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Abstract: Inspired by recent developments in wave propagation and scattering experiments with
parity-time (P7) symmetric materials, we discuss reciprocity and representation theorems for 3D
inhomogeneous PT-symmetric materials and indicate some applications. We start with a unified
matrix-vector wave equation which accounts for acoustic, quantum-mechanical, electromagnetic, elas-
todynamic, poroelastodynamic, piezoelectric and seismoelectric waves. Based on the symmetry prop-
erties of the operator matrix in this equation, we derive unified reciprocity theorems for wave fields
in 3D arbitrary inhomogeneous media and 3D inhomogeneous media with P7-symmetry. These
theorems form the basis for deriving unified wave field representations and relations between reflec-
tion and transmission responses in such media. Among the potential applications are interferometric
Green’s matrix retrieval and Marchenko-type Green’s matrix retrieval in P7 -symmetric materials.

Keywords: parity-time symmetry; reciprocity; Green’s matrix; metamaterials

1. Introduction

A parity-time (P7T) symmetric system is a physical system that is invariant under the
combined reversal of the space and time coordinates. Having its roots in quantum physics
[1], the principle of PT-symmetry has recently found many applications in classical wave
propagation and scattering problems in photonic structures [2—4], phononic crystals [5-7]
and acoustic metamaterials [8-10]. Motivations for designing P 7T -symmetric materials are
the exotic properties that can be achieved, such as unidirectional optical wave propagation
[11], negative refraction [10] and acoustic cloaking [8,9].

Reversal of the time coordinate of a dissipative (passive) material results in an effectual
(active) material and vice versa [12-14]. Hence, a P T -symmetric medium is constructed
from materials with loss and gain, balanced with respect to the origin of the spatial co-
ordinate system. Natural materials are dissipative, but in specific situations waves may
gain energy during propagation. For example, in photonics this occurs through two-wave
mixing using the nonlinear photorefractive effect [2,15], whereas in phononic structures
waves may gain energy through the acoustoelectric effect of piezoelectric semiconductors
[5,16]. Another possibility is to construct P7T-symmetric materials by virtualising the
effectual (active) part of such a medium. References [17-20] propose to construct virtual
acoustic PT-symmetric materials by connecting physical passive systems with numerical
active systems via the principle of immersive wave experimentation [21-23].

The aim of this paper is to present a theoretical framework for analysing reflection
and transmission responses of 3D inhomogeneous P7 -symmetric materials. This may find
applications in forward modelling, inverse source problems, inverse scattering problems,
(holographic) imaging, time-reversal acoustics and Green’s function retrieval from passive
or active measurements in such materials. To this end, we derive reciprocity and represen-
tation theorems for wave fields in 3D inhomogeneous P 7 -symmetric materials, embedded
between two identical homogeneous lossless half-spaces. In general, a wave-field reci-
procity theorem interrelates two states (sources, medium parameters and wave fields) in
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one-and-the-same spatial domain [24-27]. We review two unified reciprocity theorems [28]
for wave fields in 3D arbitrary inhomogeneous media (one of the convolution type and one
of the correlation type) and derive two new reciprocity theorems for 3D inhomogeneous
media with P77 -symmetry. As the basis for these four reciprocity theorems we use a unified
matrix-vector wave equation, which covers acoustic, quantum-mechanical, electromag-
netic, elastodynamic, poroelastodynamic, piezoelectric and seismoelectric waves. Next,
we derive wave field representations. In general, a wave field representation is obtained
by replacing one of the states in a reciprocity theorem by a Green’s state [29-32]. Among
other results, we obtain a unified representation for interferometric Green’s matrix retrieval
in a 3D PT-symmetric medium. Following an approach similar to reference [33], we also
use the four reciprocity theorems to derive a number of relations between reflection and
transmission responses for arbitrary inhomogeneous media and for P77 -symmetric media.
One of the results is a generalisation of a unitarity relation for 1D scalar fields in a stratified
PT-symmetric medium [6,8] to unified wave fields in a 3D inhomogeneous P7T -symmetric
medium. Finally, we discuss the Marchenko method. In general, the Marchenko method
provides a way to retrieve Green’s response between a point at the surface and a point
inside the medium from the reflection response at the surface [34-36]. One of the under-
lying assumptions is that the medium is lossless. We show that this assumption can be
circumvented when the medium is P77 -symmetric and the reflection response is available
at two sides of the medium. We illustrate the Marchenko method for a layered medium
with PT-symmetry with a numerical example.

2. Unified Matrix-Vector Wave Equation

As the starting point for our derivations. we consider the following unified matrix-
vector wave equation [28,37-41]

d3q—Aq=d, 1)

where q(x,w) is a N x 1 wave-field vector, which is a function of space (x) and angular
frequency (w), with the space coordinate vector defined as x = (x1, x2, x3) (throughout
this paper we assume that the x3-axis is pointing downward). Similarly, d(x,w) is a
N x 1 space- and frequency-dependent source vector. Operator d3 stands for the partial
differential operator 0/0dx3. Finally, A(x,w,dy) is a N X N operator matrix, containing
space- and frequency-dependent medium parameters (or, for quantum-mechanical waves,
the potential) and operators 9, (standing for the partial differential operator d/dx,, with
Greek subscript a taking the values 1 and 2). For the moment we consider an arbitrary
inhomogeneous medium (or potential). The specifics for a P7T-symmetric medium are
discussed later.
We partition q, d and A as follows

q d; Aiq Alz)
= , d = ’ A - 7 2
E (Cl2> (d2> <A21 A @
where sub-vectors qq, qp, d1 and dj are N/2 x 1 vectors and where sub-matrices A1, A12,
Ay and Ay are N/2 x N /2 operator matrices. Table 1 gives an overview of the wave-field
sub-vectors q; and q; for different wave phenomena. These sub-vectors are organized

such that the power-flux density j in the x3-direction (or, for quantum-mechanical waves,
the probability current density j) follows from

1
=@+ qq) 3)

where superscript t denotes transposition and complex conjugation. The source sub-vectors
and operator sub-matrices for all wave phenomena of Table 1 are reviewed or derived in
reference [28], in most cases for anisotropic media.
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Table 1. (After reference [28]). Wave-field sub-vectors q;(x,w) and qo(x,w) for different wave
phenomena. For details see Appendix A.1.

N qQ Q@
Acoustic 2 |4 v3
Quantum-mechanical 2 P % o3y
. (B _( H
Electromagnetic 4 Ey = ( EZ) Hy = <7 Hl)
(%1 3
Elastodynamic 6 v= |1 —13=—| T3
U3 33
Poroelastod i 8 v (_Tg)
oroelastodynamic
Y 9(0f — ) d
. . \4 —T3
Piezoelectric 10 (HO) ( Eq )
v° 71'2
Seismoelectric 12 4,(0{; ) pf
Hy Eg

As an example, here we specify the N/2 x N /2 operator sub-matrices for electromag-
netic waves (for which N = 4) in an inhomogeneous, isotropic medium (other examples
are given in Appendix A). They are defined as [42,43]

iwp — -9, %0 —-19,19
Ap = ( g 13‘}1185 b e 115 %8 )/ 4)
Tiw92g9%1 WU — 5502202
iwE — +0,19 19,19
Ay = 1 alw1 ;V 2 . gw 21;48118 , ®)
7w %1392 lwe = 7,591,991
with
io
E—S_FE/ (6)

where i is the imaginary unit, and A;; = Ap» = O, where O is a zero matrix (here
it is a N/2 x N/2 matrix, but at other places in this paper it is a N x N matrix; the
size of this matrix is always clear from its context). Operator sub-matrices A, and Ay
contain the medium parameters &(x, w) (permittivity), y(x, w) (permeability) and o(x, w)
(conductivity), and differential operators d,. The notation in the right-hand sides of
Equations (4) and (5) should be understood in the sense that differential operators act
on all factors to the right of it. Hence, operator 81%81, applied via Equation (1) to the
magnetic field component Hy, stands for 81(%81 H,), etc. When the medium is dissipative,
the medium parameters are frequency-dependent and complex-valued, with (for positive
w) S(e) >0, (u) > 0, R(0) > 0 and hence I(E) > 0 (where R stands for the real part
and S for the imaginary part). On the other hand, when the medium is effectual, we have
(for positive w) J(e) < 0, I(u) < 0, R(¢) < 0 and hence F(€) < 0. When a medium is
dissipative, its adjoint is effectual, and vice versa. Adjoint medium parameters will be
indicated by an overbar. In particular, £ = ¢*, i = u*, & = —0* and hence £ = £*, where
superscript * denotes complex conjugation. More generally, for the wave phenomena of
Table 1, adjoint medium parameters are defined as the complex conjugate of the original
parameters, except when a parameter is explicitly associated to dissipation (like o), in
which case the adjoint medium parameter is defined as minus the complex conjugate of the
original parameter (next to the conductivity o, this applies to the fluid viscosity # in porous
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media and to Onsager’s coupling coefficient L for seismoelectric waves, hence, 7 = —7*

and L = —L*).
Operator matrix A in Equations (1) and (2) obeys, for all wave phenomena of Table 1,
the following symmetry properties

