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Abstract—Transparency of behavior is important for robots
that work with humans. If such robots need to adapt to a variety
of users and tasks, they need to learn to optimize their behavior,
and Reinforcement Learning (RL) is a promising learning method
for this purpose. However, the behavior generated by RL is
not inherently transparent due to the exploration/exploitation
tradeoff that is needed to optimize a policy.

Emotions are -for humans- a natural way of communicating
intent and situational appraisal. In this study, we implemented
emotional expressions based on Temporal Differences as a means
to increase the transparency of a robot’s learning process.
We analysed the effect on the human teacher’s behavior and
experience, and on the robot’s learning result and learning
process.

A between-subject experiment with 61 participants and three
robot conditions was performed: no emotions, simulated emo-
tions, and simulated emotions with matching attribution. The
learning task was one where a human teacher had to help a
humanoid robot to learn the meaning of three colors.

Our results demonstrate minimal differences between these
three conditions. This means that for simple tasks, emotional
expressions grounded in RL do not help nor hurt. We discuss
our findings and propose three important criteria for interactive
learning tasks when investigating the effect of emotional expres-
sions grounded in RL. Such tasks need to be sufficiently complex,
afford robot autonomy, and the emotion must be informative
about how the user could influence the robot’s actions.

Index Terms—Reinforcement Learning, Temporal Difference,
Human Teacher, Emotions, Human-Robot Interaction

I. INTRODUCTION AND MOTIVATION

Transparency of behavior is important for intelligent sys-
tems that work with humans [1], especially when such sys-
tems become increasingly more complex. When a system is
transparent, users are able to better understand what these
intelligent systems are doing and why.

This is no different for robots that work with humans.
Transparency can help users better understand the reasoning
behind the robot’s behavior, enabling them to better assess the
robot’s capabilities [2]. Transparency also reduces conflict and
improves the robustness of an interaction, particularly in team
performance between robots and humans. [3].

If robots need to adapt to a variety of users and tasks,
they need to learn to optimize their behavior. Reinforcement

Learning (RL) is a promising learning method for this purpose
[4]. By repeatedly interacting with the environment, an RL
agent learns to adapt the values of actions to achieve the
optimal state transition policy that maximizes the rewards over
time.

However, the behavior generated by RL is not inherently
transparent due to the exploration/exploitation tradeoff that is
needed to optimize a policy for a specific task [5]. During
exploration, the robot will perform actions that are not the
best known actions at that moment in the learning process,
which might be confusing for the users. During exploita-
tion, especially premature exploitation (early convergence), the
agent may select actions that are suboptimal, again potentially
confusing the human.

Emotions are -for humans- a natural way of communicating
intent and situational appraisal. Most emotion theories propose
that emotions arise when a change in the situation is person-
ally meaningful to the agent. In cognitive appraisal theories,
emotion is often defined as a valenced reaction resulting
from the cognitive assessment of personal relevance of an
event [6]–[8]. The assessment is based on what the agent
believes to be true and what it aims to achieve as well. In
theories that emphasize biology, behavior, and evolutionary
benefit [9], [10], the emotion is more directly related to action
selection but still based on an assessment of harm versus
benefit. Importantly, evidence suggests that the expression
of the emotion mirrors the assessment [11]. Thus, if this
assessment is grounded in RL, expression of the resulting
emotion may help transparancy of the learning process.

The Temporal Difference Reinforcement Learning (TDRL)
theory of emotion [12] proposes that emotions are manifes-
tations of reward processing in Reinforcement Learning, in
particular manifestations of temporal difference assessment.
This Temporal Difference (TD) is the agent’s perception
of gain or loss of utility (well-being), resulting from new
evidence. This is a reinterpretation of cognitive appraisal in
terms of the reinforcement learning process.

This suggests that agents and robots that use RL to learn can
also simulate and express emotions grounded in their learning
process. Indeed, evidence suggests that the simulated emotions
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are plausible [12]–[15]. However, experimental evidence that
these emotions are useful, and plausible for human teachers
in a robot-human interaction setting is lacking.

