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Abstract. The brain is an incredibly complex organ capable of perceiv-
ing and interpreting a wide range of stimuli. Depending on individual
brain chemistry and wiring, different people decipher the same stim-
uli differently, conditioned by their life experiences and environment.
This study’s objective is to decode how the CNN models capture and
learn these differences and similarities in brain waves using three pub-
licly available EEG datasets. While being exposed to a variety of media
stimuli, each brain produces unique brain waves with some similarity to
other neural signals to the same stimuli. However, to figure out whether
our neural models are able to interpret and distinguish the common
and unique signals correctly, we employed three widely used CNN archi-
tectures to interpret brain signals. We extracted the pre-processed ver-
sions of the EEG data and identified the dependency of time windows
on feature learning for song and movie classification tasks, along with
analyzing the performance of models on each dataset. While the mini-
mum length snippet of 5 s was enough for the personalized model, the
maximum length snippet of 30 s proved to be the most efficient in the
case of the generalized model. The usage of a deeper architecture, i.e.,
DeepConvNet was found to be the best for extracting personalized and
generalized features with the NMED-T and SEED datasets. However,
EEGNet gave a better performance on the NMED-H dataset. Maximum
accuracy of 69%, 100%, and 56% was achieved in the case of the person-
alized model on NMED-T, NMED-H, and SEED datasets, respectively.
However, the maximum accuracies dropped to 18%, 37%, and 14% on
NMED-T, NMED-H, and SEED datasets, respectively, in the general-
ized model. We achieved a 5% improvement over the state of the art
while examining shared experiences on NMED-T. This marked the out-
of-distribution generalization problem and signified the role of individual
differences in media perception, thus emphasizing the development of
personalized models along with generalized models with shared features
at a certain level.
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Table 1. Synonyms for Evaluation and Experience Terminology

Experience Evaluation Key Term Model

Individual Within-Subject Personalized

Shared Cross-Subject Generalized

1 Introduction

The words “digital transformation”, “innovation”, and “media experience” have
been a lot common in recent years, and companies aim to translate these con-
cepts into tangible results. Creating an environment that provides customers
with the most incredible user experience by allowing them to receive informa-
tion customized to their needs and preferences is essential. One such method is to
regulate the media experience using the user’s brainwaves by detecting the per-
son’s concentration and excitement levels using electroencephalography (EEG)
in both educational and entertainment applications [8,13,14,18] (Table 1).

Neurotechnology is a branch of neuroscience that has already made significant
contributions to our knowledge of the brain and nervous system. It entails the
creation of novel sensors and wearable gadgets for measuring, stimulating, and
modulating brain activity. An EEG measures and records electrical activity in
the brain using non-invasive sensors. EEG headsets are being enhanced and
developed for wearable consumer applications, such as cognitive state detection,
mental and neurological disorder detection, consumer choice prediction [19], and
understanding and predicting people’s responses to different media experiences
[1,2], emotion prediction [20] and practicing meditation [4,15–17]. There is a lot
of potential for EEG data to be used to improve media experiences. For example,
EEG could be used to track how engaging a particular piece of media is and make
recommendations accordingly to maximize the impact of the content [22,25].

Fig. 1. Media Experience Brain Space: Each user’s brain response and mood will be
analyzed along with the prediction of the current song and its features. The model will
then generate a playlist unique to the user, curated to evoke the emotion he/she is in
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EEG is the most significant research area in the coming decade because EEG
headsets can be pervasive as the fit-bit in our daily lives to monitor brain health.
With the significant rise in the EEG domain, computation techniques should
advance to capture intentional learning and reduce the unintentional factor of
the learning. During the last decade, there has been a growing need for deep
learning networks to be able to interpret learning in this field [3,21,23]. But to
correctly elucidate these brain waves using neural architectures is the challenge.
In this work, we predominantly discuss the disguise in feature learning that
happens during the EEG classification task and the gap in the interpretations
needed and interpretations done by these models.

The primary objective of this study is to evaluate Individual and Shared
experiences in two different settings:

1. Song Classification
2. Movie Classification

and analyze the type and extent of feature learning done by deep learning net-
works. This is the first work which essentially presents the problem definition
and proposes a direction for solving this problem.

2 Related Studies

Listening to music is a hobby, a tradition and a passion. The need for song recom-
mendation systems arises as a result of system requirement that can recommend
new songs to the users while being able to learn the user’s past listening history,
preferences, current listening habits, and mood. There are a few different ways
that song recommender systems can operate. Some systems use collaborative
filtering [6], which looks at the listening habits of a user’s friends and followers
to make recommendations. Other systems use content-based filtering [7], which
looks at the attributes of a song (e.g. genre, artist, etc.) to make recommenda-
tions.