AN = —NA, ()
A'K = —KA4, (8)

with

0 1 o I 1 O
(% o) x= (7o) 170 ) &

where I is an identity matrix (here it is a N/2 x N/2 matrix, but at other places it is
a N x N matrix). Superscript t in Equation (7) denotes transposition. In particular, it
involves matrix transposition and transposition of the operators within the matrix. It
should be noted that 9 = —d, for « = 1,2. Moreover, the transpose of a product of
operators is equal to the product of the transposed operators in reverse order, for example
(01502)! = 9440Y = 9,40;. Superscript + in Equation (8) denotes transposition and
complex conjugation. Similar as superscript ¢, it applies to the matrix and to the operators
within the matrix. The overbar in Equations (8) and (9) means that the medium parameters
(or potential) in the operator matrix are replaced by their adjoints. Note that symmetry
relations (7)-(9) do not rely on P T -symmetry.

Next, we consider P7-symmetric materials. For all wave phenomena of Table 1
(except for seismoelectric waves, which will be treated separately), we call a medium
PT-symmetric when each parameter m(x, w) obeys the symmetry relation

m(—x,w) = m(x,w). (11)

The overbar denotes again the adjoint parameter which, as discussed above, is the complex
conjugate (and in some cases minus the complex conjugate) of the original parameter.
Since complex conjugation in the frequency domain corresponds to time-reversal in the
time domain, Equation (11) quantifies symmetry in space and time. With this relation, we
find for all wave phenomena of Table 1 (except for seismoelectric waves) the following
additional symmetry property of operator matrix A

A(—x,w, —3) = —A* (x, @, ). (12)

For seismoelectric waves we define for Onsager’s coupling factor L the P7T-symmetry
relation L(—x,w) = L*(x,w). This is different from Equation (11), since we defined the
adjoint of L earlier as L = —L*. Nevertheless, with this deviating PT-symmetry relation
for L (and all other parameters obeying Equation (11)), symmetry relation (12) appears to
hold also for the operator matrix A for seismoelectric waves, defined in reference [28].

We obtain an auxiliary wave equation by replacing x by —x, d4 by —d, and 93 by —03
in Equation (1) and using symmetry relation (12). This gives

—03q(—x, w) + A" (x,w, ) q(—x, w) = d(—x, w). (13)
In the following, we drop the arguments w and 9, for notational convenience.

3. Four Reciprocity Theorems

We review two unified reciprocity theorems for arbitrary inhomogeneous media and
we derive two new reciprocity theorems for P7T-symmetric media. Consider a spatial
domain D) with its center at the origin O, enclosed by two infinite horizontal boundaries
0D_ and 0D at depthlevels x3 = —x31 and x3 = x3 1, respectively, with outward pointing
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normal vectors (0,0,n13 = —1) and (0,0, n3 = +1), respectively, see Figure 1. We define
dD as the union of the two boundaries; hence, 0D = dD_ U dD_.. In this configuration, we
consider two independent wave states, where each state is characterised by a wave-field
vector q, a source vector d and an operator matrix .A. We will distinguish the two states
with subscripts A and B. Both states obey wave Equation (1); when the medium in ID is
PT-symmetric, they also obey wave Equation (13). We derive reciprocity theorems, which
formulate relations between the wave states A and B [24-27,44-47]. For the configuration
of Figure 1 we follow the approach of references [28,48,49].

. ng = —1] oD _
O I
i) /| D
€3
e X
x3,1
ng = +1| oD,

Figure 1. Configuration for the reciprocity theorems.

Consider the quantity 93{q’, (x)Nqg(x)}. Applying the product rule for differentia-
tion gives

I3{q} ()ONgp(x)} = {9394 (x)}Nqa(x) + q4 (x)N{93q5(x)}. (14)

Integrating both sides over domain D, using the theorem of Gauss on the left-hand side
and wave Equation (1) on the right-hand side yields

| ahONas(msdir = [ [{A1(x)a4(0 +da(0} Nas(0) + s (ON{As ()ap(x) + ds(0)}|d'x (15

Here, xy is the horizontal coordinate vector (x1, xp). Using symmetry relation (7) on the
right-hand side and reordering the terms gives

| ahONas(0msdxir = [ [ (ON{As(x) — Aa(x)}as(x) +ds ()Nas(x) + a4 (xNdg(0)|d'x. (16)

This is a unified reciprocity theorem of the convolution type (since terms such as q’, (x)Nqg(x)
in the frequency domain correspond to convolutions in the time domain). It does not rely
on PT-symmetry.

Next, consider the quantity 93{q, (—x)Nqg(x)}. Following a similar procedure as
above, but this time using auxiliary wave Equation (13), we obtain

[ ah(=xNan(maxi = [ [ah(—0N{As(x) — A (x)}aa(x) — d(~x)Nas () + g% (—0ONda(x)|d'x. (17)

This is a unified reciprocity theorem of the correlation type (since terms such as q, (—x)Nqz(x)
in the frequency domain correspond to correlations in the time domain). Since we used
wave Equation (13) for its derivation, it only holds for P77 -symmetric media. Note that the
integration boundary on the left-hand side is defined as 0D = dID_ U dDD.;.. For the integra-
tion along dD_, the fields q4(—x) and qp(x) are evaluated at 0D and oD_, respectively.
Similarly, for the integration along 0D, the fields q (—x) and qp(x) are evaluated at 0D
and dD, respectively.

Next, consider the quantity 93{q’, (x)Kqp(x)}. A similar procedure as above, using
wave Equation (1) and symmetry relation (8), yields



Symmetry 2022, 14, 2236

6 of 28

| ah0oKas(xnad?xi = [ [ah (0K{As() ~ Aa(x)}as(x) + dh(0Kas(0 + i (0Kds (0] (18)

/BD q’4 (—x)Kqp (x)n3d?xp

This is a unified reciprocity theorem of the correlation type which does not rely on P7T-
symmetry.

Finally, consider the quantity d3{q’,(—x)Kqg(x)}. Following the same procedure,
using auxiliary wave Equation (13) and symmetry relation (8), yields

= [ [ (—0K{As (0 = Aa(x)} a5 (0) — dy(—0Ka(x) + g (-0Kdp(0)|dx.  (19)

This is a unified reciprocity theorem of the convolution type which only holds for PT-
symmetric media.

Equations (16) and (18) were already known [28,48,49]; they hold for arbitrary inho-
mogeneous media. Equations (17) and (19) are new; they hold for inhomogeneous media
media with P7 symmetry. We will use these reciprocity theorems as a basis to derive
unified wave field representations (Section 5), relations between reflection and transmission
responses (Section 6), and a Marchenko scheme (Section 7). Before we come to this, we first
analyze the boundary integrals in the four reciprocity theorems.