In this paper, we investigate the hypothesis that emotional
expressions towards a human teacher based on Temporal
Difference learning can be used as a means to enhance the
transparency of a robot’s learning process [5]. Specifically,
the study examines the effect of robot emotional expressions
and the explanation of the source of the emotion (attribution)
on the teacher’s behavior and experience, and on the robot’s
learning result and learning process.

II. RELATED WORK ON EMOTION SIMULATION BASED ON
REINFORCEMENT LEARNING

While there are many studies that investigate the effect of
robot emotional expression on human observers or teachers,
in this paper we specifically focus on the effect of robot
emotional expression based on Temporal-Differences in RL on
the teacher and robot. Therefore in this paper we summarize
related work on simulating emotions based on Reinforcement
Learing.

Simulating emotions for RL agents and robots is not new
(for review see [16]). Here we focus on previous work that
simulates emotion elicitation based on the RL process, and
studies the plausibility/impact of the simulated emotions from
a human perspective. For example, Broekens et al. [13],
propose a computational model of joy, distress, hope, and fear
as mappings between RL primitives (reward, value, update
signal, etc...) and emotion labels. Joy/distress is derived from
the positive/negative temporal difference (TD) signal for the
current state, and hope/fear is derived from the learned value
of the current state. Results showed that emotions simulated
in this way are consistent with emotion elicitation, emotion
development, emotion habituation and fear extinction theory.
Later work using the same framework showed plausible sim-
ulations of fear and hope [17], and regret [15], again based on
a theoretical analysis of the simulated emotion intensities.

Moussa and Magnenat-Thalmann [18] included emotions,
attachment and learning in a decision-making Q-learning ar-
chitecture for a virtual agent. Their framework was evaluated
by interacting with users in different scenarios. Preliminary
results showed that the virtual agent showed appropriate
emotional responses to different user behaviours.

A recent study simulated emotions based on temporal differ-
ence signals and presented participants with videos of the robot
expressing these emotions [19]. The study was inconclusive
with respect to the transparency gained from these emotional
expressions. A later study [20] noticed a slight increase in
transparency but also proposed a larger scale study.

III. JOY, DISTRESS, HOPE AND FEAR IN THE TDRL
THEORY OF EMOTION

The TDRL Theory of Emotion proposes that all emotions
are manifestations of temporal difference errors [5], [12].
Emotion is defined as valenced appraisals in reaction to (men-
tal) events providing feedback to modify action tendencies,

grounded in primary reinforcers [12]. This idea of relating
emotions to the processing of goals and progress is in line
with recent cognitive theories of emotion [21], [22].

We now briefly explain what the TD error in RL is using
SARSA as an example. SARSA is the simplest model-free RL
method existing, and is an on-policy variant of Q-learning [23].
It learns action values Q(s, a) based on repeated observations
of states, actions, and rewards. It is called on-policy because
adaption of the Q-values is based on the actual actions chosen,
not on the best possible actions such as in Q-learning. It
is called model-free because SARSA does not learn or use
information about state transitions, only about Q-values. The
Temporal Difference (the learning signal for the action values)
is defined as follows:

Q(st, at)← Q(st, at)+α

Temporal Difference︷ ︸︸ ︷
(rt + γ ∗Q(st+1, at+1)−Q(st, at))

(1)
In the TDRL Theory of Emotion, Joy is proposed to be the

manifestation of a positive TD, while distress is a negative
TD. As such, Joy and Distress are defined as follows [12]:

if(TD > 0)⇒ Joy = TD (2)

if(TD < 0)⇒ Distress = TD (3)

Hope is the anticipation (forward simulated) of a positive
TD, while fear is the anticipation of a negative TD [12]. We
use these definitions of joy, distress, hope, and fear as a basis
for modeling robot emotion in this paper.