Yet another type is the EEG-based song identification which can be used to
create playlist recommendations and improve song retrieval systems. The current
state of the art [23] CNN-based model on NMED-T dataset for song identification
is able to give an average test accuracy of 92.83% for within-subject but only
9%(less than chance level) for cross-subject classification. However, the cross-
subject validation improved on retraining the model conditioned to classifying
the EEG encodings into high and low-enjoyment classes. A research [18] has
also shown that the first 20 s of a song segment can be used to train machine
learning classifiers for accurate prediction from subsequent segments and that
only β and γ band power spectra are enough to classify songs optimally. They
achieved a maximum accuracy of 88% and 65% on Musin-G [12], and NMED-
T datasets, respectively, using just one power band spectrum. However, as the
testing shifted to cross-subject, the accuracy dropped to as low as 12% showing
the out-of-generalization problem.
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Listening to a song creates specific patterns in the brain, and these patterns
are unique to each individual, which has been observed in the paper [24]. This
is one reason why generalization is hard to get with EEG learning. While using
a CNN architecture, the authors were able to predict the song using only 1 sec
of EEG data and 10% of the data for training with an accuracy of 84.96% for
within-participant. The results dropped to a 9.44% for cross-participant.

3 Data Description

3.1 NMED-T

This study analyzed NMED-T [11], a publicly available dataset containing
behavioural responses and EEG from twenty participants engaged in a natu-
ralistic song-listening. The EEG recordings were made with the electrode net
attached, and behavioural ratings were obtained afterwards. Songs were pre-
sented in random order during the acquisition of the dataset. Each trial was
followed by participants rating their familiarity and enjoyment of the music on
a scale of 1–9. The EEG experiment was divided into two consecutive record-
ing blocks to minimize participant tiredness and facilitate electrode impedance
testing between the recording blocks. The preprocessed version of this dataset,
which contains 125 channels of EEG data captured at 125 Hz, was primarily used
in our study.

3.2 NMED-H

This publicly available naturalistic music EEG dataset [9] contains recorded
brain signals of 48 adults listening to full-length Hindi pop songs. A total of
sixteen stimuli, four songs, and four stimulus conditions per song are included
in the dataset. A different version of the song was played twice to each group
of twelve participants assigned to each stimulus. Each piece has four versions:
Original, Reversed, Phase-scrambled, and Measure-shuffled, each lasting around
4.5 min. The results of this study are based on clean EEG Matlab files that
had been cleaned, preprocessed, anonymized, and aggregated across participants
into various stimulus matrices. Additionally, the dataset contains data structures
listing the participants, stimulus and their behavioural ratings. Participants were
only provided with one version of a song to listen to in the experiment.

3.3 SEED

SEED [28] contains EEG signals collected from fifteen subjects, seven males
and eight females, who watched fifteen excerpts from Chinese films. The film
clips lasted approximately four minutes and were well-edited to create coherent
emotions that evoked and maximized three emotions: positive, negative, and
neutral. Fifteen trials were conducted per subject, lasting 305 s, including a hint
of starting for 5 s, a movie clip for 4 min, a self-assessment for 45 s, and a rest for
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15 s. The data collected from the 62-electrode EEG cap was then downsampled
to 200 Hz and processed using a bandpass filter ranging from 0 to 75 Hz [5]. The
extracted differential entropy (DE) features of the EEG signals were smoothed
further with conventional moving average and linear dynamic systems (LDS)
methods.

4 Methodology

(See Fig. 2).

Fig. 2. The different architectures used for classification from EEG data

4.1 EEGNet

EEG data consisting of C channels, S time samples, and N subjects are passed
for 150 epochs to the EEGNet model [10] composed of three convolutions in
sequence. The input is routed through eight 2D convolution filters of size (1,64)
to generate feature maps at various bandpass frequencies in the first block to
obtain temporal information. Then, D*8 depthwise convolutions of size (C,1)
are employed to learn spatial information within each temporal filter. The depth
parameter D determines how many spatial filters should be learned for each
feature map. With a dropout rate of 0.5, the model is regularized after applying
exponential linear unit (ELU) Non-Linearity and Average Pooling layer of size
(1, 4).