4. Analysis of the Boundary Integrals

From here onward we consider the situation in which the medium (or potential) at
and outside 0D is homogeneous, lossless, and identical in both half-spaces and in both
states. For the analysis of the boundary integrals we define a N x 1 wave-field vector p,

according to
+
P
=(__] 20
P (p ) (20)

where p™ and p~ are N/2 x 1 vectors containing flux-normalised downgoing and upgoing
wave fields, respectively (for a comprehensive discussion on flux-normalised versus field-
normalised decomposition, see reference [50]). At the boundary o) we relate the wave-field
vector q to p in states A and B via

qa(x) = (21)
qs(x) = L(x)ps(x), (22)

)
x
<
o
X

for x3 = £x31, where £(x) is a N X N operator matrix, which composes the wave-field
vectors q 4 g from their downgoing and upgoing constituents PX,B and p , . Note that £
in Equations (21) and (22) is without subscript A or B, since the medium parameters (or
potentials) at dD in both states are identical. Explicit expressions for the spatial Fourier
transform of £ are given in Appendix A for acoustic, quantum-mechanical, electromagnetic
and elastodynamic waves. Substituting Equations (21) and (22) in the boundary integrals of
reciprocity theorems (16)-(19), we derive in Appendix B, using specific symmetry properties

of C,

| ahCoNas(omde = — [ phGONpaGomdir, @)
/aquq(—X)NqB(X)nadsz ~ = | Pa(=X)Nps(x)nad*xi, (24)
| aheoKasmdx ~ [ ph(x)IpaGomdia, 25)

| ahxKastmdx = [ ph(—x)IpsGomsdi. 26)
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Equations (23) and (25) were already known [51]; Equations (24) and (26) are new. The
approximation signs in equations (24) and (25) denote that evanescent waves are ignored
at dD. In the following, we replace ~ by = when the only approximation is the negligence
of evanescent waves.

Using Equations (10) and (20), we can rewrite the right-hand sides of Equations (23)—(26)
explicitly in terms of downgoing and upgoing waves at 0D, according to

| ahoNas(omdin = = [ ({p5(0}'p5 (0 = {p2(0}'ph () ) nac, @)
L ahxNasGmsdt =~ [ ({50} P (x) ~ {p2(-x)}Ph (0 ) msdPa, 28)
| dhoKasmad i = [ ({500} ph (0 = {22 (0} Py () madxa, 29)
[ ahxKastoma®ar = | ({pi(-x))'p (x) ~ {P3(-)}'P5 () ) nacxi. (30)

These equations will be used in Section 6 for the derivation of relations between
reflection and transmission responses. Here we consider a special case. Let us assume that
the medium outside ID is source free and that the wave fields in both states are responses to
sources in D. This implies that at dID all waves are outward propagating, i.e., at dD_ there
are only upgoing waves and at 9D, only downgoing waves. Hence, p}; (x) = pj (x) =
p4(—x) = p5(—x) = 0forxat dD_ and p};(—x) = pj (—x) = p,(x) = pj (x) = 0 for x
at 0D (here 0isa N/2 x 1 zero vector). Using this in Equations (27) and (30) yields

/BDCIZ(X)NCIB(X)WSdZXH = 0 (31)
ADqZ(—X)KqB(X)nadsz = 0. (32)

Equation (31) is a compact form of the well-known Sommerfeld radiation condition; Equa-
tion (32) is a new radiation condition.

5. Wave Field Representations

We use the reciprocity theorems derived in Section 3 as the basis for deriving wave
field representations. In Section 5.1 we discuss the unified Green’s matrix and its symmetry
properties. In Section 5.2 we derive a wave field representation by choosing Green'’s state
for state A. In Section 5.3 we derive representations for back-propagation and for Green’s
matrix retrieval, also known as interferometry. We consider arbitrary inhomogeneous
media and media with P7-symmetry in D, embedded between two identical homogeneous
lossless half-spaces.

5.1. Green’s Matrix and Its Symmetry Properties

We introduce the N x N Green’s matrix G(x,x4) for an arbitrary inhomogeneous
medium in D) as the solution of

83G—AG:I<5(x—xA), (33)

where d(x) is a Dirac delta distribution, and x4 = (x1,4, X2 4, X3 o) defines the position of
a unit point source. We further demand that the time-domain Green’s matrix G(x, x4, t)
is causal, hence G(x,x4,t < 0) = O. Similar to operator matrix .A, Green’s matrix is
partitioned as

G(x,x4) = (g; g;i) (x,x4). (34)

We derive a symmetry property of Green’s matrix. We replace q4 and qp in reciprocity
theorem (16) by Green’s matrices G(x, x4 ) and G(x, xp), respectively. Similarly, we replace
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the source vectors d4 and dg by I6(x — x4) and I6(x — x), respectively, with x4 and xp
denoting the source positions, both in ID. Both Green’s matrices are defined in the same
medium; hence, A4 = Ap = \A. This implies that the first term under the integral on the
right-hand side of Equation (16) vanishes. Since the medium outside I is homogeneous,
Green’s matrices at dID are outward propagating. This implies that the integral on the left-
hand side of Equation (16) also vanishes, see Equation (31). From the remaining integral,
we thus obtain the following symmetry property of Green’s matrix

G'(xp,x4)N = —NG (x4, xp). (35)

This is the well-known source-receiver reciprocity relation, which holds for arbitrary
inhomogeneous media in D. It is illustrated in Figure 2a. Next, we define G(x,x4) as
the outward propagating Green’s matrix of the adjoint medium, obeying the following
wave equation

293G — AG = 16(x — x4). (36)

We will combine G(x,x4) and the complex conjugate of G(x,x4) to form a so-called
homogeneous Green’s matrix, i.e., a Green’s matrix obeying a wave equation without a
source term on the right-hand side. To this end, we first pre-and post-multiply all terms
in Equation (36) by J, use Equation (9) and JJ = I and subsequently take the complex
conjugate of all terms. This yields

93JG*] — AJG*] = I8(x — x4). (37)
Subtracting all terms of this equation from the corresponding terms in Equation (33) yields
903Gy — AG, =0 (38)

with the homogeneous Green’s matrix Gy, (x, x4 ) defined as
Gh(xxa) = G(x,xa) —JG"(x,x4)]J.- (39)

Using symmetry relation (35), JN = —NJ and J* = J, we find the following reciprocity
relation for the homogeneous Green’s matrix

Gi (x5, x4)N = —NGy, (x4, Xp). (40)

Next, we derive symmetry properties of Green’s matrix and the homogeneous Green's
matrix for P7T -symmetric media in . We replace q4 and qp in reciprocity theorem (19) by
Green’s matrices G(x,x4) and G(x, xg), respectively. Since A, = A (see Equation (36))
and Ajp = A (as before) we have A, = Ag, hence, the first term under the integral on the
right-hand side of Equation (19) vanishes. Since the medium outside D is homogeneous,
the integral on the left-hand side of Equation (19) also vanishes, see Equation (32). From
the remaining integral, we thus obtain the following symmetry property of Green’s matrix

G'(—xp,x4)K = KG(—x4,xp). (41)

This is an additional source-receiver reciprocity relation, which only holds for media with
PT-symmetry. It is illustrated in Figure 2b. Using symmetry relation (41), JK = —K]J and
J' =], we find the following reciprocity relation for the homogeneous Green’s matrix in
PT-symmetric media

GL(—XB,XA)K: KGh(—XA,XB). (42)
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a)
. ng = —11 oD_
XA
G(x4,%XB) D
G(XB,XA)
XB
x3,1
ng=+1| oD,
b)
a4 n3 = —11 oD _
—XpB G(fxB'/xA) X4
O
° D
_XA.G\.
G(—x4,%x5B) XxB
x3,1

ng=+1| oD,

Figure 2. (a) Source-receiver reciprocity for an arbitrary inhomogeneous medium in D
(Equations (35) and (40)). (b) Additional source-receiver reciprocity for a medium with P7T-
symmetry in D (Equations (41) and (42)). The rays in these and subsequent figures represent full
multi-component responses (direct waves, (multiply-)scattered waves, converted waves etc.) between
the source and receiver points.