IV. METHOD

In this study, 61 adult participants (mean age 30.64, SD
13.147) were recruited to teach a robot three different colors
(red, green, and blue). The robot uses SARSA to learn a policy.
In the start state (see Figure 1), the robot asks the participants
which color to change its eyes to, and the participant could
respond with one of the three colors. The robot would then
choose one of three actions [eyes-red, eyes-green, eyes-blue],
and subsequently asks the participant if the color was correct,
which the participant could confirm or deny. The actual reward
was hardwired to make sure errors in interpretation of the
reward were not possible. No mismatch between user response
and hardwired reward occurred. The robot used ϵ-greedy
with ϵ-decay for its action selection process during learning.
Before the experiment, the participants were informed that
participation was voluntary and that they would have 10
minutes to teach the robot the three colors, which would be
more than enough time so that they would not feel rushed.
After convergence, the task ended.

A. Experimental manipulation

A between-subject experiment was conducted, where each
participant was randomly assigned to one of three different
robot modes. The first mode (mode 1) had no simulated
emotions, the second mode (mode 2) had simulated emotions
joy, distress, hope, and fear, and the third mode (mode 3) had
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Fig. 1: A visualisation of the MDP of the experiment, with
seven states, four actions, and their associated rewards

these simulated emotions and matching emotional attributions
(expressed vocally by the robot as the cause of its emotion).

The emotions of the robot were based on the TD value in
Equation 1. Joy and distress are based on the actually received
TD and calculated as follows:

if(TD > 0.2)⇒ Joy (4)

if(TD < −0.2)⇒ Distress (5)

Hope and fear are based on the forward simulated TDs in
the MDP, using a greedy simulation policy for the robot. TDs
are calculated for the greedy actions in the Task states (see
Figure 1). At the start state, the maximum absolute value of the
three simulated TDs for the three possible stochastic outcomes
(human picks red, green or blue) is selected and that TD is
used for the emotion to express. If that TD is positive, the
emotion is hope, if that TD is negative, the emotion is fear.
Only those transitions that are actually observed are used. The
calculations for hope and fear are:

TD = signed(max(|TDa,s∈Taskstates(argmax(Q(s, a)))|))
if(TD > 0.2)⇒ Hope

if(TD < −0.2)⇒ Fear
(6)

Joy and distress are expressed right after receiving the TD
update for an action (i.e., after the transition to a new state).
Hope and Fear are expressed in a state, before the robot action
to ask the user for a command. Multiple emotions can be
expressed in a row, for example, upon ariving in an outcome
(color) state the robot can express distress if it calculates a
negative TD due to a wrong choice, and then fear in the start
state for the possible wrong choice it may make in the future.

As an emotion is either expressed or not (no intensity), we
introduced a small threshold for the emotion elicitation, so
that the robot only expresses an emotion when a significant
change in the TD occurs. This was done to stop the robot
expressing emotions when converging on the learning task.

The robot mode with matching emotional attributions ex-
plains to the user what color it is feeling hope or fear for
(precisely: the TD associated with a transition to an outcome
state). This explanation is in addition to expressing the emo-
tion. As such, in this condition the robot explains the cause of
the prospect-based emotions, the attribution of hope and fear.
The robot only explains this to the user in the start start. If
the robot were to simulate hope, it will add the statement ”Ik
hoop dat het {color} wordt!” or ”I am hoping for {color}!”
after the hope expression.

The emotions of hope, fear, joy, and distress were expressed
using both the body language of the robot and verbal ex-
pressions. The poses used for these emotions were based on
previous research by Thoma et al. [24] and Wu et al. [25],
and are shown in Figure 2. The verbal expressions used for
the Dutch robot mode and the English mode can be seen
in Tables I and II, respectively. During the interaction, the
algorithm randomly choses one of the three expressions to
avoid repetition of statements.

(a) Hope (b) Fear (c) Distress

(d) Joy (e) Neutral

Fig. 2: The NAO in the poses for the 4 emotions and it’s
neutral pose.

