Single objective approach 

 

The objective of the first case study was to study the effect of rotor diameter on the NPV of an OWF 

and the aim of the second case study was to study the effect of the number of turbines on the NPV of 
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an OWF. Similar trends were obtained from the studies and the key conclusions drawn from the studies 

are as follows: 

 

• The economic indicators i.e. the real rate of interest and lifetime influence the optimum value 

of the design variables and the NPV function as seen in chapter 4. 

• The variation in electricity price does not play any significant role in the estimation of the 

optimum value of the design variables. 

• The NPV function however, is very sensitive to the variation in the electricity price. 

 

 

The multi - objective approach 

 

This study helped in providing the ambitious and conservative investors with tradeoffs for the different 

objective functions. The concept of MCA was used to determine the weight to the objective functions 

while moving along the pareto curve and rank the solutions on the front. It was observed that the 

improvement of one objective led to the deterioration of the other objective. Hence, a pareto front 

provides both these investors an opportunity to negotiate and decide on the weight they want to specify 

for their objectives. 

 

6.3. Future recommendations 

 

This section will provide recommendations for further research.  

 

1. Additional objective functions can be taken into consideration. It will be interesting to observe 

if many other objective functions like Benefit to Cost ratio, Utilization Factor, Payback period 

do depend on similar parameters as observed with the list of objectives chosen in this study.

  

2. In this research, the electricity price was predicted for wind variability and wind power 

predictability. It would be more accurate if the electricity price is modelled based on the 

mentioned parameters using a GARCH model to accurately forecast the electricity prices. 

 

3. In the OWF layout optimization, the average spacing between the turbines can be deduced and 

the power density of the OWF can be calculated for different models of the electricity price. 

This will give a better picture on whether there is any effect of the electricity price models on 

the spacing of the wind turbines in the wind farm. 

 

4. MCA analysis was used to rank the solutions obtained from the pareto front. However, a cluster 

analysis algorithm can be used to form clusters on the Pareto set. The implementation of the 

cluster analysis algorithm will provide the investor with a promising solution for system 

application.  
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Appendix 
 

A1 – chapter 2 – Calculation of P90 

 
 
Table A1.1: Z probability table 

 

Probability of exceedance 

% 

z 

99 2.326 

95 1.645 

90 1.282 

85 1.036 

84 1.000 

80 0.842 

75 0.674 

50 0 

25 0.674 

10 1.282 

1 2.326 

 

In equation 2.6, the uncertainty parameter is calculated by 

 

𝒖 =
|𝑵𝑷𝑽𝒎− 𝑵𝑷𝑽𝒔𝒕𝒅|

𝑵𝑷𝑽𝒎+ 𝑵𝑷𝑽𝒔𝒕𝒅
𝟐

     Equation A1.1 

 

where, 𝑵𝑷𝑽𝒎 is the average value of 100 NPV’s and 𝑵𝑷𝑽𝒔𝒕𝒅 is the standard deviation.  

Using the corresponding z value for p90 from table A1.1, P90 is calculated using equation 2.6. 

 

 

A2 – chapter 4 – Sensitivity of rotor diameter w.r.t NPV 

 

NPV 
 

This section analyses the sensitivity of rotor diameter with respect to the NPV function. The spacing 

is fixed as 6D.  

NPV in a simplified form can be thought of as a difference between revenues and total cost of the 

OWF. Revenues can be further simplified as the product between electricity price and farm AEP. Thus, 

the main response variables are AEP and costs and these two parameters will be validated in this 

section.  

Taking costs into consideration, the main drivers with respect to the change in rotor diameter are the 

RNA cost, support structure cost, cabling cost and other investment costs in the form of procurement, 

installation and management costs. The operation and maintenance cost is scaled empirically with AEP 

in WINDOW. 

As mentioned in section 1.3.1, AEP for an OWF depends on the individual AEP of the wind turbines 

which in turn depends on the power curve of the individual turbines and Weibull characteristics. Wake 
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losses also play an unprecedented role which depends on the rotor diameter. The power curve of the 

turbine can also be altered based on the rated wind speed and controlling the rotor diameter.  