5.2. Wawve Field Representation

We derive a general wave field representation from the reciprocity theorem of the
convolution type for arbitrary inhomogeneous media (Equation (16)). For state A we
choose Green'’s state; hence, we replace q4 and d 4 by Green’s matrix G(x, x4 ) and unit
source matrix I6(x — x4 ), with x4 in D; we leave operator A4 as is. For state B we choose
the actual wave state. To this end we drop the subscripts B from qg, dg and Ap. We thus
obtain from Equation (16)

Nq(x4) = — /D G (x, x4)Nd(x)d®x + /a G (% xa)Nq(x)nadx - /D G (x, x4 )N{A — A, }q(x)dx. 43)

q(xa) =

/]D) G(x4,x)d(x)d3x — /

Using the symmetry property of Green’s matrix, formulated by Equation (35), we obtain

5 G(x4,x)q(x)n3d?xg + /D G(xa,x){A— As}q(x)d’x. (44)
This is the unified wave field representation of the convolution type, which does not rely on
PT-symmetry. The left-hand side is the wave field vector q(x,4) at a specific position x 4.
It is expressed in terms of a volume integral containing the source distribution d(x) in D,
a unified Kirchhoff-Helmholtz boundary integral and an integral containing the contrast
operator A — A, in D. It finds applications in forward modelling [48,49,52], of which a
further discussion is beyond the scope of this paper.
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5.3. Back-Propagation and Interferometric Green’s Matrix Retrieval

We derive representations for back-propagation and for interferometric Green’s matrix
retrieval from the reciprocity theorem of the correlation type for arbitrary inhomogeneous
media (Equation (18)). We replace the wave-field vectors q4 and qp by Green’s matrices
G(x,x4) and G(x, xp), respectively. Accordingly, the source vectors d 4 and dp are replaced
by source matrices I6(x — x4) and Id(x — xp), with x4 and xp both in D. For the operator
matrices we choose A4 = A (since Green’s matrix in state A is defined in the adjoint
medium) and Ap = A. These choices imply that the first term under the integral on
the right-hand side of Equation (18) vanishes. From the remaining terms in this equation
we obtain

KG(x4,xg) + G’ (xp,x4)K = /a Gt(x, x4)KG(x, x)n3d?x. (45)
D

Using K = —NJ, the symmetry property of Green’s matrix formulated by Equation (35)
and N = —K]J, we rewrite the second term on the left-hand side as —KJG* (x4, x3p)J.
Pre-multiplying both sides of the resulting equation by K~! and using K~! = K, we
thus obtain

Gh(xa,xp) = /aD KGT(x,x4)KG(x, xp)n3d?xg, (46)

with the homogeneous Green’s matrix Gy, (x4, xp) defined in Equation (39). Equation (46)
is a unified form of the classical homogeneous Green'’s function representation [53,54]; it
does not rely on P7 -symmetry. Equation (46) is illustrated in Figure 3a. We can interpret
G(x,xp) as the response to a source at xg inside DD, observed by receivers at x at the
boundary dD, which consists of two planar boundaries 0D_ and dD,. Green’s matrix
G'(x,x4) propagates this response back from x at the boundary to x4 inside . The result
is the homogeneous Green’s matrix between xp and x4 (the red arrow in Figure 3a). When
these two points coincide, then Gy, (xg, xg) can be interpreted as an image of the source at
xp, obtained from observations at 0D. Equation (46) finds applications in (generalized forms
of) inverse source problems [46,55], inverse scattering [12,54,56,57], (holographic) imaging
[53,58-62], time-reversal acoustics [63] and interferometric Green’s matrix retrieval from
passive measurements [64-66]. To explain the latter type of application, we transpose both
sides of Equation (46), use Equations (35) and (40), K = K/, N~! = —N and NK = —KN,
to obtain

Gh(xp, x4) = — /B.DG(XB/X)KG+(XAIX)K”3d2XH- (47)

When the medium is lossless, G(x4,x) and G(xp, x) can be interpreted as responses to
sources at x at the boundary 0D, observed by receivers at x4 and xp inside D) (Figure
3b). The right-hand side of Equation (47) can be seen as (the Fourier transform of) the
cross-correlation of these responses, integrated along the boundary 0ID. The left-hand side
is the retrieved homogeneous Green’s matrix between x4 and xz. Hence, the receiver at
X4 (on the right-hand side of this equation) is turned into a virtual source at x4 (on the
left-hand side). When the sources at dID are uncorrelated noise sources, the right-hand side
of Equation (47) can be turned into a direct cross-correlation of the noise responses at x4
and xp, without needing an integral along the sources (similar as in references [64-68]; a
further discussion of Green’s matrix retrieval from ambient noise is beyond the scope of
this paper).
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a)
- ng = —11 x oD _
D
x3,1
oD
b)
—I3,1
x3,1
c)
- ng = *11 x oD _
D
d)
. ng = —11 x oD _
D

Figure 3. (a) Back propagation in an arbitrary inhomogeneous medium in D) (Equation (46)). (b)
Interferometric Green’s matrix retrieval in an arbitrary inhomogeneous medium in D (Equation (47)).
(c) Green’s matrix retrieval in a medium with P7-symmetry in D (Equation (50)). The integral is
single-sided, but four receivers are required in the medium and its adjoint. (d) As in (c), but requiring
two receivers only in one-and-the-same lossless medium (Equation (51)).

Note that in Equations (46) and (47), the integration boundary 0D consists of two
boundaries, which together enclose x4 and xg. Hence, depending on the application,
one needs either receivers (Equation (46)) or sources (Equation (47)) on both boundaries
dD_ and 0D, . In many practical situations, a medium is accessible from one side only,
meaning that the integral can only be evaluated along a single boundary. For media with
PT -symmetry, the integral along the two-sided boundary dID can be turned into an integral
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along only one of the boundaries dD_ or 0. We illustrate this for Equation (47). Using
that n3 = £1 at 0D+, Equation (47) can be rewritten as

Gh(xg,xa) = /a G(xg, x)KGT (x4, x)Kd?xg — /a G(xp, x)KGT (x4, x) Kd?xpy.  (48)
D D7 “ D+

For a PT-symmetric medium we can use symmetry relations (35) and (41). Together with

the aforementioned properties of K and N and KN = —]J, we thus rewrite the integral

along oD as

/ G(xg, x)KGT (x4, x)Kd?xyg = —/ JG(—xg, —x)KG'(—x4, —x)Nd?xy
D, D,

/BD JG(—xg,Xx)KG' (—x4, x)Nd?x. (49)
With this, Equation (48) is turned into a single-sided integral, according to

G (xg,X4) = /aD (G(xp, )KG (x4, %)K — JG(—xp, ) KG (—x4, )N ) dPxp1.  (50)

The evaluation of this integral requires observations at four positions in the P77 -symmetric
medium and its adjoint (Figure 3c). For the special case that xg = —x4 and the medium is
lossless, we obtain

Gh(—x4,x4) = /i;D (G(fo,x)KG’L(xA,x)Kf]G(xA,x)KG’L(fo,x)N)dsz. (51)

This integral can be evaluated when observations at only two positions are available
(Figure 3d).

6. Relations between Reflection and Transmission Responses

In reference [33] we presented a systematic analysis of the relations between reflection
and transmission responses of arbitrary inhomogeneous media. Here we extend this
analysis for P77 -symmetric media.

Consider the configuration of Figure 1, with D embedded between two identical
homogeneous lossless half-spaces. Sources may be present outside dD, but we assume
there are no sources in D. When the medium in state A is the same as that in state B, we
find for this situation from reciprocity theorems (16) and (17)

/BD a4 ()Ngp(x)n3d’x = 0 (52)
and, assuming P7 -symmetry,
| ah(—0Nag(x)nadx = 0, (53)

respectively. On the other hand, when the medium in state A is the adjoint of that in state
B, we find from reciprocity theorems (18) and (19)

| ah00KasGomsdix = 0 54

and, assuming P7T -symmetry,

/aD 944 (—x)Kqp(x)n3d*xyg = 0, (55)
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respectively. Using this for the left-hand sides of Equations (27)-(30), we find that the
right-hand sides of those equations are also equal to zero. Dividing dID again into dD_ and
oD, with n3 = —1 and n3 = +1, respectively, we thus obtain

(x) ~ {pa(x )}*p§<x>)d2xH = [y ((PA09Y P 00~ P2 ()P (9) s, (56)
(a3 (0) P = [ ({p4(—01P5 ()~ (P () P ())&, (57)
(9~ {pa (01 Py () ) = [ ({p400) P50 — (a0} Py (0))dPxar, 68)

0) i = [ (P51 (9~ {pa (=)} Py () dxas 59)

Equations (56) and (58) hold for arbitrary inhomogeneous media in D, whereas PT -
symmetry is assumed for Equations (57) and (59). Equations (56) and (57) hold when
the medium in state A is the same as that in state B, whereas the underlying assumption
for Equations (58) and (59) is that the medium in state A is the adjoint of that in state B.