B. Measurements

Learning progress (and final outcome) is measured based on
the number of color outcome states towards which the Q-table
has a maximum value transition above zero (robot has learned
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TABLE I: The statements in Dutch made by the robot for
different emotions and for the neutral mode without any
emotions

Emotion Expression 1 Expression 2 Expression 3
Hope Ik heb er zin in Kom maar op! Dat gaat wel weer

goed komen.
Fear Oei dit vind ik

spannend.
O nee dit gaat
vast niet.

O nee, dit gaat
fout.

Joy Hoera Jippie Wat fijn
Distress Drommels Helaas Wat jammer
Neutral Oké Bedankt Prima

the correct action). The Q-table will have a value greater than
zero when the correct color has been performed at least once.

All possible values for learning progress are:
0) no color learned
1) one color learned
2) two colors learned
3) three colors learned
For measuring the learning process, the following was

collected:
• The progress of robot learning over iterations
• The ratio of exploration commands given by the user
• The ratio of exploitation commands given by the user
• The ratio of inefficient exploitations commands by the

user (i.e., when the user selects a learned color when
there are unknown colors left)

• The ratio of the user selecting another command the next
trial, dependent on whether the previous command was
correctly executed by the robot or not (i.e., the probability
of ”switching” to another color command depending on
wether the robot correctly executed the last command)

After the experiment, the participants were asked to answer
two questionnaires: the Godspeed Questionnaire [26] and the
User Experience Questionnaire (UEQ) [27]. The Godspeed
questionare was used to measure the perceived Anthropomor-
phism, Animacy, Likeability, and Intelligence. The UEQ was
used to find the perceived Novelty, Stimulation, Efficiency, and
Attractiveness.

C. Reliability checks

It was decided to not use the scores for perspicuity and
dependability from the UEQ as the consistency of these scores

Emotion Expression 1 Expression 2 Expression 3
Hope I am looking for-

ward to this
”Let’s go! Okay. Let’s go

Fear This is a bit scary
for me

O no, it will go
wrong again

Oh no, it will go
wrong

Joy Hooray Nice Lovely
Distress O bother Let’s pretend that

did not happen
How unfortunate

Neutral Okay Thank you Check

TABLE II: The statements in English made by the robot
for different emotions and for the neutral mode without any
emotions

was very low. The Cronbach’s Alpha for perspicuity was
.291 and for dependability it was .494. For the other UEQ
scores, the Cronbach’s Alpha for attractiveness was .876, for
efficiency it was .661, for it stimulation it was .733, and for
novelty it was .628. For Godspeed Cronbach’s Alpha was
calculated as well. For anthropomorphisrm it was .791, for
animacy it was .637, for Likeability it was .847, and for
Perceived intelligence it was .623.

There was no difference in age, gender or number of
participants between the conditions. Condition one had 20
participants, mean age of 30.20 years (SD = 13.950) and
consisted of 11 males, 8 females, and one other. Condition
two had 20 participants, a mean age of 28.95 years (SD =
9.288), with 13 males, and 7 females. Condition three had 21
participants, a mean age of 32.67 years (SD = 15.631) and 13
males and 8 females.

Finally, we asked subjects to rate their experience with
robots and computer science, and checked with an ANOVA
if conditions would predict a difference in experience, which
was not the case [F(2,58=0.076, p=0.927].

V. RESULTS

To investigate the effect of the different robot modes on the
user experience a MANOVA test has been conducted on the
Godspeed Questionnaire and the UEQ. Godspeed measured
the user experience on perceived anthropomorphism, animacy,
likeability, and intelligence. This MANOVA did not show
any significant effects [F(8,108) = 1.325, p = .239]. The
UEQ looked at the user experience on perceived novelty,
stimulation, efficiency, and attractiveness. This MANOVA did
not show any significant effects as well, [F(8,108) = 1.647,
p = .120].

The p-values resulting from the univariate ANOVAs for each
dependent variable can be seen in table III, showing that only
novelty has a significant [F(2, 58) = 3.485, p = .037] effect,
with a near significant effect for animacy [F(2, 58) = 3.103,
p = .052].