This is followed by a Separable 2D Convolution layer consisting of sixteen fil-
ters of size (1,16) in Block 2. This helps to combine spatial filters across temporal
bands optimally. After applying ELU Non-Linearity, dimensionality reduction is
achieved using an Average Pooling layer of size (1, 8). All the convolutions are
followed by Batch Normalization. Finally, features after dropout are passed to
the Softmax Classification layer.
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4.2 EEGNet SSVEP

The SSVEP variant of EEGNet [27] was explicitly designed for classifying Asyn-
chronous Steady-State Visual Evoked Potentials signals. This differs from the
above network in terms of size and number of kernels used in each convolution
layer, as shown in Fig. 1. In block 1, ninety-six 2D Convolution and Depthwise
2D Convolution (D = 1) of size (1,256) and (C,1), respectively, are used to obtain
frequency-specific spatial filters. Furthermore, depthwise convolutions reduce the
number of free parameters to fit when compared to fully-connected convolutions.

In block 2, ninety-six separable convolutions of size (1,16) are used, which
benefits by reducing the number of parameters to fit as well as explicitly decou-
pling the relationship between feature maps within and across them. In turn, a
kernel summarizing each feature map is learned, followed by the optimal merg-
ing of the outputs. Each Convolution layer is followed by Batch Normalization.
After convolutions in both blocks, the input passes through ELU non-linear
activation, 2D average pooling, and dropout layers. Lastly, a dense layer and a
softmax activation function are connected to the final layer.

4.3 DeepConvNet

The deep ConvNet architecture [26] to extract features and decode EEG signals
is inspired by computer vision architectures. This architecture has four blocks,
each consisting of a 2D convolution layer with max norm constraint, batch nor-
malization, ELU non-linearity activation, max pooling of size (1,2) with strides
(1,2), and a dropout layer with a dropout rate of 0.5.

The convolution of the first block is split into two convolution layers of 25
filters each, one temporal layer (1,5) and one spatial layer (C,1). By using two
layers, a linear transformation is forced into a combination of a temporal and
a spatial filter, which implicitly regularizes the overall convolution. Finally, the
fifth layer is a dense layer with a softmax activation function for classification.

4.4 Evaluation Strategy

To carry out this study, the datasets were divided into 5 s, 10 s, 20 s, and 30 s
windows and an analysis of the performance of architectures was made to find
the most efficient time window.

To decode how the models capture and comprehend the individuality and
commonality in the perception of media by every individual, the experiments
were performed in two settings. In the within-subject analysis, the data was
split into the train, validate, and test datasets, thus having leakage of subjects’
information. However, in the cross-subject analysis, the data was split such that
the data of subjects present in the test dataset were not shown to the model while
training. This resulted in a visible difference in the architecture’s performance
in both settings. They were inadequate to extract generalized features in the
case of distribution shift. To verify these results, further experiments were done
to plot t-SNE graphs showing song and subject classification. The t-SNE plots
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displayed the groups formed in training and testing data according to songs in
the case of the personalized model and subjects in the case of the generalized
model.

5 Experimental Results

Table 2. Classification Accuracy

Within Subject

Chunks NMED-T NMED-H SEED-M

5 0.69 ± 0.01 1.0 ± 0.001 0.56 ± 0.01

10 0.68 ± 0.02 1.0 ± 0.0 0.51 ± 0.01

20 0.57 ± 0.04 1.0 ± 0.0 0.48 ± 0.02

30 0.46 ± 0.02 0.97 ± 0.04 0.45 ± 0.02

Cross Subject

Chunks NMED-T NMED-H SEED-M

5 0.11 ± 0.04 0.35 ± 0.15 0.14 ± 0.04

10 0.13 ± 0.04 0.35 ± 0.16 0.13 ± 0.04

20 0.13 ± 0.03 0.33 ± 0.16 0.14 ± 0.04

30 0.18 ± 0.07 0.37 ± 0.18 0.14 ± 0.05

5.1 Time Window for Personalized Model

With different-sized time windows of the same dataset, Fig. 3(a) compares the
best performance of all the architectures. The results of NMED-T, NMED-H,
and SEED datasets, also evident in Table 2, indicate that 5 s window size is ade-
quate and give the best results with 69%, 100%, and 56% accuracy, respectively.
This shows that the architectures are capable of identifying and classifying even
from the smallest snippet of brain signals. Thus, the features can be learnt and
identified accurately and efficiently from tiniest fragments of brain activity by
the networks in the case of within-subject evaluation.