Next, we define the states to which these reciprocity theorems will be applied. For state
A1l (Figure 4a) we choose a unit source for flux-normalized downgoing waves at x4, just
above dD_. The downgoing field p} at dD_, i.e., just below the source, is I6(xyg — Xp1,4),
where xy1, 4 denotes the horizontal coordinates of x4. The upgoing field p, at dD_ is the
reflection response RY(x, x4 ) (the symbol R” standing for “reflection from above”) and
the downgoing field p}; at oD is the transmission response T¥(x,x4). At 9D, there is
no upgoing field. The fields in state A1 are summarized in the upper-left part of Table 2.
For state A2 (Figure 4b) we choose a unit source for flux-normalized upgoing waves at x/;,
just below 0D ;. The upgoing field p, at dD, i.e. just above the source, is 16 (xH Xty 4)s
where xi; , denotes the horizontal coordinates of x/;. The downgoing field p atoD is
the reflection response R"(x,x/; ) (the symbol R" standing for “reflection from below”) and
the upgoing field p;, at dD_ is the transmission response T'(x,x/,). At dD_ there is no
downgoing field. The fields in state A2 are summarized in the lower-left part of Table 2.
States B1 and B2 are defined in the same way, except that all subscripts A are replaced by
subscripts B (see the upper-right and lower-right parts of Table 2).

Table 2. States for the derivation of relations between reflection and transmission responses from
reciprocity theorems (56)—(59).

State Al pj(x) p,(x) State B1 Py (%) pp (x)
xatoD_ I6(xg — Xp,4) RY(x,x4) x at oD I6(xy — xyg 8) RY(x,x3)

x at oD TH(x,x4) (o) x at oD T+ (x, xp) (0]
State A2 P (%) p,(x) State B2 Pz (x) pg (x)

x at oD_ o T (x,%/;) x at oD_ (0] T (x,x})

x at oD R (x, X)) 16(xH — Xi1 4) x at oD+ R (x,x};) 16(xH — X3 p)

In the following derivations, keep in mind that x4 and xp are both just above dD_,
whereas x/, and x}; are both just below oD . Consequently, —x4 and —xp are both just
below 0D, whereas —x/, and —xJ; are both just above 0ID_. Finally, when variable x is at
dD_, then —x is at 0D and vice versa.
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a) State A1l
XA
. )ec oD_
RY(x,x4) (2 TH(x,x4) D
T31 ®
X 8D+
b) State A2
. X oD_
R / SN\ | Tex) D
€31 -
X fo 8D+

Figure 4. States for the derivation of relations between reflection and transmission responses from
reciprocity theorems (56)—(59). (a) State A1: the source at x4 is situated just above 0ID_. The responses
atdD_ and 9D are the reflection response RY(x,x4) and the transmission response T+(x,x4). (b)
State A2: the source at x/, is situated just below 9D . The responses at 9D and dID_ are the reflection
response R (x, x’A) and the transmission response TT(x, x;‘).

We substitute combinations of A and B states into the reciprocity theorems (56)—(59).
We start with substitutions in reciprocity theorem (56). Substituting states A1 and B1 yields

RU(XA,XB) = {RU(XB,XA>}t. (60)
States A1 and B2 substituted into Equation (56) yields
T'(xa,xp) = {T*(xp,xa)}'. (61)

Substitution of states A2 and B1 yields a redundant relation which is not given here. Finally,
substitution of states A2 and B2 into Equation (56) yields

R (x, xp) = {R" (x5, x) }'. (62)

Equations (60)—(62) are the source-receiver reciprocity relations for flux-normalised reflec-
tion and transmission responses of an arbitrary inhomogeneous medium [33].

Next, we use reciprocity theorem (59) to derive additional source-receiver reciprocity
relations for these responses in a medium with P77 -symmetry. Substituting state Al (in the
adjoint medium) and state B1 (in the original medium) yields

TH(—xa,x5) = {T*(—x,x4)}". (63)
State A1 (in the adjoint medium) and state B2 substituted into Equation (59) yields

R™(—x4,%p) = {R"(—xp,x4)}". (64)
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We skip the redundant relation which is obtained by substituting states A2 and state B1.
Finally, substitution of state A2 (in the adjoint medium) and state B2 into Equation (59)

yields

Equations (63)—(65) are illustrated in Figure 5.

a)

—I3,1

s

31

—Z3,1

€31

—T31

€31

T (—xy, xp) = {TT(—x5, x4)}'- (65)

x4 x5 9D_
Ti(—xB,xA) Tl(—xA,xB) D
—XpB —XA 6]D)+
_x XA
x5 x oD_
RU(_X/B7XA)
D
R (7XA7X/B)
L J L J
—XA X/B 8D+
oD_
D
oD,

Figure 5. Additional source-receiver reciprocity of transmission and reflection responses for a
medium with P7-symmetry. (a) Equation (63). (b) Equation (64). (c) Equation (65).

Next, we derive two relations using reciprocity theorem (58). Substitution of state Al
(in the adjoint medium) and state B1 yields

/BID>+ {TH(%, x4) }TH(x, xp)d?xpyg = 16(xp1, 4 — Xp1,8) — /am,{RU(x' x4) }TRY (x, x3)dxyy. (66)

This relation is a generalisation to an arbitrary inhomogeneous medium of the 1D energy
conservation relation | T+|? = 1 — |RY|? for a lossless layered medium. In its general form it
can be used to derive properties of the transmission response from the reflection response
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measured at dD_. Substituting state Al (in the adjoint medium) and state B2 into Equation
(58) yields

/a ARV T ) P = /a D+{T¢(x,xA)}+Rﬂ(x, ) d2xz1. 67)

This expression relates reflection and transmission responses of an arbitrary inhomogeneous
medium. Substitution of other combinations of the states in Table 2 into Equation (58)
yields relations similar to Equations (66) and (67), which are not explicitly give here.

Finally, we derive two more relations for media with P77 -symmetry, using reciprocity
theorem (57). Substitution of states Al and Bl yields the following relation between
reflection and transmission responses

/B]DJ {TJ((_X/XA)}-'—RU(XI XB)dsz = - {RU(_XI XA)}-[-Ti(x/ XB)dsz/ (68)

whereas substitution of states A1 and B2 gives

/aD {TH( =%, x2) T (x, X ) d®xyg = 16(—xpq,4 — Xi1p) — /aD {RY(=xx4) } R (x, X )d*xi. (69)
- +

The latter expression is a generalisation to an inhomogeneous P 7T -symmetric medium of
the 1D unitarity relation |T+|?> = 1 — RV*R" for a layered P T -symmetric medium [3,8].
Substitution of other combinations of states into Equation (57) gives similar relations, which
will not be discussed.

7. Marchenko Method for P77 Media with Double-Sided Access

Building on work by Marchenko [69], geophysicists recently developed a methodology
to retrieve the wave field inside a 3D inhomogeneous medium from reflection measure-
ments at its boundary [34,70-76]. Underlying this methodology are representations for
Green’s functions in terms of the reflection response and focusing functions [35,36]. Here
we review these representations, modify them for P77 -symmetric media, discuss a modified
Marchenko method and illustrate it with a simple numerical example.