To test for differences between the different robot modes,
we performed Post-Hoc tests. For completeness, we report
corrected (Bonferroni) and uncorrected (LSD) comparisons.
Please note that table III shows the uncorrected p values.
Corrected values can be calculated by dividing the uncorrected
p values by 3 (the number of condition comparisons).

With Bonferroni correction for multiple comparisons [28],
the only significant difference is found for perceived novelty
between the no emotions and the emotions condition [Mean
= 3.2411, SD = 0.57141; Mean = 3.6875, SD = 0.53186
respectively, with p = 0.034].

Without correction for multiple comparisons, the LSD Post
Hoc test showed more significant differences (See Table). In
particular, we found a significant difference between the means
of Animacy for the robot without emotional expressions [Mean
= 2.8917, SD = .57297] and the robot mode with emotional
expressions [Mean = 3.2667, SD = .49971] with p = .027.
We also found a significant difference between the mean of
Animacy for the robot without emotional expressions and the
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mean of Animacy with emotional expressions and attribution
[Mean = 3.2222, SD = .48971] with p = .027.

A near signiciant difference was found between the means
of Attractiveness for the robot without emotional exressions
[Mean = 3.5298, SD = 0.70933] and the robot mode with
emotional expressions [Mean = 3.8209, SD = .61618], p =
0.053.

In figure 3 the mean scores for the User Experience ques-
tionnaire can be seen. The results of the UEQ have been
scaled to the scale of the Godspeed questionnaire, so both
questionnaires are on a scale from 1 to 5.

None of the other results on learning progress/outcome
and learning process were significantly different between the
robot conditions. We observed no differences for the number
of iterations needed to converge, the color selection of the
human, the exploration/exploitation behavior of the human,
the learning progress over time, or the exploration/exploitation
varying over time (see plots and bar charts).

Post-Hoc ANOVA
Score \ Between modes 1-2 1-3 2-3
Attractiveness .053 .132 .639 .127
Efficiency .862 .370 .284 .512
Stimulation .172 .313 .705 .366
Novelty .011 .296 .115 .037
Perceived intelligence .821 .890 .928 .974
Likeability .108 .205 .712 .238
Animacy .027 .047 .786 .052
Anthropomorphism .586 .092 .250 .223
LS3 Location .401 .577 .769 .692
Loops in LS0 .313 .749 418 .583
Loops in LS1 .775 .667 .473 .768
Loops in LS2 .395 .895 .467 .655
Inefficient Exploitation .929 .429 .483 .683Ratio
Exploitation Ratio .719 .745 .492 .788
Exploration Ratio .719 .745 .492 .788
Different command after failure .428 .170 .563 .385
Different command after succes .641 .497 .835 .785
Same command after failure .909 .444 .379 .628
Same command after succes .569 .872 .462 .741

TABLE III: Post Hoc comparisons between robot modes
and univariate ANOVAs. For the Post-hoc comparisons the
table shows the uncorrected p values. Corrected p values
can be calculated by multiplying the uncorrected p values
by 3 (the number of condition comparisons).Yellow values
indicate uncorrected significant differences (LSD), but not
corrected significance (Bonferroni). Green indicates corrected
significant differences (Bonferroni). For the ANOVA green
indicates significant at the 0.05 level, light green indicates near
significance at the 0.1 level. All values have been calculated
with a univariance general linear model. For all ANOVA’s the
degrees of freedom were: F(2, 58).

VI. CONCLUSION AND DISCUSSION

Our results demonstrate minimal differences between a
robot without emotional expressions, one with emotional ex-
pressions grounded in the learing process, and one with emo-

Fig. 3: Error bars and means of the Godspeeds scores for An-
thropomorphism, Animacy, Likeability, and Intelligence and
the scaled means for the UEQ scores for Novelty, Stimulation,
Efficiency, and Attractiveness for the different robot modes
with error bars

Fig. 4: Bar plot with error bars of the mean of the number of
iterations the robot took to learn 1, 2, and 3 correct colors,
with the total sum of iterations for the complete experiment.