5.2 Time Window for Generalized Model

Figure 3(b) compares the best performance for cross-subject evaluation from
all the architectures when fed with different-sized time windows of the same
dataset. Here the results are contrary to that of the personalized model as the
30 s window size gives the best results. Moreover, the architectures achieved a
maximum accuracy of 18%, 37%, and 14%, respectively, on NMED-T, NMED-
H, and SEED datasets as shown in Table 2. This shows the disguise in feature
learning done by the models resulting in such low accuracies even when fed
by large chunks of data at a time. However, if the dataset size is increased,
the model might be able to learn features from a higher number of 30-second
windows, leading to better results.
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Fig. 3. (a) Within-Subject and (b) Cross-Subject Classification accuracies using dif-
ferent architectures on different-sized time windows

Table 3. Best accuracies achieved for each dataset

Within Subject

Dataset EEGNET EEGNet SSVEP DeepConvNet

NMED-T 0.61 ± 0.05 0.61 ± 0.04 0.69 ± 0.01

NMED-H 1.0 ± 0.001 1.0 ± 0.001 1.0 ± 0.002

SEED-M 0.32 ± 0.02 0.32 ± 0.01 0.56 ± 0.01

Cross Subject

Dataset EEGNET EEGNet SSVEP DeepConvNet

NMED-T 0.14 ± 0.04 0.16 ± 0.05 0.18 ± 0.07

NMED-H 0.37 ± 0.18 0.28 ± 0.09 0.27 ± 0.12

SEED-M 0.13 ± 0.05 0.14 ± 0.05 0.13 ± 0.05

5.3 Within-Subject Evaluation

We can see from the Table 3 and Fig. 4(a) that DeepConvNet outperformed
the other two architectures on every dataset, whereas EEGNET and EEG-
Net SSVEP performed similarly on the three datasets. Although the difference
in accuracy on NMED-T is only 8%, the accuracy on SEED movie classification
has increased significantly from 32% to 56%. In view of this, a deeper neural
network can be said to do a better training on brain signal data for classifying
individual experiences since it has more layers in its architecture, allowing it to
learn the features more accurately.
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Fig. 4. Best (a) Within-Subject and (b) Cross-Subject Classification accuracies using
different architectures on the datasets

Fig. 5. The maximum increase in accuracy achieved from chance level on the datasets

5.4 Cross-Subject Evaluation

In contrast to the results of the personalized model, for the generalized model,
no particular architecture performed well on all the datasets, as evident from
Fig. 4(b). The architectures have showcased their inability to learn the appro-
priate feature to classify the data of unseen subjects. Table 3 shows that, on
NMED-T data, DeepConvNet outperformed the other neural networks with a
performance of 18%, EEGNet claimed a performance of 37% on NMED-H data,
and EEGNet SSVEP performed well on SEED data with a performance of 14%.
However, recognizing the general characteristic of different brain signals for the
same stimuli was not decoded by any architecture.

Table 4. Maximum classification accuracies achieved in the datasets considering all
the architectures and various window sizes

Dataset Chance Level Within Subject Increase Cross Subject Increase

NMED-T 0.1 0.69 0.59 0.18 0.08

NMED-H 0.25 1 0.75 0.37 0.12

SEED-Movie 0.067 0.56 0.493 0.14 0.073
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5.5 Difference in Accuracies from Chance Level

A considerable difference between the increase in accuracies from chance level for
within-subject and cross-subject classification can be seen in Fig. 5 and Table 4.
In the personalized model, there was at least a 49% increase over chance levels,
whereas, in the generalized model, it was barely 12%. This is due to the fact
that the models did not learn relevant features of the song/movie to be able
to classify when getting tested on distinct subjects indicating the distribution
shift problem. However, the models performed exceedingly well when there was
data leakage of the subjects. This suggests that models are influenced by the
subjects’ features and are learning properties specific to the song/movie as well
as the subjects.

5.6 Network

Each of the experiments demonstrated that the DeepConvNet had shown consis-
tent performance, with the model either providing the best accuracy or a similar
level of precision to others. This is mainly due to its ability to capture the com-
plex features of the data by increasing the depth of the network. The network
uses a large number of filters and ReLU activations to increase the depth of the
network and improve its performance. It also utilizes batch normalization and
dropout layers to prevent overfitting, and the use of pooling layers has enabled
the network to reduce the number of parameters used and thus reduce the com-
putational complexity.