We define a focal point xp = (x1 f, X2 r, X3 F), with x3 r somewhere between —x31 and
x3,1. We will apply the reciprocity theorems (56) and (58) to a modified domain, enclosed
by dD_ and dD, with the latter boundary chosen at x3 r (hence, we replace oD by oDr
in these reciprocity theorems, see Appendix B for further details). For state A (Figure 6a)
we choose again a unit source for flux-normalized downgoing waves at x4, just above
dD_. The downgoing field p}; at dD_, i.e., just below the source, is I6(xy — Xp1,4) and the
upgoing field p}; at 9 _ is the reflection response R”(x, x4 ). The response at 0Dr consists
of the downgoing and upgoing parts of Green’s matrix, i.e., G (x,x4) and G~ (x,x4),
respectively. The fields in state A are summarized in the left part of Table 3. For state B
(Figure 6b) we choose a flux-normalized focusing matrix f; (x, xp) defined in a medium
which is reflection-free below the focusing depth level 0Dr. At 0D_ this focusing matrix
consists of downgoing and upgoing parts f; (x, x¢) and f; (x, xf), respectively. It is defined
such that it focuses at 0D, hence ff(x, xp) = I6(xyg — xp ) for x at 0Dp, where xg r
denotes the horizontal coordinates of xr. Since the medium below dDf is reflection-free
for the focusing matrix, we have f; (x,xg) = O for x at dDr. The fields in state B are
summarized in the right part of Table 3.

Table 3. States for the derivation of Marchenko-type representations.

State A p,(x) p4(x) State B Pz (x) pp (x)
x at oD I6(xg — Xpp,4) RY(x,x4) x at oD £ (x,xp) £, (x,xp)
x at 0D GT(x,x4) G~ (x,x4) x at 0D I6(xyg — XpF) (0]
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Figure 6. States for the derivation of Marchenko-type representations. (a) State A: the source at x 4 is
situated just above dD_. The response at dD_ is the reflection response R (x, x4 ) and the response
at the focal depth level 9D consists of the downgoing and upgoing Green’s matrices G*(x,x4) and
G~ (x,x4), respectively. (b) State B: the focal point xr is situated at dDr. At 0D_ the focusing matrix
consists of downgoing and upgoing parts f; (x,x¢) and f; (x, xg), respectively. The medium below
dDy is reflection-free for this state.

Substituting states A and B into Equation (56) (with dD . replaced by dDr) yields

{G™ (xp, xa)} +f; (xa,xp) = /am) {RY(x, x4) }'£] (%, xp)d*xp1. (70)

Substitution of state A (in the adjoint medium) and state B into Equation (58) yields
—{C+(XF, XA)}+ + f;r (XA, XF) = AD {RU (X, XA)}+f; (X, XF)dZXH. (71)

In most papers on the Marchenko method, the medium is assumed lossless. In that
case the adjoint medium is the same as the actual medium, meaning that the bars in
Equation (71) can be omitted; hence, one-and-the-same reflection response RY (x,x4) ap-
pears in Equations (70) and (71). Slob [77] extended the Marchenko method for dissipative
media, using (scalar versions of) Equations (70) and (71), including the bars. His method
requires the reflection response R¥(x, x4 ) in the actual (dissipative) medium and RY(x, x4)
in the adjoint (effectual) medium. The former is obtained from measurements, the lat-
ter has to be obtained in a different way. Slob [77] proposes to measure the reflection
response R from below (next to the reflection response RY from above), and the trans-
mission responses T+ and T'. Having these responses, R can be obtained by solving
Equations (66) and (67). Cui et al. [78] applied this method successfully to acoustic re-
sponses of a dissipative medium.

For PT-symmetric media, RY at dD_ can be obtained directly from R" at oD
(Figure 6a), using Equation (64). Substituting this into Equation (71) (and Equation (60)
into Equation (70)) yields

{G™ (g, xa)} + f1 (xa,xp) = ./E)ID) R” (x4, %) (x, xp)d*xp (72)
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and
—{GT(xp,xa)}T +£] (xa,xF) = /an),{Rm(_xA’ —x) Y £ (%, xp)d*xp. (73)

Equations (72) and (73) form the basis for the Marchenko method in a P7T -symmetric
medium. The approach is similar to that for lossy media [77], except that here we have
replaced RY by R". Starting with an estimate of the direct arrival of the focusing matrix,
f1+’ ar the Marchenko method leads to the retrieval of G~ and G, the latter in the adjoint
medium. To retrieve G in the actual medium, we need a second set of equations. To this
end, we replace all quantities in Equations (72) and (73) by quantities in the adjoint medium
(which implies that G is replaced by GT). Using Equations (60) and (64) this yields

{G™ (xp, xa)} + £ (xa,xp) = /E;]D) R (—x4, —x)ff(x,x;)dZXH (74)

and

—{GT (xp, xa) } + B (x4, xp) = /a R G ) (xe )l (75)

Starting with an estimate of f;“’ By the Marchenko method leads to the retrieval of G~ and
G*.

We illustrate this with a numerical example for electromagnetic waves in a hor-
izontally layered P7T-symmetric medium. Figure 7a shows the relative permittivity
er(x3) = e(x3)/ep (with gp the permittivity of vacuum) and Figure 7b the conductiv-
ity o(x3). Both functions are chosen real-valued and frequency-independent. Note that
er(x3) is symmetric and o(x3) is asymmetric. Hence, for £ defined in Equation (6) we have
E(—x3,w) = E*(x3,w) = £(x3,w), meaning that Equation (11) is satisfied. The relative
permeability i, (x3) is set to i = 1.

a) —0.6 b) —-0.6
04+ 1 —04+
] [
_—02} 1 02}
£ E
£ 0 £ 0
§ 3
0.2} : © 02!
0_4—:‘ ] 04+ j

0 5 10 -0.05 0 0.05
& o m)'1

Figure 7. Parameters of a horizontally layered P7T-symmetric medium. The red stars indicate the
focal depth x3 r.

We define the spatial Fourier transform of a space- and frequency-dependent function
u(x, w) along the horizontal coordinate vector xy as

ii(s,x3,w) = /}RZ exp{—iws - xp }u(xy, x3,w)d2xH, (76)
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with s = (s1,s2), where s1 and s, are horizontal slownesses and R is the set of real numbers.

Moreover, we define the inverse Fourier transform from frequency w to intercept time 7 as
[79]

u(s,x3,T) = %%/000 ii(s, x3,w) exp{ —iwt }dw. (77)

Applying these transforms to Equations (72)—(75) for xp = (0,0, x3 ) and x4 = (X4, —X31)
with variable xy 4, yields

{G (—s,x3p, —x31,T)} + £, (5, —x31, X35, T) = /Ooo RY(s, —x31, 7 )£/ (s, —x31, x3 5, T — T')d7, (78)
—{GT(s,x3p, —x31, — 1)} + £ (s, —x31, %35, T) = /OOO R (s,x31, 7 )f; (s, —x31,x3,p, T+ 7')dT, (79)
{G™(—s,x3p, —x31, 1)} + 5 (s, —x31, %35, T) = /Ooo R (—s,x31,T)E (s, —x31,x3p, T — T')dT, (80)
—{Gt(s,x3r, —x31, —T)} + £/ (s, —x31, %35, T) = /O.oo RY(—s,—x31,7)f (s, —x31, 235, T+ T)d7’.  (81)

Taking the horizontal slowness s, equal to 0, the transverse-electric (TE) mode decouples
from the transverse-magnetic (TM) mode. Consequently, the matrices in Equations (78)—(81)
diagonalize. We continue with the upper-left elements of these matrices, which correspond
to the up/down decomposed TE-mode. We use the reflectivity method [80] to model
the response of the medium. Figure 8a shows the scalar reflection response from above,