Fig. 5: Error bars and means of the ratios for the command
selected by the user, dependent on the robot’s success on the
previous command
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Fig. 6: Error bars and the means of the ratio of inefficient ex-
ploitation commands, exploration commands, and exploitation
commands

Fig. 7: Learning curves for three robot conditions, calculated
as means of the number of correct colors learned over the
iterations. Each curve is the mean over the particpants in that
condition.

Fig. 8: Mean of the exploration/exploitation tradeoff through-
out the iterations. A value of 1 indicates exploitation and a
value of 0 indicates exploration. Each curve is the mean over
the particpants in that condition.

tional expressions and the emotional attribution that belongs
to the emotion.

This means that for simple tasks, emotional expressions
grounded in RL do not help nor hurt. As the expressions
of the robots were very clear and perceived as intended by
participants, the emotional model was extensively evaluated
in previous work, pilot experiments were done extensively to
test the setup, and all of the participants understood the task,
and the differences between the conditions are very clearly
observable, we feel it is highly unlikely this lack of a clear
result should be explained by a lack of manipulation or a
methodological flaw in the setup. Also, as there is no negative
effect on the user experience either, the expressions were
apparently seen as natural, and did not hinder the human in
the task.

The learning task was carefully constructed: it is simple
enough to understand, involves an actual small RL problem
(with a small MDP, not just a bandid - i.e., it was not an action
value learing problem), it runs very smoothly and interactively
on the NAO robot, and it was a clear teaching challenge, that
was easy to monitor by the human teacher as well.

However, in retrospect we believe the task is not suitable,
and therefore feel this insight is an important contribution
to the field. We believe the reason of the minimal effect is
threefold.

First, the task is simple and easy to oversee for a human.
As the emotions are simulated based on the ”mental state” of
the RL system of the robot, the additional information this
emotion gives to the human teacher to understand the state
of the agent is perhaps too little. To test if such emotion
simulation is beneficial, the task needs to be more complex.

Second, even though the emotion expressed by the robot
in this task provides information about the state of the robot,
in this particular task, there is no reason for the human to
adapt the teaching strategy, as the goal is to teach the robot
the colors, wehther or not it is happy, sad, hopeful or fearful.
To explain: what should the human do if the robot fears a
particular color command from the human ? Not teach it
that color? To test if emotion expression grounded in RL is
beneficial, the emotion needs to be informative about how the
user may influence the robot’s process to the benefit of the
robots policy.

Third, as the human was in complete control, deciding
which color the robot had to try, there was never a moment
when the user had to intervene. For example, if fear is a
genuine signal of danger ahead, the human teacher may stop
the robot from going on and steer it towards another area of
the task. Or, if the robot autonomously explores, and when the
human sees hope, based on a falsely predicted future benefit,
the human can stop the robot. For this, the robot needs to
have some autonomy in the task, and a better impact measure
of robot conditions may be the number of (constructive)
interventions the human teacher performs.

It is important that future work on interactive robot learning
with human teachers, where emotions are used as social
signals to the teacher, takes into account these three aspects:
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• The task complexity needs to be such that the human
teacher cannot oversee the complete process easily.

• Emotions need to convey information about how the
human can change the actions of the robot.

• The robot needs to have some meaningful autonomy in
solving the task so that the human can intervene triggered
by the emotion of the robot.

On a positive note, emotion expression, when properly
grounded in the learning process apparently did not hinder
the human teacher either.

VII. ETHICAL IMPACT STATEMENT

Prior ethical approval was obtained from Delft Univerity
of Technology. Subjects provided written agreement for their
participation. The time investment for the subjects was rea-
sonable (approx. 15-30 minutes including debriefing). The
environmental impact of the energy used for the robot and
analysis is neglectable, no large scale cloud resources have
been used. The work could have a minor impact on society,
as it addresses the topic of robots with emotions. We would
like to stress that robots do not feel anything in the sense that
biological agents do. These emotions are simulations.
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