6 Discussion

6.1 Same Brain Perceives Different Stimuli Differently

The brain has a lot to say about who we are as individuals. Different parts of
the brain may be activated depending on the type of stimuli and the person’s
individual response to it. Thus this difference is reflected in the EEG signals
that help the models to identify the class of a new signal. Depending on the
unique features found in EEG signals of different stimuli, the model gets trained
to identify those features during testing to classify the song or movie. The t-SNE
plots in Fig. 6(a) and (b) show how accurately the models were able to group
the different songs of the NMED-T dataset.
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Fig. 6. t-SNE plots for Song classification on (a) train data, (b) test data after train-
test split, and (c) train data, (d) test data after cross subject

6.2 Different Brains Perceive the Same Stimuli Differently

Variation in every individual’s brain perception results in the models learning
irrelevant features that might be specific to the subject rather than the media.
This fact is visible while doing the cross-subject evaluation. The t-SNE plots
in Fig. 6(c) and (d) show clear groups being formed for every song with the
training dataset; however, on the test dataset, no such categorization is visible.
On the other hand, for subject classification in Fig. 7(c) and (d), there is a clear
group formation of subjects on the test dataset but not on the training dataset.
Thus, the model has learnt features specific to the subjects and is categorizing
based on that resulting in a low classification accuracy of only 18% for the
generalized model. This is called the distribution shift or the out-of-distribution
(OOD) generalization problem where the models are not able to accurately make
predictions on data from the new, unknown distribution, which are new subjects
here.
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Fig. 7. t-SNE plots for Subject classification on (a) train data, (b) test data after
train-test split, and (c) train data, (d) test data after cross subject

Since the same brain perceives the same stimuli invariably, the t-SNE plots
in Fig. 6(a) and (b) of song classification in case of within-subject evaluation
showcase precise group formation of tunes on both train and test datasets. This
categorization is not achieved for subject classification, apparent in Fig. 7(a) and
(b). Thus, when there was no distribution shift and the model was aware of all
the subjects during the training and validation phase, it learned useful features
of the media stimuli and achieved an accuracy of 69%.

6.3 Outperform State of the Art on NMED-T Music Identification

Recent works echoed in Table 5 have examined the song identification task using
EEG signals to exhibit the subjective differences of neural responses in music
perception. One of the studies [23] used a CNN architecture to identify songs of
the NMED-T dataset with leave one subject out cross-validation and achieved a
maximum precision of 9.9%. Another study [18] experimented with the relation
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Table 5. Comparision with other works on Cross-Subject Song Classification

Article Initial Input Classifier Accuracy

Dhananjay Sonawane et al. [24] Time Frequency Plots CNN architecture 9.44%

Gulshan Sharma et al. [23] Topoplots CNN architecture 9.9%

Pankaj Pandey et al. [18] Frequency Bandpower Random Forest 12.9%

Ours Time Series DeepConvNet 18%

between brain signals and unique and repetitive patterns present in the songs to
classify the stimulus achieving a comparable maximum accuracy of 12.9% and
12.5% on NMED-T and MUSIN-G datasets respectively. Similarly, the authors
of [24] showed the use of CNN architectures on the frequency domain dataset
of MUSIN-G to gain a cross-subject song classification accuracy of 9.44%. Our
work surpass these state-of-the-art works by achieving a maximum accuracy of
18% on the generalized model.

6.4 Why NMED-H Reflects the Highest Accuracy?

The models used in this research learned features not only unique to the media
stimuli but to the subjects too. In the NMED-H dataset, a subject did not listen
to a different version of the same song or an other song of the same version.
Hence, no two songs considered for classification have the same subject. This
results in corresponding groups of songs and subjects. This becomes more evident
from the contrasting accuracies for within-subject and cross-subject evaluation
of 100% and 37%, respectively.

7 Conclusion

In the future, EEG will empower the creation of large datasets that link peo-
ple’s brain activity to their responses to different media experiences. This could
potentially be used to create personalized media experiences that are tailored to
each individual’s preferences and brain activity.

Our results show that different brains have different responses to the same
experiences, and the same brain has different reactions to different experiences.
The demand for new models that can adapt to this distribution shift between
subjects is also evident from the t-SNE plots of song and subject classification
for within-subject and cross-subject categories. It can be seen that while the test
data t-SNE plot has clear and distinct groups of different songs in the case of
the personalized model, the generalized model has the same for various subjects
rather than the songs. The development of generalized models will elevate the
media experiences of every individual using EEG wearables technology. The users
will be able to better understand their cognitive and emotional processes, and
thus make better decisions regarding their media consumption.
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