RY(s1,—x31,7), for —x37 = —0.6 m, as a function of intercept time 7 and incidence
angle 0. The latter is related to the horizontal slowness s; via % = 51, with ¢ the
propagation velocity at —x3; = —0.6 m (which is equal to the velocity of light in vacuum,
since &, = yr = 1 at —x3; = —0.6 m). Similarly, Figure 8b shows the scalar reflection

response from below, R"'(s1,x31,7), for x31 = 0.6 m. Both responses have been convolved
with a symmetric source function with a central frequency of 2 GHz. Our aim is to use
the Marchenko method to find the downgoing and upgoing parts of Green’s function,
Gt (s1,x3F, —x31,7) and G~ (s1,x3F, —x31, T), between —x37 = —0.6 m and an arbitrary
focal depth x3 r inside the medium, from the reflection responses R" and R". We discuss
the main steps; for details on the Marchenko method, see the references at the beginning
of this section. For this example we choose the focal depth as x3 r = —3.75 cm (indicated
by the red stars in Figure 7). We apply a time window to suppress Green’s functions from
Equations (78)-(81), which leaves equations for the focusing functions f;, f;, fi and f; .
We model the direct arrival f1+ 4 in the medium of Figure 7. Using this direct arrival as
an initial estimate of flJr , the windowed versions of Equations (78) and (79) are iteratively
solved for f;” and f; . Once these are found, the original versions of Equations (78) and
(79) (i-e., without the time window) yield estimates of G~ and G'. Next, we model the
direct arrival ff“ 4 in the adjoint of the medium of Figure 7 and use windowed versions
of Equations (80) and (81) to solve for f;" and f;” and, subsequently, retrieve estimates
of G~ and G*. The results G™ and G~ are shown by the red-dashed lines in Figure 9a,b,
respectively. The first arrival in G* comes from f1+ 4 all other (multiply reflected) arrivals
in G* and G~ have been retrieved from RY and R"'. The results are overlain on the directly
modelled versions of Gt and G, obtained with the reflectivity method (black solid lines).
Note that the match is excellent.
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Figure 8. (a) Reflection response from above, RY(s;, —x31,T), for —x31 = —0.6 m. (b) Reflection
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Figure 9. (a) Green's function G* (s1, x3, —x31, 7). (b) Green’s function G~ (s1, X3, —x31, 7). The
red dashed lines are Green’s functions retrieved with the Marchenko method from R” and R"; the
black solid lines are the directly modelled Green’s functions.

8. Discussion and Conclusions

Starting with a unified matrix-vector wave equation for acoustic, quantum-mechanical,
electromagnetic, elastodynamic, poroelastodynamic, piezoelectric and seismoelectric waves,
we established symmetry properties of the operator matrix appearing in this equation for
the situation of 3D arbitrary inhomogeneous media and for 3D inhomogeneous media
with PT-symmetry. For the latter situation we obtained an auxiliary matrix-vector wave
equation. Exploiting the symmetry properties, we derived four unified reciprocity theo-
rems, two for arbitrary inhomogeneous media and two for inhomogeneous media with
PT-symmetry. We used these reciprocity theorems to derive general wave field repre-
sentations and relations between reflection and transmission responses, for 3D arbitrary
inhomogeneous media and for 3D inhomogeneous media with P7 -symmetry, embedded
between two homogeneous lossless half-spaces. These relations have potential applications
in forward and inverse problems in such media, including interferometric Green’s matrix
retrieval from passive or active measurements. Finally, we modified the Marchenko method
for retrieving Green’s matrices from reflection measurements for 3D inhomogeneous media
with PT-symmetry.

Given the current broad interest in applications of wave propagation and scattering in
photonic structures, phononic crystals and acoustic metamaterials with P7-symmetry, we
hope that our unified formulation for different wave types and our generalisation for 3D
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inhomogeneous media with P77 -symmetry, will contribute to further developments in this
interesting field of research.
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Appendix A. The Operator Matrix and Its Properties
Appendix A.1. The Wave Vector and Operator Matrix for Different Wave Phenomena

For acoustic waves in an inhomogeneous fluid, p and v3 in Table 1 are the acoustic
pressure and the vertical component of the particle velocity, respectively. The 2 x 2 operator
matrix A(x) is defined as [42,81-84]

0 iw
AR) = (im_iaa;aa op>' (A1)

1w

where x(x) is the compressibility and p(x) the mass density. Einstein’s summation conven-
tion applies to repeated subscripts.

For quantum-mechanical waves in an inhomogeneous potential, iy and m in Table
1 are the wave function and the mass of a particle, respectively, and i = h/2m, with h
Planck’s constant. The 2 x 2 matrix is [28,85,86]

0 mi
Ab) = <4i(w—v) — 23,0 2(?) (42)
T mi~ AT

where V(x) is the potential.

For electromagnetic waves in an inhomogeneous, isotropic medium, E, and H,
(« = 1,2) in Table 1 are the horizontal components of the electric and magnetic field strength,
respectively. The 2 x 2 sub-matrices of operator matrix A(x) are given by Equations (4)
and (5).

For elastodynamic waves in an inhomogeneous, isotropic solid, vy and T3 (k = 1,2,3)
in Table 1 are the particle velocity and traction components, respectively. The 3 x 3 sub-
matrices are [40,42,52]

0 0 3
Ap(x) = g g —02 |, (A3)
o0 0
Ap) = [0 % 0 |, (A4)
0 0 »
Iz
iwp — % (311/191 + az}laz) —% (82}181 + 811/282) 0
Ax(x) = — L (021201 + 911402) iwp — - (901 +021102) 0 |, (AD)
0 0 iwp

Ap(x) = —Al(x), (A6)



Symmetry 2022, 14, 2236

22 of 28

with

won(B) a-n(ly)

where A(x) and u(x) are the Lamé parameters and p(x) the mass density.

The wave field quantities for the other wave phenomena in Table 1 are the same
quantities as above, with superscripts b, f and s denoting that they are averaged in the bulk,
fluid or solid, respectively; ¢ denotes porosity. For the sub-matrices for these phenomena
we refer to the Appendices in reference [28].

Appendix A.2. Fourier Transform of the Operator Matrix

Consider any depth x3 where the medium is laterally invariant. Applying the spatial
Fourier transform of Equation (76) to the operator matrix of Equation (A1) yields

- 0 ]
A(s,x3) = (iw(;c A %Szxslx) “SP), (A8)

with x(x3) and p(x3) being the laterally invariant compressibility and mass density at x3.
Note that 0, has been replaced by iws,. The operators for other wave phenomena are
transformed in a similar way. The symmetry properties of Equations (7)—(9) transform to

Al(=s,x3)N = —NA(s, x3), (A9)
Af(s,x3) K = —KA(s,x3), (A10)
A*(=s,x3)] = JA(s,x3). (A11)

In Equations (A10) and (A11), f\(s, x3) is defined in the adjoint medium.

Appendix A.3. Decomposition of the Transformed Operator Matrix
We define the eigenvalue decomposition of the transformed operator matrix at x3 as

A(s,x3) = L(s,x3)A(s,x3)L7 (s, x3), (A12)

in which the matrices L(s, x3) and A(s, x3) are partitioned as follows

-\« (AT o
;), A(s,xg)—<0 A_). (A13)

=t -t

+
1
F
2

=t -t

L(s,x3) = <

For acoustic waves we have

. 1 (\/p/s3  +/p/s3 ~ _ (iws3 0
L(s,x3)—\ﬁ<m _\/m) A(s,x3)—< 0 —iw53>’ (A14)

where s3(s, x3) is the vertical slowness at x3, defined as

s3(s, x3) = C2(1x3) —saSa,  c(x3) =1/4/p(x3)x(x3). (A15)

When the medium is dissipative (with, for positive w, (k) > 0 and J(p) > 0), we have
J(s3) > 0, see Figure Ala. On the other hand, when the medium is effectual (with, for
positive w, J(x) < 0 and I(p) < 0), we have J(s3) < 0, see Figure Alb. Since the
parameters of the adjoint medium are defined as & = x* and p = p*, the vertical slowness
53 of the adjoint medium is given by 53(s, x3) = s5(s, x3).
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Figure Al. Slowness s3(s, x3) (for any depth x3 where the medium is laterally invariant) in the

complex plane for a dissipative (a) and an effectual (b) medium at x3.

For quantum mechanical waves we have

f_m [
1 2hws3 2hws3 ) (Al6)

L(s,x3) = —=
ﬁ \/2th3 o \/2th3
m m

and A(s, x3) and s3(s, x3) defined as in Equations (A14) and (A15), but with ¢(x3) defined as
(A17)

5152

S04/HS3 50

3
A (s,x3) = Fiw(D 0 so(s, x3) = L g (A19)
! 0 53 ! ! cz(x;.;) 2

and s3(s, x3) defined as in Equation (A15), but with ¢(x3) defined as c(x3) = 1//E(x3)p(x3).