The rotor diameter is normalized using a specific minimum and maximum scaling to visualize the 

sensitivity of rotor diameter on NPV. The minimum value is assumed to be zero and maximum value 

to be 1. The rotor diameter is varied from 100m to 200m. A constant electricity price of 11 𝒄€/𝒌𝑾𝒉 

is used and a lifetime of 25 years and real interest rate of 7.5% is assumed. 

 
 

                                                        Figure A2.1: Sensitivity of NPV for constant electricity price 

 

The above graph indicates the following trend. As the rotor diameter increases, the NPV function first 

increases. It obtains an optimum and then starts to decrease with the increase in rotor diameter. To 

understand this phenomenon, a sensitivity study was carried out for the AEP and cost constituents of 

the NPV with respect to the rotor diameter. 

 

AEP 
 

 
Figure A2.2: Sensitivity analysis of AEP 
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The sensitivity analysis for the AEP is shown in figure A2.2. 

An increase in rotor diameter leads to the wake effect being increased over a large area. Hence, wake 

losses increase with the increase in rotor diameter. The AEP curve increases with the increase in rotor 

diameter. However, the slope of the AEP curve is steep at the start but gradually becomes smoother as 

the rotor diameter increases. This can be attributed to the following reason: 

The increase in rotor diameter leads to a decrease in rated wind speed. This leads to the wind turbine 

spending more time in the full load region. At the full load region, the power is constant and is 

independent of the rotor diameter. In the partial load region, the power is proportional to the cube of 

wind speed. Hence, as the rotor diameter increases, the effect of rotor diameter on the AEP is less 

pronounced. Therefore, the slope gradually decreases, and the curve becomes less steep. 

 

Cost 
 

The sensitivity analyses of the support structure cost, RNA cost and other investment costs are shown 

in figure A2.3 and A2.4 respectively. It should be noted that RNA and the support structure costs 

consider all 49 turbines in the OWF. 

The support structure and RNA cost have a relation with the rotor diameter. It is seen that both the 

costs increase with the increase in rotor diameter. However, the slope of the graph in both these cases 

is low at the start but gradually becomes steep as the rotor diameter increases. The increase in rotor 

diameter leads to a decrease in rated wind speed. However, the torque of the rotor is proportional to 

the square of the rotor diameter, hence the support structure costs increase with the increase in rotor 

diameter. The mass of the RNA also contributes to the increase in the cost. The blade is part of the 

RNA and is one of the most expensive components of the RNA in terms of costs.  Hence, as the 

diameter increases, the RNA cost also increases.  

 

 
Figure A2.3: Sensitivity Analysis of RNA cost 



       

Appendix Page 64 
 

 
 

Figure A2.4: Sensitivity Analysis of support structure cost 

 

 

 

A3 – chapter 4 – Optimization properties 

 

The optimization algorithm was run 10 times for each model of the electricity price for both the case 

studies. The minimum, maximum and the average values of the optimum design variable for all models 

of the electricity price is depicted below.  

 

Rotor diameter optimization 
 

The optimization algorithm used is COBYLA.  

 
Table A3.1: optimization properties for model 1 

 

Rotor diameter 
[m] 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 
 

Maximum value  144 139 129 128.5 

Minimum value 137 136.70 126 126 

Average value 140 138 128 127.75 

 

 

 

 
Table A3.2: Optimization properties for model 2 and model 3 

 

Rotor diameter 
[m] 

Large variation Small variation Wind power 

predictability 

Maximum value 143 141 144 

Minimum value 137 136 138 

Average value 141 139 141 
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Layout optimization 
 

In this case, PSO algorithm was implemented and the results are shown in the tables below: 

 
Table A3.3: Optimization properties for model 1 

 

Number of 

turbines 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Maximum value 72 64 68 63 

Minimum value 65 56 62 58 

Average value 69 59 64 60 

 

 

 
Table A3.4: Optimization properties for model 2 and model 3 

 

Number of 

turbines 
Large variation Small variation Wind power 

predictability 

Maximum value 70 70 72 

Minimum value 61 62 62 

Average value 66 65 66 

 

 

A4 – chapter 4 – Layout optimization 

 

 

 
Figure A4.1: OWF layout for model 2 
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            Figure A4.2: OWF layout for model 3 