S0 G
( VIS @> (A18)

For elastodynamic waves the sub-matrices of L and A are

_% (s3)'2 52

S
L[ o I
~ s (SS)I/Z
Li (s, x3) (2p)1/2 (SPS)21/2 —= s, Cssr(sslg)l/z ’ (A20)
:I:(Sé?)l/2 j:(s§5)rl/2
s (c’2—2s$) Sy1/2
+2s1 (55)1/2 + 13,(555)1/2 SZ(CS;S),
¢t P\Y2 5 sa(cs”=257) | si(s3)'/?
L3 (%) = (E) cs | £252(s3)"2 ¥ zs,(ssi)l/z R (A21)
_272 %
(C(Ssé’)l/sf) 25/(s3)1/2 0
s$ 0 0
0 s 0], (A22)
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with s, = 4 /s% + S% and the vertical slownesses sg and sg defined as

1

P,s /

$37(s,x3) = [ 5——— — SaSa, (A23)
3 C%,S(X3) adn

where cp(x3) and cg(x3) are the P- and S-wave velocities, defined as

cp(x3) = /(A(x3) + 2u(x3))/p(x3) and cs(x3) = /i(x3)/p(x3), respectively.
For all cases, matrix L(s, x3) obeys the following symmetry relations

L!(—s,x3)NL(s,x3) = —N, (A24)
L'(s,x3)KL(s,x3) = J. (A25)

Using 53(s, x3) = s;(s, x3) etc., we have in addition

Lf(—s,x3)NL(s,x3) = -N, (A26)
Lt(s,x3)KL(s,x3) = J. (A27)

Here L(s, x3) is defined in the adjoint medium. Finally, when the medium is lossless at x3,
we have s3(s, x3) = s} (s, x3) for propagating (i.e., non-evanescent) waves, hence

L'(—s,x3)NL(s,x3) = —N, (for propagating waves), (A28)

H
-+
—~
@
=
w
N—
)
=
g
=
W)
Il

J, (for propagating waves). (A29)

Appendix B. Detailed Analysis of the Boundary Integrals
Appendix B.1. Boundaries without Losses

Here we present the details behind the analysis of the boundary integrals in Section 4.
At and outside the boundary JID the medium is homogeneous, lossless, and identical in
both half-spaces and in both states. The boundary integral in Equation (16) consists of two
integrals [ q'y (xu, x3)Nqp (xm, x3)d*xy, one for x3 = —x3 and one for x3 = x31. Using
the spatial Fourier transform of Equation (76) and Parseval’s theorem, we obtain for these
integrals

2
w -
/RZ Q' (xu, x3)Nqp (xp1, x3)d*xpg = 02 Je ' (—s, x3)Ngp(s, x3)d’s, (A30)

for x3 = —x31 and x3 = x3 1. Applying the spatial Fourier transform to Equations (21) and (22),
we obtain

da(s,x3) = L(s,x3)pa(s x3), (A31)
de(s,x3) = L(s,x3)pp(s,x3), (A32)
with
P (S X ) _ f’z,B(S/ X3) (A33)
A,B\5, 13 ISZ/B(S/ x3) ’

where f)j’B(s, x3) and Pas(s x3) are downgoing and upgoing plane-wave fields in states
A and B at x3 = —x371 and x3 = x37. Note that L(s,x3) in Equations (A31) and (A32)
is without subscript A or B, since the medium at and outside dD is the same in both
states. Matrix L(s, x3) is given for a number of situations in Appendix A. Substitution of
Equations (A31) and (A32) into the right-hand side of Equation (A30) gives

w2

/]RZ q'y (xu, x3)Nqp (xp1, x3)d*xpg = ypg pl(—s, x3)L! (—s, x3)NL(s, x3)pp(s, x3)d?s,  (A34)
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for x3 = £x31. Using symmetry relation (A24) this yields

w?

/}RZ q'y (xt1, x3)Nqp (xp, x3)d*xy = "2 J Py (—s, x3)Npg(s, x3)d’s, (A35)
for x3 = +x31. Applying Parseval’s theorem to the right-hand side and combining the

integrals for x3 = +x3 1, finally yields

/aD qi‘(x)NqB(x)ng,dsz = - /8113) pi(x)NpB(x)ngdsz. (A36)

This is Equation (23) in the main text. Next, for the two integrals in the boundary integral
in Equation (17) we obtain, analogous to Equation (A30),

w?

o 2, _ W& <t ~ 2
/RZ qa (—xm, —x3)Nqp(xp, x3)d“xp = 32 Je da(—s,—x3)Ngg(s, x3)d’s,  (A37)
for x3 = —x3 3 and x3 = x3 ;. Substitution of Equations (A31) and (A32) into the right-hand
side of Equation (A37), using L(s, —x31) = L(s, x31) (since the medium at and outside oD
is the same in both half-spaces) and symmetry relation (A28), applying Parseval’s theorem

to the right-hand side and combining the integrals for x3 = £x3 1, yields

/BD q}(—x)NqB(x)ng,dsz ~ - /an) pz(—x)NpB(x)ng)dsz. (A38)

This is Equation (24) in the main text. The approximation sign denotes that evanescent
waves are ignored at dD), see equation Equation (A28).
Next, for the two integrals in the boundary integral in Equation (18) we obtain

w?

t 2, _ W ~t ~ 2
/]RZ q (xu, x3)Kqp(xp, x3)d"xy = 07 2 da(s, x3)Kqg(s, x3)d"s, (A39)
for x3 = —x37 and x3 = x3 ;. Substitution of Equations (A31) and (A32) into the right-hand
side of Equation (A39), using symmetry relation (A29), applying Parseval’s theorem to the

right-hand side and combining the integrals for x3 = £x3 1, yields

/B]I)) qL(x)KqB(x)mdsz ~ /am) pz(x)]pg(x)ngdsz. (A40)

This is Equation (25) in the main text. The approximation sign denotes again that evanescent
waves are ignored at dI), see equation Equation (A29). Finally, for the two integrals in the
boundary integral in Equation (19) we obtain

2
w - -
/RZ 'y (—xp1, —x3)Kqp (xp, x3)d*xp = 07 2 a4 (s, —x3)Kqp(s, x3)d%s,  (A4l)

for x3 = —x3 7 and x3 = x3 ;. Substitution of Equations (A31) and (A32) into the right-hand
side of Equation (A41), using L(s, —x31) = L(s, x31) and symmetry relation (A25), apply-
ing Parseval’s theorem to the right-hand side and combining the integrals for x3 = £x31,
yields

[ dh(oKasmdxa = [ ph(—xIpstomdixe.  (A%)
This is Equation (26) in the main text.

Appendix B.2. Boundaries with Loss or Gain

In Section 7 we consider a modified domain, enclosed by dD_ and 0Df, with dDr
(at x3 = x3r) somewhere between dD_ and dD, see Figure 6. Hence, dDr is situated
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in a region with loss or gain. Assuming that the medium is laterally invariant at 0Df,
Equation (A36), and Equations (23), (27) and (56) in the main text, still hold for the modified
boundary oD = 0D_ U dDr (since Equation (A36) only relies on symmetry relation (A24)).

Equations (A38) and (A42) both rely on L(s, —x31) = L(s, x31) and hence cannot be
modified for dD = dD_ U 9.

Finally, we discuss the modification of Equation (A40). Instead of symmetry relation
(A29) we use relation (A27) at dDr, which holds when there is loss or gain at dD¢. Since this
symmetry relation contains operator i(s, x3) in the adjoint medium, we replace Equation
(A31) by

da(s,x3) = L(s,x3)pa(s x3), (A43)

for x3 = x3r. Substitution of Equations (A32) and (A43) into the right-hand side of
Equation (A39) for x3 = x3 r, using symmetry relation (A27), applying Parseval’s theorem
to the right-hand side and combining the integrals for x3 = —x31 and x3 = x3 r, yields Equa-
tion (A40) for the modified boundary oD = 0D _ U 0D, assuming the medium parameters
at dDr in state A are the adjoint of those in state B. Under the same assumption, Equations
(25), (29) and (58) in the main text hold for the modified boundary 0D = dD_ U dDDr.
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